Merge tag 'pull-target-arm-20240701' of https://git.linaro.org/people/pmaydell/qemu...
[qemu/kevin.git] / include / exec / memory.h
blobc26ede33d21e82beba7de82892b23dd96ab9ae70
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/range.h"
28 #include "qemu/notify.h"
29 #include "qom/object.h"
30 #include "qemu/rcu.h"
32 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
34 #define MAX_PHYS_ADDR_SPACE_BITS 62
35 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
37 #define TYPE_MEMORY_REGION "memory-region"
38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
39 TYPE_MEMORY_REGION)
41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
44 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager"
47 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
48 typedef struct RamDiscardManager RamDiscardManager;
49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
50 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
52 #ifdef CONFIG_FUZZ
53 void fuzz_dma_read_cb(size_t addr,
54 size_t len,
55 MemoryRegion *mr);
56 #else
57 static inline void fuzz_dma_read_cb(size_t addr,
58 size_t len,
59 MemoryRegion *mr)
61 /* Do Nothing */
63 #endif
65 /* Possible bits for global_dirty_log_{start|stop} */
67 /* Dirty tracking enabled because migration is running */
68 #define GLOBAL_DIRTY_MIGRATION (1U << 0)
70 /* Dirty tracking enabled because measuring dirty rate */
71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
73 /* Dirty tracking enabled because dirty limit */
74 #define GLOBAL_DIRTY_LIMIT (1U << 2)
76 #define GLOBAL_DIRTY_MASK (0x7)
78 extern unsigned int global_dirty_tracking;
80 typedef struct MemoryRegionOps MemoryRegionOps;
82 struct ReservedRegion {
83 Range range;
84 unsigned type;
87 /**
88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
90 * @mr: the region, or %NULL if empty
91 * @fv: the flat view of the address space the region is mapped in
92 * @offset_within_region: the beginning of the section, relative to @mr's start
93 * @size: the size of the section; will not exceed @mr's boundaries
94 * @offset_within_address_space: the address of the first byte of the section
95 * relative to the region's address space
96 * @readonly: writes to this section are ignored
97 * @nonvolatile: this section is non-volatile
98 * @unmergeable: this section should not get merged with adjacent sections
100 struct MemoryRegionSection {
101 Int128 size;
102 MemoryRegion *mr;
103 FlatView *fv;
104 hwaddr offset_within_region;
105 hwaddr offset_within_address_space;
106 bool readonly;
107 bool nonvolatile;
108 bool unmergeable;
111 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
113 /* See address_space_translate: bit 0 is read, bit 1 is write. */
114 typedef enum {
115 IOMMU_NONE = 0,
116 IOMMU_RO = 1,
117 IOMMU_WO = 2,
118 IOMMU_RW = 3,
119 } IOMMUAccessFlags;
121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
123 struct IOMMUTLBEntry {
124 AddressSpace *target_as;
125 hwaddr iova;
126 hwaddr translated_addr;
127 hwaddr addr_mask; /* 0xfff = 4k translation */
128 IOMMUAccessFlags perm;
132 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
133 * register with one or multiple IOMMU Notifier capability bit(s).
135 * Normally there're two use cases for the notifiers:
137 * (1) When the device needs accurate synchronizations of the vIOMMU page
138 * tables, it needs to register with both MAP|UNMAP notifies (which
139 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
141 * Regarding to accurate synchronization, it's when the notified
142 * device maintains a shadow page table and must be notified on each
143 * guest MAP (page table entry creation) and UNMAP (invalidation)
144 * events (e.g. VFIO). Both notifications must be accurate so that
145 * the shadow page table is fully in sync with the guest view.
147 * (2) When the device doesn't need accurate synchronizations of the
148 * vIOMMU page tables, it needs to register only with UNMAP or
149 * DEVIOTLB_UNMAP notifies.
151 * It's when the device maintains a cache of IOMMU translations
152 * (IOTLB) and is able to fill that cache by requesting translations
153 * from the vIOMMU through a protocol similar to ATS (Address
154 * Translation Service).
156 * Note that in this mode the vIOMMU will not maintain a shadowed
157 * page table for the address space, and the UNMAP messages can cover
158 * more than the pages that used to get mapped. The IOMMU notifiee
159 * should be able to take care of over-sized invalidations.
161 typedef enum {
162 IOMMU_NOTIFIER_NONE = 0,
163 /* Notify cache invalidations */
164 IOMMU_NOTIFIER_UNMAP = 0x1,
165 /* Notify entry changes (newly created entries) */
166 IOMMU_NOTIFIER_MAP = 0x2,
167 /* Notify changes on device IOTLB entries */
168 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
169 } IOMMUNotifierFlag;
171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
174 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
176 struct IOMMUNotifier;
177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
178 IOMMUTLBEntry *data);
180 struct IOMMUNotifier {
181 IOMMUNotify notify;
182 IOMMUNotifierFlag notifier_flags;
183 /* Notify for address space range start <= addr <= end */
184 hwaddr start;
185 hwaddr end;
186 int iommu_idx;
187 QLIST_ENTRY(IOMMUNotifier) node;
189 typedef struct IOMMUNotifier IOMMUNotifier;
191 typedef struct IOMMUTLBEvent {
192 IOMMUNotifierFlag type;
193 IOMMUTLBEntry entry;
194 } IOMMUTLBEvent;
196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
197 #define RAM_PREALLOC (1 << 0)
199 /* RAM is mmap-ed with MAP_SHARED */
200 #define RAM_SHARED (1 << 1)
202 /* Only a portion of RAM (used_length) is actually used, and migrated.
203 * Resizing RAM while migrating can result in the migration being canceled.
205 #define RAM_RESIZEABLE (1 << 2)
207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
208 * zero the page and wake waiting processes.
209 * (Set during postcopy)
211 #define RAM_UF_ZEROPAGE (1 << 3)
213 /* RAM can be migrated */
214 #define RAM_MIGRATABLE (1 << 4)
216 /* RAM is a persistent kind memory */
217 #define RAM_PMEM (1 << 5)
221 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
222 * support 'write-tracking' migration type.
223 * Implies ram_state->ram_wt_enabled.
225 #define RAM_UF_WRITEPROTECT (1 << 6)
228 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
229 * pages if applicable) is skipped: will bail out if not supported. When not
230 * set, the OS will do the reservation, if supported for the memory type.
232 #define RAM_NORESERVE (1 << 7)
234 /* RAM that isn't accessible through normal means. */
235 #define RAM_PROTECTED (1 << 8)
237 /* RAM is an mmap-ed named file */
238 #define RAM_NAMED_FILE (1 << 9)
240 /* RAM is mmap-ed read-only */
241 #define RAM_READONLY (1 << 10)
243 /* RAM FD is opened read-only */
244 #define RAM_READONLY_FD (1 << 11)
246 /* RAM can be private that has kvm guest memfd backend */
247 #define RAM_GUEST_MEMFD (1 << 12)
249 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
250 IOMMUNotifierFlag flags,
251 hwaddr start, hwaddr end,
252 int iommu_idx)
254 n->notify = fn;
255 n->notifier_flags = flags;
256 n->start = start;
257 n->end = end;
258 n->iommu_idx = iommu_idx;
262 * Memory region callbacks
264 struct MemoryRegionOps {
265 /* Read from the memory region. @addr is relative to @mr; @size is
266 * in bytes. */
267 uint64_t (*read)(void *opaque,
268 hwaddr addr,
269 unsigned size);
270 /* Write to the memory region. @addr is relative to @mr; @size is
271 * in bytes. */
272 void (*write)(void *opaque,
273 hwaddr addr,
274 uint64_t data,
275 unsigned size);
277 MemTxResult (*read_with_attrs)(void *opaque,
278 hwaddr addr,
279 uint64_t *data,
280 unsigned size,
281 MemTxAttrs attrs);
282 MemTxResult (*write_with_attrs)(void *opaque,
283 hwaddr addr,
284 uint64_t data,
285 unsigned size,
286 MemTxAttrs attrs);
288 enum device_endian endianness;
289 /* Guest-visible constraints: */
290 struct {
291 /* If nonzero, specify bounds on access sizes beyond which a machine
292 * check is thrown.
294 unsigned min_access_size;
295 unsigned max_access_size;
296 /* If true, unaligned accesses are supported. Otherwise unaligned
297 * accesses throw machine checks.
299 bool unaligned;
301 * If present, and returns #false, the transaction is not accepted
302 * by the device (and results in machine dependent behaviour such
303 * as a machine check exception).
305 bool (*accepts)(void *opaque, hwaddr addr,
306 unsigned size, bool is_write,
307 MemTxAttrs attrs);
308 } valid;
309 /* Internal implementation constraints: */
310 struct {
311 /* If nonzero, specifies the minimum size implemented. Smaller sizes
312 * will be rounded upwards and a partial result will be returned.
314 unsigned min_access_size;
315 /* If nonzero, specifies the maximum size implemented. Larger sizes
316 * will be done as a series of accesses with smaller sizes.
318 unsigned max_access_size;
319 /* If true, unaligned accesses are supported. Otherwise all accesses
320 * are converted to (possibly multiple) naturally aligned accesses.
322 bool unaligned;
323 } impl;
326 typedef struct MemoryRegionClass {
327 /* private */
328 ObjectClass parent_class;
329 } MemoryRegionClass;
332 enum IOMMUMemoryRegionAttr {
333 IOMMU_ATTR_SPAPR_TCE_FD
337 * IOMMUMemoryRegionClass:
339 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
340 * and provide an implementation of at least the @translate method here
341 * to handle requests to the memory region. Other methods are optional.
343 * The IOMMU implementation must use the IOMMU notifier infrastructure
344 * to report whenever mappings are changed, by calling
345 * memory_region_notify_iommu() (or, if necessary, by calling
346 * memory_region_notify_iommu_one() for each registered notifier).
348 * Conceptually an IOMMU provides a mapping from input address
349 * to an output TLB entry. If the IOMMU is aware of memory transaction
350 * attributes and the output TLB entry depends on the transaction
351 * attributes, we represent this using IOMMU indexes. Each index
352 * selects a particular translation table that the IOMMU has:
354 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
356 * @translate takes an input address and an IOMMU index
358 * and the mapping returned can only depend on the input address and the
359 * IOMMU index.
361 * Most IOMMUs don't care about the transaction attributes and support
362 * only a single IOMMU index. A more complex IOMMU might have one index
363 * for secure transactions and one for non-secure transactions.
365 struct IOMMUMemoryRegionClass {
366 /* private: */
367 MemoryRegionClass parent_class;
369 /* public: */
371 * @translate:
373 * Return a TLB entry that contains a given address.
375 * The IOMMUAccessFlags indicated via @flag are optional and may
376 * be specified as IOMMU_NONE to indicate that the caller needs
377 * the full translation information for both reads and writes. If
378 * the access flags are specified then the IOMMU implementation
379 * may use this as an optimization, to stop doing a page table
380 * walk as soon as it knows that the requested permissions are not
381 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
382 * full page table walk and report the permissions in the returned
383 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
384 * return different mappings for reads and writes.)
386 * The returned information remains valid while the caller is
387 * holding the big QEMU lock or is inside an RCU critical section;
388 * if the caller wishes to cache the mapping beyond that it must
389 * register an IOMMU notifier so it can invalidate its cached
390 * information when the IOMMU mapping changes.
392 * @iommu: the IOMMUMemoryRegion
394 * @hwaddr: address to be translated within the memory region
396 * @flag: requested access permission
398 * @iommu_idx: IOMMU index for the translation
400 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
401 IOMMUAccessFlags flag, int iommu_idx);
403 * @get_min_page_size:
405 * Returns minimum supported page size in bytes.
