target/riscv: Set the opcode in DisasContext
[qemu/kevin.git] / target / riscv / cpu_helper.c
blob10f3baba53392ae9e9f12bdc96030dcf2fc9a019
1 /*
2 * RISC-V CPU helpers for qemu.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27 #include "semihosting/common-semi.h"
29 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
31 #ifdef CONFIG_USER_ONLY
32 return 0;
33 #else
34 return env->priv;
35 #endif
38 static RISCVMXL cpu_get_xl(CPURISCVState *env)
40 #if defined(TARGET_RISCV32)
41 return MXL_RV32;
42 #elif defined(CONFIG_USER_ONLY)
43 return MXL_RV64;
44 #else
45 RISCVMXL xl = riscv_cpu_mxl(env);
48 * When emulating a 32-bit-only cpu, use RV32.
49 * When emulating a 64-bit cpu, and MXL has been reduced to RV32,
50 * MSTATUSH doesn't have UXL/SXL, therefore XLEN cannot be widened
51 * back to RV64 for lower privs.
53 if (xl != MXL_RV32) {
54 switch (env->priv) {
55 case PRV_M:
56 break;
57 case PRV_U:
58 xl = get_field(env->mstatus, MSTATUS64_UXL);
59 break;
60 default: /* PRV_S | PRV_H */
61 xl = get_field(env->mstatus, MSTATUS64_SXL);
62 break;
65 return xl;
66 #endif
69 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
70 target_ulong *cs_base, uint32_t *pflags)
72 uint32_t flags = 0;
74 *pc = env->pc;
75 *cs_base = 0;
77 if (riscv_has_ext(env, RVV)) {
79 * If env->vl equals to VLMAX, we can use generic vector operation
80 * expanders (GVEC) to accerlate the vector operations.
81 * However, as LMUL could be a fractional number. The maximum
82 * vector size can be operated might be less than 8 bytes,
83 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
84 * only when maxsz >= 8 bytes.
86 uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
87 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
88 uint32_t maxsz = vlmax << sew;
89 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
90 (maxsz >= 8);
91 flags = FIELD_DP32(flags, TB_FLAGS, VILL,
92 FIELD_EX64(env->vtype, VTYPE, VILL));
93 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
94 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
95 FIELD_EX64(env->vtype, VTYPE, VLMUL));
96 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
97 } else {
98 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
101 #ifdef CONFIG_USER_ONLY
102 flags |= TB_FLAGS_MSTATUS_FS;
103 flags |= TB_FLAGS_MSTATUS_VS;
104 #else
105 flags |= cpu_mmu_index(env, 0);
106 if (riscv_cpu_fp_enabled(env)) {
107 flags |= env->mstatus & MSTATUS_FS;
110 if (riscv_cpu_vector_enabled(env)) {
111 flags |= env->mstatus & MSTATUS_VS;
114 if (riscv_has_ext(env, RVH)) {
115 if (env->priv == PRV_M ||
116 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
117 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
118 get_field(env->hstatus, HSTATUS_HU))) {
119 flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
122 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
123 get_field(env->mstatus_hs, MSTATUS_FS));
125 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
126 get_field(env->mstatus_hs, MSTATUS_VS));
128 if (riscv_has_ext(env, RVJ)) {
129 int priv = flags & TB_FLAGS_PRIV_MMU_MASK;
130 bool pm_enabled = false;
131 switch (priv) {
132 case PRV_U:
133 pm_enabled = env->mmte & U_PM_ENABLE;
134 break;
135 case PRV_S:
136 pm_enabled = env->mmte & S_PM_ENABLE;
137 break;
138 case PRV_M:
139 pm_enabled = env->mmte & M_PM_ENABLE;
140 break;
141 default:
142 g_assert_not_reached();
144 flags = FIELD_DP32(flags, TB_FLAGS, PM_ENABLED, pm_enabled);
146 #endif
148 flags = FIELD_DP32(flags, TB_FLAGS, XL, cpu_get_xl(env));
150 *pflags = flags;
153 #ifndef CONFIG_USER_ONLY
154 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
156 target_ulong virt_enabled = riscv_cpu_virt_enabled(env);
158 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
159 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
161 target_ulong pending = env->mip & env->mie;
163 target_ulong mie = env->priv < PRV_M ||
164 (env->priv == PRV_M && mstatus_mie);
165 target_ulong sie = env->priv < PRV_S ||
166 (env->priv == PRV_S && mstatus_sie);
167 target_ulong hsie = virt_enabled || sie;
168 target_ulong vsie = virt_enabled && sie;
170 target_ulong irqs =
171 (pending & ~env->mideleg & -mie) |
172 (pending & env->mideleg & ~env->hideleg & -hsie) |
173 (pending & env->mideleg & env->hideleg & -vsie);
175 if (irqs) {
176 return ctz64(irqs); /* since non-zero */
177 } else {
178 return RISCV_EXCP_NONE; /* indicates no pending interrupt */
