2 * i386 execution defines
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include "dyngen-exec.h"
23 /* XXX: factorize this mess */
25 #define TARGET_LONG_BITS 64
27 #define TARGET_LONG_BITS 32
32 /* at least 4 register variables are defined */
33 register struct CPUX86State
*env
asm(AREG0
);
35 #if TARGET_LONG_BITS > HOST_LONG_BITS
37 /* no registers can be used */
44 /* XXX: use unsigned long instead of target_ulong - better code will
45 be generated for 64 bit CPUs */
46 register target_ulong T0
asm(AREG1
);
47 register target_ulong T1
asm(AREG2
);
48 register target_ulong T2
asm(AREG3
);
50 /* if more registers are available, we define some registers too */
52 register target_ulong EAX
asm(AREG4
);
57 register target_ulong ESP
asm(AREG5
);
62 register target_ulong EBP
asm(AREG6
);
67 register target_ulong ECX
asm(AREG7
);
72 register target_ulong EDX
asm(AREG8
);
77 register target_ulong EBX
asm(AREG9
);
82 register target_ulong ESI
asm(AREG10
);
87 register target_ulong EDI
asm(AREG11
);
91 #endif /* ! (TARGET_LONG_BITS > HOST_LONG_BITS) */
99 #define EAX (env->regs[R_EAX])
102 #define ECX (env->regs[R_ECX])
105 #define EDX (env->regs[R_EDX])
108 #define EBX (env->regs[R_EBX])
111 #define ESP (env->regs[R_ESP])
114 #define EBP (env->regs[R_EBP])
117 #define ESI (env->regs[R_ESI])
120 #define EDI (env->regs[R_EDI])
122 #define EIP (env->eip)
125 #define CC_SRC (env->cc_src)
126 #define CC_DST (env->cc_dst)
127 #define CC_OP (env->cc_op)
130 #define FT0 (env->ft0)
131 #define ST0 (env->fpregs[env->fpstt].d)
132 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
135 #ifdef USE_FP_CONVERT
136 #define FP_CONVERT (env->fp_convert)
140 #include "exec-all.h"
142 typedef struct CCTable
{
143 int (*compute_all
)(void); /* return all the flags */
144 int (*compute_c
)(void); /* return the C flag */
147 extern CCTable cc_table
[];
149 void load_seg(int seg_reg
, int selector
);
150 void helper_ljmp_protected_T0_T1(int next_eip
);
151 void helper_lcall_real_T0_T1(int shift
, int next_eip
);
152 void helper_lcall_protected_T0_T1(int shift
, int next_eip
);
153 void helper_iret_real(int shift
);
154 void helper_iret_protected(int shift
, int next_eip
);
155 void helper_lret_protected(int shift
, int addend
);
156 void helper_lldt_T0(void);
157 void helper_ltr_T0(void);
158 void helper_movl_crN_T0(int reg
);
159 void helper_movl_drN_T0(int reg
);
160 void helper_invlpg(target_ulong addr
);
161 void cpu_x86_update_cr0(CPUX86State
*env
, uint32_t new_cr0
);
162 void cpu_x86_update_cr3(CPUX86State
*env
, target_ulong new_cr3
);
163 void cpu_x86_update_cr4(CPUX86State
*env
, uint32_t new_cr4
);
164 void cpu_x86_flush_tlb(CPUX86State
*env
, target_ulong addr
);
165 int cpu_x86_handle_mmu_fault(CPUX86State
*env
, target_ulong addr
,
166 int is_write
, int is_user
, int is_softmmu
);
167 void tlb_fill(target_ulong addr
, int is_write
, int is_user
,
169 void __hidden
cpu_lock(void);
170 void __hidden
cpu_unlock(void);
171 void do_interrupt(int intno
, int is_int
, int error_code
,
172 target_ulong next_eip
, int is_hw
);
173 void do_interrupt_user(int intno
, int is_int
, int error_code
,
174 target_ulong next_eip
);
175 void raise_interrupt(int intno
, int is_int
, int error_code
,
176 int next_eip_addend
);
177 void raise_exception_err(int exception_index
, int error_code
);
178 void raise_exception(int exception_index
);
179 void do_smm_enter(void);
180 void __hidden
cpu_loop_exit(void);
182 void OPPROTO
op_movl_eflags_T0(void);
183 void OPPROTO
op_movl_T0_eflags(void);
184 void helper_divl_EAX_T0(void);
185 void helper_idivl_EAX_T0(void);
186 void helper_mulq_EAX_T0(void);
187 void helper_imulq_EAX_T0(void);
188 void helper_imulq_T0_T1(void);
189 void helper_divq_EAX_T0(void);
190 void helper_idivq_EAX_T0(void);
191 void helper_bswapq_T0(void);
192 void helper_cmpxchg8b(void);
