2 * i386 execution defines
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
21 #include "dyngen-exec.h"
23 /* XXX: factorize this mess */
25 #define TARGET_LONG_BITS 64
27 #define TARGET_LONG_BITS 32
32 register struct CPUX86State
*env
asm(AREG0
);
34 #include "qemu-common.h"
37 #define EAX (env->regs[R_EAX])
38 #define ECX (env->regs[R_ECX])
39 #define EDX (env->regs[R_EDX])
40 #define EBX (env->regs[R_EBX])
41 #define ESP (env->regs[R_ESP])
42 #define EBP (env->regs[R_EBP])
43 #define ESI (env->regs[R_ESI])
44 #define EDI (env->regs[R_EDI])
45 #define EIP (env->eip)
48 #define CC_SRC (env->cc_src)
49 #define CC_DST (env->cc_dst)
50 #define CC_OP (env->cc_op)
53 #define FT0 (env->ft0)
54 #define ST0 (env->fpregs[env->fpstt].d)
55 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
62 void do_interrupt(int intno
, int is_int
, int error_code
,
63 target_ulong next_eip
, int is_hw
);
64 void do_interrupt_user(int intno
, int is_int
, int error_code
,
65 target_ulong next_eip
);
66 void QEMU_NORETURN
raise_exception_err(int exception_index
, int error_code
);
67 void QEMU_NORETURN
raise_exception(int exception_index
);
68 void do_smm_enter(void);
70 /* n must be a constant to be efficient */
71 static inline target_long
lshift(target_long x
, int n
)
81 static inline void svm_check_intercept(uint32_t type
)
83 helper_svm_check_intercept_param(type
, 0);
86 #if !defined(CONFIG_USER_ONLY)
88 #include "softmmu_exec.h"
90 #endif /* !defined(CONFIG_USER_ONLY) */
93 /* use long double functions */
94 #define floatx_to_int32 floatx80_to_int32
95 #define floatx_to_int64 floatx80_to_int64
96 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
97 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
98 #define int32_to_floatx int32_to_floatx80
99 #define int64_to_floatx int64_to_floatx80
100 #define float32_to_floatx float32_to_floatx80
101 #define float64_to_floatx float64_to_floatx80
102 #define floatx_to_float32 floatx80_to_float32
103 #define floatx_to_float64 floatx80_to_float64
104 #define floatx_abs floatx80_abs
105 #define floatx_chs floatx80_chs
106 #define floatx_round_to_int floatx80_round_to_int
107 #define floatx_compare floatx80_compare
108 #define floatx_compare_quiet floatx80_compare_quiet
110 #define floatx_to_int32 float64_to_int32
111 #define floatx_to_int64 float64_to_int64
112 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
113 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
114 #define int32_to_floatx int32_to_float64
115 #define int64_to_floatx int64_to_float64
116 #define float32_to_floatx float32_to_float64
117 #define float64_to_floatx(x, e) (x)
118 #define floatx_to_float32 float64_to_float32
119 #define floatx_to_float64(x, e) (x)
120 #define floatx_abs float64_abs
121 #define floatx_chs float64_chs
122 #define floatx_round_to_int float64_round_to_int
123 #define floatx_compare float64_compare
124 #define floatx_compare_quiet float64_compare_quiet
127 #define RC_MASK 0xc00
128 #define RC_NEAR 0x000
129 #define RC_DOWN 0x400
131 #define RC_CHOP 0xc00
133 #define MAXTAN 9223372036854775808.0
135 #ifdef USE_X86LDOUBLE
141 unsigned long long lower
;
142 unsigned short upper
;
146 /* the following deal with x86 long double-precision numbers */
147 #define MAXEXPD 0x7fff
148 #define EXPBIAS 16383
149 #define EXPD(fp) (fp.l.upper & 0x7fff)
150 #define SIGND(fp) ((fp.l.upper) & 0x8000)
151 #define MANTD(fp) (fp.l.lower)
152 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
156 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
159 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