182 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
184 if (interrupt_request & CPU_INTERRUPT_HARD) {
185 RISCVCPU *cpu = RISCV_CPU(cs);
186 CPURISCVState *env = &cpu->env;
187 int interruptno = riscv_cpu_local_irq_pending(env);
188 if (interruptno >= 0) {
189 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
190 riscv_cpu_do_interrupt(cs);
191 return true;
194 return false;
197 /* Return true is floating point support is currently enabled */
198 bool riscv_cpu_fp_enabled(CPURISCVState *env)
200 if (env->mstatus & MSTATUS_FS) {
201 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
202 return false;
204 return true;
207 return false;
210 /* Return true is vector support is currently enabled */
211 bool riscv_cpu_vector_enabled(CPURISCVState *env)
213 if (env->mstatus & MSTATUS_VS) {
214 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
215 return false;
217 return true;
220 return false;
223 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
225 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
226 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
227 MSTATUS64_UXL | MSTATUS_VS;
228 bool current_virt = riscv_cpu_virt_enabled(env);
230 g_assert(riscv_has_ext(env, RVH));
232 if (current_virt) {
233 /* Current V=1 and we are about to change to V=0 */
234 env->vsstatus = env->mstatus & mstatus_mask;
235 env->mstatus &= ~mstatus_mask;
236 env->mstatus |= env->mstatus_hs;
238 env->vstvec = env->stvec;
239 env->stvec = env->stvec_hs;
241 env->vsscratch = env->sscratch;
242 env->sscratch = env->sscratch_hs;
244 env->vsepc = env->sepc;
245 env->sepc = env->sepc_hs;
247 env->vscause = env->scause;
248 env->scause = env->scause_hs;
250 env->vstval = env->stval;
251 env->stval = env->stval_hs;
253 env->vsatp = env->satp;
254 env->satp = env->satp_hs;
255 } else {
256 /* Current V=0 and we are about to change to V=1 */
257 env->mstatus_hs = env->mstatus & mstatus_mask;
258 env->mstatus &= ~mstatus_mask;
259 env->mstatus |= env->vsstatus;
261 env->stvec_hs = env->stvec;
262 env->stvec = env->vstvec;
264 env->sscratch_hs = env->sscratch;
265 env->sscratch = env->vsscratch;
267 env->sepc_hs = env->sepc;
268 env->sepc = env->vsepc;
270 env->scause_hs = env->scause;
271 env->scause = env->vscause;
273 env->stval_hs = env->stval;
274 env->stval = env->vstval;
276 env->satp_hs = env->satp;
277 env->satp = env->vsatp;
281 bool riscv_cpu_virt_enabled(CPURISCVState *env)
283 if (!riscv_has_ext(env, RVH)) {
284 return false;
287 return get_field(env->virt, VIRT_ONOFF);
290 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
292 if (!riscv_has_ext(env, RVH)) {
293 return;
296 /* Flush the TLB on all virt mode changes. */
297 if (get_field(env->virt, VIRT_ONOFF) != enable) {
298 tlb_flush(env_cpu(env));
301 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
304 bool riscv_cpu_two_stage_lookup(int mmu_idx)
306 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
309 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
311 CPURISCVState *env = &cpu->env;
312 if (env->miclaim & interrupts) {
313 return -1;
314 } else {
315 env->miclaim |= interrupts;
316 return 0;
320 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
322 CPURISCVState *env = &cpu->env;
323 CPUState *cs = CPU(cpu);
324 uint32_t old = env->mip;
325 bool locked = false;
327 if (!qemu_mutex_iothread_locked()) {
328 locked = true;
329 qemu_mutex_lock_iothread();
332 env->mip = (env->mip & ~mask) | (value & mask);
334 if (env->mip) {
335 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
336 } else {
337 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
340 if (locked) {
341 qemu_mutex_unlock_iothread();
344 return old;
347 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
348 uint32_t arg)
350 env->rdtime_fn = fn;
351 env->rdtime_fn_arg = arg;
354 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
356 if (newpriv > PRV_M) {
357 g_assert_not_reached();
359 if (newpriv == PRV_H) {
360 newpriv = PRV_U;
362 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
363 env->priv = newpriv;
366 * Clear the load reservation - otherwise a reservation placed in one
367 * context/process can be used by another, resulting in an SC succeeding
368 * incorrectly. Version 2.2 of the ISA specification explicitly requires
369 * this behaviour, while later revisions say that the kernel "should" use
370 * an SC instruction to force the yielding of a load reservation on a
371 * preemptive context switch. As a result, do both.