407 * If this method is not provided then the minimum is assumed to
408 * be TARGET_PAGE_SIZE.
410 * @iommu: the IOMMUMemoryRegion
412 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
414 * @notify_flag_changed:
416 * Called when IOMMU Notifier flag changes (ie when the set of
417 * events which IOMMU users are requesting notification for changes).
418 * Optional method -- need not be provided if the IOMMU does not
419 * need to know exactly which events must be notified.
421 * @iommu: the IOMMUMemoryRegion
423 * @old_flags: events which previously needed to be notified
425 * @new_flags: events which now need to be notified
427 * Returns 0 on success, or a negative errno; in particular
428 * returns -EINVAL if the new flag bitmap is not supported by the
429 * IOMMU memory region. In case of failure, the error object
430 * must be created
432 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
433 IOMMUNotifierFlag old_flags,
434 IOMMUNotifierFlag new_flags,
435 Error **errp);
437 * @replay:
439 * Called to handle memory_region_iommu_replay().
441 * The default implementation of memory_region_iommu_replay() is to
442 * call the IOMMU translate method for every page in the address space
443 * with flag == IOMMU_NONE and then call the notifier if translate
444 * returns a valid mapping. If this method is implemented then it
445 * overrides the default behaviour, and must provide the full semantics
446 * of memory_region_iommu_replay(), by calling @notifier for every
447 * translation present in the IOMMU.
449 * Optional method -- an IOMMU only needs to provide this method
450 * if the default is inefficient or produces undesirable side effects.
452 * Note: this is not related to record-and-replay functionality.
454 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
457 * @get_attr:
459 * Get IOMMU misc attributes. This is an optional method that
460 * can be used to allow users of the IOMMU to get implementation-specific
461 * information. The IOMMU implements this method to handle calls
462 * by IOMMU users to memory_region_iommu_get_attr() by filling in
463 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
464 * the IOMMU supports. If the method is unimplemented then
465 * memory_region_iommu_get_attr() will always return -EINVAL.
467 * @iommu: the IOMMUMemoryRegion
469 * @attr: attribute being queried
471 * @data: memory to fill in with the attribute data
473 * Returns 0 on success, or a negative errno; in particular
474 * returns -EINVAL for unrecognized or unimplemented attribute types.
476 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
477 void *data);
480 * @attrs_to_index:
482 * Return the IOMMU index to use for a given set of transaction attributes.
484 * Optional method: if an IOMMU only supports a single IOMMU index then
485 * the default implementation of memory_region_iommu_attrs_to_index()
486 * will return 0.
488 * The indexes supported by an IOMMU must be contiguous, starting at 0.
490 * @iommu: the IOMMUMemoryRegion
491 * @attrs: memory transaction attributes
493 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
496 * @num_indexes:
498 * Return the number of IOMMU indexes this IOMMU supports.
500 * Optional method: if this method is not provided, then
501 * memory_region_iommu_num_indexes() will return 1, indicating that
502 * only a single IOMMU index is supported.
504 * @iommu: the IOMMUMemoryRegion
506 int (*num_indexes)(IOMMUMemoryRegion *iommu);
509 * @iommu_set_page_size_mask:
511 * Restrict the page size mask that can be supported with a given IOMMU
512 * memory region. Used for example to propagate host physical IOMMU page
513 * size mask limitations to the virtual IOMMU.
515 * Optional method: if this method is not provided, then the default global
516 * page mask is used.
518 * @iommu: the IOMMUMemoryRegion
520 * @page_size_mask: a bitmask of supported page sizes. At least one bit,
521 * representing the smallest page size, must be set. Additional set bits
522 * represent supported block sizes. For example a host physical IOMMU that
523 * uses page tables with a page size of 4kB, and supports 2MB and 4GB
524 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
525 * block sizes is specified with mask 0xfffffffffffff000.
527 * Returns 0 on success, or a negative error. In case of failure, the error
528 * object must be created.
530 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
531 uint64_t page_size_mask,
532 Error **errp);
535 typedef struct RamDiscardListener RamDiscardListener;
536 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
537 MemoryRegionSection *section);
538 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
539 MemoryRegionSection *section);
541 struct RamDiscardListener {
543 * @notify_populate:
545 * Notification that previously discarded memory is about to get populated.
546 * Listeners are able to object. If any listener objects, already
547 * successfully notified listeners are notified about a discard again.
549 * @rdl: the #RamDiscardListener getting notified
550 * @section: the #MemoryRegionSection to get populated. The section
551 * is aligned within the memory region to the minimum granularity
552 * unless it would exceed the registered section.
554 * Returns 0 on success. If the notification is rejected by the listener,
555 * an error is returned.
557 NotifyRamPopulate notify_populate;
560 * @notify_discard:
562 * Notification that previously populated memory was discarded successfully
563 * and listeners should drop all references to such memory and prevent
564 * new population (e.g., unmap).
566 * @rdl: the #RamDiscardListener getting notified
567 * @section: the #MemoryRegionSection to get populated. The section
568 * is aligned within the memory region to the minimum granularity
569 * unless it would exceed the registered section.
571 NotifyRamDiscard notify_discard;
574 * @double_discard_supported:
576 * The listener suppors getting @notify_discard notifications that span
577 * already discarded parts.
579 bool double_discard_supported;
581 MemoryRegionSection *section;
582 QLIST_ENTRY(RamDiscardListener) next;
585 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
586 NotifyRamPopulate populate_fn,
587 NotifyRamDiscard discard_fn,
588 bool double_discard_supported)
590 rdl->notify_populate = populate_fn;
591 rdl->notify_discard = discard_fn;
592 rdl->double_discard_supported = double_discard_supported;
595 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
596 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
599 * RamDiscardManagerClass:
601 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
602 * regions are currently populated to be used/accessed by the VM, notifying
603 * after parts were discarded (freeing up memory) and before parts will be
604 * populated (consuming memory), to be used/accessed by the VM.
606 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
607 * #MemoryRegion isn't mapped into an address space yet (either directly
608 * or via an alias); it cannot change while the #MemoryRegion is
609 * mapped into an address space.
611 * The #RamDiscardManager is intended to be used by technologies that are
612 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
613 * memory inside a #MemoryRegion), and require proper coordination to only
614 * map the currently populated parts, to hinder parts that are expected to
615 * remain discarded from silently getting populated and consuming memory.
616 * Technologies that support discarding of RAM don't have to bother and can
617 * simply map the whole #MemoryRegion.
619 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
620 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
621 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
622 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
623 * properly coordinate with listeners before memory is plugged (populated),
624 * and after memory is unplugged (discarded).
626 * Listeners are called in multiples of the minimum granularity (unless it
627 * would exceed the registered range) and changes are aligned to the minimum
628 * granularity within the #MemoryRegion. Listeners have to prepare for memory
629 * becoming discarded in a different granularity than it was populated and the
630 * other way around.
632 struct RamDiscardManagerClass {
633 /* private */
634 InterfaceClass parent_class;
636 /* public */
639 * @get_min_granularity:
641 * Get the minimum granularity in which listeners will get notified
642 * about changes within the #MemoryRegion via the #RamDiscardManager.
644 * @rdm: the #RamDiscardManager
645 * @mr: the #MemoryRegion
647 * Returns the minimum granularity.
649 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
650 const MemoryRegion *mr);
653 * @is_populated:
655 * Check whether the given #MemoryRegionSection is completely populated
656 * (i.e., no parts are currently discarded) via the #RamDiscardManager.
657 * There are no alignment requirements.
659 * @rdm: the #RamDiscardManager
660 * @section: the #MemoryRegionSection
662 * Returns whether the given range is completely populated.
664 bool (*is_populated)(const RamDiscardManager *rdm,
665 const MemoryRegionSection *section);
668 * @replay_populated:
670 * Call the #ReplayRamPopulate callback for all populated parts within the
671 * #MemoryRegionSection via the #RamDiscardManager.
673 * In case any call fails, no further calls are made.
675 * @rdm: the #RamDiscardManager
676 * @section: the #MemoryRegionSection
677 * @replay_fn: the #ReplayRamPopulate callback
678 * @opaque: pointer to forward to the callback
680 * Returns 0 on success, or a negative error if any notification failed.
682 int (*replay_populated)(const RamDiscardManager *rdm,
683 MemoryRegionSection *section,
684 ReplayRamPopulate replay_fn, void *opaque);
687 * @replay_discarded:
689 * Call the #ReplayRamDiscard callback for all discarded parts within the
690 * #MemoryRegionSection via the #RamDiscardManager.
692 * @rdm: the #RamDiscardManager
693 * @section: the #MemoryRegionSection
694 * @replay_fn: the #ReplayRamDiscard callback
695 * @opaque: pointer to forward to the callback
697 void (*replay_discarded)(const RamDiscardManager *rdm,
698 MemoryRegionSection *section,
699 ReplayRamDiscard replay_fn, void *opaque);
702 * @register_listener:
704 * Register a #RamDiscardListener for the given #MemoryRegionSection and
705 * immediately notify the #RamDiscardListener about all populated parts
706 * within the #MemoryRegionSection via the #RamDiscardManager.
708 * In case any notification fails, no further notifications are triggered
709 * and an error is logged.
711 * @rdm: the #RamDiscardManager
712 * @rdl: the #RamDiscardListener
713 * @section: the #MemoryRegionSection
715 void (*register_listener)(RamDiscardManager *rdm,
716 RamDiscardListener *rdl,
717 MemoryRegionSection *section);
720 * @unregister_listener:
722 * Unregister a previously registered #RamDiscardListener via the
723 * #RamDiscardManager after notifying the #RamDiscardListener about all
724 * populated parts becoming unpopulated within the registered
725 * #MemoryRegionSection.
727 * @rdm: the #RamDiscardManager
728 * @rdl: the #RamDiscardListener
730 void (*unregister_listener)(RamDiscardManager *rdm,
731 RamDiscardListener *rdl);
734 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
735 const MemoryRegion *mr);
737 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
738 const MemoryRegionSection *section);
740 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
741 MemoryRegionSection *section,
742 ReplayRamPopulate replay_fn,
743 void *opaque);
745 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
746 MemoryRegionSection *section,
747 ReplayRamDiscard replay_fn,
748 void *opaque);
750 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
751 RamDiscardListener *rdl,
752 MemoryRegionSection *section);
754 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
755 RamDiscardListener *rdl);
758 * memory_get_xlat_addr: Extract addresses from a TLB entry
760 * @iotlb: pointer to an #IOMMUTLBEntry
761 * @vaddr: virtual address
762 * @ram_addr: RAM address
763 * @read_only: indicates if writes are allowed
764 * @mr_has_discard_manager: indicates memory is controlled by a
765 * RamDiscardManager
766 * @errp: pointer to Error*, to store an error if it happens.
768 * Return: true on success, else false setting @errp with error.
770 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
771 ram_addr_t *ram_addr, bool *read_only,
772 bool *mr_has_discard_manager, Error **errp);
774 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
775 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
777 /** MemoryRegion:
779 * A struct representing a memory region.
