monitor: only run coroutine commands in qemu_aio_context
[qemu/kevin.git] / include / exec / memory.h
blob177be23db709d8bab9cebfe6acbae57611073327
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/range.h"
28 #include "qemu/notify.h"
29 #include "qom/object.h"
30 #include "qemu/rcu.h"
32 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
34 #define MAX_PHYS_ADDR_SPACE_BITS 62
35 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
37 #define TYPE_MEMORY_REGION "memory-region"
38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
39 TYPE_MEMORY_REGION)
41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
44 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager"
47 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
48 typedef struct RamDiscardManager RamDiscardManager;
49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
50 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
52 #ifdef CONFIG_FUZZ
53 void fuzz_dma_read_cb(size_t addr,
54 size_t len,
55 MemoryRegion *mr);
56 #else
57 static inline void fuzz_dma_read_cb(size_t addr,
58 size_t len,
59 MemoryRegion *mr)
61 /* Do Nothing */
63 #endif
65 /* Possible bits for global_dirty_log_{start|stop} */
67 /* Dirty tracking enabled because migration is running */
68 #define GLOBAL_DIRTY_MIGRATION (1U << 0)
70 /* Dirty tracking enabled because measuring dirty rate */
71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
73 /* Dirty tracking enabled because dirty limit */
74 #define GLOBAL_DIRTY_LIMIT (1U << 2)
76 #define GLOBAL_DIRTY_MASK (0x7)
78 extern unsigned int global_dirty_tracking;
80 typedef struct MemoryRegionOps MemoryRegionOps;
82 struct ReservedRegion {
83 Range range;
84 unsigned type;
87 /**
88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
90 * @mr: the region, or %NULL if empty
91 * @fv: the flat view of the address space the region is mapped in
92 * @offset_within_region: the beginning of the section, relative to @mr's start
93 * @size: the size of the section; will not exceed @mr's boundaries
94 * @offset_within_address_space: the address of the first byte of the section
95 * relative to the region's address space
96 * @readonly: writes to this section are ignored
97 * @nonvolatile: this section is non-volatile
98 * @unmergeable: this section should not get merged with adjacent sections
100 struct MemoryRegionSection {
101 Int128 size;
102 MemoryRegion *mr;
103 FlatView *fv;
104 hwaddr offset_within_region;
105 hwaddr offset_within_address_space;
106 bool readonly;
107 bool nonvolatile;
108 bool unmergeable;
111 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
113 /* See address_space_translate: bit 0 is read, bit 1 is write. */
114 typedef enum {
115 IOMMU_NONE = 0,
116 IOMMU_RO = 1,
117 IOMMU_WO = 2,
118 IOMMU_RW = 3,
119 } IOMMUAccessFlags;
121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
123 struct IOMMUTLBEntry {
124 AddressSpace *target_as;
125 hwaddr iova;
126 hwaddr translated_addr;
127 hwaddr addr_mask; /* 0xfff = 4k translation */
128 IOMMUAccessFlags perm;
132 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
133 * register with one or multiple IOMMU Notifier capability bit(s).
135 * Normally there're two use cases for the notifiers:
137 * (1) When the device needs accurate synchronizations of the vIOMMU page
138 * tables, it needs to register with both MAP|UNMAP notifies (which
139 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
141 * Regarding to accurate synchronization, it's when the notified
142 * device maintains a shadow page table and must be notified on each
143 * guest MAP (page table entry creation) and UNMAP (invalidation)
144 * events (e.g. VFIO). Both notifications must be accurate so that
145 * the shadow page table is fully in sync with the guest view.
147 * (2) When the device doesn't need accurate synchronizations of the
148 * vIOMMU page tables, it needs to register only with UNMAP or
149 * DEVIOTLB_UNMAP notifies.
151 * It's when the device maintains a cache of IOMMU translations
152 * (IOTLB) and is able to fill that cache by requesting translations
153 * from the vIOMMU through a protocol similar to ATS (Address
154 * Translation Service).
156 * Note that in this mode the vIOMMU will not maintain a shadowed
157 * page table for the address space, and the UNMAP messages can cover
158 * more than the pages that used to get mapped. The IOMMU notifiee
159 * should be able to take care of over-sized invalidations.
161 typedef enum {
162 IOMMU_NOTIFIER_NONE = 0,
163 /* Notify cache invalidations */
164 IOMMU_NOTIFIER_UNMAP = 0x1,
165 /* Notify entry changes (newly created entries) */
166 IOMMU_NOTIFIER_MAP = 0x2,
167 /* Notify changes on device IOTLB entries */
168 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
169 } IOMMUNotifierFlag;
171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
174 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
176 struct IOMMUNotifier;
177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
178 IOMMUTLBEntry *data);
180 struct IOMMUNotifier {
181 IOMMUNotify notify;
182 IOMMUNotifierFlag notifier_flags;
183 /* Notify for address space range start <= addr <= end */
184 hwaddr start;
185 hwaddr end;
186 int iommu_idx;
187 QLIST_ENTRY(IOMMUNotifier) node;
189 typedef struct IOMMUNotifier IOMMUNotifier;
191 typedef struct IOMMUTLBEvent {
192 IOMMUNotifierFlag type;
193 IOMMUTLBEntry entry;
194 } IOMMUTLBEvent;
196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
197 #define RAM_PREALLOC (1 << 0)
199 /* RAM is mmap-ed with MAP_SHARED */
200 #define RAM_SHARED (1 << 1)
202 /* Only a portion of RAM (used_length) is actually used, and migrated.
203 * Resizing RAM while migrating can result in the migration being canceled.
205 #define RAM_RESIZEABLE (1 << 2)
207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
208 * zero the page and wake waiting processes.
209 * (Set during postcopy)
211 #define RAM_UF_ZEROPAGE (1 << 3)
213 /* RAM can be migrated */
214 #define RAM_MIGRATABLE (1 << 4)
216 /* RAM is a persistent kind memory */
217 #define RAM_PMEM (1 << 5)
221 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
222 * support 'write-tracking' migration type.
223 * Implies ram_state->ram_wt_enabled.
225 #define RAM_UF_WRITEPROTECT (1 << 6)
228 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
229 * pages if applicable) is skipped: will bail out if not supported. When not
230 * set, the OS will do the reservation, if supported for the memory type.
232 #define RAM_NORESERVE (1 << 7)
234 /* RAM that isn't accessible through normal means. */
235 #define RAM_PROTECTED (1 << 8)
237 /* RAM is an mmap-ed named file */
238 #define RAM_NAMED_FILE (1 << 9)
240 /* RAM is mmap-ed read-only */
241 #define RAM_READONLY (1 << 10)
243 /* RAM FD is opened read-only */
244 #define RAM_READONLY_FD (1 << 11)
246 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
247 IOMMUNotifierFlag flags,
248 hwaddr start, hwaddr end,
249 int iommu_idx)
251 n->notify = fn;
252 n->notifier_flags = flags;
253 n->start = start;
254 n->end = end;
255 n->iommu_idx = iommu_idx;
259 * Memory region callbacks
261 struct MemoryRegionOps {
262 /* Read from the memory region. @addr is relative to @mr; @size is
263 * in bytes. */
264 uint64_t (*read)(void *opaque,
265 hwaddr addr,
266 unsigned size);
267 /* Write to the memory region. @addr is relative to @mr; @size is
268 * in bytes. */
269 void (*write)(void *opaque,
270 hwaddr addr,
271 uint64_t data,
272 unsigned size);
274 MemTxResult (*read_with_attrs)(void *opaque,
275 hwaddr addr,
276 uint64_t *data,
277 unsigned size,
278 MemTxAttrs attrs);
279 MemTxResult (*write_with_attrs)(void *opaque,
280 hwaddr addr,
281 uint64_t data,
282 unsigned size,
283 MemTxAttrs attrs);
285 enum device_endian endianness;
286 /* Guest-visible constraints: */
287 struct {
288 /* If nonzero, specify bounds on access sizes beyond which a machine
289 * check is thrown.
291 unsigned min_access_size;
292 unsigned max_access_size;
293 /* If true, unaligned accesses are supported. Otherwise unaligned
294 * accesses throw machine checks.
296 bool unaligned;
298 * If present, and returns #false, the transaction is not accepted
299 * by the device (and results in machine dependent behaviour such
300 * as a machine check exception).
302 bool (*accepts)(void *opaque, hwaddr addr,
303 unsigned size, bool is_write,
304 MemTxAttrs attrs);
305 } valid;
306 /* Internal implementation constraints: */
307 struct {
308 /* If nonzero, specifies the minimum size implemented. Smaller sizes
309 * will be rounded upwards and a partial result will be returned.
311 unsigned min_access_size;
312 /* If nonzero, specifies the maximum size implemented. Larger sizes
313 * will be done as a series of accesses with smaller sizes.
315 unsigned max_access_size;
316 /* If true, unaligned accesses are supported. Otherwise all accesses
317 * are converted to (possibly multiple) naturally aligned accesses.
319 bool unaligned;
320 } impl;
323 typedef struct MemoryRegionClass {
324 /* private */
325 ObjectClass parent_class;
326 } MemoryRegionClass;
329 enum IOMMUMemoryRegionAttr {
330 IOMMU_ATTR_SPAPR_TCE_FD
334 * IOMMUMemoryRegionClass:
336 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
337 * and provide an implementation of at least the @translate method here
338 * to handle requests to the memory region. Other methods are optional.
340 * The IOMMU implementation must use the IOMMU notifier infrastructure
341 * to report whenever mappings are changed, by calling
342 * memory_region_notify_iommu() (or, if necessary, by calling
343 * memory_region_notify_iommu_one() for each registered notifier).
345 * Conceptually an IOMMU provides a mapping from input address
346 * to an output TLB entry. If the IOMMU is aware of memory transaction
347 * attributes and the output TLB entry depends on the transaction
348 * attributes, we represent this using IOMMU indexes. Each index
349 * selects a particular translation table that the IOMMU has:
351 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
353 * @translate takes an input address and an IOMMU index
355 * and the mapping returned can only depend on the input address and the
356 * IOMMU index.
358 * Most IOMMUs don't care about the transaction attributes and support
359 * only a single IOMMU index. A more complex IOMMU might have one index
360 * for secure transactions and one for non-secure transactions.
362 struct IOMMUMemoryRegionClass {
363 /* private: */
364 MemoryRegionClass parent_class;
366 /* public: */
368 * @translate:
370 * Return a TLB entry that contains a given address.
372 * The IOMMUAccessFlags indicated via @flag are optional and may
373 * be specified as IOMMU_NONE to indicate that the caller needs
374 * the full translation information for both reads and writes. If
375 * the access flags are specified then the IOMMU implementation
376 * may use this as an optimization, to stop doing a page table
377 * walk as soon as it knows that the requested permissions are not
378 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
379 * full page table walk and report the permissions in the returned
380 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
381 * return different mappings for reads and writes.)
383 * The returned information remains valid while the caller is
384 * holding the big QEMU lock or is inside an RCU critical section;
385 * if the caller wishes to cache the mapping beyond that it must
386 * register an IOMMU notifier so it can invalidate its cached
387 * information when the IOMMU mapping changes.
389 * @iommu: the IOMMUMemoryRegion
391 * @hwaddr: address to be translated within the memory region
393 * @flag: requested access permission
395 * @iommu_idx: IOMMU index for the translation
397 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
398 IOMMUAccessFlags flag, int iommu_idx);
400 * @get_min_page_size:
402 * Returns minimum supported page size in bytes.