373 env->load_res = -1;
377 * get_physical_address_pmp - check PMP permission for this physical address
379 * Match the PMP region and check permission for this physical address and it's
380 * TLB page. Returns 0 if the permission checking was successful
382 * @env: CPURISCVState
383 * @prot: The returned protection attributes
384 * @tlb_size: TLB page size containing addr. It could be modified after PMP
385 * permission checking. NULL if not set TLB page for addr.
386 * @addr: The physical address to be checked permission
387 * @access_type: The type of MMU access
388 * @mode: Indicates current privilege level.
390 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
391 target_ulong *tlb_size, hwaddr addr,
392 int size, MMUAccessType access_type,
393 int mode)
395 pmp_priv_t pmp_priv;
396 target_ulong tlb_size_pmp = 0;
398 if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
399 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
400 return TRANSLATE_SUCCESS;
403 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
404 mode)) {
405 *prot = 0;
406 return TRANSLATE_PMP_FAIL;
409 *prot = pmp_priv_to_page_prot(pmp_priv);
410 if (tlb_size != NULL) {
411 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
412 *tlb_size = tlb_size_pmp;
416 return TRANSLATE_SUCCESS;
419 /* get_physical_address - get the physical address for this virtual address
421 * Do a page table walk to obtain the physical address corresponding to a
422 * virtual address. Returns 0 if the translation was successful
424 * Adapted from Spike's mmu_t::translate and mmu_t::walk
426 * @env: CPURISCVState
427 * @physical: This will be set to the calculated physical address
428 * @prot: The returned protection attributes
429 * @addr: The virtual address to be translated
430 * @fault_pte_addr: If not NULL, this will be set to fault pte address
431 * when a error occurs on pte address translation.
432 * This will already be shifted to match htval.
433 * @access_type: The type of MMU access
434 * @mmu_idx: Indicates current privilege level
435 * @first_stage: Are we in first stage translation?
436 * Second stage is used for hypervisor guest translation
437 * @two_stage: Are we going to perform two stage translation
438 * @is_debug: Is this access from a debugger or the monitor?
440 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
441 int *prot, target_ulong addr,
442 target_ulong *fault_pte_addr,
443 int access_type, int mmu_idx,
444 bool first_stage, bool two_stage,
445 bool is_debug)
447 /* NOTE: the env->pc value visible here will not be
448 * correct, but the value visible to the exception handler
449 * (riscv_cpu_do_interrupt) is correct */
450 MemTxResult res;
451 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
452 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
453 bool use_background = false;
456 * Check if we should use the background registers for the two
457 * stage translation. We don't need to check if we actually need
458 * two stage translation as that happened before this function
459 * was called. Background registers will be used if the guest has
460 * forced a two stage translation to be on (in HS or M mode).