781 struct MemoryRegion {
782 Object parent_obj;
784 /* private: */
786 /* The following fields should fit in a cache line */
787 bool romd_mode;
788 bool ram;
789 bool subpage;
790 bool readonly; /* For RAM regions */
791 bool nonvolatile;
792 bool rom_device;
793 bool flush_coalesced_mmio;
794 bool unmergeable;
795 uint8_t dirty_log_mask;
796 bool is_iommu;
797 RAMBlock *ram_block;
798 Object *owner;
799 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
800 DeviceState *dev;
802 const MemoryRegionOps *ops;
803 void *opaque;
804 MemoryRegion *container;
805 int mapped_via_alias; /* Mapped via an alias, container might be NULL */
806 Int128 size;
807 hwaddr addr;
808 void (*destructor)(MemoryRegion *mr);
809 uint64_t align;
810 bool terminates;
811 bool ram_device;
812 bool enabled;
813 bool warning_printed; /* For reservations */
814 uint8_t vga_logging_count;
815 MemoryRegion *alias;
816 hwaddr alias_offset;
817 int32_t priority;
818 QTAILQ_HEAD(, MemoryRegion) subregions;
819 QTAILQ_ENTRY(MemoryRegion) subregions_link;
820 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
821 const char *name;
822 unsigned ioeventfd_nb;
823 MemoryRegionIoeventfd *ioeventfds;
824 RamDiscardManager *rdm; /* Only for RAM */
826 /* For devices designed to perform re-entrant IO into their own IO MRs */
827 bool disable_reentrancy_guard;
830 struct IOMMUMemoryRegion {
831 MemoryRegion parent_obj;
833 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
834 IOMMUNotifierFlag iommu_notify_flags;
837 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
838 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
840 #define MEMORY_LISTENER_PRIORITY_MIN 0
841 #define MEMORY_LISTENER_PRIORITY_ACCEL 10
842 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10
845 * struct MemoryListener: callbacks structure for updates to the physical memory map
847 * Allows a component to adjust to changes in the guest-visible memory map.
848 * Use with memory_listener_register() and memory_listener_unregister().
850 struct MemoryListener {
852 * @begin:
854 * Called at the beginning of an address space update transaction.
855 * Followed by calls to #MemoryListener.region_add(),
856 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
857 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
858 * increasing address order.
860 * @listener: The #MemoryListener.
862 void (*begin)(MemoryListener *listener);
865 * @commit:
867 * Called at the end of an address space update transaction,
868 * after the last call to #MemoryListener.region_add(),
869 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
870 * #MemoryListener.log_start() and #MemoryListener.log_stop().
872 * @listener: The #MemoryListener.
874 void (*commit)(MemoryListener *listener);
877 * @region_add:
879 * Called during an address space update transaction,
880 * for a section of the address space that is new in this address space
881 * space since the last transaction.
883 * @listener: The #MemoryListener.
884 * @section: The new #MemoryRegionSection.
886 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
889 * @region_del:
891 * Called during an address space update transaction,
892 * for a section of the address space that has disappeared in the address
893 * space since the last transaction.
895 * @listener: The #MemoryListener.
896 * @section: The old #MemoryRegionSection.
898 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
901 * @region_nop:
903 * Called during an address space update transaction,
904 * for a section of the address space that is in the same place in the address
905 * space as in the last transaction.
907 * @listener: The #MemoryListener.
908 * @section: The #MemoryRegionSection.
910 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
913 * @log_start:
915 * Called during an address space update transaction, after
916 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
917 * #MemoryListener.region_nop(), if dirty memory logging clients have
918 * become active since the last transaction.
920 * @listener: The #MemoryListener.
921 * @section: The #MemoryRegionSection.
922 * @old: A bitmap of dirty memory logging clients that were active in
923 * the previous transaction.
924 * @new: A bitmap of dirty memory logging clients that are active in
925 * the current transaction.
927 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
928 int old_val, int new_val);
931 * @log_stop:
933 * Called during an address space update transaction, after
934 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
935 * #MemoryListener.region_nop() and possibly after
936 * #MemoryListener.log_start(), if dirty memory logging clients have
937 * become inactive since the last transaction.
939 * @listener: The #MemoryListener.
940 * @section: The #MemoryRegionSection.
941 * @old: A bitmap of dirty memory logging clients that were active in
942 * the previous transaction.
943 * @new: A bitmap of dirty memory logging clients that are active in
944 * the current transaction.
946 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
947 int old_val, int new_val);
950 * @log_sync:
952 * Called by memory_region_snapshot_and_clear_dirty() and
953 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
954 * copy of the dirty memory bitmap for a #MemoryRegionSection.
956 * @listener: The #MemoryListener.
957 * @section: The #MemoryRegionSection.
959 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
962 * @log_sync_global:
964 * This is the global version of @log_sync when the listener does
965 * not have a way to synchronize the log with finer granularity.
966 * When the listener registers with @log_sync_global defined, then
967 * its @log_sync must be NULL. Vice versa.
969 * @listener: The #MemoryListener.
970 * @last_stage: The last stage to synchronize the log during migration.
971 * The caller should guarantee that the synchronization with true for
972 * @last_stage is triggered for once after all VCPUs have been stopped.
974 void (*log_sync_global)(MemoryListener *listener, bool last_stage);
977 * @log_clear:
979 * Called before reading the dirty memory bitmap for a
980 * #MemoryRegionSection.
982 * @listener: The #MemoryListener.
983 * @section: The #MemoryRegionSection.
985 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
988 * @log_global_start:
990 * Called by memory_global_dirty_log_start(), which
991 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
992 * the address space. #MemoryListener.log_global_start() is also
993 * called when a #MemoryListener is added, if global dirty logging is
994 * active at that time.
996 * @listener: The #MemoryListener.
997 * @errp: pointer to Error*, to store an error if it happens.
999 * Return: true on success, else false setting @errp with error.
1001 bool (*log_global_start)(MemoryListener *listener, Error **errp);
1004 * @log_global_stop:
1006 * Called by memory_global_dirty_log_stop(), which
1007 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
1008 * the address space.
1010 * @listener: The #MemoryListener.
1012 void (*log_global_stop)(MemoryListener *listener);
1015 * @log_global_after_sync:
1017 * Called after reading the dirty memory bitmap
1018 * for any #MemoryRegionSection.
1020 * @listener: The #MemoryListener.
1022 void (*log_global_after_sync)(MemoryListener *listener);
1025 * @eventfd_add:
1027 * Called during an address space update transaction,
1028 * for a section of the address space that has had a new ioeventfd
1029 * registration since the last transaction.
1031 * @listener: The #MemoryListener.
1032 * @section: The new #MemoryRegionSection.
1033 * @match_data: The @match_data parameter for the new ioeventfd.
1034 * @data: The @data parameter for the new ioeventfd.
1035 * @e: The #EventNotifier parameter for the new ioeventfd.
1037 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1038 bool match_data, uint64_t data, EventNotifier *e);
1041 * @eventfd_del:
1043 * Called during an address space update transaction,
1044 * for a section of the address space that has dropped an ioeventfd
1045 * registration since the last transaction.
1047 * @listener: The #MemoryListener.
1048 * @section: The new #MemoryRegionSection.
1049 * @match_data: The @match_data parameter for the dropped ioeventfd.
1050 * @data: The @data parameter for the dropped ioeventfd.
1051 * @e: The #EventNotifier parameter for the dropped ioeventfd.
1053 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1054 bool match_data, uint64_t data, EventNotifier *e);
1057 * @coalesced_io_add:
1059 * Called during an address space update transaction,
1060 * for a section of the address space that has had a new coalesced
1061 * MMIO range registration since the last transaction.
1063 * @listener: The #MemoryListener.
1064 * @section: The new #MemoryRegionSection.
1065 * @addr: The starting address for the coalesced MMIO range.
1066 * @len: The length of the coalesced MMIO range.
1068 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1069 hwaddr addr, hwaddr len);
1072 * @coalesced_io_del:
1074 * Called during an address space update transaction,
1075 * for a section of the address space that has dropped a coalesced
1076 * MMIO range since the last transaction.
1078 * @listener: The #MemoryListener.
1079 * @section: The new #MemoryRegionSection.
1080 * @addr: The starting address for the coalesced MMIO range.
1081 * @len: The length of the coalesced MMIO range.
1083 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1084 hwaddr addr, hwaddr len);
1086 * @priority:
1088 * Govern the order in which memory listeners are invoked. Lower priorities
1089 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1090 * or "stop" callbacks.
1092 unsigned priority;
1095 * @name:
1097 * Name of the listener. It can be used in contexts where we'd like to
1098 * identify one memory listener with the rest.
1100 const char *name;
1102 /* private: */
1103 AddressSpace *address_space;
1104 QTAILQ_ENTRY(MemoryListener) link;
1105 QTAILQ_ENTRY(MemoryListener) link_as;
1108 typedef struct AddressSpaceMapClient {
1109 QEMUBH *bh;
1110 QLIST_ENTRY(AddressSpaceMapClient) link;
1111 } AddressSpaceMapClient;
1113 typedef struct {
1114 MemoryRegion *mr;
1115 void *buffer;
1116 hwaddr addr;
1117 hwaddr len;
1118 bool in_use;
1119 } BounceBuffer;
1122 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1124 struct AddressSpace {
1125 /* private: */
1126 struct rcu_head rcu;
1127 char *name;
1128 MemoryRegion *root;
1130 /* Accessed via RCU. */
1131 struct FlatView *current_map;
1133 int ioeventfd_nb;
1134 int ioeventfd_notifiers;
1135 struct MemoryRegionIoeventfd *ioeventfds;
1136 QTAILQ_HEAD(, MemoryListener) listeners;
1137 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1139 /* Bounce buffer to use for this address space. */
1140 BounceBuffer bounce;
1141 /* List of callbacks to invoke when buffers free up */
1142 QemuMutex map_client_list_lock;
1143 QLIST_HEAD(, AddressSpaceMapClient) map_client_list;
1146 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1147 typedef struct FlatRange FlatRange;
1149 /* Flattened global view of current active memory hierarchy. Kept in sorted
1150 * order.
1152 struct FlatView {
1153 struct rcu_head rcu;
1154 unsigned ref;
1155 FlatRange *ranges;
1156 unsigned nr;
1157 unsigned nr_allocated;
1158 struct AddressSpaceDispatch *dispatch;
1159 MemoryRegion *root;
1162 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1164 return qatomic_rcu_read(&as->current_map);
1168 * typedef flatview_cb: callback for flatview_for_each_range()
1170 * @start: start address of the range within the FlatView
1171 * @len: length of the range in bytes
1172 * @mr: MemoryRegion covering this range
1173 * @offset_in_region: offset of the first byte of the range within @mr
1174 * @opaque: data pointer passed to flatview_for_each_range()
1176 * Returns: true to stop the iteration, false to keep going.
1178 typedef bool (*flatview_cb)(Int128 start,
1179 Int128 len,
1180 const MemoryRegion *mr,
1181 hwaddr offset_in_region,
1182 void *opaque);
1185 * flatview_for_each_range: Iterate through a FlatView
1186 * @fv: the FlatView to iterate through
1187 * @cb: function to call for each range
1188 * @opaque: opaque data pointer to pass to @cb
1190 * A FlatView is made up of a list of non-overlapping ranges, each of
1191 * which is a slice of a MemoryRegion. This function iterates through
1192 * each range in @fv, calling @cb. The callback function can terminate
1193 * iteration early by returning 'true'.
1195 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1197 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1198 MemoryRegionSection *b)
1200 return a->mr == b->mr &&
1201 a->fv == b->fv &&
1202 a->offset_within_region == b->offset_within_region &&
1203 a->offset_within_address_space == b->offset_within_address_space &&
1204 int128_eq(a->size, b->size) &&
1205 a->readonly == b->readonly &&
1206 a->nonvolatile == b->nonvolatile;
1210 * memory_region_section_new_copy: Copy a memory region section
1212 * Allocate memory for a new copy, copy the memory region section, and
1213 * properly take a reference on all relevant members.
1215 * @s: the #MemoryRegionSection to copy
1217 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1220 * memory_region_section_new_copy: Free a copied memory region section
1222 * Free a copy of a memory section created via memory_region_section_new_copy().
1223 * properly dropping references on all relevant members.