193 void helper_cpuid(void);
194 void helper_enter_level(int level
, int data32
);
195 void helper_enter64_level(int level
, int data64
);
196 void helper_sysenter(void);
197 void helper_sysexit(void);
198 void helper_syscall(int next_eip_addend
);
199 void helper_sysret(int dflag
);
200 void helper_rdtsc(void);
201 void helper_rdmsr(void);
202 void helper_wrmsr(void);
203 void helper_lsl(void);
204 void helper_lar(void);
205 void helper_verr(void);
206 void helper_verw(void);
207 void helper_rsm(void);
209 void check_iob_T0(void);
210 void check_iow_T0(void);
211 void check_iol_T0(void);
212 void check_iob_DX(void);
213 void check_iow_DX(void);
214 void check_iol_DX(void);
216 #if !defined(CONFIG_USER_ONLY)
218 #include "softmmu_exec.h"
220 static inline double ldfq(target_ulong ptr
)
230 static inline void stfq(target_ulong ptr
, double v
)
240 static inline float ldfl(target_ulong ptr
)
250 static inline void stfl(target_ulong ptr
, float v
)
260 #endif /* !defined(CONFIG_USER_ONLY) */
262 #ifdef USE_X86LDOUBLE
263 /* use long double functions */
264 #define floatx_to_int32 floatx80_to_int32
265 #define floatx_to_int64 floatx80_to_int64
266 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
267 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
268 #define floatx_abs floatx80_abs
269 #define floatx_chs floatx80_chs
270 #define floatx_round_to_int floatx80_round_to_int
271 #define floatx_compare floatx80_compare
272 #define floatx_compare_quiet floatx80_compare_quiet
284 #define floatx_to_int32 float64_to_int32
285 #define floatx_to_int64 float64_to_int64
286 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
287 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
288 #define floatx_abs float64_abs
289 #define floatx_chs float64_chs
290 #define floatx_round_to_int float64_round_to_int
291 #define floatx_compare float64_compare
292 #define floatx_compare_quiet float64_compare_quiet
295 extern CPU86_LDouble
sin(CPU86_LDouble x
);
296 extern CPU86_LDouble
cos(CPU86_LDouble x
);
297 extern CPU86_LDouble
sqrt(CPU86_LDouble x
);
298 extern CPU86_LDouble
pow(CPU86_LDouble
, CPU86_LDouble
);
299 extern CPU86_LDouble
log(CPU86_LDouble x
);
300 extern CPU86_LDouble
tan(CPU86_LDouble x
);
301 extern CPU86_LDouble
atan2(CPU86_LDouble
, CPU86_LDouble
);
302 extern CPU86_LDouble
floor(CPU86_LDouble x
);
303 extern CPU86_LDouble
ceil(CPU86_LDouble x
);
305 #define RC_MASK 0xc00
306 #define RC_NEAR 0x000
307 #define RC_DOWN 0x400
309 #define RC_CHOP 0xc00
311 #define MAXTAN 9223372036854775808.0
313 #ifdef USE_X86LDOUBLE
319 unsigned long long lower
;
320 unsigned short upper
;
324 /* the following deal with x86 long double-precision numbers */
325 #define MAXEXPD 0x7fff
326 #define EXPBIAS 16383
327 #define EXPD(fp) (fp.l.upper & 0x7fff)
328 #define SIGND(fp) ((fp.l.upper) & 0x8000)
329 #define MANTD(fp) (fp.l.lower)
330 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
334 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
337 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
353 /* the following deal with IEEE double-precision numbers */
354 #define MAXEXPD 0x7ff
356 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
357 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
359 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
361 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
363 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
366 static inline void fpush(void)
368 env
->fpstt
= (env
->fpstt
- 1) & 7;
369 env
->fptags
[env
->fpstt
] = 0; /* validate stack entry */
372 static inline void fpop(void)
374 env
->fptags
[env
->fpstt
] = 1; /* invvalidate stack entry */
375 env
->fpstt
= (env
->fpstt
+ 1) & 7;
378 #ifndef USE_X86LDOUBLE
379 static inline CPU86_LDouble
helper_fldt(target_ulong ptr
)
386 upper
= lduw(ptr
+ 8);
387 /* XXX: handle overflow ? */
388 e