462 if (!riscv_cpu_virt_enabled(env) && two_stage) {
463 use_background = true;
466 /* MPRV does not affect the virtual-machine load/store
467 instructions, HLV, HLVX, and HSV. */
468 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
469 mode = get_field(env->hstatus, HSTATUS_SPVP);
470 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
471 if (get_field(env->mstatus, MSTATUS_MPRV)) {
472 mode = get_field(env->mstatus, MSTATUS_MPP);
476 if (first_stage == false) {
477 /* We are in stage 2 translation, this is similar to stage 1. */
478 /* Stage 2 is always taken as U-mode */
479 mode = PRV_U;
482 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
483 *physical = addr;
484 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
485 return TRANSLATE_SUCCESS;
488 *prot = 0;
490 hwaddr base;
491 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
493 if (first_stage == true) {
494 mxr = get_field(env->mstatus, MSTATUS_MXR);
495 } else {
496 mxr = get_field(env->vsstatus, MSTATUS_MXR);
499 if (first_stage == true) {
500 if (use_background) {
501 if (riscv_cpu_mxl(env) == MXL_RV32) {
502 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
503 vm = get_field(env->vsatp, SATP32_MODE);
504 } else {
505 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
506 vm = get_field(env->vsatp, SATP64_MODE);
508 } else {
509 if (riscv_cpu_mxl(env) == MXL_RV32) {
510 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
511 vm = get_field(env->satp, SATP32_MODE);
512 } else {
513 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
514 vm = get_field(env->satp, SATP64_MODE);
517 widened = 0;
518 } else {
519 if (riscv_cpu_mxl(env) == MXL_RV32) {
520 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
521 vm = get_field(env->hgatp, SATP32_MODE);
522 } else {
523 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
524 vm = get_field(env->hgatp, SATP64_MODE);
526 widened = 2;
528 /* status.SUM will be ignored if execute on background */
529 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
530 switch (vm) {
531 case VM_1_10_SV32:
532 levels = 2; ptidxbits = 10; ptesize = 4; break;
533 case VM_1_10_SV39:
534 levels = 3; ptidxbits = 9; ptesize = 8; break;
535 case VM_1_10_SV48:
536 levels = 4; ptidxbits = 9; ptesize = 8; break;
537 case VM_1_10_SV57:
538 levels = 5; ptidxbits = 9; ptesize = 8; break;
539 case VM_1_10_MBARE:
540 *physical = addr;
541 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
542 return TRANSLATE_SUCCESS;
543 default:
544 g_assert_not_reached();
547 CPUState *cs = env_cpu(env);
548 int va_bits = PGSHIFT + levels * ptidxbits + widened;
549 target_ulong mask, masked_msbs;
551 if (TARGET_LONG_BITS > (va_bits - 1)) {
552 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
553 } else {
554 mask = 0;
556 masked_msbs = (addr >> (va_bits - 1)) & mask;
558 if (masked_msbs != 0 && masked_msbs != mask) {
559 return TRANSLATE_FAIL;
562 int ptshift = (levels - 1) * ptidxbits;
563 int i;
565 #if !TCG_OVERSIZED_GUEST
566 restart:
567 #endif
568 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
569 target_ulong idx;
570 if (i == 0) {
571 idx = (addr >> (PGSHIFT + ptshift)) &
572 ((1 << (ptidxbits + widened)) - 1);
573 } else {
574 idx = (addr >> (PGSHIFT + ptshift)) &
575 ((1 << ptidxbits) - 1);
578 /* check that physical address of PTE is legal */
579 hwaddr pte_addr;
581 if (two_stage && first_stage) {
582 int vbase_prot;
583 hwaddr vbase;
585 /* Do the second stage translation on the base PTE address. */
586 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
587 base, NULL, MMU_DATA_LOAD,
588 mmu_idx, false, true,
589 is_debug);
591 if (vbase_ret != TRANSLATE_SUCCESS) {
592 if (fault_pte_addr) {
593 *fault_pte_addr = (base + idx * ptesize) >> 2;
595 return TRANSLATE_G_STAGE_FAIL;
598 pte_addr = vbase + idx * ptesize;
599 } else {
600 pte_addr = base + idx * ptesize;
603 int pmp_prot;
604 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
605 sizeof(target_ulong),
606 MMU_DATA_LOAD, PRV_S);
607 if (pmp_ret != TRANSLATE_SUCCESS) {
608 return TRANSLATE_PMP_FAIL;
611 target_ulong pte;
612 if (riscv_cpu_mxl(env) == MXL_RV32) {
613 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
614 } else {
615 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