404 * If this method is not provided then the minimum is assumed to
405 * be TARGET_PAGE_SIZE.
407 * @iommu: the IOMMUMemoryRegion
409 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
411 * @notify_flag_changed:
413 * Called when IOMMU Notifier flag changes (ie when the set of
414 * events which IOMMU users are requesting notification for changes).
415 * Optional method -- need not be provided if the IOMMU does not
416 * need to know exactly which events must be notified.
418 * @iommu: the IOMMUMemoryRegion
420 * @old_flags: events which previously needed to be notified
422 * @new_flags: events which now need to be notified
424 * Returns 0 on success, or a negative errno; in particular
425 * returns -EINVAL if the new flag bitmap is not supported by the
426 * IOMMU memory region. In case of failure, the error object
427 * must be created
429 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
430 IOMMUNotifierFlag old_flags,
431 IOMMUNotifierFlag new_flags,
432 Error **errp);
434 * @replay:
436 * Called to handle memory_region_iommu_replay().
438 * The default implementation of memory_region_iommu_replay() is to
439 * call the IOMMU translate method for every page in the address space
440 * with flag == IOMMU_NONE and then call the notifier if translate
441 * returns a valid mapping. If this method is implemented then it
442 * overrides the default behaviour, and must provide the full semantics
443 * of memory_region_iommu_replay(), by calling @notifier for every
444 * translation present in the IOMMU.
446 * Optional method -- an IOMMU only needs to provide this method
447 * if the default is inefficient or produces undesirable side effects.
449 * Note: this is not related to record-and-replay functionality.
451 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
454 * @get_attr:
456 * Get IOMMU misc attributes. This is an optional method that
457 * can be used to allow users of the IOMMU to get implementation-specific
458 * information. The IOMMU implements this method to handle calls
459 * by IOMMU users to memory_region_iommu_get_attr() by filling in
460 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
461 * the IOMMU supports. If the method is unimplemented then
462 * memory_region_iommu_get_attr() will always return -EINVAL.
464 * @iommu: the IOMMUMemoryRegion
466 * @attr: attribute being queried
468 * @data: memory to fill in with the attribute data
470 * Returns 0 on success, or a negative errno; in particular
471 * returns -EINVAL for unrecognized or unimplemented attribute types.
473 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
474 void *data);
477 * @attrs_to_index:
479 * Return the IOMMU index to use for a given set of transaction attributes.
481 * Optional method: if an IOMMU only supports a single IOMMU index then
482 * the default implementation of memory_region_iommu_attrs_to_index()
483 * will return 0.
485 * The indexes supported by an IOMMU must be contiguous, starting at 0.
487 * @iommu: the IOMMUMemoryRegion
488 * @attrs: memory transaction attributes
490 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
493 * @num_indexes:
495 * Return the number of IOMMU indexes this IOMMU supports.
497 * Optional method: if this method is not provided, then
498 * memory_region_iommu_num_indexes() will return 1, indicating that
499 * only a single IOMMU index is supported.
501 * @iommu: the IOMMUMemoryRegion
503 int (*num_indexes)(IOMMUMemoryRegion *iommu);
506 * @iommu_set_page_size_mask:
508 * Restrict the page size mask that can be supported with a given IOMMU
509 * memory region. Used for example to propagate host physical IOMMU page
510 * size mask limitations to the virtual IOMMU.
512 * Optional method: if this method is not provided, then the default global
513 * page mask is used.
515 * @iommu: the IOMMUMemoryRegion
517 * @page_size_mask: a bitmask of supported page sizes. At least one bit,
518 * representing the smallest page size, must be set. Additional set bits
519 * represent supported block sizes. For example a host physical IOMMU that
520 * uses page tables with a page size of 4kB, and supports 2MB and 4GB
521 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
522 * block sizes is specified with mask 0xfffffffffffff000.
524 * Returns 0 on success, or a negative error. In case of failure, the error
525 * object must be created.
527 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
528 uint64_t page_size_mask,
529 Error **errp);
531 * @iommu_set_iova_ranges:
533 * Propagate information about the usable IOVA ranges for a given IOMMU
534 * memory region. Used for example to propagate host physical device
535 * reserved memory region constraints to the virtual IOMMU.
537 * Optional method: if this method is not provided, then the default IOVA
538 * aperture is used.
540 * @iommu: the IOMMUMemoryRegion
542 * @iova_ranges: list of ordered IOVA ranges (at least one range)
544 * Returns 0 on success, or a negative error. In case of failure, the error
545 * object must be created.
547 int (*iommu_set_iova_ranges)(IOMMUMemoryRegion *iommu,
548 GList *iova_ranges,
549 Error **errp);
552 typedef struct RamDiscardListener RamDiscardListener;
553 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
554 MemoryRegionSection *section);
555 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
556 MemoryRegionSection *section);
558 struct RamDiscardListener {
560 * @notify_populate:
562 * Notification that previously discarded memory is about to get populated.
563 * Listeners are able to object. If any listener objects, already
564 * successfully notified listeners are notified about a discard again.
566 * @rdl: the #RamDiscardListener getting notified
567 * @section: the #MemoryRegionSection to get populated. The section
568 * is aligned within the memory region to the minimum granularity
569 * unless it would exceed the registered section.
571 * Returns 0 on success. If the notification is rejected by the listener,
572 * an error is returned.
574 NotifyRamPopulate notify_populate;
577 * @notify_discard:
579 * Notification that previously populated memory was discarded successfully
580 * and listeners should drop all references to such memory and prevent
581 * new population (e.g., unmap).
583 * @rdl: the #RamDiscardListener getting notified
584 * @section: the #MemoryRegionSection to get populated. The section
585 * is aligned within the memory region to the minimum granularity
586 * unless it would exceed the registered section.
588 NotifyRamDiscard notify_discard;
591 * @double_discard_supported:
593 * The listener suppors getting @notify_discard notifications that span
594 * already discarded parts.
596 bool double_discard_supported;
598 MemoryRegionSection *section;
599 QLIST_ENTRY(RamDiscardListener) next;
602 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
603 NotifyRamPopulate populate_fn,
604 NotifyRamDiscard discard_fn,
605 bool double_discard_supported)
607 rdl->notify_populate = populate_fn;
608 rdl->notify_discard = discard_fn;
609 rdl->double_discard_supported = double_discard_supported;
612 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
613 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
616 * RamDiscardManagerClass:
618 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
619 * regions are currently populated to be used/accessed by the VM, notifying
620 * after parts were discarded (freeing up memory) and before parts will be
621 * populated (consuming memory), to be used/accessed by the VM.
623 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
624 * #MemoryRegion isn't mapped into an address space yet (either directly
625 * or via an alias); it cannot change while the #MemoryRegion is
626 * mapped into an address space.
628 * The #RamDiscardManager is intended to be used by technologies that are
629 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
630 * memory inside a #MemoryRegion), and require proper coordination to only
631 * map the currently populated parts, to hinder parts that are expected to
632 * remain discarded from silently getting populated and consuming memory.
633 * Technologies that support discarding of RAM don't have to bother and can
634 * simply map the whole #MemoryRegion.
636 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
637 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
638 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
639 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
640 * properly coordinate with listeners before memory is plugged (populated),
641 * and after memory is unplugged (discarded).
643 * Listeners are called in multiples of the minimum granularity (unless it
644 * would exceed the registered range) and changes are aligned to the minimum
645 * granularity within the #MemoryRegion. Listeners have to prepare for memory
646 * becoming discarded in a different granularity than it was populated and the
647 * other way around.
649 struct RamDiscardManagerClass {
650 /* private */
651 InterfaceClass parent_class;
653 /* public */
656 * @get_min_granularity:
658 * Get the minimum granularity in which listeners will get notified
659 * about changes within the #MemoryRegion via the #RamDiscardManager.
661 * @rdm: the #RamDiscardManager
662 * @mr: the #MemoryRegion
664 * Returns the minimum granularity.
666 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
667 const MemoryRegion *mr);
670 * @is_populated:
672 * Check whether the given #MemoryRegionSection is completely populated
673 * (i.e., no parts are currently discarded) via the #RamDiscardManager.
674 * There are no alignment requirements.
676 * @rdm: the #RamDiscardManager
677 * @section: the #MemoryRegionSection
679 * Returns whether the given range is completely populated.
681 bool (*is_populated)(const RamDiscardManager *rdm,
682 const MemoryRegionSection *section);
685 * @replay_populated:
687 * Call the #ReplayRamPopulate callback for all populated parts within the
688 * #MemoryRegionSection via the #RamDiscardManager.
690 * In case any call fails, no further calls are made.
692 * @rdm: the #RamDiscardManager
693 * @section: the #MemoryRegionSection
694 * @replay_fn: the #ReplayRamPopulate callback
695 * @opaque: pointer to forward to the callback
697 * Returns 0 on success, or a negative error if any notification failed.
699 int (*replay_populated)(const RamDiscardManager *rdm,
700 MemoryRegionSection *section,
701 ReplayRamPopulate replay_fn, void *opaque);
704 * @replay_discarded:
706 * Call the #ReplayRamDiscard callback for all discarded parts within the
707 * #MemoryRegionSection via the #RamDiscardManager.
709 * @rdm: the #RamDiscardManager
710 * @section: the #MemoryRegionSection
711 * @replay_fn: the #ReplayRamDiscard callback
712 * @opaque: pointer to forward to the callback
714 void (*replay_discarded)(const RamDiscardManager *rdm,
715 MemoryRegionSection *section,
716 ReplayRamDiscard replay_fn, void *opaque);
719 * @register_listener:
721 * Register a #RamDiscardListener for the given #MemoryRegionSection and
722 * immediately notify the #RamDiscardListener about all populated parts
723 * within the #MemoryRegionSection via the #RamDiscardManager.
725 * In case any notification fails, no further notifications are triggered
726 * and an error is logged.
728 * @rdm: the #RamDiscardManager
729 * @rdl: the #RamDiscardListener
730 * @section: the #MemoryRegionSection
732 void (*register_listener)(RamDiscardManager *rdm,
733 RamDiscardListener *rdl,
734 MemoryRegionSection *section);
737 * @unregister_listener:
739 * Unregister a previously registered #RamDiscardListener via the
740 * #RamDiscardManager after notifying the #RamDiscardListener about all
741 * populated parts becoming unpopulated within the registered
742 * #MemoryRegionSection.
744 * @rdm: the #RamDiscardManager
745 * @rdl: the #RamDiscardListener
747 void (*unregister_listener)(RamDiscardManager *rdm,
748 RamDiscardListener *rdl);
751 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
752 const MemoryRegion *mr);
754 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
755 const MemoryRegionSection *section);
757 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
758 MemoryRegionSection *section,
759 ReplayRamPopulate replay_fn,
760 void *opaque);
762 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
763 MemoryRegionSection *section,
764 ReplayRamDiscard replay_fn,
765 void *opaque);
767 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
768 RamDiscardListener *rdl,
769 MemoryRegionSection *section);
771 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
772 RamDiscardListener *rdl);
774 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
775 ram_addr_t *ram_addr, bool *read_only,
776 bool *mr_has_discard_manager);
778 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
779 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
781 /** MemoryRegion:
783 * A struct representing a memory region.