175 /* the following deal with IEEE double-precision numbers */
176 #define MAXEXPD 0x7ff
178 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
179 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
181 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
183 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
185 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
188 static inline void fpush(void)
190 env
->fpstt
= (env
->fpstt
- 1) & 7;
191 env
->fptags
[env
->fpstt
] = 0; /* validate stack entry */
194 static inline void fpop(void)
196 env
->fptags
[env
->fpstt
] = 1; /* invvalidate stack entry */
197 env
->fpstt
= (env
->fpstt
+ 1) & 7;
200 #ifndef USE_X86LDOUBLE
201 static inline CPU86_LDouble
helper_fldt(target_ulong ptr
)
208 upper
= lduw(ptr
+ 8);
209 /* XXX: handle overflow ? */
210 e
= (upper
& 0x7fff) - 16383 + EXPBIAS
; /* exponent */
211 e
|= (upper
>> 4) & 0x800; /* sign */
212 ll
= (ldq(ptr
) >> 11) & ((1LL << 52) - 1);
214 temp
.l
.upper
= (e
<< 20) | (ll
>> 32);
217 temp
.ll
= ll
| ((uint64_t)e
<< 52);
222 static inline void helper_fstt(CPU86_LDouble f
, target_ulong ptr
)
229 stq(ptr
, (MANTD(temp
) << 11) | (1LL << 63));
230 /* exponent + sign */
231 e
= EXPD(temp
) - EXPBIAS
+ 16383;
232 e
|= SIGND(temp
) >> 16;
237 /* we use memory access macros */
239 static inline CPU86_LDouble
helper_fldt(target_ulong ptr
)
243 temp
.l
.lower
= ldq(ptr
);
244 temp
.l
.upper
= lduw(ptr
+ 8);
248 static inline void helper_fstt(CPU86_LDouble f
, target_ulong ptr
)
253 stq(ptr
, temp
.l
.lower
);
254 stw(ptr
+ 8, temp
.l
.upper
);
257 #endif /* USE_X86LDOUBLE */
259 #define FPUS_IE (1 << 0)
260 #define FPUS_DE (1 << 1)
261 #define FPUS_ZE (1 << 2)
262 #define FPUS_OE (1 << 3)
263 #define FPUS_UE (1 << 4)
264 #define FPUS_PE (1 << 5)
265 #define FPUS_SF (1 << 6)
266 #define FPUS_SE (1 << 7)
267 #define FPUS_B (1 << 15)
271 static inline uint32_t compute_eflags(void)
273 return env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
276 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
277 static inline void load_eflags(int eflags
, int update_mask
)
279 CC_SRC
= eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
280 DF
= 1 - (2 * ((eflags
>> 10) & 1));
281 env
->eflags
= (env
->eflags
& ~update_mask
) |
282 (eflags
& update_mask
) | 0x2;
285 static inline void env_to_regs(void)
288 EAX
= env
->regs
[R_EAX
];
291 ECX
= env
->regs
[R_ECX
];
294 EDX
= env
->regs
[R_EDX
];
297 EBX
= env
->regs
[R_EBX
];
300 ESP
= env
->regs
[R_ESP
];
303 EBP
= env
->regs
[R_EBP
];
306 ESI
= env
->regs
[R_ESI
];
309 EDI
= env
->regs
[R_EDI
];
313 static inline void regs_to_env(void)
316 env
->regs
[R_EAX
] = EAX
;
319 env
->regs
[R_ECX
] = ECX
;
322 env
->regs
[R_EDX
] = EDX
;
325 env
->regs
[R_EBX
] = EBX
;
328 env
->regs
[R_ESP
] = ESP
;
331 env
->regs
[R_EBP
] = EBP
;
334 env
->regs
[R_ESI
] = ESI
;
337 env
->regs
[R_EDI
] = EDI
;
341 static inline int cpu_has_work(CPUState
*env
)
345 work
= (env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
346 (env
->eflags
& IF_MASK
);
347 work
|= env
->interrupt_request
& CPU_INTERRUPT_NMI
;
352 static inline int cpu_halted(CPUState
*env
) {
353 /* handle exit of HALTED state */
356 /* disable halt condition */
357 if (cpu_has_work(env
)) {
364 /* load efer and update the corresponding hflags. XXX: do consistency
365 checks with cpuid bits ? */
366 static inline void cpu_load_efer(CPUState
*env
, uint64_t val
)
369 env
->hflags
&= ~(HF_LMA_MASK
| HF_SVME_MASK
);
370 if (env
->efer
& MSR_EFER_LMA
)
371 env
->hflags
|= HF_LMA_MASK
;
372 if (env
->efer
& MSR_EFER_SVME
)
373 env
->hflags
|= HF_SVME_MASK
;