618 if (res != MEMTX_OK) {
619 return TRANSLATE_FAIL;
622 hwaddr ppn = pte >> PTE_PPN_SHIFT;
624 if (!(pte & PTE_V)) {
625 /* Invalid PTE */
626 return TRANSLATE_FAIL;
627 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
628 /* Inner PTE, continue walking */
629 base = ppn << PGSHIFT;
630 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
631 /* Reserved leaf PTE flags: PTE_W */
632 return TRANSLATE_FAIL;
633 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
634 /* Reserved leaf PTE flags: PTE_W + PTE_X */
635 return TRANSLATE_FAIL;
636 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
637 (!sum || access_type == MMU_INST_FETCH))) {
638 /* User PTE flags when not U mode and mstatus.SUM is not set,
639 or the access type is an instruction fetch */
640 return TRANSLATE_FAIL;
641 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
642 /* Supervisor PTE flags when not S mode */
643 return TRANSLATE_FAIL;
644 } else if (ppn & ((1ULL << ptshift) - 1)) {
645 /* Misaligned PPN */
646 return TRANSLATE_FAIL;
647 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
648 ((pte & PTE_X) && mxr))) {
649 /* Read access check failed */
650 return TRANSLATE_FAIL;
651 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
652 /* Write access check failed */
653 return TRANSLATE_FAIL;
654 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
655 /* Fetch access check failed */
656 return TRANSLATE_FAIL;
657 } else {
658 /* if necessary, set accessed and dirty bits. */
659 target_ulong updated_pte = pte | PTE_A |
660 (access_type == MMU_DATA_STORE ? PTE_D : 0);
662 /* Page table updates need to be atomic with MTTCG enabled */
663 if (updated_pte != pte) {
665 * - if accessed or dirty bits need updating, and the PTE is
666 * in RAM, then we do so atomically with a compare and swap.
667 * - if the PTE is in IO space or ROM, then it can't be updated
668 * and we return TRANSLATE_FAIL.
669 * - if the PTE changed by the time we went to update it, then
670 * it is no longer valid and we must re-walk the page table.
672 MemoryRegion *mr;
673 hwaddr l = sizeof(target_ulong), addr1;
674 mr = address_space_translate(cs->as, pte_addr,
675 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
676 if (memory_region_is_ram(mr)) {
677 target_ulong *pte_pa =
678 qemu_map_ram_ptr(mr->ram_block, addr1);
679 #if TCG_OVERSIZED_GUEST
680 /* MTTCG is not enabled on oversized TCG guests so
681 * page table updates do not need to be atomic */
682 *pte_pa = pte = updated_pte;
683 #else
684 target_ulong old_pte =
685 qatomic_cmpxchg(pte_pa, pte, updated_pte);
686 if (old_pte != pte) {
687 goto restart;
688 } else {
689 pte = updated_pte;
691 #endif
692 } else {
693 /* misconfigured PTE in ROM (AD bits are not preset) or
694 * PTE is in IO space and can't be updated atomically */
695 return TRANSLATE_FAIL;
699 /* for superpage mappings, make a fake leaf PTE for the TLB's
700 benefit. */
701 target_ulong vpn = addr >> PGSHIFT;
702 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
703 (addr & ~TARGET_PAGE_MASK);
705 /* set permissions on the TLB entry */
706 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
707 *prot |= PAGE_READ;
709 if ((pte & PTE_X)) {
710 *prot |= PAGE_EXEC;
712 /* add write permission on stores or if the page is already dirty,
713 so that we TLB miss on later writes to update the dirty bit */
714 if ((pte & PTE_W) &&
715 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
716 *prot |= PAGE_WRITE;
718 return TRANSLATE_SUCCESS;
721 return TRANSLATE_FAIL;
724 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
725 MMUAccessType access_type, bool pmp_violation,
726 bool first_stage, bool two_stage)
728 CPUState *cs = env_cpu(env);
729 int page_fault_exceptions, vm;
730 uint64_t stap_mode;
732 if (riscv_cpu_mxl(env) == MXL_RV32) {
733 stap_mode = SATP32_MODE;
734 } else {
735 stap_mode = SATP64_MODE;
738 if (first_stage) {
739 vm = get_field(env->satp, stap_mode);
740 } else {
741 vm = get_field(env->hgatp, stap_mode);
744 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
746 switch (access_type) {
747 case MMU_INST_FETCH:
748 if (riscv_cpu_virt_enabled(env) && !first_stage) {
749 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
750 } else {
751 cs->exception_index = page_fault_exceptions ?