1225 * @s: the #MemoryRegionSection to copy
1227 void memory_region_section_free_copy(MemoryRegionSection *s);
1230 * memory_region_init: Initialize a memory region
1232 * The region typically acts as a container for other memory regions. Use
1233 * memory_region_add_subregion() to add subregions.
1235 * @mr: the #MemoryRegion to be initialized
1236 * @owner: the object that tracks the region's reference count
1237 * @name: used for debugging; not visible to the user or ABI
1238 * @size: size of the region; any subregions beyond this size will be clipped
1240 void memory_region_init(MemoryRegion *mr,
1241 Object *owner,
1242 const char *name,
1243 uint64_t size);
1246 * memory_region_ref: Add 1 to a memory region's reference count
1248 * Whenever memory regions are accessed outside the BQL, they need to be
1249 * preserved against hot-unplug. MemoryRegions actually do not have their
1250 * own reference count; they piggyback on a QOM object, their "owner".
1251 * This function adds a reference to the owner.
1253 * All MemoryRegions must have an owner if they can disappear, even if the
1254 * device they belong to operates exclusively under the BQL. This is because
1255 * the region could be returned at any time by memory_region_find, and this
1256 * is usually under guest control.
1258 * @mr: the #MemoryRegion
1260 void memory_region_ref(MemoryRegion *mr);
1263 * memory_region_unref: Remove 1 to a memory region's reference count
1265 * Whenever memory regions are accessed outside the BQL, they need to be
1266 * preserved against hot-unplug. MemoryRegions actually do not have their
1267 * own reference count; they piggyback on a QOM object, their "owner".
1268 * This function removes a reference to the owner and possibly destroys it.
1270 * @mr: the #MemoryRegion
1272 void memory_region_unref(MemoryRegion *mr);
1275 * memory_region_init_io: Initialize an I/O memory region.
1277 * Accesses into the region will cause the callbacks in @ops to be called.
1278 * if @size is nonzero, subregions will be clipped to @size.
1280 * @mr: the #MemoryRegion to be initialized.
1281 * @owner: the object that tracks the region's reference count
1282 * @ops: a structure containing read and write callbacks to be used when
1283 * I/O is performed on the region.
1284 * @opaque: passed to the read and write callbacks of the @ops structure.
1285 * @name: used for debugging; not visible to the user or ABI
1286 * @size: size of the region.
1288 void memory_region_init_io(MemoryRegion *mr,
1289 Object *owner,
1290 const MemoryRegionOps *ops,
1291 void *opaque,
1292 const char *name,
1293 uint64_t size);
1296 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
1297 * into the region will modify memory
1298 * directly.
1300 * @mr: the #MemoryRegion to be initialized.
1301 * @owner: the object that tracks the region's reference count
1302 * @name: Region name, becomes part of RAMBlock name used in migration stream
1303 * must be unique within any device
1304 * @size: size of the region.
1305 * @errp: pointer to Error*, to store an error if it happens.
1307 * Note that this function does not do anything to cause the data in the
1308 * RAM memory region to be migrated; that is the responsibility of the caller.
1310 * Return: true on success, else false setting @errp with error.
1312 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1313 Object *owner,
1314 const char *name,
1315 uint64_t size,
1316 Error **errp);
1319 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region.
1320 * Accesses into the region will
1321 * modify memory directly.
1323 * @mr: the #MemoryRegion to be initialized.
1324 * @owner: the object that tracks the region's reference count
1325 * @name: Region name, becomes part of RAMBlock name used in migration stream
1326 * must be unique within any device
1327 * @size: size of the region.
1328 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE,
1329 * RAM_GUEST_MEMFD.
1330 * @errp: pointer to Error*, to store an error if it happens.
1332 * Note that this function does not do anything to cause the data in the
1333 * RAM memory region to be migrated; that is the responsibility of the caller.
1335 * Return: true on success, else false setting @errp with error.
1337 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1338 Object *owner,
1339 const char *name,
1340 uint64_t size,
1341 uint32_t ram_flags,
1342 Error **errp);
1345 * memory_region_init_resizeable_ram: Initialize memory region with resizable
1346 * RAM. Accesses into the region will
1347 * modify memory directly. Only an initial
1348 * portion of this RAM is actually used.
1349 * Changing the size while migrating
1350 * can result in the migration being
1351 * canceled.
1353 * @mr: the #MemoryRegion to be initialized.
1354 * @owner: the object that tracks the region's reference count
1355 * @name: Region name, becomes part of RAMBlock name used in migration stream
1356 * must be unique within any device
1357 * @size: used size of the region.
1358 * @max_size: max size of the region.
1359 * @resized: callback to notify owner about used size change.
1360 * @errp: pointer to Error*, to store an error if it happens.
1362 * Note that this function does not do anything to cause the data in the
1363 * RAM memory region to be migrated; that is the responsibility of the caller.
1365 * Return: true on success, else false setting @errp with error.
1367 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1368 Object *owner,
1369 const char *name,
1370 uint64_t size,
1371 uint64_t max_size,
1372 void (*resized)(const char*,
1373 uint64_t length,
1374 void *host),
1375 Error **errp);
1376 #ifdef CONFIG_POSIX
1379 * memory_region_init_ram_from_file: Initialize RAM memory region with a
1380 * mmap-ed backend.
1382 * @mr: the #MemoryRegion to be initialized.
1383 * @owner: the object that tracks the region's reference count
1384 * @name: Region name, becomes part of RAMBlock name used in migration stream
1385 * must be unique within any device
1386 * @size: size of the region.
1387 * @align: alignment of the region base address; if 0, the default alignment
1388 * (getpagesize()) will be used.
1389 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1390 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1391 * RAM_READONLY_FD, RAM_GUEST_MEMFD
1392 * @path: the path in which to allocate the RAM.
1393 * @offset: offset within the file referenced by path
1394 * @errp: pointer to Error*, to store an error if it happens.
1396 * Note that this function does not do anything to cause the data in the
1397 * RAM memory region to be migrated; that is the responsibility of the caller.
1399 * Return: true on success, else false setting @errp with error.
1401 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1402 Object *owner,
1403 const char *name,
1404 uint64_t size,
1405 uint64_t align,
1406 uint32_t ram_flags,
1407 const char *path,
1408 ram_addr_t offset,
1409 Error **errp);
1412 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
1413 * mmap-ed backend.
1415 * @mr: the #MemoryRegion to be initialized.
1416 * @owner: the object that tracks the region's reference count
1417 * @name: the name of the region.
1418 * @size: size of the region.
1419 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1420 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1421 * RAM_READONLY_FD, RAM_GUEST_MEMFD
1422 * @fd: the fd to mmap.
1423 * @offset: offset within the file referenced by fd
1424 * @errp: pointer to Error*, to store an error if it happens.
1426 * Note that this function does not do anything to cause the data in the
1427 * RAM memory region to be migrated; that is the responsibility of the caller.
1429 * Return: true on success, else false setting @errp with error.
1431 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1432 Object *owner,
1433 const char *name,
1434 uint64_t size,
1435 uint32_t ram_flags,
1436 int fd,
1437 ram_addr_t offset,
1438 Error **errp);
1439 #endif
1442 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1443 * user-provided pointer. Accesses into the
1444 * region will modify memory directly.
1446 * @mr: the #MemoryRegion to be initialized.
1447 * @owner: the object that tracks the region's reference count
1448 * @name: Region name, becomes part of RAMBlock name used in migration stream
1449 * must be unique within any device
1450 * @size: size of the region.
1451 * @ptr: memory to be mapped; must contain at least @size bytes.
1453 * Note that this function does not do anything to cause the data in the
1454 * RAM memory region to be migrated; that is the responsibility of the caller.
1456 void memory_region_init_ram_ptr(MemoryRegion *mr,
1457 Object *owner,
1458 const char *name,
1459 uint64_t size,
1460 void *ptr);
1463 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1464 * a user-provided pointer.
1466 * A RAM device represents a mapping to a physical device, such as to a PCI
1467 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1468 * into the VM address space and access to the region will modify memory
1469 * directly. However, the memory region should not be included in a memory
1470 * dump (device may not be enabled/mapped at the time of the dump), and
1471 * operations incompatible with manipulating MMIO should be avoided. Replaces
1472 * skip_dump flag.
1474 * @mr: the #MemoryRegion to be initialized.
1475 * @owner: the object that tracks the region's reference count
1476 * @name: the name of the region.
1477 * @size: size of the region.
1478 * @ptr: memory to be mapped; must contain at least @size bytes.
1480 * Note that this function does not do anything to cause the data in the
1481 * RAM memory region to be migrated; that is the responsibility of the caller.
1482 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1484 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1485 Object *owner,
1486 const char *name,
1487 uint64_t size,
1488 void *ptr);
1491 * memory_region_init_alias: Initialize a memory region that aliases all or a
1492 * part of another memory region.
1494 * @mr: the #MemoryRegion to be initialized.
1495 * @owner: the object that tracks the region's reference count
1496 * @name: used for debugging; not visible to the user or ABI
1497 * @orig: the region to be referenced; @mr will be equivalent to
1498 * @orig between @offset and @offset + @size - 1.
1499 * @offset: start of the section in @orig to be referenced.
1500 * @size: size of the region.
1502 void memory_region_init_alias(MemoryRegion *mr,
1503 Object *owner,
1504 const char *name,
1505 MemoryRegion *orig,
1506 hwaddr offset,
1507 uint64_t size);
1510 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1512 * This has the same effect as calling memory_region_init_ram_nomigrate()
1513 * and then marking the resulting region read-only with
1514 * memory_region_set_readonly().
1516 * Note that this function does not do anything to cause the data in the
1517 * RAM side of the memory region to be migrated; that is the responsibility
1518 * of the caller.
1520 * @mr: the #MemoryRegion to be initialized.
1521 * @owner: the object that tracks the region's reference count
1522 * @name: Region name, becomes part of RAMBlock name used in migration stream
1523 * must be unique within any device
1524 * @size: size of the region.
1525 * @errp: pointer to Error*, to store an error if it happens.
1527 * Return: true on success, else false setting @errp with error.
1529 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1530 Object *owner,
1531 const char *name,
1532 uint64_t size,
1533 Error **errp);
1536 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1537 * Writes are handled via callbacks.
1539 * Note that this function does not do anything to cause the data in the
1540 * RAM side of the memory region to be migrated; that is the responsibility
1541 * of the caller.
1543 * @mr: the #MemoryRegion to be initialized.
1544 * @owner: the object that tracks the region's reference count
1545 * @ops: callbacks for write access handling (must not be NULL).
1546 * @opaque: passed to the read and write callbacks of the @ops structure.
1547 * @name: Region name, becomes part of RAMBlock name used in migration stream
1548 * must be unique within any device
1549 * @size: size of the region.
1550 * @errp: pointer to Error*, to store an error if it happens.
1552 * Return: true on success, else false setting @errp with error.
1554 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1555 Object *owner,
1556 const MemoryRegionOps *ops,
1557 void *opaque,
1558 const char *name,
1559 uint64_t size,
1560 Error **errp);
1563 * memory_region_init_iommu: Initialize a memory region of a custom type
1564 * that translates addresses
1566 * An IOMMU region translates addresses and forwards accesses to a target
1567 * memory region.
1569 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1570 * @_iommu_mr should be a pointer to enough memory for an instance of
1571 * that subclass, @instance_size is the size of that subclass, and
1572 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1573 * instance of the subclass, and its methods will then be called to handle
1574 * accesses to the memory region. See the documentation of
1575 * #IOMMUMemoryRegionClass for further details.
1577 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1578 * @instance_size: the IOMMUMemoryRegion subclass instance size
1579 * @mrtypename: the type name of the #IOMMUMemoryRegion
1580 * @owner: the object that tracks the region's reference count
1581 * @name: used for debugging; not visible to the user or ABI
1582 * @size: size of the region.