785 struct MemoryRegion {
786 Object parent_obj;
788 /* private: */
790 /* The following fields should fit in a cache line */
791 bool romd_mode;
792 bool ram;
793 bool subpage;
794 bool readonly; /* For RAM regions */
795 bool nonvolatile;
796 bool rom_device;
797 bool flush_coalesced_mmio;
798 bool unmergeable;
799 uint8_t dirty_log_mask;
800 bool is_iommu;
801 RAMBlock *ram_block;
802 Object *owner;
803 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
804 DeviceState *dev;
806 const MemoryRegionOps *ops;
807 void *opaque;
808 MemoryRegion *container;
809 int mapped_via_alias; /* Mapped via an alias, container might be NULL */
810 Int128 size;
811 hwaddr addr;
812 void (*destructor)(MemoryRegion *mr);
813 uint64_t align;
814 bool terminates;
815 bool ram_device;
816 bool enabled;
817 bool warning_printed; /* For reservations */
818 uint8_t vga_logging_count;
819 MemoryRegion *alias;
820 hwaddr alias_offset;
821 int32_t priority;
822 QTAILQ_HEAD(, MemoryRegion) subregions;
823 QTAILQ_ENTRY(MemoryRegion) subregions_link;
824 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
825 const char *name;
826 unsigned ioeventfd_nb;
827 MemoryRegionIoeventfd *ioeventfds;
828 RamDiscardManager *rdm; /* Only for RAM */
830 /* For devices designed to perform re-entrant IO into their own IO MRs */
831 bool disable_reentrancy_guard;
834 struct IOMMUMemoryRegion {
835 MemoryRegion parent_obj;
837 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
838 IOMMUNotifierFlag iommu_notify_flags;
841 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
842 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
844 #define MEMORY_LISTENER_PRIORITY_MIN 0
845 #define MEMORY_LISTENER_PRIORITY_ACCEL 10
846 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10
849 * struct MemoryListener: callbacks structure for updates to the physical memory map
851 * Allows a component to adjust to changes in the guest-visible memory map.
852 * Use with memory_listener_register() and memory_listener_unregister().
854 struct MemoryListener {
856 * @begin:
858 * Called at the beginning of an address space update transaction.
859 * Followed by calls to #MemoryListener.region_add(),
860 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
861 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
862 * increasing address order.
864 * @listener: The #MemoryListener.
866 void (*begin)(MemoryListener *listener);
869 * @commit:
871 * Called at the end of an address space update transaction,
872 * after the last call to #MemoryListener.region_add(),
873 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
874 * #MemoryListener.log_start() and #MemoryListener.log_stop().
876 * @listener: The #MemoryListener.
878 void (*commit)(MemoryListener *listener);
881 * @region_add:
883 * Called during an address space update transaction,
884 * for a section of the address space that is new in this address space
885 * space since the last transaction.
887 * @listener: The #MemoryListener.
888 * @section: The new #MemoryRegionSection.
890 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
893 * @region_del:
895 * Called during an address space update transaction,
896 * for a section of the address space that has disappeared in the address
897 * space since the last transaction.
899 * @listener: The #MemoryListener.
900 * @section: The old #MemoryRegionSection.
902 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
905 * @region_nop:
907 * Called during an address space update transaction,
908 * for a section of the address space that is in the same place in the address
909 * space as in the last transaction.
911 * @listener: The #MemoryListener.
912 * @section: The #MemoryRegionSection.
914 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
917 * @log_start:
919 * Called during an address space update transaction, after
920 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
921 * #MemoryListener.region_nop(), if dirty memory logging clients have
922 * become active since the last transaction.
924 * @listener: The #MemoryListener.
925 * @section: The #MemoryRegionSection.
926 * @old: A bitmap of dirty memory logging clients that were active in
927 * the previous transaction.
928 * @new: A bitmap of dirty memory logging clients that are active in
929 * the current transaction.
931 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
932 int old, int new);
935 * @log_stop:
937 * Called during an address space update transaction, after
938 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
939 * #MemoryListener.region_nop() and possibly after
940 * #MemoryListener.log_start(), if dirty memory logging clients have
941 * become inactive since the last transaction.
943 * @listener: The #MemoryListener.
944 * @section: The #MemoryRegionSection.
945 * @old: A bitmap of dirty memory logging clients that were active in
946 * the previous transaction.
947 * @new: A bitmap of dirty memory logging clients that are active in
948 * the current transaction.
950 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
951 int old, int new);
954 * @log_sync:
956 * Called by memory_region_snapshot_and_clear_dirty() and
957 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
958 * copy of the dirty memory bitmap for a #MemoryRegionSection.
960 * @listener: The #MemoryListener.
961 * @section: The #MemoryRegionSection.
963 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
966 * @log_sync_global:
968 * This is the global version of @log_sync when the listener does
969 * not have a way to synchronize the log with finer granularity.
970 * When the listener registers with @log_sync_global defined, then
971 * its @log_sync must be NULL. Vice versa.
973 * @listener: The #MemoryListener.
974 * @last_stage: The last stage to synchronize the log during migration.
975 * The caller should guarantee that the synchronization with true for
976 * @last_stage is triggered for once after all VCPUs have been stopped.
978 void (*log_sync_global)(MemoryListener *listener, bool last_stage);
981 * @log_clear:
983 * Called before reading the dirty memory bitmap for a
984 * #MemoryRegionSection.
986 * @listener: The #MemoryListener.
987 * @section: The #MemoryRegionSection.
989 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
992 * @log_global_start:
994 * Called by memory_global_dirty_log_start(), which
995 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
996 * the address space. #MemoryListener.log_global_start() is also
997 * called when a #MemoryListener is added, if global dirty logging is
998 * active at that time.
1000 * @listener: The #MemoryListener.
1002 void (*log_global_start)(MemoryListener *listener);
1005 * @log_global_stop:
1007 * Called by memory_global_dirty_log_stop(), which
1008 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
1009 * the address space.
1011 * @listener: The #MemoryListener.
1013 void (*log_global_stop)(MemoryListener *listener);
1016 * @log_global_after_sync:
1018 * Called after reading the dirty memory bitmap
1019 * for any #MemoryRegionSection.
1021 * @listener: The #MemoryListener.
1023 void (*log_global_after_sync)(MemoryListener *listener);
1026 * @eventfd_add:
1028 * Called during an address space update transaction,
1029 * for a section of the address space that has had a new ioeventfd
1030 * registration since the last transaction.
1032 * @listener: The #MemoryListener.
1033 * @section: The new #MemoryRegionSection.
1034 * @match_data: The @match_data parameter for the new ioeventfd.
1035 * @data: The @data parameter for the new ioeventfd.
1036 * @e: The #EventNotifier parameter for the new ioeventfd.
1038 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1039 bool match_data, uint64_t data, EventNotifier *e);
1042 * @eventfd_del:
1044 * Called during an address space update transaction,
1045 * for a section of the address space that has dropped an ioeventfd
1046 * registration since the last transaction.
1048 * @listener: The #MemoryListener.
1049 * @section: The new #MemoryRegionSection.
1050 * @match_data: The @match_data parameter for the dropped ioeventfd.
1051 * @data: The @data parameter for the dropped ioeventfd.
1052 * @e: The #EventNotifier parameter for the dropped ioeventfd.
1054 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1055 bool match_data, uint64_t data, EventNotifier *e);
1058 * @coalesced_io_add:
1060 * Called during an address space update transaction,
1061 * for a section of the address space that has had a new coalesced
1062 * MMIO range registration since the last transaction.
1064 * @listener: The #MemoryListener.
1065 * @section: The new #MemoryRegionSection.
1066 * @addr: The starting address for the coalesced MMIO range.
1067 * @len: The length of the coalesced MMIO range.
1069 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1070 hwaddr addr, hwaddr len);
1073 * @coalesced_io_del:
1075 * Called during an address space update transaction,
1076 * for a section of the address space that has dropped a coalesced
1077 * MMIO range since the last transaction.
1079 * @listener: The #MemoryListener.
1080 * @section: The new #MemoryRegionSection.
1081 * @addr: The starting address for the coalesced MMIO range.
1082 * @len: The length of the coalesced MMIO range.
1084 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1085 hwaddr addr, hwaddr len);
1087 * @priority:
1089 * Govern the order in which memory listeners are invoked. Lower priorities
1090 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1091 * or "stop" callbacks.
1093 unsigned priority;
1096 * @name:
1098 * Name of the listener. It can be used in contexts where we'd like to
1099 * identify one memory listener with the rest.
1101 const char *name;
1103 /* private: */
1104 AddressSpace *address_space;
1105 QTAILQ_ENTRY(MemoryListener) link;
1106 QTAILQ_ENTRY(MemoryListener) link_as;
1110 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1112 struct AddressSpace {
1113 /* private: */
1114 struct rcu_head rcu;
1115 char *name;
1116 MemoryRegion *root;
1118 /* Accessed via RCU. */
1119 struct FlatView *current_map;
1121 int ioeventfd_nb;
1122 int ioeventfd_notifiers;
1123 struct MemoryRegionIoeventfd *ioeventfds;
1124 QTAILQ_HEAD(, MemoryListener) listeners;
1125 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1128 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1129 typedef struct FlatRange FlatRange;
1131 /* Flattened global view of current active memory hierarchy. Kept in sorted
1132 * order.
1134 struct FlatView {
1135 struct rcu_head rcu;
1136 unsigned ref;
1137 FlatRange *ranges;
1138 unsigned nr;
1139 unsigned nr_allocated;
1140 struct AddressSpaceDispatch *dispatch;
1141 MemoryRegion *root;
1144 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1146 return qatomic_rcu_read(&as->current_map);
1150 * typedef flatview_cb: callback for flatview_for_each_range()
1152 * @start: start address of the range within the FlatView
1153 * @len: length of the range in bytes
1154 * @mr: MemoryRegion covering this range
1155 * @offset_in_region: offset of the first byte of the range within @mr
1156 * @opaque: data pointer passed to flatview_for_each_range()
1158 * Returns: true to stop the iteration, false to keep going.
1160 typedef bool (*flatview_cb)(Int128 start,
1161 Int128 len,
1162 const MemoryRegion *mr,
1163 hwaddr offset_in_region,
1164 void *opaque);
1167 * flatview_for_each_range: Iterate through a FlatView
1168 * @fv: the FlatView to iterate through
1169 * @cb: function to call for each range
1170 * @opaque: opaque data pointer to pass to @cb
1172 * A FlatView is made up of a list of non-overlapping ranges, each of
1173 * which is a slice of a MemoryRegion. This function iterates through
1174 * each range in @fv, calling @cb. The callback function can terminate
1175 * iteration early by returning 'true'.
1177 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1179 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1180 MemoryRegionSection *b)
1182 return a->mr == b->mr &&
1183 a->fv == b->fv &&
1184 a->offset_within_region == b->offset_within_region &&
1185 a->offset_within_address_space == b->offset_within_address_space &&
1186 int128_eq(a->size, b->size) &&
1187 a->readonly == b->readonly &&
1188 a->nonvolatile == b->nonvolatile;
1192 * memory_region_section_new_copy: Copy a memory region section
1194 * Allocate memory for a new copy, copy the memory region section, and
1195 * properly take a reference on all relevant members.
1197 * @s: the #MemoryRegionSection to copy
1199 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1202 * memory_region_section_new_copy: Free a copied memory region section
1204 * Free a copy of a memory section created via memory_region_section_new_copy().
1205 * properly dropping references on all relevant members.
1207 * @s: the #MemoryRegionSection to copy
1209 void memory_region_section_free_copy(MemoryRegionSection *s);
1212 * memory_region_init: Initialize a memory region
1214 * The region typically acts as a container for other memory regions. Use
1215 * memory_region_add_subregion() to add subregions.