752 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
754 break;
755 case MMU_DATA_LOAD:
756 if (two_stage && !first_stage) {
757 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
758 } else {
759 cs->exception_index = page_fault_exceptions ?
760 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
762 break;
763 case MMU_DATA_STORE:
764 if (two_stage && !first_stage) {
765 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
766 } else {
767 cs->exception_index = page_fault_exceptions ?
768 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
770 break;
771 default:
772 g_assert_not_reached();
774 env->badaddr = address;
775 env->two_stage_lookup = two_stage;
778 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
780 RISCVCPU *cpu = RISCV_CPU(cs);
781 CPURISCVState *env = &cpu->env;
782 hwaddr phys_addr;
783 int prot;
784 int mmu_idx = cpu_mmu_index(&cpu->env, false);
786 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
787 true, riscv_cpu_virt_enabled(env), true)) {
788 return -1;
791 if (riscv_cpu_virt_enabled(env)) {
792 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
793 0, mmu_idx, false, true, true)) {
794 return -1;
798 return phys_addr & TARGET_PAGE_MASK;
801 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
802 vaddr addr, unsigned size,
803 MMUAccessType access_type,
804 int mmu_idx, MemTxAttrs attrs,
805 MemTxResult response, uintptr_t retaddr)
807 RISCVCPU *cpu = RISCV_CPU(cs);
808 CPURISCVState *env = &cpu->env;
810 if (access_type == MMU_DATA_STORE) {
811 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
812 } else if (access_type == MMU_DATA_LOAD) {
813 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
814 } else {
815 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
818 env->badaddr = addr;
819 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
820 riscv_cpu_two_stage_lookup(mmu_idx);
821 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
824 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
825 MMUAccessType access_type, int mmu_idx,
826 uintptr_t retaddr)
828 RISCVCPU *cpu = RISCV_CPU(cs);
829 CPURISCVState *env = &cpu->env;
830 switch (access_type) {
831 case MMU_INST_FETCH:
832 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
833 break;
834 case MMU_DATA_LOAD:
835 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
836 break;
837 case MMU_DATA_STORE:
838 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
839 break;
840 default:
841 g_assert_not_reached();
843 env->badaddr = addr;
844 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
845 riscv_cpu_two_stage_lookup(mmu_idx);
846 riscv_raise_exception(env, cs->exception_index, retaddr);
849 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
850 MMUAccessType access_type, int mmu_idx,
851 bool probe, uintptr_t retaddr)
853 RISCVCPU *cpu = RISCV_CPU(cs);
854 CPURISCVState *env = &cpu->env;
855 vaddr im_address;
856 hwaddr pa = 0;
857 int prot, prot2, prot_pmp;
858 bool pmp_violation = false;
859 bool first_stage_error = true;
860 bool two_stage_lookup = false;
861 int ret = TRANSLATE_FAIL;
862 int mode = mmu_idx;
863 /* default TLB page size */
864 target_ulong tlb_size = TARGET_PAGE_SIZE;
866 env->guest_phys_fault_addr = 0;
868 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
869 __func__, address, access_type, mmu_idx);
871 /* MPRV does not affect the virtual-machine load/store
872 instructions, HLV, HLVX, and HSV. */
873 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
874 mode = get_field(env->hstatus, HSTATUS_SPVP);
875 } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
876 get_field(env->mstatus, MSTATUS_MPRV)) {
877 mode = get_field(env->mstatus, MSTATUS_MPP);
878 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
879 two_stage_lookup = true;
883 if (riscv_cpu_virt_enabled(env) ||
884 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
885 access_type != MMU_INST_FETCH)) {
886 /* Two stage lookup */
887 ret = get_physical_address(env, &pa, &prot, address,
888 &env->guest_phys_fault_addr, access_type,
889 mmu_idx, true, true, false);
892 * A G-stage exception may be triggered during two state lookup.
893 * And the env->guest_phys_fault_addr has already been set in
894 * get_physical_address().
