Merge tag 'pull-request-2024-06-12' of https://gitlab.com/thuth/qemu into staging
[qemu/kevin.git] / target / riscv / cpu_helper.c
blob6709622dd3abf77e4c7d0bcd11b8cfc25e68f780
1 /*
2 * RISC-V CPU helpers for qemu.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "exec/page-protection.h"
28 #include "instmap.h"
29 #include "tcg/tcg-op.h"
30 #include "trace.h"
31 #include "semihosting/common-semi.h"
32 #include "sysemu/cpu-timers.h"
33 #include "cpu_bits.h"
34 #include "debug.h"
35 #include "tcg/oversized-guest.h"
37 int riscv_env_mmu_index(CPURISCVState *env, bool ifetch)
39 #ifdef CONFIG_USER_ONLY
40 return 0;
41 #else
42 bool virt = env->virt_enabled;
43 int mode = env->priv;
45 /* All priv -> mmu_idx mapping are here */
46 if (!ifetch) {
47 uint64_t status = env->mstatus;
49 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
50 mode = get_field(env->mstatus, MSTATUS_MPP);
51 virt = get_field(env->mstatus, MSTATUS_MPV) &&
52 (mode != PRV_M);
53 if (virt) {
54 status = env->vsstatus;
57 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
58 mode = MMUIdx_S_SUM;
62 return mode | (virt ? MMU_2STAGE_BIT : 0);
63 #endif
66 void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc,
67 uint64_t *cs_base, uint32_t *pflags)
69 RISCVCPU *cpu = env_archcpu(env);
70 RISCVExtStatus fs, vs;
71 uint32_t flags = 0;
73 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
74 *cs_base = 0;
76 if (cpu->cfg.ext_zve32x) {
78 * If env->vl equals to VLMAX, we can use generic vector operation
79 * expanders (GVEC) to accerlate the vector operations.
80 * However, as LMUL could be a fractional number. The maximum
81 * vector size can be operated might be less than 8 bytes,
82 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
83 * only when maxsz >= 8 bytes.
86 /* lmul encoded as in DisasContext::lmul */
87 int8_t lmul = sextract32(FIELD_EX64(env->vtype, VTYPE, VLMUL), 0, 3);
88 uint32_t vsew = FIELD_EX64(env->vtype, VTYPE, VSEW);
89 uint32_t vlmax = vext_get_vlmax(cpu->cfg.vlenb, vsew, lmul);
90 uint32_t maxsz = vlmax << vsew;
91 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
92 (maxsz >= 8);
93 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
94 flags = FIELD_DP32(flags, TB_FLAGS, SEW, vsew);
95 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
96 FIELD_EX64(env->vtype, VTYPE, VLMUL));
97 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
98 flags = FIELD_DP32(flags, TB_FLAGS, VTA,
99 FIELD_EX64(env->vtype, VTYPE, VTA));
100 flags = FIELD_DP32(flags, TB_FLAGS, VMA,
101 FIELD_EX64(env->vtype, VTYPE, VMA));
102 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
103 } else {
104 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
107 #ifdef CONFIG_USER_ONLY
108 fs = EXT_STATUS_DIRTY;
109 vs = EXT_STATUS_DIRTY;
110 #else
111 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
113 flags |= riscv_env_mmu_index(env, 0);
114 fs = get_field(env->mstatus, MSTATUS_FS);
115 vs = get_field(env->mstatus, MSTATUS_VS);
117 if (env->virt_enabled) {
118 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
120 * Merge DISABLED and !DIRTY states using MIN.
121 * We will set both fields when dirtying.
123 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
124 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
127 /* With Zfinx, floating point is enabled/disabled by Smstateen. */
128 if (!riscv_has_ext(env, RVF)) {
129 fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE)
130 ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED;
133 if (cpu->cfg.debug && !icount_enabled()) {
134 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
136 #endif
138 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
139 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
140 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
141 flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env));
142 if (env->cur_pmmask != 0) {
143 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
145 if (env->cur_pmbase != 0) {
146 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
149 *pflags = flags;
152 void riscv_cpu_update_mask(CPURISCVState *env)
154 target_ulong mask = 0, base = 0;
155 RISCVMXL xl = env->xl;
157 * TODO: Current RVJ spec does not specify
158 * how the extension interacts with XLEN.