1217 * @mr: the #MemoryRegion to be initialized
1218 * @owner: the object that tracks the region's reference count
1219 * @name: used for debugging; not visible to the user or ABI
1220 * @size: size of the region; any subregions beyond this size will be clipped
1222 void memory_region_init(MemoryRegion *mr,
1223 Object *owner,
1224 const char *name,
1225 uint64_t size);
1228 * memory_region_ref: Add 1 to a memory region's reference count
1230 * Whenever memory regions are accessed outside the BQL, they need to be
1231 * preserved against hot-unplug. MemoryRegions actually do not have their
1232 * own reference count; they piggyback on a QOM object, their "owner".
1233 * This function adds a reference to the owner.
1235 * All MemoryRegions must have an owner if they can disappear, even if the
1236 * device they belong to operates exclusively under the BQL. This is because
1237 * the region could be returned at any time by memory_region_find, and this
1238 * is usually under guest control.
1240 * @mr: the #MemoryRegion
1242 void memory_region_ref(MemoryRegion *mr);
1245 * memory_region_unref: Remove 1 to a memory region's reference count
1247 * Whenever memory regions are accessed outside the BQL, they need to be
1248 * preserved against hot-unplug. MemoryRegions actually do not have their
1249 * own reference count; they piggyback on a QOM object, their "owner".
1250 * This function removes a reference to the owner and possibly destroys it.
1252 * @mr: the #MemoryRegion
1254 void memory_region_unref(MemoryRegion *mr);
1257 * memory_region_init_io: Initialize an I/O memory region.
1259 * Accesses into the region will cause the callbacks in @ops to be called.
1260 * if @size is nonzero, subregions will be clipped to @size.
1262 * @mr: the #MemoryRegion to be initialized.
1263 * @owner: the object that tracks the region's reference count
1264 * @ops: a structure containing read and write callbacks to be used when
1265 * I/O is performed on the region.
1266 * @opaque: passed to the read and write callbacks of the @ops structure.
1267 * @name: used for debugging; not visible to the user or ABI
1268 * @size: size of the region.
1270 void memory_region_init_io(MemoryRegion *mr,
1271 Object *owner,
1272 const MemoryRegionOps *ops,
1273 void *opaque,
1274 const char *name,
1275 uint64_t size);
1278 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
1279 * into the region will modify memory
1280 * directly.
1282 * @mr: the #MemoryRegion to be initialized.
1283 * @owner: the object that tracks the region's reference count
1284 * @name: Region name, becomes part of RAMBlock name used in migration stream
1285 * must be unique within any device
1286 * @size: size of the region.
1287 * @errp: pointer to Error*, to store an error if it happens.
1289 * Note that this function does not do anything to cause the data in the
1290 * RAM memory region to be migrated; that is the responsibility of the caller.
1292 * Return: true on success, else false setting @errp with error.
1294 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1295 Object *owner,
1296 const char *name,
1297 uint64_t size,
1298 Error **errp);
1301 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region.
1302 * Accesses into the region will
1303 * modify memory directly.
1305 * @mr: the #MemoryRegion to be initialized.
1306 * @owner: the object that tracks the region's reference count
1307 * @name: Region name, becomes part of RAMBlock name used in migration stream
1308 * must be unique within any device
1309 * @size: size of the region.
1310 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1311 * @errp: pointer to Error*, to store an error if it happens.
1313 * Note that this function does not do anything to cause the data in the
1314 * RAM memory region to be migrated; that is the responsibility of the caller.
1316 * Return: true on success, else false setting @errp with error.
1318 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1319 Object *owner,
1320 const char *name,
1321 uint64_t size,
1322 uint32_t ram_flags,
1323 Error **errp);
1326 * memory_region_init_resizeable_ram: Initialize memory region with resizable
1327 * RAM. Accesses into the region will
1328 * modify memory directly. Only an initial
1329 * portion of this RAM is actually used.
1330 * Changing the size while migrating
1331 * can result in the migration being
1332 * canceled.
1334 * @mr: the #MemoryRegion to be initialized.
1335 * @owner: the object that tracks the region's reference count
1336 * @name: Region name, becomes part of RAMBlock name used in migration stream
1337 * must be unique within any device
1338 * @size: used size of the region.
1339 * @max_size: max size of the region.
1340 * @resized: callback to notify owner about used size change.
1341 * @errp: pointer to Error*, to store an error if it happens.
1343 * Note that this function does not do anything to cause the data in the
1344 * RAM memory region to be migrated; that is the responsibility of the caller.
1346 * Return: true on success, else false setting @errp with error.
1348 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1349 Object *owner,
1350 const char *name,
1351 uint64_t size,
1352 uint64_t max_size,
1353 void (*resized)(const char*,
1354 uint64_t length,
1355 void *host),
1356 Error **errp);
1357 #ifdef CONFIG_POSIX
1360 * memory_region_init_ram_from_file: Initialize RAM memory region with a
1361 * mmap-ed backend.
1363 * @mr: the #MemoryRegion to be initialized.
1364 * @owner: the object that tracks the region's reference count
1365 * @name: Region name, becomes part of RAMBlock name used in migration stream
1366 * must be unique within any device
1367 * @size: size of the region.
1368 * @align: alignment of the region base address; if 0, the default alignment
1369 * (getpagesize()) will be used.
1370 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1371 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1372 * RAM_READONLY_FD
1373 * @path: the path in which to allocate the RAM.
1374 * @offset: offset within the file referenced by path
1375 * @errp: pointer to Error*, to store an error if it happens.
1377 * Note that this function does not do anything to cause the data in the
1378 * RAM memory region to be migrated; that is the responsibility of the caller.
1380 * Return: true on success, else false setting @errp with error.
1382 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1383 Object *owner,
1384 const char *name,
1385 uint64_t size,
1386 uint64_t align,
1387 uint32_t ram_flags,
1388 const char *path,
1389 ram_addr_t offset,
1390 Error **errp);
1393 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
1394 * mmap-ed backend.
1396 * @mr: the #MemoryRegion to be initialized.
1397 * @owner: the object that tracks the region's reference count
1398 * @name: the name of the region.
1399 * @size: size of the region.
1400 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1401 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1402 * RAM_READONLY_FD
1403 * @fd: the fd to mmap.
1404 * @offset: offset within the file referenced by fd
1405 * @errp: pointer to Error*, to store an error if it happens.
1407 * Note that this function does not do anything to cause the data in the
1408 * RAM memory region to be migrated; that is the responsibility of the caller.
1410 * Return: true on success, else false setting @errp with error.
1412 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1413 Object *owner,
1414 const char *name,
1415 uint64_t size,
1416 uint32_t ram_flags,
1417 int fd,
1418 ram_addr_t offset,
1419 Error **errp);
1420 #endif
1423 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1424 * user-provided pointer. Accesses into the
1425 * region will modify memory directly.
1427 * @mr: the #MemoryRegion to be initialized.
1428 * @owner: the object that tracks the region's reference count
1429 * @name: Region name, becomes part of RAMBlock name used in migration stream
1430 * must be unique within any device
1431 * @size: size of the region.
1432 * @ptr: memory to be mapped; must contain at least @size bytes.
1434 * Note that this function does not do anything to cause the data in the
1435 * RAM memory region to be migrated; that is the responsibility of the caller.
1437 void memory_region_init_ram_ptr(MemoryRegion *mr,
1438 Object *owner,
1439 const char *name,
1440 uint64_t size,
1441 void *ptr);
1444 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1445 * a user-provided pointer.
1447 * A RAM device represents a mapping to a physical device, such as to a PCI
1448 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1449 * into the VM address space and access to the region will modify memory
1450 * directly. However, the memory region should not be included in a memory
1451 * dump (device may not be enabled/mapped at the time of the dump), and
1452 * operations incompatible with manipulating MMIO should be avoided. Replaces
1453 * skip_dump flag.
1455 * @mr: the #MemoryRegion to be initialized.
1456 * @owner: the object that tracks the region's reference count
1457 * @name: the name of the region.
1458 * @size: size of the region.
1459 * @ptr: memory to be mapped; must contain at least @size bytes.
1461 * Note that this function does not do anything to cause the data in the
1462 * RAM memory region to be migrated; that is the responsibility of the caller.
1463 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1465 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1466 Object *owner,
1467 const char *name,
1468 uint64_t size,
1469 void *ptr);
1472 * memory_region_init_alias: Initialize a memory region that aliases all or a
1473 * part of another memory region.
1475 * @mr: the #MemoryRegion to be initialized.
1476 * @owner: the object that tracks the region's reference count
1477 * @name: used for debugging; not visible to the user or ABI
1478 * @orig: the region to be referenced; @mr will be equivalent to
1479 * @orig between @offset and @offset + @size - 1.
1480 * @offset: start of the section in @orig to be referenced.
1481 * @size: size of the region.
1483 void memory_region_init_alias(MemoryRegion *mr,
1484 Object *owner,
1485 const char *name,
1486 MemoryRegion *orig,
1487 hwaddr offset,
1488 uint64_t size);
1491 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1493 * This has the same effect as calling memory_region_init_ram_nomigrate()
1494 * and then marking the resulting region read-only with
1495 * memory_region_set_readonly().
1497 * Note that this function does not do anything to cause the data in the
1498 * RAM side of the memory region to be migrated; that is the responsibility
1499 * of the caller.
1501 * @mr: the #MemoryRegion to be initialized.
1502 * @owner: the object that tracks the region's reference count
1503 * @name: Region name, becomes part of RAMBlock name used in migration stream
1504 * must be unique within any device
1505 * @size: size of the region.
1506 * @errp: pointer to Error*, to store an error if it happens.
1508 * Return: true on success, else false setting @errp with error.
1510 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1511 Object *owner,
1512 const char *name,
1513 uint64_t size,
1514 Error **errp);
1517 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1518 * Writes are handled via callbacks.
1520 * Note that this function does not do anything to cause the data in the
1521 * RAM side of the memory region to be migrated; that is the responsibility
1522 * of the caller.
1524 * @mr: the #MemoryRegion to be initialized.
1525 * @owner: the object that tracks the region's reference count
1526 * @ops: callbacks for write access handling (must not be NULL).
1527 * @opaque: passed to the read and write callbacks of the @ops structure.
1528 * @name: Region name, becomes part of RAMBlock name used in migration stream
1529 * must be unique within any device
1530 * @size: size of the region.
1531 * @errp: pointer to Error*, to store an error if it happens.
1533 * Return: true on success, else false setting @errp with error.
1535 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1536 Object *owner,
1537 const MemoryRegionOps *ops,
1538 void *opaque,
1539 const char *name,
1540 uint64_t size,
1541 Error **errp);
1544 * memory_region_init_iommu: Initialize a memory region of a custom type
1545 * that translates addresses
1547 * An IOMMU region translates addresses and forwards accesses to a target
1548 * memory region.
1550 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1551 * @_iommu_mr should be a pointer to enough memory for an instance of
1552 * that subclass, @instance_size is the size of that subclass, and
1553 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1554 * instance of the subclass, and its methods will then be called to handle
1555 * accesses to the memory region. See the documentation of
1556 * #IOMMUMemoryRegionClass for further details.
1558 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1559 * @instance_size: the IOMMUMemoryRegion subclass instance size
1560 * @mrtypename: the type name of the #IOMMUMemoryRegion
1561 * @owner: the object that tracks the region's reference count
1562 * @name: used for debugging; not visible to the user or ABI
1563 * @size: size of the region.