896 if (ret == TRANSLATE_G_STAGE_FAIL) {
897 first_stage_error = false;
898 access_type = MMU_DATA_LOAD;
901 qemu_log_mask(CPU_LOG_MMU,
902 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
903 TARGET_FMT_plx " prot %d\n",
904 __func__, address, ret, pa, prot);
906 if (ret == TRANSLATE_SUCCESS) {
907 /* Second stage lookup */
908 im_address = pa;
910 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
911 access_type, mmu_idx, false, true,
912 false);
914 qemu_log_mask(CPU_LOG_MMU,
915 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
916 TARGET_FMT_plx " prot %d\n",
917 __func__, im_address, ret, pa, prot2);
919 prot &= prot2;
921 if (ret == TRANSLATE_SUCCESS) {
922 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
923 size, access_type, mode);
925 qemu_log_mask(CPU_LOG_MMU,
926 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
927 " %d tlb_size " TARGET_FMT_lu "\n",
928 __func__, pa, ret, prot_pmp, tlb_size);
930 prot &= prot_pmp;
933 if (ret != TRANSLATE_SUCCESS) {
935 * Guest physical address translation failed, this is a HS
936 * level exception
938 first_stage_error = false;
939 env->guest_phys_fault_addr = (im_address |
940 (address &
941 (TARGET_PAGE_SIZE - 1))) >> 2;
944 } else {
945 /* Single stage lookup */
946 ret = get_physical_address(env, &pa, &prot, address, NULL,
947 access_type, mmu_idx, true, false, false);
949 qemu_log_mask(CPU_LOG_MMU,
950 "%s address=%" VADDR_PRIx " ret %d physical "
951 TARGET_FMT_plx " prot %d\n",
952 __func__, address, ret, pa, prot);
954 if (ret == TRANSLATE_SUCCESS) {
955 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
956 size, access_type, mode);
958 qemu_log_mask(CPU_LOG_MMU,
959 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
960 " %d tlb_size " TARGET_FMT_lu "\n",
961 __func__, pa, ret, prot_pmp, tlb_size);
963 prot &= prot_pmp;
967 if (ret == TRANSLATE_PMP_FAIL) {
968 pmp_violation = true;
971 if (ret == TRANSLATE_SUCCESS) {
972 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
973 prot, mmu_idx, tlb_size);
974 return true;
975 } else if (probe) {
976 return false;
977 } else {
978 raise_mmu_exception(env, address, access_type, pmp_violation,
979 first_stage_error,
980 riscv_cpu_virt_enabled(env) ||
981 riscv_cpu_two_stage_lookup(mmu_idx));
982 riscv_raise_exception(env, cs->exception_index, retaddr);
985 return true;
987 #endif /* !CONFIG_USER_ONLY */
990 * Handle Traps
992 * Adapted from Spike's processor_t::take_trap.
995 void riscv_cpu_do_interrupt(CPUState *cs)
997 #if !defined(CONFIG_USER_ONLY)
999 RISCVCPU *cpu = RISCV_CPU(cs);
1000 CPURISCVState *env = &cpu->env;
1001 uint64_t s;
1003 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1004 * so we mask off the MSB and separate into trap type and cause.