160 #ifndef CONFIG_USER_ONLY
161 int mode = cpu_address_mode(env);
162 xl = cpu_get_xl(env, mode);
163 if (riscv_has_ext(env, RVJ)) {
164 switch (mode) {
165 case PRV_M:
166 if (env->mmte & M_PM_ENABLE) {
167 mask = env->mpmmask;
168 base = env->mpmbase;
170 break;
171 case PRV_S:
172 if (env->mmte & S_PM_ENABLE) {
173 mask = env->spmmask;
174 base = env->spmbase;
176 break;
177 case PRV_U:
178 if (env->mmte & U_PM_ENABLE) {
179 mask = env->upmmask;
180 base = env->upmbase;
182 break;
183 default:
184 g_assert_not_reached();
187 #endif
188 if (xl == MXL_RV32) {
189 env->cur_pmmask = mask & UINT32_MAX;
190 env->cur_pmbase = base & UINT32_MAX;
191 } else {
192 env->cur_pmmask = mask;
193 env->cur_pmbase = base;
197 #ifndef CONFIG_USER_ONLY
200 * The HS-mode is allowed to configure priority only for the
201 * following VS-mode local interrupts:
203 * 0 (Reserved interrupt, reads as zero)
204 * 1 Supervisor software interrupt
205 * 4 (Reserved interrupt, reads as zero)
206 * 5 Supervisor timer interrupt
207 * 8 (Reserved interrupt, reads as zero)
208 * 13 (Reserved interrupt)
209 * 14 "
210 * 15 "
211 * 16 "
212 * 17 "
213 * 18 "
214 * 19 "
215 * 20 "
216 * 21 "
217 * 22 "
218 * 23 "
221 static const int hviprio_index2irq[] = {
222 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
223 static const int hviprio_index2rdzero[] = {
224 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
226 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
228 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
229 return -EINVAL;
232 if (out_irq) {
233 *out_irq = hviprio_index2irq[index];
236 if (out_rdzero) {
237 *out_rdzero = hviprio_index2rdzero[index];
240 return 0;
244 * Default priorities of local interrupts are defined in the
245 * RISC-V Advanced Interrupt Architecture specification.
247 * ----------------------------------------------------------------
248 * Default |
249 * Priority | Major Interrupt Numbers
250 * ----------------------------------------------------------------
251 * Highest | 47, 23, 46, 45, 22, 44,
252 * | 43, 21, 42, 41, 20, 40
254 * | 11 (0b), 3 (03), 7 (07)
255 * | 9 (09), 1 (01), 5 (05)
256 * | 12 (0c)
257 * | 10 (0a), 2 (02), 6 (06)
259 * | 39, 19, 38, 37, 18, 36,
260 * Lowest | 35, 17, 34, 33, 16, 32
261 * ----------------------------------------------------------------
263 static const uint8_t default_iprio[64] = {
264 /* Custom interrupts 48 to 63 */
265 [63] = IPRIO_MMAXIPRIO,
266 [62] = IPRIO_MMAXIPRIO,
267 [61] = IPRIO_MMAXIPRIO,
268 [60] = IPRIO_MMAXIPRIO,
269 [59] = IPRIO_MMAXIPRIO,
270 [58] = IPRIO_MMAXIPRIO,
271 [57] = IPRIO_MMAXIPRIO,
272 [56] = IPRIO_MMAXIPRIO,
273 [55] = IPRIO_MMAXIPRIO,
274 [54] = IPRIO_MMAXIPRIO,
275 [53] = IPRIO_MMAXIPRIO,