1565 void memory_region_init_iommu(void *_iommu_mr,
1566 size_t instance_size,
1567 const char *mrtypename,
1568 Object *owner,
1569 const char *name,
1570 uint64_t size);
1573 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1574 * region will modify memory directly.
1576 * @mr: the #MemoryRegion to be initialized
1577 * @owner: the object that tracks the region's reference count (must be
1578 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1579 * @name: name of the memory region
1580 * @size: size of the region in bytes
1581 * @errp: pointer to Error*, to store an error if it happens.
1583 * This function allocates RAM for a board model or device, and
1584 * arranges for it to be migrated (by calling vmstate_register_ram()
1585 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1586 * @owner is NULL).
1588 * TODO: Currently we restrict @owner to being either NULL (for
1589 * global RAM regions with no owner) or devices, so that we can
1590 * give the RAM block a unique name for migration purposes.
1591 * We should lift this restriction and allow arbitrary Objects.
1592 * If you pass a non-NULL non-device @owner then we will assert.
1594 * Return: true on success, else false setting @errp with error.
1596 bool memory_region_init_ram(MemoryRegion *mr,
1597 Object *owner,
1598 const char *name,
1599 uint64_t size,
1600 Error **errp);
1603 * memory_region_init_rom: Initialize a ROM memory region.
1605 * This has the same effect as calling memory_region_init_ram()
1606 * and then marking the resulting region read-only with
1607 * memory_region_set_readonly(). This includes arranging for the
1608 * contents to be migrated.
1610 * TODO: Currently we restrict @owner to being either NULL (for
1611 * global RAM regions with no owner) or devices, so that we can
1612 * give the RAM block a unique name for migration purposes.
1613 * We should lift this restriction and allow arbitrary Objects.
1614 * If you pass a non-NULL non-device @owner then we will assert.
1616 * @mr: the #MemoryRegion to be initialized.
1617 * @owner: the object that tracks the region's reference count
1618 * @name: Region name, becomes part of RAMBlock name used in migration stream
1619 * must be unique within any device
1620 * @size: size of the region.
1621 * @errp: pointer to Error*, to store an error if it happens.
1623 * Return: true on success, else false setting @errp with error.
1625 bool memory_region_init_rom(MemoryRegion *mr,
1626 Object *owner,
1627 const char *name,
1628 uint64_t size,
1629 Error **errp);
1632 * memory_region_init_rom_device: Initialize a ROM memory region.
1633 * Writes are handled via callbacks.
1635 * This function initializes a memory region backed by RAM for reads
1636 * and callbacks for writes, and arranges for the RAM backing to
1637 * be migrated (by calling vmstate_register_ram()
1638 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1639 * @owner is NULL).
1641 * TODO: Currently we restrict @owner to being either NULL (for
1642 * global RAM regions with no owner) or devices, so that we can
1643 * give the RAM block a unique name for migration purposes.
1644 * We should lift this restriction and allow arbitrary Objects.
1645 * If you pass a non-NULL non-device @owner then we will assert.
1647 * @mr: the #MemoryRegion to be initialized.
1648 * @owner: the object that tracks the region's reference count
1649 * @ops: callbacks for write access handling (must not be NULL).
1650 * @opaque: passed to the read and write callbacks of the @ops structure.
1651 * @name: Region name, becomes part of RAMBlock name used in migration stream
1652 * must be unique within any device
1653 * @size: size of the region.
1654 * @errp: pointer to Error*, to store an error if it happens.
1656 * Return: true on success, else false setting @errp with error.
1658 bool memory_region_init_rom_device(MemoryRegion *mr,
1659 Object *owner,
1660 const MemoryRegionOps *ops,
1661 void *opaque,
1662 const char *name,
1663 uint64_t size,
1664 Error **errp);
1668 * memory_region_owner: get a memory region's owner.
1670 * @mr: the memory region being queried.
1672 Object *memory_region_owner(MemoryRegion *mr);
1675 * memory_region_size: get a memory region's size.
1677 * @mr: the memory region being queried.
1679 uint64_t memory_region_size(MemoryRegion *mr);
1682 * memory_region_is_ram: check whether a memory region is random access
1684 * Returns %true if a memory region is random access.
1686 * @mr: the memory region being queried
1688 static inline bool memory_region_is_ram(MemoryRegion *mr)
1690 return mr->ram;
1694 * memory_region_is_ram_device: check whether a memory region is a ram device
1696 * Returns %true if a memory region is a device backed ram region
1698 * @mr: the memory region being queried
1700 bool memory_region_is_ram_device(MemoryRegion *mr);
1703 * memory_region_is_romd: check whether a memory region is in ROMD mode
1705 * Returns %true if a memory region is a ROM device and currently set to allow
1706 * direct reads.
1708 * @mr: the memory region being queried
1710 static inline bool memory_region_is_romd(MemoryRegion *mr)
1712 return mr->rom_device && mr->romd_mode;
1716 * memory_region_is_protected: check whether a memory region is protected
1718 * Returns %true if a memory region is protected RAM and cannot be accessed
1719 * via standard mechanisms, e.g. DMA.
1721 * @mr: the memory region being queried
1723 bool memory_region_is_protected(MemoryRegion *mr);
1726 * memory_region_get_iommu: check whether a memory region is an iommu
1728 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1729 * otherwise NULL.
1731 * @mr: the memory region being queried
1733 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1735 if (mr->alias) {
1736 return memory_region_get_iommu(mr->alias);
1738 if (mr->is_iommu) {
1739 return (IOMMUMemoryRegion *) mr;
1741 return NULL;
1745 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1746 * if an iommu or NULL if not
1748 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1749 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1751 * @iommu_mr: the memory region being queried
1753 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1754 IOMMUMemoryRegion *iommu_mr)
1756 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1759 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1762 * memory_region_iommu_get_min_page_size: get minimum supported page size
1763 * for an iommu
1765 * Returns minimum supported page size for an iommu.
1767 * @iommu_mr: the memory region being queried
1769 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1772 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1774 * Note: for any IOMMU implementation, an in-place mapping change
1775 * should be notified with an UNMAP followed by a MAP.
1777 * @iommu_mr: the memory region that was changed
1778 * @iommu_idx: the IOMMU index for the translation table which has changed
1779 * @event: TLB event with the new entry in the IOMMU translation table.
1780 * The entry replaces all old entries for the same virtual I/O address
1781 * range.
1783 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1784 int iommu_idx,
1785 IOMMUTLBEvent event);
1788 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1789 * entry to a single notifier
1791 * This works just like memory_region_notify_iommu(), but it only
1792 * notifies a specific notifier, not all of them.
1794 * @notifier: the notifier to be notified
1795 * @event: TLB event with the new entry in the IOMMU translation table.
1796 * The entry replaces all old entries for the same virtual I/O address
1797 * range.
1799 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1800 IOMMUTLBEvent *event);
1803 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1804 * translation that covers the
1805 * range of a notifier
1807 * @notifier: the notifier to be notified
1809 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1813 * memory_region_register_iommu_notifier: register a notifier for changes to
1814 * IOMMU translation entries.
1816 * Returns 0 on success, or a negative errno otherwise. In particular,
1817 * -EINVAL indicates that at least one of the attributes of the notifier
1818 * is not supported (flag/range) by the IOMMU memory region. In case of error
1819 * the error object must be created.
1821 * @mr: the memory region to observe
1822 * @n: the IOMMUNotifier to be added; the notify callback receives a
1823 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1824 * ceases to be valid on exit from the notifier.
1825 * @errp: pointer to Error*, to store an error if it happens.
1827 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1828 IOMMUNotifier *n, Error **errp);
1831 * memory_region_iommu_replay: replay existing IOMMU translations to
1832 * a notifier with the minimum page granularity returned by
1833 * mr->iommu_ops->get_page_size().
1835 * Note: this is not related to record-and-replay functionality.
1837 * @iommu_mr: the memory region to observe
1838 * @n: the notifier to which to replay iommu mappings
1840 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1843 * memory_region_unregister_iommu_notifier: unregister a notifier for
1844 * changes to IOMMU translation entries.
1846 * @mr: the memory region which was observed and for which notity_stopped()
1847 * needs to be called
1848 * @n: the notifier to be removed.
1850 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1851 IOMMUNotifier *n);
1854 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1855 * defined on the IOMMU.
1857 * Returns 0 on success, or a negative errno otherwise. In particular,
1858 * -EINVAL indicates that the IOMMU does not support the requested
1859 * attribute.
1861 * @iommu_mr: the memory region
1862 * @attr: the requested attribute
1863 * @data: a pointer to the requested attribute data
1865 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1866 enum IOMMUMemoryRegionAttr attr,
1867 void *data);
1870 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1871 * use for translations with the given memory transaction attributes.
1873 * @iommu_mr: the memory region
1874 * @attrs: the memory transaction attributes
1876 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1877 MemTxAttrs attrs);
1880 * memory_region_iommu_num_indexes: return the total number of IOMMU
1881 * indexes that this IOMMU supports.
1883 * @iommu_mr: the memory region
1885 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1888 * memory_region_iommu_set_page_size_mask: set the supported page
1889 * sizes for a given IOMMU memory region
1891 * @iommu_mr: IOMMU memory region
1892 * @page_size_mask: supported page size mask
1893 * @errp: pointer to Error*, to store an error if it happens.
1895 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1896 uint64_t page_size_mask,
1897 Error **errp);
1900 * memory_region_iommu_set_iova_ranges - Set the usable IOVA ranges
1901 * for a given IOMMU MR region
1903 * @iommu: IOMMU memory region
1904 * @iova_ranges: list of ordered IOVA ranges (at least one range)
1905 * @errp: pointer to Error*, to store an error if it happens.
1907 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu,
1908 GList *iova_ranges,
1909 Error **errp);
1912 * memory_region_name: get a memory region's name
1914 * Returns the string that was used to initialize the memory region.
1916 * @mr: the memory region being queried
1918 const char *memory_region_name(const MemoryRegion *mr);
1921 * memory_region_is_logging: return whether a memory region is logging writes
1923 * Returns %true if the memory region is logging writes for the given client
1925 * @mr: the memory region being queried
1926 * @client: the client being queried
1928 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1931 * memory_region_get_dirty_log_mask: return the clients for which a
1932 * memory region is logging writes.
1934 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1935 * are the bit indices.
1937 * @mr: the memory region being queried
1939 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1942 * memory_region_is_rom: check whether a memory region is ROM
1944 * Returns %true if a memory region is read-only memory.
1946 * @mr: the memory region being queried
1948 static inline bool memory_region_is_rom(MemoryRegion *mr)
1950 return mr->ram && mr->readonly;
1954 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1956 * Returns %true is a memory region is non-volatile memory.
1958 * @mr: the memory region being queried
1960 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1962 return mr->nonvolatile;
1966 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1968 * Returns a file descriptor backing a file-based RAM memory region,
1969 * or -1 if the region is not a file-based RAM memory region.
1971 * @mr: the RAM or alias memory region being queried.
1973 int memory_region_get_fd(MemoryRegion *mr);
1976 * memory_region_from_host: Convert a pointer into a RAM memory region
1977 * and an offset within it.
1979 * Given a host pointer inside a RAM memory region (created with
1980 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1981 * the MemoryRegion and the offset within it.