1584 void memory_region_init_iommu(void *_iommu_mr,
1585 size_t instance_size,
1586 const char *mrtypename,
1587 Object *owner,
1588 const char *name,
1589 uint64_t size);
1592 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1593 * region will modify memory directly.
1595 * @mr: the #MemoryRegion to be initialized
1596 * @owner: the object that tracks the region's reference count (must be
1597 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1598 * @name: name of the memory region
1599 * @size: size of the region in bytes
1600 * @errp: pointer to Error*, to store an error if it happens.
1602 * This function allocates RAM for a board model or device, and
1603 * arranges for it to be migrated (by calling vmstate_register_ram()
1604 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1605 * @owner is NULL).
1607 * TODO: Currently we restrict @owner to being either NULL (for
1608 * global RAM regions with no owner) or devices, so that we can
1609 * give the RAM block a unique name for migration purposes.
1610 * We should lift this restriction and allow arbitrary Objects.
1611 * If you pass a non-NULL non-device @owner then we will assert.
1613 * Return: true on success, else false setting @errp with error.
1615 bool memory_region_init_ram(MemoryRegion *mr,
1616 Object *owner,
1617 const char *name,
1618 uint64_t size,
1619 Error **errp);
1621 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
1622 Object *owner,
1623 const char *name,
1624 uint64_t size,
1625 Error **errp);
1628 * memory_region_init_rom: Initialize a ROM memory region.
1630 * This has the same effect as calling memory_region_init_ram()
1631 * and then marking the resulting region read-only with
1632 * memory_region_set_readonly(). This includes arranging for the
1633 * contents to be migrated.
1635 * TODO: Currently we restrict @owner to being either NULL (for
1636 * global RAM regions with no owner) or devices, so that we can
1637 * give the RAM block a unique name for migration purposes.
1638 * We should lift this restriction and allow arbitrary Objects.
1639 * If you pass a non-NULL non-device @owner then we will assert.
1641 * @mr: the #MemoryRegion to be initialized.
1642 * @owner: the object that tracks the region's reference count
1643 * @name: Region name, becomes part of RAMBlock name used in migration stream
1644 * must be unique within any device
1645 * @size: size of the region.
1646 * @errp: pointer to Error*, to store an error if it happens.
1648 * Return: true on success, else false setting @errp with error.
1650 bool memory_region_init_rom(MemoryRegion *mr,
1651 Object *owner,
1652 const char *name,
1653 uint64_t size,
1654 Error **errp);
1657 * memory_region_init_rom_device: Initialize a ROM memory region.
1658 * Writes are handled via callbacks.
1660 * This function initializes a memory region backed by RAM for reads
1661 * and callbacks for writes, and arranges for the RAM backing to
1662 * be migrated (by calling vmstate_register_ram()
1663 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1664 * @owner is NULL).
1666 * TODO: Currently we restrict @owner to being either NULL (for
1667 * global RAM regions with no owner) or devices, so that we can
1668 * give the RAM block a unique name for migration purposes.
1669 * We should lift this restriction and allow arbitrary Objects.
1670 * If you pass a non-NULL non-device @owner then we will assert.
1672 * @mr: the #MemoryRegion to be initialized.
1673 * @owner: the object that tracks the region's reference count
1674 * @ops: callbacks for write access handling (must not be NULL).
1675 * @opaque: passed to the read and write callbacks of the @ops structure.
1676 * @name: Region name, becomes part of RAMBlock name used in migration stream
1677 * must be unique within any device
1678 * @size: size of the region.
1679 * @errp: pointer to Error*, to store an error if it happens.
1681 * Return: true on success, else false setting @errp with error.
1683 bool memory_region_init_rom_device(MemoryRegion *mr,
1684 Object *owner,
1685 const MemoryRegionOps *ops,
1686 void *opaque,
1687 const char *name,
1688 uint64_t size,
1689 Error **errp);
1693 * memory_region_owner: get a memory region's owner.
1695 * @mr: the memory region being queried.
1697 Object *memory_region_owner(MemoryRegion *mr);
1700 * memory_region_size: get a memory region's size.
1702 * @mr: the memory region being queried.
1704 uint64_t memory_region_size(MemoryRegion *mr);
1707 * memory_region_is_ram: check whether a memory region is random access
1709 * Returns %true if a memory region is random access.
1711 * @mr: the memory region being queried
1713 static inline bool memory_region_is_ram(MemoryRegion *mr)
1715 return mr->ram;
1719 * memory_region_is_ram_device: check whether a memory region is a ram device
1721 * Returns %true if a memory region is a device backed ram region
1723 * @mr: the memory region being queried
1725 bool memory_region_is_ram_device(MemoryRegion *mr);
1728 * memory_region_is_romd: check whether a memory region is in ROMD mode
1730 * Returns %true if a memory region is a ROM device and currently set to allow
1731 * direct reads.
1733 * @mr: the memory region being queried
1735 static inline bool memory_region_is_romd(MemoryRegion *mr)
1737 return mr->rom_device && mr->romd_mode;
1741 * memory_region_is_protected: check whether a memory region is protected
1743 * Returns %true if a memory region is protected RAM and cannot be accessed
1744 * via standard mechanisms, e.g. DMA.
1746 * @mr: the memory region being queried
1748 bool memory_region_is_protected(MemoryRegion *mr);
1751 * memory_region_has_guest_memfd: check whether a memory region has guest_memfd
1752 * associated
1754 * Returns %true if a memory region's ram_block has valid guest_memfd assigned.
1756 * @mr: the memory region being queried
1758 bool memory_region_has_guest_memfd(MemoryRegion *mr);
1761 * memory_region_get_iommu: check whether a memory region is an iommu
1763 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1764 * otherwise NULL.
1766 * @mr: the memory region being queried
1768 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1770 if (mr->alias) {
1771 return memory_region_get_iommu(mr->alias);
1773 if (mr->is_iommu) {
1774 return (IOMMUMemoryRegion *) mr;
1776 return NULL;
1780 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1781 * if an iommu or NULL if not
1783 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1784 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1786 * @iommu_mr: the memory region being queried
1788 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1789 IOMMUMemoryRegion *iommu_mr)
1791 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1794 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1797 * memory_region_iommu_get_min_page_size: get minimum supported page size
1798 * for an iommu
1800 * Returns minimum supported page size for an iommu.
1802 * @iommu_mr: the memory region being queried
1804 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1807 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1809 * Note: for any IOMMU implementation, an in-place mapping change
1810 * should be notified with an UNMAP followed by a MAP.
1812 * @iommu_mr: the memory region that was changed
1813 * @iommu_idx: the IOMMU index for the translation table which has changed
1814 * @event: TLB event with the new entry in the IOMMU translation table.
1815 * The entry replaces all old entries for the same virtual I/O address
1816 * range.
1818 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1819 int iommu_idx,
1820 const IOMMUTLBEvent event);
1823 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1824 * entry to a single notifier
1826 * This works just like memory_region_notify_iommu(), but it only
1827 * notifies a specific notifier, not all of them.
1829 * @notifier: the notifier to be notified
1830 * @event: TLB event with the new entry in the IOMMU translation table.
1831 * The entry replaces all old entries for the same virtual I/O address
1832 * range.
1834 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1835 const IOMMUTLBEvent *event);
1838 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1839 * translation that covers the
1840 * range of a notifier
1842 * @notifier: the notifier to be notified
1844 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1848 * memory_region_register_iommu_notifier: register a notifier for changes to
1849 * IOMMU translation entries.
1851 * Returns 0 on success, or a negative errno otherwise. In particular,
1852 * -EINVAL indicates that at least one of the attributes of the notifier
1853 * is not supported (flag/range) by the IOMMU memory region. In case of error
1854 * the error object must be created.
1856 * @mr: the memory region to observe
1857 * @n: the IOMMUNotifier to be added; the notify callback receives a
1858 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1859 * ceases to be valid on exit from the notifier.
1860 * @errp: pointer to Error*, to store an error if it happens.
1862 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1863 IOMMUNotifier *n, Error **errp);
1866 * memory_region_iommu_replay: replay existing IOMMU translations to
1867 * a notifier with the minimum page granularity returned by
1868 * mr->iommu_ops->get_page_size().
1870 * Note: this is not related to record-and-replay functionality.
1872 * @iommu_mr: the memory region to observe
1873 * @n: the notifier to which to replay iommu mappings
1875 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1878 * memory_region_unregister_iommu_notifier: unregister a notifier for
1879 * changes to IOMMU translation entries.
1881 * @mr: the memory region which was observed and for which notity_stopped()
1882 * needs to be called
1883 * @n: the notifier to be removed.
1885 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1886 IOMMUNotifier *n);
1889 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1890 * defined on the IOMMU.
1892 * Returns 0 on success, or a negative errno otherwise. In particular,
1893 * -EINVAL indicates that the IOMMU does not support the requested
1894 * attribute.
1896 * @iommu_mr: the memory region
1897 * @attr: the requested attribute
1898 * @data: a pointer to the requested attribute data
1900 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1901 enum IOMMUMemoryRegionAttr attr,
1902 void *data);
1905 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1906 * use for translations with the given memory transaction attributes.
1908 * @iommu_mr: the memory region
1909 * @attrs: the memory transaction attributes
1911 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1912 MemTxAttrs attrs);
1915 * memory_region_iommu_num_indexes: return the total number of IOMMU
1916 * indexes that this IOMMU supports.
1918 * @iommu_mr: the memory region
1920 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1923 * memory_region_iommu_set_page_size_mask: set the supported page
1924 * sizes for a given IOMMU memory region
1926 * @iommu_mr: IOMMU memory region
1927 * @page_size_mask: supported page size mask
1928 * @errp: pointer to Error*, to store an error if it happens.
1930 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1931 uint64_t page_size_mask,
1932 Error **errp);
1935 * memory_region_name: get a memory region's name
1937 * Returns the string that was used to initialize the memory region.
1939 * @mr: the memory region being queried
1941 const char *memory_region_name(const MemoryRegion *mr);
1944 * memory_region_is_logging: return whether a memory region is logging writes
1946 * Returns %true if the memory region is logging writes for the given client
1948 * @mr: the memory region being queried
1949 * @client: the client being queried
1951 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1954 * memory_region_get_dirty_log_mask: return the clients for which a
1955 * memory region is logging writes.
1957 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1958 * are the bit indices.
1960 * @mr: the memory region being queried
1962 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1965 * memory_region_is_rom: check whether a memory region is ROM
1967 * Returns %true if a memory region is read-only memory.
1969 * @mr: the memory region being queried
1971 static inline bool memory_region_is_rom(MemoryRegion *mr)
1973 return mr->ram && mr->readonly;
1977 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1979 * Returns %true is a memory region is non-volatile memory.
1981 * @mr: the memory region being queried
1983 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1985 return mr->nonvolatile;
1989 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1991 * Returns a file descriptor backing a file-based RAM memory region,
1992 * or -1 if the region is not a file-based RAM memory region.
1994 * @mr: the RAM or alias memory region being queried.
1996 int memory_region_get_fd(MemoryRegion *mr);
1999 * memory_region_from_host: Convert a pointer into a RAM memory region
2000 * and an offset within it.
2002 * Given a host pointer inside a RAM memory region (created with
2003 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
2004 * the MemoryRegion and the offset within it.
2006 * Use with care; by the time this function returns, the returned pointer is
2007 * not protected by RCU anymore. If the caller is not within an RCU critical
2008 * section and does not hold the BQL, it must have other means of
2009 * protecting the pointer, such as a reference to the region that includes
2010 * the incoming ram_addr_t.