276 [52] = IPRIO_MMAXIPRIO,
277 [51] = IPRIO_MMAXIPRIO,
278 [50] = IPRIO_MMAXIPRIO,
279 [49] = IPRIO_MMAXIPRIO,
280 [48] = IPRIO_MMAXIPRIO,
282 /* Custom interrupts 24 to 31 */
283 [31] = IPRIO_MMAXIPRIO,
284 [30] = IPRIO_MMAXIPRIO,
285 [29] = IPRIO_MMAXIPRIO,
286 [28] = IPRIO_MMAXIPRIO,
287 [27] = IPRIO_MMAXIPRIO,
288 [26] = IPRIO_MMAXIPRIO,
289 [25] = IPRIO_MMAXIPRIO,
290 [24] = IPRIO_MMAXIPRIO,
292 [47] = IPRIO_DEFAULT_UPPER,
293 [23] = IPRIO_DEFAULT_UPPER + 1,
294 [46] = IPRIO_DEFAULT_UPPER + 2,
295 [45] = IPRIO_DEFAULT_UPPER + 3,
296 [22] = IPRIO_DEFAULT_UPPER + 4,
297 [44] = IPRIO_DEFAULT_UPPER + 5,
299 [43] = IPRIO_DEFAULT_UPPER + 6,
300 [21] = IPRIO_DEFAULT_UPPER + 7,
301 [42] = IPRIO_DEFAULT_UPPER + 8,
302 [41] = IPRIO_DEFAULT_UPPER + 9,
303 [20] = IPRIO_DEFAULT_UPPER + 10,
304 [40] = IPRIO_DEFAULT_UPPER + 11,
306 [11] = IPRIO_DEFAULT_M,
307 [3] = IPRIO_DEFAULT_M + 1,
308 [7] = IPRIO_DEFAULT_M + 2,
310 [9] = IPRIO_DEFAULT_S,
311 [1] = IPRIO_DEFAULT_S + 1,
312 [5] = IPRIO_DEFAULT_S + 2,
314 [12] = IPRIO_DEFAULT_SGEXT,
316 [10] = IPRIO_DEFAULT_VS,
317 [2] = IPRIO_DEFAULT_VS + 1,
318 [6] = IPRIO_DEFAULT_VS + 2,
320 [39] = IPRIO_DEFAULT_LOWER,
321 [19] = IPRIO_DEFAULT_LOWER + 1,
322 [38] = IPRIO_DEFAULT_LOWER + 2,
323 [37] = IPRIO_DEFAULT_LOWER + 3,
324 [18] = IPRIO_DEFAULT_LOWER + 4,
325 [36] = IPRIO_DEFAULT_LOWER + 5,
327 [35] = IPRIO_DEFAULT_LOWER + 6,
328 [17] = IPRIO_DEFAULT_LOWER + 7,
329 [34] = IPRIO_DEFAULT_LOWER + 8,
330 [33] = IPRIO_DEFAULT_LOWER + 9,
331 [16] = IPRIO_DEFAULT_LOWER + 10,
332 [32] = IPRIO_DEFAULT_LOWER + 11,
335 uint8_t riscv_cpu_default_priority(int irq)
337 if (irq < 0 || irq > 63) {
338 return IPRIO_MMAXIPRIO;
341 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
344 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
345 int extirq, unsigned int extirq_def_prio,
346 uint64_t pending, uint8_t *iprio)
348 int irq, best_irq = RISCV_EXCP_NONE;
349 unsigned int prio, best_prio = UINT_MAX;
351 if (!pending) {
352 return RISCV_EXCP_NONE;
355 irq = ctz64(pending);
356 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
357 riscv_cpu_cfg(env)->ext_ssaia)) {
358 return irq;
361 pending = pending >> irq;
362 while (pending) {
363 prio = iprio[irq];
364 if (!prio) {
365 if (irq == extirq) {
366 prio = extirq_def_prio;
367 } else {
368 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
369 1 : IPRIO_MMAXIPRIO;
372 if ((pending & 0x1) && (prio <= best_prio)) {
373 best_irq = irq;
374 best_prio = prio;
376 irq++;
377 pending = pending >> 1;
380 return best_irq;
384 * Doesn't report interrupts inserted using mvip from M-mode firmware or
385 * using hvip bits 13:63 from HS-mode. Those are returned in
386 * riscv_cpu_sirq_pending() and riscv_cpu_vsirq_pending().