1983 * Use with care; by the time this function returns, the returned pointer is
1984 * not protected by RCU anymore. If the caller is not within an RCU critical
1985 * section and does not hold the BQL, it must have other means of
1986 * protecting the pointer, such as a reference to the region that includes
1987 * the incoming ram_addr_t.
1989 * @ptr: the host pointer to be converted
1990 * @offset: the offset within memory region
1992 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1995 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1997 * Returns a host pointer to a RAM memory region (created with
1998 * memory_region_init_ram() or memory_region_init_ram_ptr()).
2000 * Use with care; by the time this function returns, the returned pointer is
2001 * not protected by RCU anymore. If the caller is not within an RCU critical
2002 * section and does not hold the BQL, it must have other means of
2003 * protecting the pointer, such as a reference to the region that includes
2004 * the incoming ram_addr_t.
2006 * @mr: the memory region being queried.
2008 void *memory_region_get_ram_ptr(MemoryRegion *mr);
2010 /* memory_region_ram_resize: Resize a RAM region.
2012 * Resizing RAM while migrating can result in the migration being canceled.
2013 * Care has to be taken if the guest might have already detected the memory.
2015 * @mr: a memory region created with @memory_region_init_resizeable_ram.
2016 * @newsize: the new size the region
2017 * @errp: pointer to Error*, to store an error if it happens.
2019 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2020 Error **errp);
2023 * memory_region_msync: Synchronize selected address range of
2024 * a memory mapped region
2026 * @mr: the memory region to be msync
2027 * @addr: the initial address of the range to be sync
2028 * @size: the size of the range to be sync
2030 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2033 * memory_region_writeback: Trigger cache writeback for
2034 * selected address range
2036 * @mr: the memory region to be updated
2037 * @addr: the initial address of the range to be written back
2038 * @size: the size of the range to be written back
2040 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2043 * memory_region_set_log: Turn dirty logging on or off for a region.
2045 * Turns dirty logging on or off for a specified client (display, migration).
2046 * Only meaningful for RAM regions.
2048 * @mr: the memory region being updated.
2049 * @log: whether dirty logging is to be enabled or disabled.
2050 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2052 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2055 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2057 * Marks a range of bytes as dirty, after it has been dirtied outside
2058 * guest code.
2060 * @mr: the memory region being dirtied.
2061 * @addr: the address (relative to the start of the region) being dirtied.
2062 * @size: size of the range being dirtied.
2064 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2065 hwaddr size);
2068 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2070 * This function is called when the caller wants to clear the remote
2071 * dirty bitmap of a memory range within the memory region. This can
2072 * be used by e.g. KVM to manually clear dirty log when
2073 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2074 * kernel.
2076 * @mr: the memory region to clear the dirty log upon
2077 * @start: start address offset within the memory region
2078 * @len: length of the memory region to clear dirty bitmap
2080 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2081 hwaddr len);
2084 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2085 * bitmap and clear it.
2087 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2088 * returns the snapshot. The snapshot can then be used to query dirty
2089 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
2090 * querying the same page multiple times, which is especially useful for
2091 * display updates where the scanlines often are not page aligned.
2093 * The dirty bitmap region which gets copied into the snapshot (and
2094 * cleared afterwards) can be larger than requested. The boundaries
2095 * are rounded up/down so complete bitmap longs (covering 64 pages on
2096 * 64bit hosts) can be copied over into the bitmap snapshot. Which
2097 * isn't a problem for display updates as the extra pages are outside
2098 * the visible area, and in case the visible area changes a full
2099 * display redraw is due anyway. Should other use cases for this
2100 * function emerge we might have to revisit this implementation
2101 * detail.
2103 * Use g_free to release DirtyBitmapSnapshot.
2105 * @mr: the memory region being queried.
2106 * @addr: the address (relative to the start of the region) being queried.
2107 * @size: the size of the range being queried.
2108 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2110 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2111 hwaddr addr,
2112 hwaddr size,
2113 unsigned client);
2116 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2117 * in the specified dirty bitmap snapshot.
2119 * @mr: the memory region being queried.
2120 * @snap: the dirty bitmap snapshot
2121 * @addr: the address (relative to the start of the region) being queried.
2122 * @size: the size of the range being queried.
2124 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2125 DirtyBitmapSnapshot *snap,
2126 hwaddr addr, hwaddr size);
2129 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2130 * client.
2132 * Marks a range of pages as no longer dirty.
2134 * @mr: the region being updated.
2135 * @addr: the start of the subrange being cleaned.
2136 * @size: the size of the subrange being cleaned.
2137 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2138 * %DIRTY_MEMORY_VGA.
2140 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2141 hwaddr size, unsigned client);
2144 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2145 * TBs (for self-modifying code).
2147 * The MemoryRegionOps->write() callback of a ROM device must use this function
2148 * to mark byte ranges that have been modified internally, such as by directly
2149 * accessing the memory returned by memory_region_get_ram_ptr().
2151 * This function marks the range dirty and invalidates TBs so that TCG can
2152 * detect self-modifying code.
2154 * @mr: the region being flushed.
2155 * @addr: the start, relative to the start of the region, of the range being
2156 * flushed.
2157 * @size: the size, in bytes, of the range being flushed.
2159 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2162 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2164 * Allows a memory region to be marked as read-only (turning it into a ROM).
2165 * only useful on RAM regions.
2167 * @mr: the region being updated.
2168 * @readonly: whether rhe region is to be ROM or RAM.
2170 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2173 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2175 * Allows a memory region to be marked as non-volatile.
2176 * only useful on RAM regions.
2178 * @mr: the region being updated.
2179 * @nonvolatile: whether rhe region is to be non-volatile.
2181 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2184 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2186 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2187 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
2188 * device is mapped to guest memory and satisfies read access directly.
2189 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2190 * Writes are always handled by the #MemoryRegion.write function.
2192 * @mr: the memory region to be updated
2193 * @romd_mode: %true to put the region into ROMD mode
2195 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2198 * memory_region_set_coalescing: Enable memory coalescing for the region.
2200 * Enabled writes to a region to be queued for later processing. MMIO ->write
2201 * callbacks may be delayed until a non-coalesced MMIO is issued.
2202 * Only useful for IO regions. Roughly similar to write-combining hardware.
2204 * @mr: the memory region to be write coalesced
2206 void memory_region_set_coalescing(MemoryRegion *mr);
2209 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2210 * a region.
2212 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2213 * Multiple calls can be issued coalesced disjoint ranges.
2215 * @mr: the memory region to be updated.
2216 * @offset: the start of the range within the region to be coalesced.
2217 * @size: the size of the subrange to be coalesced.
2219 void memory_region_add_coalescing(MemoryRegion *mr,
2220 hwaddr offset,
2221 uint64_t size);
2224 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2226 * Disables any coalescing caused by memory_region_set_coalescing() or
2227 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
2228 * hardware.
2230 * @mr: the memory region to be updated.
2232 void memory_region_clear_coalescing(MemoryRegion *mr);
2235 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2236 * accesses.
2238 * Ensure that pending coalesced MMIO request are flushed before the memory
2239 * region is accessed. This property is automatically enabled for all regions
2240 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2242 * @mr: the memory region to be updated.
2244 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2247 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2248 * accesses.
2250 * Clear the automatic coalesced MMIO flushing enabled via
2251 * memory_region_set_flush_coalesced. Note that this service has no effect on
2252 * memory regions that have MMIO coalescing enabled for themselves. For them,
2253 * automatic flushing will stop once coalescing is disabled.
2255 * @mr: the memory region to be updated.
2257 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2260 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2261 * is written to a location.
2263 * Marks a word in an IO region (initialized with memory_region_init_io())
2264 * as a trigger for an eventfd event. The I/O callback will not be called.
2265 * The caller must be prepared to handle failure (that is, take the required
2266 * action if the callback _is_ called).
2268 * @mr: the memory region being updated.
2269 * @addr: the address within @mr that is to be monitored
2270 * @size: the size of the access to trigger the eventfd
2271 * @match_data: whether to match against @data, instead of just @addr
2272 * @data: the data to match against the guest write
2273 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2275 void memory_region_add_eventfd(MemoryRegion *mr,
2276 hwaddr addr,
2277 unsigned size,
2278 bool match_data,
2279 uint64_t data,
2280 EventNotifier *e);
2283 * memory_region_del_eventfd: Cancel an eventfd.
2285 * Cancels an eventfd trigger requested by a previous
2286 * memory_region_add_eventfd() call.
2288 * @mr: the memory region being updated.
2289 * @addr: the address within @mr that is to be monitored
2290 * @size: the size of the access to trigger the eventfd
2291 * @match_data: whether to match against @data, instead of just @addr
2292 * @data: the data to match against the guest write
2293 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2295 void memory_region_del_eventfd(MemoryRegion *mr,
2296 hwaddr addr,
2297 unsigned size,
2298 bool match_data,
2299 uint64_t data,
2300 EventNotifier *e);
2303 * memory_region_add_subregion: Add a subregion to a container.
2305 * Adds a subregion at @offset. The subregion may not overlap with other
2306 * subregions (except for those explicitly marked as overlapping). A region
2307 * may only be added once as a subregion (unless removed with
2308 * memory_region_del_subregion()); use memory_region_init_alias() if you
2309 * want a region to be a subregion in multiple locations.
2311 * @mr: the region to contain the new subregion; must be a container
2312 * initialized with memory_region_init().
2313 * @offset: the offset relative to @mr where @subregion is added.
2314 * @subregion: the subregion to be added.
2316 void memory_region_add_subregion(MemoryRegion *mr,
2317 hwaddr offset,
2318 MemoryRegion *subregion);
2320 * memory_region_add_subregion_overlap: Add a subregion to a container
2321 * with overlap.
2323 * Adds a subregion at @offset. The subregion may overlap with other
2324 * subregions. Conflicts are resolved by having a higher @priority hide a
2325 * lower @priority. Subregions without priority are taken as @priority 0.
2326 * A region may only be added once as a subregion (unless removed with
2327 * memory_region_del_subregion()); use memory_region_init_alias() if you
2328 * want a region to be a subregion in multiple locations.
2330 * @mr: the region to contain the new subregion; must be a container
2331 * initialized with memory_region_init().
2332 * @offset: the offset relative to @mr where @subregion is added.
2333 * @subregion: the subregion to be added.
2334 * @priority: used for resolving overlaps; highest priority wins.
2336 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2337 hwaddr offset,
2338 MemoryRegion *subregion,
2339 int priority);
2342 * memory_region_get_ram_addr: Get the ram address associated with a memory
2343 * region
2345 * @mr: the region to be queried
2347 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2349 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2351 * memory_region_del_subregion: Remove a subregion.
2353 * Removes a subregion from its container.
2355 * @mr: the container to be updated.
2356 * @subregion: the region being removed; must be a current subregion of @mr.
2358 void memory_region_del_subregion(MemoryRegion *mr,
2359 MemoryRegion *subregion);
2362 * memory_region_set_enabled: dynamically enable or disable a region
2364 * Enables or disables a memory region. A disabled memory region
2365 * ignores all accesses to itself and its subregions. It does not
2366 * obscure sibling subregions with lower priority - it simply behaves as
2367 * if it was removed from the hierarchy.
2369 * Regions default to being enabled.
2371 * @mr: the region to be updated
2372 * @enabled: whether to enable or disable the region
2374 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2377 * memory_region_set_address: dynamically update the address of a region
2379 * Dynamically updates the address of a region, relative to its container.
2380 * May be used on regions are currently part of a memory hierarchy.