2012 * @ptr: the host pointer to be converted
2013 * @offset: the offset within memory region
2015 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
2018 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
2020 * Returns a host pointer to a RAM memory region (created with
2021 * memory_region_init_ram() or memory_region_init_ram_ptr()).
2023 * Use with care; by the time this function returns, the returned pointer is
2024 * not protected by RCU anymore. If the caller is not within an RCU critical
2025 * section and does not hold the BQL, it must have other means of
2026 * protecting the pointer, such as a reference to the region that includes
2027 * the incoming ram_addr_t.
2029 * @mr: the memory region being queried.
2031 void *memory_region_get_ram_ptr(MemoryRegion *mr);
2033 /* memory_region_ram_resize: Resize a RAM region.
2035 * Resizing RAM while migrating can result in the migration being canceled.
2036 * Care has to be taken if the guest might have already detected the memory.
2038 * @mr: a memory region created with @memory_region_init_resizeable_ram.
2039 * @newsize: the new size the region
2040 * @errp: pointer to Error*, to store an error if it happens.
2042 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2043 Error **errp);
2046 * memory_region_msync: Synchronize selected address range of
2047 * a memory mapped region
2049 * @mr: the memory region to be msync
2050 * @addr: the initial address of the range to be sync
2051 * @size: the size of the range to be sync
2053 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2056 * memory_region_writeback: Trigger cache writeback for
2057 * selected address range
2059 * @mr: the memory region to be updated
2060 * @addr: the initial address of the range to be written back
2061 * @size: the size of the range to be written back
2063 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2066 * memory_region_set_log: Turn dirty logging on or off for a region.
2068 * Turns dirty logging on or off for a specified client (display, migration).
2069 * Only meaningful for RAM regions.
2071 * @mr: the memory region being updated.
2072 * @log: whether dirty logging is to be enabled or disabled.
2073 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2075 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2078 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2080 * Marks a range of bytes as dirty, after it has been dirtied outside
2081 * guest code.
2083 * @mr: the memory region being dirtied.
2084 * @addr: the address (relative to the start of the region) being dirtied.
2085 * @size: size of the range being dirtied.
2087 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2088 hwaddr size);
2091 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2093 * This function is called when the caller wants to clear the remote
2094 * dirty bitmap of a memory range within the memory region. This can
2095 * be used by e.g. KVM to manually clear dirty log when
2096 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2097 * kernel.
2099 * @mr: the memory region to clear the dirty log upon
2100 * @start: start address offset within the memory region
2101 * @len: length of the memory region to clear dirty bitmap
2103 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2104 hwaddr len);
2107 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2108 * bitmap and clear it.
2110 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2111 * returns the snapshot. The snapshot can then be used to query dirty
2112 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
2113 * querying the same page multiple times, which is especially useful for
2114 * display updates where the scanlines often are not page aligned.
2116 * The dirty bitmap region which gets copied into the snapshot (and
2117 * cleared afterwards) can be larger than requested. The boundaries
2118 * are rounded up/down so complete bitmap longs (covering 64 pages on
2119 * 64bit hosts) can be copied over into the bitmap snapshot. Which
2120 * isn't a problem for display updates as the extra pages are outside
2121 * the visible area, and in case the visible area changes a full
2122 * display redraw is due anyway. Should other use cases for this
2123 * function emerge we might have to revisit this implementation
2124 * detail.
2126 * Use g_free to release DirtyBitmapSnapshot.
2128 * @mr: the memory region being queried.
2129 * @addr: the address (relative to the start of the region) being queried.
2130 * @size: the size of the range being queried.
2131 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2133 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2134 hwaddr addr,
2135 hwaddr size,
2136 unsigned client);
2139 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2140 * in the specified dirty bitmap snapshot.
2142 * @mr: the memory region being queried.
2143 * @snap: the dirty bitmap snapshot
2144 * @addr: the address (relative to the start of the region) being queried.
2145 * @size: the size of the range being queried.
2147 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2148 DirtyBitmapSnapshot *snap,
2149 hwaddr addr, hwaddr size);
2152 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2153 * client.
2155 * Marks a range of pages as no longer dirty.
2157 * @mr: the region being updated.
2158 * @addr: the start of the subrange being cleaned.
2159 * @size: the size of the subrange being cleaned.
2160 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2161 * %DIRTY_MEMORY_VGA.
2163 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2164 hwaddr size, unsigned client);
2167 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2168 * TBs (for self-modifying code).
2170 * The MemoryRegionOps->write() callback of a ROM device must use this function
2171 * to mark byte ranges that have been modified internally, such as by directly
2172 * accessing the memory returned by memory_region_get_ram_ptr().
2174 * This function marks the range dirty and invalidates TBs so that TCG can
2175 * detect self-modifying code.
2177 * @mr: the region being flushed.
2178 * @addr: the start, relative to the start of the region, of the range being
2179 * flushed.
2180 * @size: the size, in bytes, of the range being flushed.
2182 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2185 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2187 * Allows a memory region to be marked as read-only (turning it into a ROM).
2188 * only useful on RAM regions.
2190 * @mr: the region being updated.
2191 * @readonly: whether rhe region is to be ROM or RAM.
2193 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2196 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2198 * Allows a memory region to be marked as non-volatile.
2199 * only useful on RAM regions.
2201 * @mr: the region being updated.
2202 * @nonvolatile: whether rhe region is to be non-volatile.
2204 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2207 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2209 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2210 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
2211 * device is mapped to guest memory and satisfies read access directly.
2212 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2213 * Writes are always handled by the #MemoryRegion.write function.
2215 * @mr: the memory region to be updated
2216 * @romd_mode: %true to put the region into ROMD mode
2218 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2221 * memory_region_set_coalescing: Enable memory coalescing for the region.
2223 * Enabled writes to a region to be queued for later processing. MMIO ->write
2224 * callbacks may be delayed until a non-coalesced MMIO is issued.
2225 * Only useful for IO regions. Roughly similar to write-combining hardware.
2227 * @mr: the memory region to be write coalesced
2229 void memory_region_set_coalescing(MemoryRegion *mr);
2232 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2233 * a region.
2235 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2236 * Multiple calls can be issued coalesced disjoint ranges.
2238 * @mr: the memory region to be updated.
2239 * @offset: the start of the range within the region to be coalesced.
2240 * @size: the size of the subrange to be coalesced.
2242 void memory_region_add_coalescing(MemoryRegion *mr,
2243 hwaddr offset,
2244 uint64_t size);
2247 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2249 * Disables any coalescing caused by memory_region_set_coalescing() or
2250 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
2251 * hardware.
2253 * @mr: the memory region to be updated.
2255 void memory_region_clear_coalescing(MemoryRegion *mr);
2258 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2259 * accesses.
2261 * Ensure that pending coalesced MMIO request are flushed before the memory
2262 * region is accessed. This property is automatically enabled for all regions
2263 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2265 * @mr: the memory region to be updated.
2267 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2270 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2271 * accesses.
2273 * Clear the automatic coalesced MMIO flushing enabled via
2274 * memory_region_set_flush_coalesced. Note that this service has no effect on
2275 * memory regions that have MMIO coalescing enabled for themselves. For them,
2276 * automatic flushing will stop once coalescing is disabled.
2278 * @mr: the memory region to be updated.
2280 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2283 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2284 * is written to a location.
2286 * Marks a word in an IO region (initialized with memory_region_init_io())
2287 * as a trigger for an eventfd event. The I/O callback will not be called.
2288 * The caller must be prepared to handle failure (that is, take the required
2289 * action if the callback _is_ called).
2291 * @mr: the memory region being updated.
2292 * @addr: the address within @mr that is to be monitored
2293 * @size: the size of the access to trigger the eventfd
2294 * @match_data: whether to match against @data, instead of just @addr
2295 * @data: the data to match against the guest write
2296 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2298 void memory_region_add_eventfd(MemoryRegion *mr,
2299 hwaddr addr,
2300 unsigned size,
2301 bool match_data,
2302 uint64_t data,
2303 EventNotifier *e);
2306 * memory_region_del_eventfd: Cancel an eventfd.
2308 * Cancels an eventfd trigger requested by a previous
2309 * memory_region_add_eventfd() call.
2311 * @mr: the memory region being updated.
2312 * @addr: the address within @mr that is to be monitored
2313 * @size: the size of the access to trigger the eventfd
2314 * @match_data: whether to match against @data, instead of just @addr
2315 * @data: the data to match against the guest write
2316 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2318 void memory_region_del_eventfd(MemoryRegion *mr,
2319 hwaddr addr,
2320 unsigned size,
2321 bool match_data,
2322 uint64_t data,
2323 EventNotifier *e);
2326 * memory_region_add_subregion: Add a subregion to a container.
2328 * Adds a subregion at @offset. The subregion may not overlap with other
2329 * subregions (except for those explicitly marked as overlapping). A region
2330 * may only be added once as a subregion (unless removed with
2331 * memory_region_del_subregion()); use memory_region_init_alias() if you
2332 * want a region to be a subregion in multiple locations.
2334 * @mr: the region to contain the new subregion; must be a container
2335 * initialized with memory_region_init().
2336 * @offset: the offset relative to @mr where @subregion is added.
2337 * @subregion: the subregion to be added.
2339 void memory_region_add_subregion(MemoryRegion *mr,
2340 hwaddr offset,
2341 MemoryRegion *subregion);
2343 * memory_region_add_subregion_overlap: Add a subregion to a container
2344 * with overlap.
2346 * Adds a subregion at @offset. The subregion may overlap with other
2347 * subregions. Conflicts are resolved by having a higher @priority hide a
2348 * lower @priority. Subregions without priority are taken as @priority 0.
2349 * A region may only be added once as a subregion (unless removed with
2350 * memory_region_del_subregion()); use memory_region_init_alias() if you
2351 * want a region to be a subregion in multiple locations.
2353 * @mr: the region to contain the new subregion; must be a container
2354 * initialized with memory_region_init().
2355 * @offset: the offset relative to @mr where @subregion is added.
2356 * @subregion: the subregion to be added.
2357 * @priority: used for resolving overlaps; highest priority wins.
2359 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2360 hwaddr offset,
2361 MemoryRegion *subregion,
2362 int priority);
2365 * memory_region_get_ram_addr: Get the ram address associated with a memory
2366 * region
2368 * @mr: the region to be queried
2370 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2372 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2374 * memory_region_del_subregion: Remove a subregion.
2376 * Removes a subregion from its container.
2378 * @mr: the container to be updated.
2379 * @subregion: the region being removed; must be a current subregion of @mr.
2381 void memory_region_del_subregion(MemoryRegion *mr,
2382 MemoryRegion *subregion);
2385 * memory_region_set_enabled: dynamically enable or disable a region
2387 * Enables or disables a memory region. A disabled memory region
2388 * ignores all accesses to itself and its subregions. It does not
2389 * obscure sibling subregions with lower priority - it simply behaves as
2390 * if it was removed from the hierarchy.
2392 * Regions default to being enabled.
2394 * @mr: the region to be updated
2395 * @enabled: whether to enable or disable the region
2397 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2400 * memory_region_set_address: dynamically update the address of a region
2402 * Dynamically updates the address of a region, relative to its container.
2403 * May be used on regions are currently part of a memory hierarchy.
2405 * @mr: the region to be updated
2406 * @addr: new address, relative to container region
2408 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2411 * memory_region_set_size: dynamically update the size of a region.
2413 * Dynamically updates the size of a region.
2415 * @mr: the region to be updated
2416 * @size: used size of the region.
2418 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2421 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2423 * Dynamically updates the offset into the target region that an alias points
2424 * to, as if the fourth argument to memory_region_init_alias() has changed.
2426 * @mr: the #MemoryRegion to be updated; should be an alias.