388 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
390 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
391 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
392 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
394 return (env->mip | vsgein | vstip) & env->mie;
397 int riscv_cpu_mirq_pending(CPURISCVState *env)
399 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
400 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
402 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
403 irqs, env->miprio);
406 int riscv_cpu_sirq_pending(CPURISCVState *env)
408 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
409 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
410 uint64_t irqs_f = env->mvip & env->mvien & ~env->mideleg & env->sie;
412 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
413 irqs | irqs_f, env->siprio);
416 int riscv_cpu_vsirq_pending(CPURISCVState *env)
418 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & env->hideleg;
419 uint64_t irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie;
420 uint64_t vsbits;
422 /* Bring VS-level bits to correct position */
423 vsbits = irqs & VS_MODE_INTERRUPTS;
424 irqs &= ~VS_MODE_INTERRUPTS;
425 irqs |= vsbits >> 1;
427 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
428 (irqs | irqs_f_vs), env->hviprio);
431 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
433 uint64_t irqs, pending, mie, hsie, vsie, irqs_f, irqs_f_vs;
434 uint64_t vsbits, irq_delegated;
435 int virq;
437 /* Determine interrupt enable state of all privilege modes */
438 if (env->virt_enabled) {
439 mie = 1;
440 hsie = 1;
441 vsie = (env->priv < PRV_S) ||
442 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
443 } else {
444 mie = (env->priv < PRV_M) ||
445 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
446 hsie = (env->priv < PRV_S) ||
447 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
448 vsie = 0;
451 /* Determine all pending interrupts */
452 pending = riscv_cpu_all_pending(env);
454 /* Check M-mode interrupts */
455 irqs = pending & ~env->mideleg & -mie;
456 if (irqs) {
457 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
458 irqs, env->miprio);
461 /* Check for virtual S-mode interrupts. */
462 irqs_f = env->mvip & (env->mvien & ~env->mideleg) & env->sie;
464 /* Check HS-mode interrupts */
465 irqs = ((pending & env->mideleg & ~env->hideleg) | irqs_f) & -hsie;
466 if (irqs) {
467 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
468 irqs, env->siprio);
471 /* Check for virtual VS-mode interrupts. */
472 irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie;
474 /* Check VS-mode interrupts */
475 irq_delegated = pending & env->mideleg & env->hideleg;
477 /* Bring VS-level bits to correct position */
478 vsbits = irq_delegated & VS_MODE_INTERRUPTS;
479 irq_delegated &= ~VS_MODE_INTERRUPTS;
480 irq_delegated |= vsbits >> 1;
482 irqs = (irq_delegated | irqs_f_vs) & -vsie;
483 if (irqs) {
484 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
485 irqs, env->hviprio);
486 if (virq <= 0 || (virq > 12 && virq <= 63)) {
487 return virq;
488 } else {
489 return virq + 1;
493 /* Indicate no pending interrupt */
494 return RISCV_EXCP_NONE;
497 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
499 if (interrupt_request & CPU_INTERRUPT_HARD) {
500 RISCVCPU *cpu = RISCV_CPU(cs);
501 CPURISCVState *env = &cpu->env;
502 int interruptno = riscv_cpu_local_irq_pending(env);
503 if (interruptno >= 0) {
504 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
505 riscv_cpu_do_interrupt(cs);
506 return true;
509 return false;
512 /* Return true is floating point support is currently enabled */
513 bool riscv_cpu_fp_enabled(CPURISCVState *env)
515 if (env->mstatus & MSTATUS_FS) {
516 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
517 return false;
519 return true;