2382 * @mr: the region to be updated
2383 * @addr: new address, relative to container region
2385 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2388 * memory_region_set_size: dynamically update the size of a region.
2390 * Dynamically updates the size of a region.
2392 * @mr: the region to be updated
2393 * @size: used size of the region.
2395 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2398 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2400 * Dynamically updates the offset into the target region that an alias points
2401 * to, as if the fourth argument to memory_region_init_alias() has changed.
2403 * @mr: the #MemoryRegion to be updated; should be an alias.
2404 * @offset: the new offset into the target memory region
2406 void memory_region_set_alias_offset(MemoryRegion *mr,
2407 hwaddr offset);
2410 * memory_region_set_unmergeable: Set a memory region unmergeable
2412 * Mark a memory region unmergeable, resulting in the memory region (or
2413 * everything contained in a memory region container) not getting merged when
2414 * simplifying the address space and notifying memory listeners. Consequently,
2415 * memory listeners will never get notified about ranges that are larger than
2416 * the original memory regions.
2418 * This is primarily useful when multiple aliases to a RAM memory region are
2419 * mapped into a memory region container, and updates (e.g., enable/disable or
2420 * map/unmap) of individual memory region aliases are not supposed to affect
2421 * other memory regions in the same container.
2423 * @mr: the #MemoryRegion to be updated
2424 * @unmergeable: whether to mark the #MemoryRegion unmergeable
2426 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2429 * memory_region_present: checks if an address relative to a @container
2430 * translates into #MemoryRegion within @container
2432 * Answer whether a #MemoryRegion within @container covers the address
2433 * @addr.
2435 * @container: a #MemoryRegion within which @addr is a relative address
2436 * @addr: the area within @container to be searched
2438 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2441 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2442 * into another memory region, which does not necessarily imply that it is
2443 * mapped into an address space.
2445 * @mr: a #MemoryRegion which should be checked if it's mapped
2447 bool memory_region_is_mapped(MemoryRegion *mr);
2450 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2451 * #MemoryRegion
2453 * The #RamDiscardManager cannot change while a memory region is mapped.
2455 * @mr: the #MemoryRegion
2457 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2460 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2461 * #RamDiscardManager assigned
2463 * @mr: the #MemoryRegion
2465 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2467 return !!memory_region_get_ram_discard_manager(mr);
2471 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2472 * #MemoryRegion
2474 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2475 * that does not cover RAM, or a #MemoryRegion that already has a
2476 * #RamDiscardManager assigned.
2478 * @mr: the #MemoryRegion
2479 * @rdm: #RamDiscardManager to set
2481 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2482 RamDiscardManager *rdm);
2485 * memory_region_find: translate an address/size relative to a
2486 * MemoryRegion into a #MemoryRegionSection.
2488 * Locates the first #MemoryRegion within @mr that overlaps the range
2489 * given by @addr and @size.
2491 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2492 * It will have the following characteristics:
2493 * - @size = 0 iff no overlap was found
2494 * - @mr is non-%NULL iff an overlap was found
2496 * Remember that in the return value the @offset_within_region is
2497 * relative to the returned region (in the .@mr field), not to the
2498 * @mr argument.
2500 * Similarly, the .@offset_within_address_space is relative to the
2501 * address space that contains both regions, the passed and the
2502 * returned one. However, in the special case where the @mr argument
2503 * has no container (and thus is the root of the address space), the
2504 * following will hold:
2505 * - @offset_within_address_space >= @addr
2506 * - @offset_within_address_space + .@size <= @addr + @size
2508 * @mr: a MemoryRegion within which @addr is a relative address
2509 * @addr: start of the area within @as to be searched
2510 * @size: size of the area to be searched
2512 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2513 hwaddr addr, uint64_t size);
2516 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2518 * Synchronizes the dirty page log for all address spaces.
2520 * @last_stage: whether this is the last stage of live migration
2522 void memory_global_dirty_log_sync(bool last_stage);
2525 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2527 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2528 * This function must be called after the dirty log bitmap is cleared, and
2529 * before dirty guest memory pages are read. If you are using
2530 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2531 * care of doing this.
2533 void memory_global_after_dirty_log_sync(void);
2536 * memory_region_transaction_begin: Start a transaction.
2538 * During a transaction, changes will be accumulated and made visible
2539 * only when the transaction ends (is committed).
2541 void memory_region_transaction_begin(void);
2544 * memory_region_transaction_commit: Commit a transaction and make changes
2545 * visible to the guest.
2547 void memory_region_transaction_commit(void);
2550 * memory_listener_register: register callbacks to be called when memory
2551 * sections are mapped or unmapped into an address
2552 * space
2554 * @listener: an object containing the callbacks to be called
2555 * @filter: if non-%NULL, only regions in this address space will be observed
2557 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2560 * memory_listener_unregister: undo the effect of memory_listener_register()
2562 * @listener: an object containing the callbacks to be removed
2564 void memory_listener_unregister(MemoryListener *listener);
2567 * memory_global_dirty_log_start: begin dirty logging for all regions
2569 * @flags: purpose of starting dirty log, migration or dirty rate
2571 void memory_global_dirty_log_start(unsigned int flags);
2574 * memory_global_dirty_log_stop: end dirty logging for all regions
2576 * @flags: purpose of stopping dirty log, migration or dirty rate
2578 void memory_global_dirty_log_stop(unsigned int flags);
2580 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2582 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2583 unsigned size, bool is_write,
2584 MemTxAttrs attrs);
2587 * memory_region_dispatch_read: perform a read directly to the specified
2588 * MemoryRegion.
2590 * @mr: #MemoryRegion to access
2591 * @addr: address within that region
2592 * @pval: pointer to uint64_t which the data is written to
2593 * @op: size, sign, and endianness of the memory operation
2594 * @attrs: memory transaction attributes to use for the access
2596 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2597 hwaddr addr,
2598 uint64_t *pval,
2599 MemOp op,
2600 MemTxAttrs attrs);
2602 * memory_region_dispatch_write: perform a write directly to the specified
2603 * MemoryRegion.
2605 * @mr: #MemoryRegion to access
2606 * @addr: address within that region
2607 * @data: data to write
2608 * @op: size, sign, and endianness of the memory operation
2609 * @attrs: memory transaction attributes to use for the access
2611 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2612 hwaddr addr,
2613 uint64_t data,
2614 MemOp op,
2615 MemTxAttrs attrs);
2618 * address_space_init: initializes an address space
2620 * @as: an uninitialized #AddressSpace
2621 * @root: a #MemoryRegion that routes addresses for the address space
2622 * @name: an address space name. The name is only used for debugging
2623 * output.
2625 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2628 * address_space_destroy: destroy an address space
2630 * Releases all resources associated with an address space. After an address space
2631 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2632 * as well.
2634 * @as: address space to be destroyed
2636 void address_space_destroy(AddressSpace *as);
2639 * address_space_remove_listeners: unregister all listeners of an address space
2641 * Removes all callbacks previously registered with memory_listener_register()
2642 * for @as.
2644 * @as: an initialized #AddressSpace
2646 void address_space_remove_listeners(AddressSpace *as);
2649 * address_space_rw: read from or write to an address space.
2651 * Return a MemTxResult indicating whether the operation succeeded
2652 * or failed (eg unassigned memory, device rejected the transaction,
2653 * IOMMU fault).
2655 * @as: #AddressSpace to be accessed
2656 * @addr: address within that address space
2657 * @attrs: memory transaction attributes
2658 * @buf: buffer with the data transferred
2659 * @len: the number of bytes to read or write
2660 * @is_write: indicates the transfer direction
2662 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2663 MemTxAttrs attrs, void *buf,
2664 hwaddr len, bool is_write);
2667 * address_space_write: write to address space.
2669 * Return a MemTxResult indicating whether the operation succeeded
2670 * or failed (eg unassigned memory, device rejected the transaction,
2671 * IOMMU fault).
2673 * @as: #AddressSpace to be accessed
2674 * @addr: address within that address space
2675 * @attrs: memory transaction attributes
2676 * @buf: buffer with the data transferred
2677 * @len: the number of bytes to write
2679 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2680 MemTxAttrs attrs,
2681 const void *buf, hwaddr len);
2684 * address_space_write_rom: write to address space, including ROM.
2686 * This function writes to the specified address space, but will
2687 * write data to both ROM and RAM. This is used for non-guest
2688 * writes like writes from the gdb debug stub or initial loading
2689 * of ROM contents.
2691 * Note that portions of the write which attempt to write data to
2692 * a device will be silently ignored -- only real RAM and ROM will
2693 * be written to.
2695 * Return a MemTxResult indicating whether the operation succeeded
2696 * or failed (eg unassigned memory, device rejected the transaction,
2697 * IOMMU fault).
2699 * @as: #AddressSpace to be accessed
2700 * @addr: address within that address space
2701 * @attrs: memory transaction attributes
2702 * @buf: buffer with the data transferred
2703 * @len: the number of bytes to write
2705 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2706 MemTxAttrs attrs,
2707 const void *buf, hwaddr len);
2709 /* address_space_ld*: load from an address space
2710 * address_space_st*: store to an address space
2712 * These functions perform a load or store of the byte, word,
2713 * longword or quad to the specified address within the AddressSpace.
2714 * The _le suffixed functions treat the data as little endian;
2715 * _be indicates big endian; no suffix indicates "same endianness
2716 * as guest CPU".
2718 * The "guest CPU endianness" accessors are deprecated for use outside
2719 * target-* code; devices should be CPU-agnostic and use either the LE
2720 * or the BE accessors.
2722 * @as #AddressSpace to be accessed
2723 * @addr: address within that address space
2724 * @val: data value, for stores
2725 * @attrs: memory transaction attributes
2726 * @result: location to write the success/failure of the transaction;
2727 * if NULL, this information is discarded
2730 #define SUFFIX
2731 #define ARG1 as
2732 #define ARG1_DECL AddressSpace *as
2733 #include "exec/memory_ldst.h.inc"
2735 #define SUFFIX
2736 #define ARG1 as
2737 #define ARG1_DECL AddressSpace *as
2738 #include "exec/memory_ldst_phys.h.inc"
2740 struct MemoryRegionCache {
2741 void *ptr;
2742 hwaddr xlat;
2743 hwaddr len;
2744 FlatView *fv;
2745 MemoryRegionSection mrs;
2746 bool is_write;
2749 /* address_space_ld*_cached: load from a cached #MemoryRegion
2750 * address_space_st*_cached: store into a cached #MemoryRegion
2752 * These functions perform a load or store of the byte, word,
2753 * longword or quad to the specified address. The address is
2754 * a physical address in the AddressSpace, but it must lie within
2755 * a #MemoryRegion that was mapped with address_space_cache_init.
2757 * The _le suffixed functions treat the data as little endian;
2758 * _be indicates big endian; no suffix indicates "same endianness
2759 * as guest CPU".
2761 * The "guest CPU endianness" accessors are deprecated for use outside
2762 * target-* code; devices should be CPU-agnostic and use either the LE
2763 * or the BE accessors.