2427 * @offset: the new offset into the target memory region
2429 void memory_region_set_alias_offset(MemoryRegion *mr,
2430 hwaddr offset);
2433 * memory_region_set_unmergeable: Set a memory region unmergeable
2435 * Mark a memory region unmergeable, resulting in the memory region (or
2436 * everything contained in a memory region container) not getting merged when
2437 * simplifying the address space and notifying memory listeners. Consequently,
2438 * memory listeners will never get notified about ranges that are larger than
2439 * the original memory regions.
2441 * This is primarily useful when multiple aliases to a RAM memory region are
2442 * mapped into a memory region container, and updates (e.g., enable/disable or
2443 * map/unmap) of individual memory region aliases are not supposed to affect
2444 * other memory regions in the same container.
2446 * @mr: the #MemoryRegion to be updated
2447 * @unmergeable: whether to mark the #MemoryRegion unmergeable
2449 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2452 * memory_region_present: checks if an address relative to a @container
2453 * translates into #MemoryRegion within @container
2455 * Answer whether a #MemoryRegion within @container covers the address
2456 * @addr.
2458 * @container: a #MemoryRegion within which @addr is a relative address
2459 * @addr: the area within @container to be searched
2461 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2464 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2465 * into another memory region, which does not necessarily imply that it is
2466 * mapped into an address space.
2468 * @mr: a #MemoryRegion which should be checked if it's mapped
2470 bool memory_region_is_mapped(MemoryRegion *mr);
2473 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2474 * #MemoryRegion
2476 * The #RamDiscardManager cannot change while a memory region is mapped.
2478 * @mr: the #MemoryRegion
2480 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2483 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2484 * #RamDiscardManager assigned
2486 * @mr: the #MemoryRegion
2488 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2490 return !!memory_region_get_ram_discard_manager(mr);
2494 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2495 * #MemoryRegion
2497 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2498 * that does not cover RAM, or a #MemoryRegion that already has a
2499 * #RamDiscardManager assigned.
2501 * @mr: the #MemoryRegion
2502 * @rdm: #RamDiscardManager to set
2504 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2505 RamDiscardManager *rdm);
2508 * memory_region_find: translate an address/size relative to a
2509 * MemoryRegion into a #MemoryRegionSection.
2511 * Locates the first #MemoryRegion within @mr that overlaps the range
2512 * given by @addr and @size.
2514 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2515 * It will have the following characteristics:
2516 * - @size = 0 iff no overlap was found
2517 * - @mr is non-%NULL iff an overlap was found
2519 * Remember that in the return value the @offset_within_region is
2520 * relative to the returned region (in the .@mr field), not to the
2521 * @mr argument.
2523 * Similarly, the .@offset_within_address_space is relative to the
2524 * address space that contains both regions, the passed and the
2525 * returned one. However, in the special case where the @mr argument
2526 * has no container (and thus is the root of the address space), the
2527 * following will hold:
2528 * - @offset_within_address_space >= @addr
2529 * - @offset_within_address_space + .@size <= @addr + @size
2531 * @mr: a MemoryRegion within which @addr is a relative address
2532 * @addr: start of the area within @as to be searched
2533 * @size: size of the area to be searched
2535 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2536 hwaddr addr, uint64_t size);
2539 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2541 * Synchronizes the dirty page log for all address spaces.
2543 * @last_stage: whether this is the last stage of live migration
2545 void memory_global_dirty_log_sync(bool last_stage);
2548 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2550 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2551 * This function must be called after the dirty log bitmap is cleared, and
2552 * before dirty guest memory pages are read. If you are using
2553 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2554 * care of doing this.
2556 void memory_global_after_dirty_log_sync(void);
2559 * memory_region_transaction_begin: Start a transaction.
2561 * During a transaction, changes will be accumulated and made visible
2562 * only when the transaction ends (is committed).
2564 void memory_region_transaction_begin(void);
2567 * memory_region_transaction_commit: Commit a transaction and make changes
2568 * visible to the guest.
2570 void memory_region_transaction_commit(void);
2573 * memory_listener_register: register callbacks to be called when memory
2574 * sections are mapped or unmapped into an address
2575 * space
2577 * @listener: an object containing the callbacks to be called
2578 * @filter: if non-%NULL, only regions in this address space will be observed
2580 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2583 * memory_listener_unregister: undo the effect of memory_listener_register()
2585 * @listener: an object containing the callbacks to be removed
2587 void memory_listener_unregister(MemoryListener *listener);
2590 * memory_global_dirty_log_start: begin dirty logging for all regions
2592 * @flags: purpose of starting dirty log, migration or dirty rate
2593 * @errp: pointer to Error*, to store an error if it happens.
2595 * Return: true on success, else false setting @errp with error.
2597 bool memory_global_dirty_log_start(unsigned int flags, Error **errp);
2600 * memory_global_dirty_log_stop: end dirty logging for all regions
2602 * @flags: purpose of stopping dirty log, migration or dirty rate
2604 void memory_global_dirty_log_stop(unsigned int flags);
2606 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2608 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2609 unsigned size, bool is_write,
2610 MemTxAttrs attrs);
2613 * memory_region_dispatch_read: perform a read directly to the specified
2614 * MemoryRegion.
2616 * @mr: #MemoryRegion to access
2617 * @addr: address within that region
2618 * @pval: pointer to uint64_t which the data is written to
2619 * @op: size, sign, and endianness of the memory operation
2620 * @attrs: memory transaction attributes to use for the access
2622 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2623 hwaddr addr,
2624 uint64_t *pval,
2625 MemOp op,
2626 MemTxAttrs attrs);
2628 * memory_region_dispatch_write: perform a write directly to the specified
2629 * MemoryRegion.
2631 * @mr: #MemoryRegion to access
2632 * @addr: address within that region
2633 * @data: data to write
2634 * @op: size, sign, and endianness of the memory operation
2635 * @attrs: memory transaction attributes to use for the access
2637 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2638 hwaddr addr,
2639 uint64_t data,
2640 MemOp op,
2641 MemTxAttrs attrs);
2644 * address_space_init: initializes an address space
2646 * @as: an uninitialized #AddressSpace
2647 * @root: a #MemoryRegion that routes addresses for the address space
2648 * @name: an address space name. The name is only used for debugging
2649 * output.
2651 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2654 * address_space_destroy: destroy an address space
2656 * Releases all resources associated with an address space. After an address space
2657 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2658 * as well.
2660 * @as: address space to be destroyed
2662 void address_space_destroy(AddressSpace *as);
2665 * address_space_remove_listeners: unregister all listeners of an address space
2667 * Removes all callbacks previously registered with memory_listener_register()
2668 * for @as.
2670 * @as: an initialized #AddressSpace
2672 void address_space_remove_listeners(AddressSpace *as);
2675 * address_space_rw: read from or write to an address space.
2677 * Return a MemTxResult indicating whether the operation succeeded
2678 * or failed (eg unassigned memory, device rejected the transaction,
2679 * IOMMU fault).
2681 * @as: #AddressSpace to be accessed
2682 * @addr: address within that address space
2683 * @attrs: memory transaction attributes
2684 * @buf: buffer with the data transferred
2685 * @len: the number of bytes to read or write
2686 * @is_write: indicates the transfer direction
2688 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2689 MemTxAttrs attrs, void *buf,
2690 hwaddr len, bool is_write);
2693 * address_space_write: write to address space.
2695 * Return a MemTxResult indicating whether the operation succeeded
2696 * or failed (eg unassigned memory, device rejected the transaction,
2697 * IOMMU fault).
2699 * @as: #AddressSpace to be accessed
2700 * @addr: address within that address space
2701 * @attrs: memory transaction attributes
2702 * @buf: buffer with the data transferred
2703 * @len: the number of bytes to write
2705 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2706 MemTxAttrs attrs,
2707 const void *buf, hwaddr len);
2710 * address_space_write_rom: write to address space, including ROM.
2712 * This function writes to the specified address space, but will
2713 * write data to both ROM and RAM. This is used for non-guest
2714 * writes like writes from the gdb debug stub or initial loading
2715 * of ROM contents.
2717 * Note that portions of the write which attempt to write data to
2718 * a device will be silently ignored -- only real RAM and ROM will
2719 * be written to.
2721 * Return a MemTxResult indicating whether the operation succeeded
2722 * or failed (eg unassigned memory, device rejected the transaction,
2723 * IOMMU fault).
2725 * @as: #AddressSpace to be accessed
2726 * @addr: address within that address space
2727 * @attrs: memory transaction attributes
2728 * @buf: buffer with the data transferred
2729 * @len: the number of bytes to write
2731 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2732 MemTxAttrs attrs,
2733 const void *buf, hwaddr len);
2735 /* address_space_ld*: load from an address space
2736 * address_space_st*: store to an address space
2738 * These functions perform a load or store of the byte, word,
2739 * longword or quad to the specified address within the AddressSpace.
2740 * The _le suffixed functions treat the data as little endian;
2741 * _be indicates big endian; no suffix indicates "same endianness
2742 * as guest CPU".
2744 * The "guest CPU endianness" accessors are deprecated for use outside
2745 * target-* code; devices should be CPU-agnostic and use either the LE
2746 * or the BE accessors.
2748 * @as #AddressSpace to be accessed
2749 * @addr: address within that address space
2750 * @val: data value, for stores
2751 * @attrs: memory transaction attributes
2752 * @result: location to write the success/failure of the transaction;
2753 * if NULL, this information is discarded
2756 #define SUFFIX
2757 #define ARG1 as
2758 #define ARG1_DECL AddressSpace *as
2759 #include "exec/memory_ldst.h.inc"
2761 #define SUFFIX
2762 #define ARG1 as
2763 #define ARG1_DECL AddressSpace *as
2764 #include "exec/memory_ldst_phys.h.inc"
2766 struct MemoryRegionCache {
2767 uint8_t *ptr;
2768 hwaddr xlat;
2769 hwaddr len;
2770 FlatView *fv;
2771 MemoryRegionSection mrs;
2772 bool is_write;
2775 /* address_space_ld*_cached: load from a cached #MemoryRegion
2776 * address_space_st*_cached: store into a cached #MemoryRegion
2778 * These functions perform a load or store of the byte, word,
2779 * longword or quad to the specified address. The address is
2780 * a physical address in the AddressSpace, but it must lie within
2781 * a #MemoryRegion that was mapped with address_space_cache_init.
2783 * The _le suffixed functions treat the data as little endian;
2784 * _be indicates big endian; no suffix indicates "same endianness
2785 * as guest CPU".
2787 * The "guest CPU endianness" accessors are deprecated for use outside
2788 * target-* code; devices should be CPU-agnostic and use either the LE
2789 * or the BE accessors.
2791 * @cache: previously initialized #MemoryRegionCache to be accessed
2792 * @addr: address within the address space
2793 * @val: data value, for stores
2794 * @attrs: memory transaction attributes
2795 * @result: location to write the success/failure of the transaction;
2796 * if NULL, this information is discarded
2799 #define SUFFIX _cached_slow
2800 #define ARG1 cache
2801 #define ARG1_DECL MemoryRegionCache *cache
2802 #include "exec/memory_ldst.h.inc"
2804 /* Inline fast path for direct RAM access. */
2805 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2806 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2808 assert(addr < cache->len);
2809 if (likely(cache->ptr)) {
2810 return ldub_p(cache->ptr + addr);
2811 } else {
2812 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2816 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2817 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2819 assert(addr < cache->len);
2820 if (likely(cache->ptr)) {
2821 stb_p(cache->ptr + addr, val);
2822 } else {
2823 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2827 #define ENDIANNESS _le
2828 #include "exec/memory_ldst_cached.h.inc"
2830 #define ENDIANNESS _be
2831 #include "exec/memory_ldst_cached.h.inc"
2833 #define SUFFIX _cached
2834 #define ARG1 cache
2835 #define ARG1_DECL MemoryRegionCache *cache
2836 #include "exec/memory_ldst_phys.h.inc"
2838 /* address_space_cache_init: prepare for repeated access to a physical
2839 * memory region
2841 * @cache: #MemoryRegionCache to be filled
2842 * @as: #AddressSpace to be accessed
2843 * @addr: address within that address space
2844 * @len: length of buffer
2845 * @is_write: indicates the transfer direction
2847 * Will only work with RAM, and may map a subset of the requested range by
2848 * returning a value that is less than @len. On failure, return a negative
2849 * errno value.