= (upper
& 0x7fff) - 16383 + EXPBIAS
; /* exponent */
389 e
|= (upper
>> 4) & 0x800; /* sign */
390 ll
= (ldq(ptr
) >> 11) & ((1LL << 52) - 1);
392 temp
.l
.upper
= (e
<< 20) | (ll
>> 32);
395 temp
.ll
= ll
| ((uint64_t)e
<< 52);
400 static inline void helper_fstt(CPU86_LDouble f
, target_ulong ptr
)
407 stq(ptr
, (MANTD(temp
) << 11) | (1LL << 63));
408 /* exponent + sign */
409 e
= EXPD(temp
) - EXPBIAS
+ 16383;
410 e
|= SIGND(temp
) >> 16;
415 /* XXX: same endianness assumed */
417 #ifdef CONFIG_USER_ONLY
419 static inline CPU86_LDouble
helper_fldt(target_ulong ptr
)
421 return *(CPU86_LDouble
*)ptr
;
424 static inline void helper_fstt(CPU86_LDouble f
, target_ulong ptr
)
426 *(CPU86_LDouble
*)ptr
= f
;
431 /* we use memory access macros */
433 static inline CPU86_LDouble
helper_fldt(target_ulong ptr
)
437 temp
.l
.lower
= ldq(ptr
);
438 temp
.l
.upper
= lduw(ptr
+ 8);
442 static inline void helper_fstt(CPU86_LDouble f
, target_ulong ptr
)
447 stq(ptr
, temp
.l
.lower
);
448 stw(ptr
+ 8, temp
.l
.upper
);
451 #endif /* !CONFIG_USER_ONLY */
453 #endif /* USE_X86LDOUBLE */
455 #define FPUS_IE (1 << 0)
456 #define FPUS_DE (1 << 1)
457 #define FPUS_ZE (1 << 2)
458 #define FPUS_OE (1 << 3)
459 #define FPUS_UE (1 << 4)
460 #define FPUS_PE (1 << 5)
461 #define FPUS_SF (1 << 6)
462 #define FPUS_SE (1 << 7)
463 #define FPUS_B (1 << 15)
467 extern const CPU86_LDouble f15rk
[7];
469 void helper_fldt_ST0_A0(void);
470 void helper_fstt_ST0_A0(void);
471 void fpu_raise_exception(void);
472 CPU86_LDouble
helper_fdiv(CPU86_LDouble a
, CPU86_LDouble b
);
473 void helper_fbld_ST0_A0(void);
474 void helper_fbst_ST0_A0(void);
475 void helper_f2xm1(void);
476 void helper_fyl2x(void);
477 void helper_fptan(void);
478 void helper_fpatan(void);
479 void helper_fxtract(void);
480 void helper_fprem1(void);
481 void helper_fprem(void);
482 void helper_fyl2xp1(void);
483 void helper_fsqrt(void);
484 void helper_fsincos(void);
485 void helper_frndint(void);
486 void helper_fscale(void);
487 void helper_fsin(void);
488 void helper_fcos(void);
489 void helper_fxam_ST0(void);
490 void helper_fstenv(target_ulong ptr
, int data32
);
491 void helper_fldenv(target_ulong ptr
, int data32
);
492 void helper_fsave(target_ulong ptr
, int data32
);
493 void helper_frstor(target_ulong ptr
, int data32
);
494 void helper_fxsave(target_ulong ptr
, int data64
);
495 void helper_fxrstor(target_ulong ptr
, int data64
);
496 void restore_native_fp_state(CPUState
*env
);
497 void save_native_fp_state(CPUState
*env
);
498 float approx_rsqrt(float a
);
499 float approx_rcp(float a
);
500 void update_fp_status(void);
501 void helper_hlt(void);
502 void helper_monitor(void);
503 void helper_mwait(void);
505 extern const uint8_t parity_table
[256];
506 extern const uint8_t rclw_table
[32];
507 extern const uint8_t rclb_table
[32];
509 static inline uint32_t compute_eflags(void)
511 return env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
514 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
515 static inline void load_eflags(int eflags
, int update_mask
)
517 CC_SRC
= eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
518 DF
= 1 - (2 * ((eflags
>> 10) & 1));
519 env
->eflags
= (env
->eflags
& ~update_mask
) |
520 (eflags
& update_mask
);
523 static inline void env_to_regs(void)
526 EAX
= env
->regs
[R_EAX
];
529 ECX
= env
->regs
[R_ECX
];
532 EDX
= env
->regs
[R_EDX
];
535 EBX
= env
->regs
[R_EBX
];
538 ESP
= env
->regs
[R_ESP
];
541 EBP
= env
->regs
[R_EBP
];
544 ESI
= env
->regs
[R_ESI
];
547 EDI
= env
->regs
[R_EDI
];
551 static inline void regs_to_env(void)
554 env
->regs
[R_EAX
] = EAX
;
557 env
->regs
[R_ECX
] = ECX
;
560 env
->regs
[R_EDX
] = EDX
;
563 env
->regs
[R_EBX
] = EBX
;
566 env
->regs
[R_ESP
] = ESP
;
569 env
->regs
[R_EBP
] = EBP
;
572 env
->regs
[R_ESI
] = ESI
;
575 env
->regs
[R_EDI
] = EDI
;