2765 * @cache: previously initialized #MemoryRegionCache to be accessed
2766 * @addr: address within the address space
2767 * @val: data value, for stores
2768 * @attrs: memory transaction attributes
2769 * @result: location to write the success/failure of the transaction;
2770 * if NULL, this information is discarded
2773 #define SUFFIX _cached_slow
2774 #define ARG1 cache
2775 #define ARG1_DECL MemoryRegionCache *cache
2776 #include "exec/memory_ldst.h.inc"
2778 /* Inline fast path for direct RAM access. */
2779 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2780 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2782 assert(addr < cache->len);
2783 if (likely(cache->ptr)) {
2784 return ldub_p(cache->ptr + addr);
2785 } else {
2786 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2790 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2791 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2793 assert(addr < cache->len);
2794 if (likely(cache->ptr)) {
2795 stb_p(cache->ptr + addr, val);
2796 } else {
2797 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2801 #define ENDIANNESS _le
2802 #include "exec/memory_ldst_cached.h.inc"
2804 #define ENDIANNESS _be
2805 #include "exec/memory_ldst_cached.h.inc"
2807 #define SUFFIX _cached
2808 #define ARG1 cache
2809 #define ARG1_DECL MemoryRegionCache *cache
2810 #include "exec/memory_ldst_phys.h.inc"
2812 /* address_space_cache_init: prepare for repeated access to a physical
2813 * memory region
2815 * @cache: #MemoryRegionCache to be filled
2816 * @as: #AddressSpace to be accessed
2817 * @addr: address within that address space
2818 * @len: length of buffer
2819 * @is_write: indicates the transfer direction
2821 * Will only work with RAM, and may map a subset of the requested range by
2822 * returning a value that is less than @len. On failure, return a negative
2823 * errno value.
2825 * Because it only works with RAM, this function can be used for
2826 * read-modify-write operations. In this case, is_write should be %true.
2828 * Note that addresses passed to the address_space_*_cached functions
2829 * are relative to @addr.
2831 int64_t address_space_cache_init(MemoryRegionCache *cache,
2832 AddressSpace *as,
2833 hwaddr addr,
2834 hwaddr len,
2835 bool is_write);
2838 * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2840 * @cache: The #MemoryRegionCache to operate on.
2842 * Initializes #MemoryRegionCache structure without memory region attached.
2843 * Cache initialized this way can only be safely destroyed, but not used.
2845 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2847 cache->mrs.mr = NULL;
2848 /* There is no real need to initialize fv, but it makes Coverity happy. */
2849 cache->fv = NULL;
2853 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2855 * @cache: The #MemoryRegionCache to operate on.
2856 * @addr: The first physical address that was written, relative to the
2857 * address that was passed to @address_space_cache_init.
2858 * @access_len: The number of bytes that were written starting at @addr.
2860 void address_space_cache_invalidate(MemoryRegionCache *cache,
2861 hwaddr addr,
2862 hwaddr access_len);
2865 * address_space_cache_destroy: free a #MemoryRegionCache
2867 * @cache: The #MemoryRegionCache whose memory should be released.
2869 void address_space_cache_destroy(MemoryRegionCache *cache);
2871 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2872 * entry. Should be called from an RCU critical section.
2874 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2875 bool is_write, MemTxAttrs attrs);
2877 /* address_space_translate: translate an address range into an address space
2878 * into a MemoryRegion and an address range into that section. Should be
2879 * called from an RCU critical section, to avoid that the last reference
2880 * to the returned region disappears after address_space_translate returns.
2882 * @fv: #FlatView to be accessed
2883 * @addr: address within that address space
2884 * @xlat: pointer to address within the returned memory region section's
2885 * #MemoryRegion.
2886 * @len: pointer to length
2887 * @is_write: indicates the transfer direction
2888 * @attrs: memory attributes
2890 MemoryRegion *flatview_translate(FlatView *fv,
2891 hwaddr addr, hwaddr *xlat,
2892 hwaddr *len, bool is_write,
2893 MemTxAttrs attrs);
2895 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2896 hwaddr addr, hwaddr *xlat,
2897 hwaddr *len, bool is_write,
2898 MemTxAttrs attrs)
2900 return flatview_translate(address_space_to_flatview(as),
2901 addr, xlat, len, is_write, attrs);
2904 /* address_space_access_valid: check for validity of accessing an address
2905 * space range
2907 * Check whether memory is assigned to the given address space range, and
2908 * access is permitted by any IOMMU regions that are active for the address
2909 * space.
2911 * For now, addr and len should be aligned to a page size. This limitation
2912 * will be lifted in the future.
2914 * @as: #AddressSpace to be accessed
2915 * @addr: address within that address space
2916 * @len: length of the area to be checked
2917 * @is_write: indicates the transfer direction
2918 * @attrs: memory attributes
2920 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2921 bool is_write, MemTxAttrs attrs);
2923 /* address_space_map: map a physical memory region into a host virtual address
2925 * May map a subset of the requested range, given by and returned in @plen.
2926 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2927 * the mapping are exhausted.
2928 * Use only for reads OR writes - not for read-modify-write operations.
2929 * Use cpu_register_map_client() to know when retrying the map operation is
2930 * likely to succeed.
2932 * @as: #AddressSpace to be accessed
2933 * @addr: address within that address space
2934 * @plen: pointer to length of buffer; updated on return
2935 * @is_write: indicates the transfer direction
2936 * @attrs: memory attributes
2938 void *address_space_map(AddressSpace *as, hwaddr addr,
2939 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2941 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2943 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2944 * the amount of memory that was actually read or written by the caller.
2946 * @as: #AddressSpace used
2947 * @buffer: host pointer as returned by address_space_map()
2948 * @len: buffer length as returned by address_space_map()
2949 * @access_len: amount of data actually transferred
2950 * @is_write: indicates the transfer direction
2952 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2953 bool is_write, hwaddr access_len);
2956 /* Internal functions, part of the implementation of address_space_read. */
2957 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2958 MemTxAttrs attrs, void *buf, hwaddr len);
2959 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2960 MemTxAttrs attrs, void *buf,
2961 hwaddr len, hwaddr addr1, hwaddr l,
2962 MemoryRegion *mr);
2963 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2965 /* Internal functions, part of the implementation of address_space_read_cached
2966 * and address_space_write_cached. */
2967 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2968 hwaddr addr, void *buf, hwaddr len);
2969 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2970 hwaddr addr, const void *buf,
2971 hwaddr len);
2973 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2974 bool prepare_mmio_access(MemoryRegion *mr);
2976 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2978 if (is_write) {
2979 return memory_region_is_ram(mr) && !mr->readonly &&
2980 !mr->rom_device && !memory_region_is_ram_device(mr);
2981 } else {
2982 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2983 memory_region_is_romd(mr);
2988 * address_space_read: read from an address space.
2990 * Return a MemTxResult indicating whether the operation succeeded
2991 * or failed (eg unassigned memory, device rejected the transaction,
2992 * IOMMU fault). Called within RCU critical section.
2994 * @as: #AddressSpace to be accessed
2995 * @addr: address within that address space
2996 * @attrs: memory transaction attributes
2997 * @buf: buffer with the data transferred
2998 * @len: length of the data transferred
3000 static inline __attribute__((__always_inline__))
3001 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
3002 MemTxAttrs attrs, void *buf,
3003 hwaddr len)
3005 MemTxResult result = MEMTX_OK;
3006 hwaddr l, addr1;
3007 void *ptr;
3008 MemoryRegion *mr;
3009 FlatView *fv;
3011 if (__builtin_constant_p(len)) {
3012 if (len) {
3013 RCU_READ_LOCK_GUARD();
3014 fv = address_space_to_flatview(as);
3015 l = len;
3016 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3017 if (len == l && memory_access_is_direct(mr, false)) {
3018 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3019 memcpy(buf, ptr, len);
3020 } else {
3021 result = flatview_read_continue(fv, addr, attrs, buf, len,
3022 addr1, l, mr);
3025 } else {
3026 result = address_space_read_full(as, addr, attrs, buf, len);
3028 return result;
3032 * address_space_read_cached: read from a cached RAM region
3034 * @cache: Cached region to be addressed
3035 * @addr: address relative to the base of the RAM region
3036 * @buf: buffer with the data transferred
3037 * @len: length of the data transferred
3039 static inline MemTxResult
3040 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3041 void *buf, hwaddr len)
3043 assert(addr < cache->len && len <= cache->len - addr);
3044 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3045 if (likely(cache->ptr)) {
3046 memcpy(buf, cache->ptr + addr, len);
3047 return MEMTX_OK;
3048 } else {
3049 return address_space_read_cached_slow(cache, addr, buf, len);
3054 * address_space_write_cached: write to a cached RAM region
3056 * @cache: Cached region to be addressed
3057 * @addr: address relative to the base of the RAM region
3058 * @buf: buffer with the data transferred
3059 * @len: length of the data transferred
3061 static inline MemTxResult
3062 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3063 const void *buf, hwaddr len)
3065 assert(addr < cache->len && len <= cache->len - addr);
3066 if (likely(cache->ptr)) {
3067 memcpy(cache->ptr + addr, buf, len);
3068 return MEMTX_OK;
3069 } else {
3070 return address_space_write_cached_slow(cache, addr, buf, len);
3075 * address_space_set: Fill address space with a constant byte.
3077 * Return a MemTxResult indicating whether the operation succeeded
3078 * or failed (eg unassigned memory, device rejected the transaction,
3079 * IOMMU fault).
3081 * @as: #AddressSpace to be accessed
3082 * @addr: address within that address space
3083 * @c: constant byte to fill the memory
3084 * @len: the number of bytes to fill with the constant byte
3085 * @attrs: memory transaction attributes
3087 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3088 uint8_t c, hwaddr len, MemTxAttrs attrs);
3090 #ifdef NEED_CPU_H
3091 /* enum device_endian to MemOp. */
3092 static inline MemOp devend_memop(enum device_endian end)
3094 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
3095 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
3097 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3098 /* Swap if non-host endianness or native (target) endianness */
3099 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3100 #else
3101 const int non_host_endianness =
3102 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3104 /* In this case, native (target) endianness needs no swap. */
3105 return (end == non_host_endianness) ? MO_BSWAP : 0;
3106 #endif
3108 #endif
3111 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3112 * to manage the actual amount of memory consumed by the VM (then, the memory
3113 * provided by RAM blocks might be bigger than the desired memory consumption).
3114 * This *must* be set if:
3115 * - Discarding parts of a RAM blocks does not result in the change being
3116 * reflected in the VM and the pages getting freed.
3117 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3118 * discards blindly.
3119 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3120 * encrypted VMs).
3121 * Technologies that only temporarily pin the current working set of a
3122 * driver are fine, because we don't expect such pages to be discarded
3123 * (esp. based on guest action like balloon inflation).
3125 * This is *not* to be used to protect from concurrent discards (esp.,
3126 * postcopy).
3128 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3129 * discards to work reliably is active.
3131 int ram_block_discard_disable(bool state);
3134 * See ram_block_discard_disable(): only disable uncoordinated discards,
3135 * keeping coordinated discards (via the RamDiscardManager) enabled.
3137 int ram_block_uncoordinated_discard_disable(bool state);
3140 * Inhibit technologies that disable discarding of pages in RAM blocks.
3142 * Returns 0 if successful. Returns -EBUSY if discards are already set to
3143 * broken.
3145 int ram_block_discard_require(bool state);
3148 * See ram_block_discard_require(): only inhibit technologies that disable
3149 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
3150 * technologies that only inhibit uncoordinated discards (via the
3151 * RamDiscardManager).
3153 int ram_block_coordinated_discard_require(bool state);
3156 * Test if any discarding of memory in ram blocks is disabled.
3158 bool ram_block_discard_is_disabled(void);
3161 * Test if any discarding of memory in ram blocks is required to work reliably.
3163 bool ram_block_discard_is_required(void);
3165 #endif
3167 #endif