1006 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1007 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1008 target_ulong deleg = async ? env->mideleg : env->medeleg;
1009 bool write_tval = false;
1010 target_ulong tval = 0;
1011 target_ulong htval = 0;
1012 target_ulong mtval2 = 0;
1014 if (cause == RISCV_EXCP_SEMIHOST) {
1015 if (env->priv >= PRV_S) {
1016 env->gpr[xA0] = do_common_semihosting(cs);
1017 env->pc += 4;
1018 return;
1020 cause = RISCV_EXCP_BREAKPOINT;
1023 if (!async) {
1024 /* set tval to badaddr for traps with address information */
1025 switch (cause) {
1026 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1027 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1028 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1029 case RISCV_EXCP_INST_ADDR_MIS:
1030 case RISCV_EXCP_INST_ACCESS_FAULT:
1031 case RISCV_EXCP_LOAD_ADDR_MIS:
1032 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1033 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1034 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1035 case RISCV_EXCP_INST_PAGE_FAULT:
1036 case RISCV_EXCP_LOAD_PAGE_FAULT:
1037 case RISCV_EXCP_STORE_PAGE_FAULT:
1038 write_tval = true;
1039 tval = env->badaddr;
1040 break;
1041 default:
1042 break;
1044 /* ecall is dispatched as one cause so translate based on mode */
1045 if (cause == RISCV_EXCP_U_ECALL) {
1046 assert(env->priv <= 3);
1048 if (env->priv == PRV_M) {
1049 cause = RISCV_EXCP_M_ECALL;
1050 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1051 cause = RISCV_EXCP_VS_ECALL;
1052 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1053 cause = RISCV_EXCP_S_ECALL;
1054 } else if (env->priv == PRV_U) {
1055 cause = RISCV_EXCP_U_ECALL;
1060 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1061 riscv_cpu_get_trap_name(cause, async));
1063 qemu_log_mask(CPU_LOG_INT,
1064 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1065 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1066 __func__, env->mhartid, async, cause, env->pc, tval,
1067 riscv_cpu_get_trap_name(cause, async));
1069 if (env->priv <= PRV_S &&
1070 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1071 /* handle the trap in S-mode */
1072 if (riscv_has_ext(env, RVH)) {
1073 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
1075 if (env->two_stage_lookup && write_tval) {
1077 * If we are writing a guest virtual address to stval, set
1078 * this to 1. If we are trapping to VS we will set this to 0
1079 * later.
1081 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
1082 } else {
1083 /* For other HS-mode traps, we set this to 0. */
1084 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
1087 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
1088 /* Trap to VS mode */
1090 * See if we need to adjust cause. Yes if its VS mode interrupt
1091 * no if hypervisor has delegated one of hs mode's interrupt
1093 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1094 cause == IRQ_VS_EXT) {
1095 cause = cause - 1;
1097 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
1098 } else if (riscv_cpu_virt_enabled(env)) {
1099 /* Trap into HS mode, from virt */
1100 riscv_cpu_swap_hypervisor_regs(env);
1101 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1102 env->priv);
1103 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1104 riscv_cpu_virt_enabled(env));
1106 htval = env->guest_phys_fault_addr;
1108 riscv_cpu_set_virt_enabled(env, 0);
1109 } else {
1110 /* Trap into HS mode */
1111 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1112 htval = env->guest_phys_fault_addr;
1116 s = env->mstatus;
1117 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1118 s = set_field(s, MSTATUS_SPP, env->priv);
1119 s = set_field(s, MSTATUS_SIE, 0);
1120 env->mstatus = s;
1121 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1122 env->sepc = env->pc;
1123 env->stval = tval;
1124 env->htval = htval;
1125 env->pc = (env->stvec >> 2 << 2) +
1126 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1127 riscv_cpu_set_mode(env, PRV_S);
1128 } else {
1129 /* handle the trap in M-mode */
1130 if (riscv_has_ext(env, RVH)) {
1131 if (riscv_cpu_virt_enabled(env)) {
1132 riscv_cpu_swap_hypervisor_regs(env);
1134 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1135 riscv_cpu_virt_enabled(env));
1136 if (riscv_cpu_virt_enabled(env) && tval) {
1137 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1140 mtval2 = env->guest_phys_fault_addr;
1142 /* Trapping to M mode, virt is disabled */
1143 riscv_cpu_set_virt_enabled(env, 0);
1146 s = env->mstatus;
1147 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1148 s = set_field(s, MSTATUS_MPP, env->priv);
1149 s = set_field(s, MSTATUS_MIE, 0);
1150 env->mstatus = s;
1151 env->mcause = cause | ~(((target_ulong)-1) >> async);
1152 env->mepc = env->pc;
1153 env->mtval = tval;
1154 env->mtval2 = mtval2;
1155 env->pc = (env->mtvec >> 2 << 2) +
1156 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1157 riscv_cpu_set_mode(env, PRV_M);
1160 /* NOTE: it is not necessary to yield load reservations here. It is only
1161 * necessary for an SC from "another hart" to cause a load reservation
1162 * to be yielded. Refer to the memory consistency model section of the
1163 * RISC-V ISA Specification.
1166 env->two_stage_lookup = false;
1167 #endif
1168 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */