TCG variable type checking.
[qemu/mini2440.git] / target-i386 / exec.h
blob72ffdabdb199b4a6dad782aef104b2f112c6c727
1 /*
2 * i386 execution defines
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "dyngen-exec.h"
23 /* XXX: factorize this mess */
24 #ifdef TARGET_X86_64
25 #define TARGET_LONG_BITS 64
26 #else
27 #define TARGET_LONG_BITS 32
28 #endif
30 #include "cpu-defs.h"
32 register struct CPUX86State *env asm(AREG0);
34 #include "qemu-log.h"
36 #define EAX (env->regs[R_EAX])
37 #define ECX (env->regs[R_ECX])
38 #define EDX (env->regs[R_EDX])
39 #define EBX (env->regs[R_EBX])
40 #define ESP (env->regs[R_ESP])
41 #define EBP (env->regs[R_EBP])
42 #define ESI (env->regs[R_ESI])
43 #define EDI (env->regs[R_EDI])
44 #define EIP (env->eip)
45 #define DF (env->df)
47 #define CC_SRC (env->cc_src)
48 #define CC_DST (env->cc_dst)
49 #define CC_OP (env->cc_op)
51 /* float macros */
52 #define FT0 (env->ft0)
53 #define ST0 (env->fpregs[env->fpstt].d)
54 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
55 #define ST1 ST(1)
57 #include "cpu.h"
58 #include "exec-all.h"
60 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
61 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
62 int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
63 int is_write, int mmu_idx, int is_softmmu);
64 void __hidden cpu_lock(void);
65 void __hidden cpu_unlock(void);
66 void do_interrupt(int intno, int is_int, int error_code,
67 target_ulong next_eip, int is_hw);
68 void do_interrupt_user(int intno, int is_int, int error_code,
69 target_ulong next_eip);
70 void raise_interrupt(int intno, int is_int, int error_code,
71 int next_eip_addend);
72 void raise_exception_err(int exception_index, int error_code);
73 void raise_exception(int exception_index);
74 void do_smm_enter(void);
75 void __hidden cpu_loop_exit(void);
77 void OPPROTO op_movl_eflags_T0(void);
78 void OPPROTO op_movl_T0_eflags(void);
80 /* n must be a constant to be efficient */
81 static inline target_long lshift(target_long x, int n)
83 if (n >= 0)
84 return x << n;
85 else
86 return x >> (-n);
89 #include "helper.h"
91 static inline void svm_check_intercept(uint32_t type)
93 helper_svm_check_intercept_param(type, 0);
96 #if !defined(CONFIG_USER_ONLY)
98 #include "softmmu_exec.h"
100 #endif /* !defined(CONFIG_USER_ONLY) */
102 #ifdef USE_X86LDOUBLE
103 /* use long double functions */
104 #define floatx_to_int32 floatx80_to_int32
105 #define floatx_to_int64 floatx80_to_int64
106 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
107 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
108 #define int32_to_floatx int32_to_floatx80
109 #define int64_to_floatx int64_to_floatx80
110 #define float32_to_floatx float32_to_floatx80
111 #define float64_to_floatx float64_to_floatx80
112 #define floatx_to_float32 floatx80_to_float32
113 #define floatx_to_float64 floatx80_to_float64
114 #define floatx_abs floatx80_abs
115 #define floatx_chs floatx80_chs
116 #define floatx_round_to_int floatx80_round_to_int
117 #define floatx_compare floatx80_compare
118 #define floatx_compare_quiet floatx80_compare_quiet
119 #else
120 #define floatx_to_int32 float64_to_int32
121 #define floatx_to_int64 float64_to_int64
122 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
123 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
124 #define int32_to_floatx int32_to_float64
125 #define int64_to_floatx int64_to_float64
126 #define float32_to_floatx float32_to_float64
127 #define float64_to_floatx(x, e) (x)
128 #define floatx_to_float32 float64_to_float32
129 #define floatx_to_float64(x, e) (x)
130 #define floatx_abs float64_abs
131 #define floatx_chs float64_chs
132 #define floatx_round_to_int float64_round_to_int
133 #define floatx_compare float64_compare
134 #define floatx_compare_quiet float64_compare_quiet
135 #endif
137 #define RC_MASK 0xc00
138 #define RC_NEAR 0x000
139 #define RC_DOWN 0x400
140 #define RC_UP 0x800
141 #define RC_CHOP 0xc00
143 #define MAXTAN 9223372036854775808.0
145 #ifdef USE_X86LDOUBLE
147 /* only for x86 */
148 typedef union {
149 long double d;
150 struct {
151 unsigned long long lower;
152 unsigned short upper;
153 } l;
154 } CPU86_LDoubleU;
156 /* the following deal with x86 long double-precision numbers */
157 #define MAXEXPD 0x7fff
158 #define EXPBIAS 16383
159 #define EXPD(fp) (fp.l.upper & 0x7fff)
160 #define SIGND(fp) ((fp.l.upper) & 0x8000)
161 #define MANTD(fp) (fp.l.lower)
162 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
164 #else
166 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
167 typedef union {
168 double d;
169 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
170 struct {
171 uint32_t lower;
172 int32_t upper;
173 } l;
174 #else
175 struct {
176 int32_t upper;
177 uint32_t lower;
178 } l;
179 #endif
180 #ifndef __arm__
181 int64_t ll;
182 #endif
183 } CPU86_LDoubleU;
185 /* the following deal with IEEE double-precision numbers */
186 #define MAXEXPD 0x7ff
187 #define EXPBIAS 1023
188 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
189 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
190 #ifdef __arm__
191 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
192 #else
193 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
194 #endif
195 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
196 #endif
198 static inline void fpush(void)
200 env->fpstt = (env->fpstt - 1) & 7;
201 env->fptags[env->fpstt] = 0; /* validate stack entry */
204 static inline void fpop(void)
206 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
207 env->fpstt = (env->fpstt + 1) & 7;
210 #ifndef USE_X86LDOUBLE
211 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
213 CPU86_LDoubleU temp;
214 int upper, e;
215 uint64_t ll;
217 /* mantissa */
218 upper = lduw(ptr + 8);
219 /* XXX: handle overflow ? */
220 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
221 e |= (upper >> 4) & 0x800; /* sign */
222 ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
223 #ifdef __arm__
224 temp.l.upper = (e << 20) | (ll >> 32);
225 temp.l.lower = ll;
226 #else
227 temp.ll = ll | ((uint64_t)e << 52);
228 #endif
229 return temp.d;
232 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
234 CPU86_LDoubleU temp;
235 int e;
237 temp.d = f;
238 /* mantissa */
239 stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
240 /* exponent + sign */
241 e = EXPD(temp) - EXPBIAS + 16383;
242 e |= SIGND(temp) >> 16;
243 stw(ptr + 8, e);
245 #else
247 /* we use memory access macros */
249 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
251 CPU86_LDoubleU temp;
253 temp.l.lower = ldq(ptr);
254 temp.l.upper = lduw(ptr + 8);
255 return temp.d;
258 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
260 CPU86_LDoubleU temp;
262 temp.d = f;
263 stq(ptr, temp.l.lower);
264 stw(ptr + 8, temp.l.upper);
267 #endif /* USE_X86LDOUBLE */
269 #define FPUS_IE (1 << 0)
270 #define FPUS_DE (1 << 1)
271 #define FPUS_ZE (1 << 2)
272 #define FPUS_OE (1 << 3)
273 #define FPUS_UE (1 << 4)
274 #define FPUS_PE (1 << 5)
275 #define FPUS_SF (1 << 6)
276 #define FPUS_SE (1 << 7)
277 #define FPUS_B (1 << 15)
279 #define FPUC_EM 0x3f
281 extern const CPU86_LDouble f15rk[7];
283 void fpu_raise_exception(void);
284 void restore_native_fp_state(CPUState *env);
285 void save_native_fp_state(CPUState *env);
287 extern const uint8_t parity_table[256];
288 extern const uint8_t rclw_table[32];
289 extern const uint8_t rclb_table[32];
291 static inline uint32_t compute_eflags(void)
293 return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
296 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
297 static inline void load_eflags(int eflags, int update_mask)
299 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
300 DF = 1 - (2 * ((eflags >> 10) & 1));
301 env->eflags = (env->eflags & ~update_mask) |
302 (eflags & update_mask) | 0x2;
305 static inline void env_to_regs(void)
307 #ifdef reg_EAX
308 EAX = env->regs[R_EAX];
309 #endif
310 #ifdef reg_ECX
311 ECX = env->regs[R_ECX];
312 #endif
313 #ifdef reg_EDX
314 EDX = env->regs[R_EDX];
315 #endif
316 #ifdef reg_EBX
317 EBX = env->regs[R_EBX];
318 #endif
319 #ifdef reg_ESP
320 ESP = env->regs[R_ESP];
321 #endif
322 #ifdef reg_EBP
323 EBP = env->regs[R_EBP];
324 #endif
325 #ifdef reg_ESI
326 ESI = env->regs[R_ESI];
327 #endif
328 #ifdef reg_EDI
329 EDI = env->regs[R_EDI];
330 #endif
333 static inline void regs_to_env(void)
335 #ifdef reg_EAX
336 env->regs[R_EAX] = EAX;
337 #endif
338 #ifdef reg_ECX
339 env->regs[R_ECX] = ECX;
340 #endif
341 #ifdef reg_EDX
342 env->regs[R_EDX] = EDX;
343 #endif
344 #ifdef reg_EBX
345 env->regs[R_EBX] = EBX;
346 #endif
347 #ifdef reg_ESP
348 env->regs[R_ESP] = ESP;
349 #endif
350 #ifdef reg_EBP
351 env->regs[R_EBP] = EBP;
352 #endif
353 #ifdef reg_ESI
354 env->regs[R_ESI] = ESI;
355 #endif
356 #ifdef reg_EDI
357 env->regs[R_EDI] = EDI;
358 #endif
361 static inline int cpu_halted(CPUState *env) {
362 /* handle exit of HALTED state */
363 if (!env->halted)
364 return 0;
365 /* disable halt condition */
366 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
367 (env->eflags & IF_MASK)) ||
368 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
369 env->halted = 0;
370 return 0;
372 return EXCP_HALTED;
375 /* load efer and update the corresponding hflags. XXX: do consistency
376 checks with cpuid bits ? */
377 static inline void cpu_load_efer(CPUState *env, uint64_t val)
379 env->efer = val;
380 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
381 if (env->efer & MSR_EFER_LMA)
382 env->hflags |= HF_LMA_MASK;
383 if (env->efer & MSR_EFER_SVME)
384 env->hflags |= HF_SVME_MASK;