2851 * Because it only works with RAM, this function can be used for
2852 * read-modify-write operations. In this case, is_write should be %true.
2854 * Note that addresses passed to the address_space_*_cached functions
2855 * are relative to @addr.
2857 int64_t address_space_cache_init(MemoryRegionCache *cache,
2858 AddressSpace *as,
2859 hwaddr addr,
2860 hwaddr len,
2861 bool is_write);
2864 * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2866 * @cache: The #MemoryRegionCache to operate on.
2868 * Initializes #MemoryRegionCache structure without memory region attached.
2869 * Cache initialized this way can only be safely destroyed, but not used.
2871 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2873 cache->mrs.mr = NULL;
2874 /* There is no real need to initialize fv, but it makes Coverity happy. */
2875 cache->fv = NULL;
2879 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2881 * @cache: The #MemoryRegionCache to operate on.
2882 * @addr: The first physical address that was written, relative to the
2883 * address that was passed to @address_space_cache_init.
2884 * @access_len: The number of bytes that were written starting at @addr.
2886 void address_space_cache_invalidate(MemoryRegionCache *cache,
2887 hwaddr addr,
2888 hwaddr access_len);
2891 * address_space_cache_destroy: free a #MemoryRegionCache
2893 * @cache: The #MemoryRegionCache whose memory should be released.
2895 void address_space_cache_destroy(MemoryRegionCache *cache);
2897 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2898 * entry. Should be called from an RCU critical section.
2900 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2901 bool is_write, MemTxAttrs attrs);
2903 /* address_space_translate: translate an address range into an address space
2904 * into a MemoryRegion and an address range into that section. Should be
2905 * called from an RCU critical section, to avoid that the last reference
2906 * to the returned region disappears after address_space_translate returns.
2908 * @fv: #FlatView to be accessed
2909 * @addr: address within that address space
2910 * @xlat: pointer to address within the returned memory region section's
2911 * #MemoryRegion.
2912 * @len: pointer to length
2913 * @is_write: indicates the transfer direction
2914 * @attrs: memory attributes
2916 MemoryRegion *flatview_translate(FlatView *fv,
2917 hwaddr addr, hwaddr *xlat,
2918 hwaddr *len, bool is_write,
2919 MemTxAttrs attrs);
2921 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2922 hwaddr addr, hwaddr *xlat,
2923 hwaddr *len, bool is_write,
2924 MemTxAttrs attrs)
2926 return flatview_translate(address_space_to_flatview(as),
2927 addr, xlat, len, is_write, attrs);
2930 /* address_space_access_valid: check for validity of accessing an address
2931 * space range
2933 * Check whether memory is assigned to the given address space range, and
2934 * access is permitted by any IOMMU regions that are active for the address
2935 * space.
2937 * For now, addr and len should be aligned to a page size. This limitation
2938 * will be lifted in the future.
2940 * @as: #AddressSpace to be accessed
2941 * @addr: address within that address space
2942 * @len: length of the area to be checked
2943 * @is_write: indicates the transfer direction
2944 * @attrs: memory attributes
2946 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2947 bool is_write, MemTxAttrs attrs);
2949 /* address_space_map: map a physical memory region into a host virtual address
2951 * May map a subset of the requested range, given by and returned in @plen.
2952 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2953 * the mapping are exhausted.
2954 * Use only for reads OR writes - not for read-modify-write operations.
2955 * Use address_space_register_map_client() to know when retrying the map
2956 * operation is likely to succeed.
2958 * @as: #AddressSpace to be accessed
2959 * @addr: address within that address space
2960 * @plen: pointer to length of buffer; updated on return
2961 * @is_write: indicates the transfer direction
2962 * @attrs: memory attributes
2964 void *address_space_map(AddressSpace *as, hwaddr addr,
2965 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2967 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2969 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2970 * the amount of memory that was actually read or written by the caller.
2972 * @as: #AddressSpace used
2973 * @buffer: host pointer as returned by address_space_map()
2974 * @len: buffer length as returned by address_space_map()
2975 * @access_len: amount of data actually transferred
2976 * @is_write: indicates the transfer direction
2978 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2979 bool is_write, hwaddr access_len);
2982 * address_space_register_map_client: Register a callback to invoke when
2983 * resources for address_space_map() are available again.
2985 * address_space_map may fail when there are not enough resources available,
2986 * such as when bounce buffer memory would exceed the limit. The callback can
2987 * be used to retry the address_space_map operation. Note that the callback
2988 * gets automatically removed after firing.
2990 * @as: #AddressSpace to be accessed
2991 * @bh: callback to invoke when address_space_map() retry is appropriate
2993 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh);
2996 * address_space_unregister_map_client: Unregister a callback that has
2997 * previously been registered and not fired yet.
2999 * @as: #AddressSpace to be accessed
3000 * @bh: callback to unregister
3002 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh);
3004 /* Internal functions, part of the implementation of address_space_read. */
3005 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3006 MemTxAttrs attrs, void *buf, hwaddr len);
3007 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3008 MemTxAttrs attrs, void *buf,
3009 hwaddr len, hwaddr addr1, hwaddr l,
3010 MemoryRegion *mr);
3011 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
3013 /* Internal functions, part of the implementation of address_space_read_cached
3014 * and address_space_write_cached. */
3015 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
3016 hwaddr addr, void *buf, hwaddr len);
3017 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
3018 hwaddr addr, const void *buf,
3019 hwaddr len);
3021 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
3022 bool prepare_mmio_access(MemoryRegion *mr);
3024 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
3026 if (is_write) {
3027 return memory_region_is_ram(mr) && !mr->readonly &&
3028 !mr->rom_device && !memory_region_is_ram_device(mr);
3029 } else {
3030 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
3031 memory_region_is_romd(mr);
3036 * address_space_read: read from an address space.
3038 * Return a MemTxResult indicating whether the operation succeeded
3039 * or failed (eg unassigned memory, device rejected the transaction,
3040 * IOMMU fault). Called within RCU critical section.
3042 * @as: #AddressSpace to be accessed
3043 * @addr: address within that address space
3044 * @attrs: memory transaction attributes
3045 * @buf: buffer with the data transferred
3046 * @len: length of the data transferred
3048 static inline __attribute__((__always_inline__))
3049 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
3050 MemTxAttrs attrs, void *buf,
3051 hwaddr len)
3053 MemTxResult result = MEMTX_OK;
3054 hwaddr l, addr1;
3055 void *ptr;
3056 MemoryRegion *mr;
3057 FlatView *fv;
3059 if (__builtin_constant_p(len)) {
3060 if (len) {
3061 RCU_READ_LOCK_GUARD();
3062 fv = address_space_to_flatview(as);
3063 l = len;
3064 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3065 if (len == l && memory_access_is_direct(mr, false)) {
3066 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3067 memcpy(buf, ptr, len);
3068 } else {
3069 result = flatview_read_continue(fv, addr, attrs, buf, len,
3070 addr1, l, mr);
3073 } else {
3074 result = address_space_read_full(as, addr, attrs, buf, len);
3076 return result;
3080 * address_space_read_cached: read from a cached RAM region
3082 * @cache: Cached region to be addressed
3083 * @addr: address relative to the base of the RAM region
3084 * @buf: buffer with the data transferred
3085 * @len: length of the data transferred
3087 static inline MemTxResult
3088 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3089 void *buf, hwaddr len)
3091 assert(addr < cache->len && len <= cache->len - addr);
3092 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3093 if (likely(cache->ptr)) {
3094 memcpy(buf, cache->ptr + addr, len);
3095 return MEMTX_OK;
3096 } else {
3097 return address_space_read_cached_slow(cache, addr, buf, len);
3102 * address_space_write_cached: write to a cached RAM region
3104 * @cache: Cached region to be addressed
3105 * @addr: address relative to the base of the RAM region
3106 * @buf: buffer with the data transferred
3107 * @len: length of the data transferred
3109 static inline MemTxResult
3110 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3111 const void *buf, hwaddr len)
3113 assert(addr < cache->len && len <= cache->len - addr);
3114 if (likely(cache->ptr)) {
3115 memcpy(cache->ptr + addr, buf, len);
3116 return MEMTX_OK;
3117 } else {
3118 return address_space_write_cached_slow(cache, addr, buf, len);
3123 * address_space_set: Fill address space with a constant byte.
3125 * Return a MemTxResult indicating whether the operation succeeded
3126 * or failed (eg unassigned memory, device rejected the transaction,
3127 * IOMMU fault).
3129 * @as: #AddressSpace to be accessed
3130 * @addr: address within that address space
3131 * @c: constant byte to fill the memory
3132 * @len: the number of bytes to fill with the constant byte
3133 * @attrs: memory transaction attributes
3135 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3136 uint8_t c, hwaddr len, MemTxAttrs attrs);
3138 #ifdef COMPILING_PER_TARGET
3139 /* enum device_endian to MemOp. */
3140 static inline MemOp devend_memop(enum device_endian end)
3142 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
3143 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
3145 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3146 /* Swap if non-host endianness or native (target) endianness */
3147 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3148 #else
3149 const int non_host_endianness =
3150 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3152 /* In this case, native (target) endianness needs no swap. */
3153 return (end == non_host_endianness) ? MO_BSWAP : 0;
3154 #endif
3156 #endif /* COMPILING_PER_TARGET */
3159 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3160 * to manage the actual amount of memory consumed by the VM (then, the memory
3161 * provided by RAM blocks might be bigger than the desired memory consumption).
3162 * This *must* be set if:
3163 * - Discarding parts of a RAM blocks does not result in the change being
3164 * reflected in the VM and the pages getting freed.
3165 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3166 * discards blindly.
3167 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3168 * encrypted VMs).
3169 * Technologies that only temporarily pin the current working set of a
3170 * driver are fine, because we don't expect such pages to be discarded
3171 * (esp. based on guest action like balloon inflation).
3173 * This is *not* to be used to protect from concurrent discards (esp.,
3174 * postcopy).
3176 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3177 * discards to work reliably is active.
3179 int ram_block_discard_disable(bool state);
3182 * See ram_block_discard_disable(): only disable uncoordinated discards,
3183 * keeping coordinated discards (via the RamDiscardManager) enabled.
3185 int ram_block_uncoordinated_discard_disable(bool state);
3188 * Inhibit technologies that disable discarding of pages in RAM blocks.
3190 * Returns 0 if successful. Returns -EBUSY if discards are already set to
3191 * broken.
3193 int ram_block_discard_require(bool state);
3196 * See ram_block_discard_require(): only inhibit technologies that disable
3197 * uncoordinated discarding of pages in RAM blocks, allowing co-existence with
3198 * technologies that only inhibit uncoordinated discards (via the
3199 * RamDiscardManager).
3201 int ram_block_coordinated_discard_require(bool state);
3204 * Test if any discarding of memory in ram blocks is disabled.
3206 bool ram_block_discard_is_disabled(void);
3209 * Test if any discarding of memory in ram blocks is required to work reliably.
3211 bool ram_block_discard_is_required(void);
3213 #endif
3215 #endif