522 return false;
525 /* Return true is vector support is currently enabled */
526 bool riscv_cpu_vector_enabled(CPURISCVState *env)
528 if (env->mstatus & MSTATUS_VS) {
529 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
530 return false;
532 return true;
535 return false;
538 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
540 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
541 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
542 MSTATUS64_UXL | MSTATUS_VS;
544 if (riscv_has_ext(env, RVF)) {
545 mstatus_mask |= MSTATUS_FS;
547 bool current_virt = env->virt_enabled;
549 g_assert(riscv_has_ext(env, RVH));
551 if (current_virt) {
552 /* Current V=1 and we are about to change to V=0 */
553 env->vsstatus = env->mstatus & mstatus_mask;
554 env->mstatus &= ~mstatus_mask;
555 env->mstatus |= env->mstatus_hs;
557 env->vstvec = env->stvec;
558 env->stvec = env->stvec_hs;
560 env->vsscratch = env->sscratch;
561 env->sscratch = env->sscratch_hs;
563 env->vsepc = env->sepc;
564 env->sepc = env->sepc_hs;
566 env->vscause = env->scause;
567 env->scause = env->scause_hs;
569 env->vstval = env->stval;
570 env->stval = env->stval_hs;
572 env->vsatp = env->satp;
573 env->satp = env->satp_hs;
574 } else {
575 /* Current V=0 and we are about to change to V=1 */
576 env->mstatus_hs = env->mstatus & mstatus_mask;
577 env->mstatus &= ~mstatus_mask;
578 env->mstatus |= env->vsstatus;
580 env->stvec_hs = env->stvec;
581 env->stvec = env->vstvec;
583 env->sscratch_hs = env->sscratch;
584 env->sscratch = env->vsscratch;
586 env->sepc_hs = env->sepc;
587 env->sepc = env->vsepc;
589 env->scause_hs = env->scause;
590 env->scause = env->vscause;
592 env->stval_hs = env->stval;
593 env->stval = env->vstval;
595 env->satp_hs = env->satp;
596 env->satp = env->vsatp;
600 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
602 if (!riscv_has_ext(env, RVH)) {
603 return 0;
606 return env->geilen;
609 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
611 if (!riscv_has_ext(env, RVH)) {
612 return;
615 if (geilen > (TARGET_LONG_BITS - 1)) {
616 return;
619 env->geilen = geilen;
622 /* This function can only be called to set virt when RVH is enabled */
623 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
625 /* Flush the TLB on all virt mode changes. */
626 if (env->virt_enabled != enable) {
627 tlb_flush(env_cpu(env));
630 env->virt_enabled = enable;
632 if (enable) {
634 * The guest external interrupts from an interrupt controller are
635 * delivered only when the Guest/VM is running (i.e. V=1). This means
636 * any guest external interrupt which is triggered while the Guest/VM
637 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
638 * with sluggish response to serial console input and other I/O events.
640 * To solve this, we check and inject interrupt after setting V=1.
642 riscv_cpu_update_mip(env, 0, 0);
646 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
648 CPURISCVState *env = &cpu->env;
649 if (env->miclaim & interrupts) {
650 return -1;
651 } else {
652 env->miclaim |= interrupts;
653 return 0;
657 void riscv_cpu_interrupt(CPURISCVState *env)
659 uint64_t gein, vsgein = 0, vstip = 0, irqf = 0;
660 CPUState *cs = env_cpu(env);
662 BQL_LOCK_GUARD();
664 if (env->virt_enabled) {
665 gein = get_field(env->hstatus, HSTATUS_VGEIN);
666 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
667 irqf = env->hvien & env->hvip & env->vsie;
668 } else {
669 irqf = env->mvien & env->mvip & env->sie;
672 vstip = env->vstime_irq ? MIP_VSTIP : 0;
674 if (env->mip | vsgein | vstip | irqf) {
675 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
676 } else {
677 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
681 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, uint64_t value)
683 uint64_t old = env->mip;
685 /* No need to update mip for VSTIP */
686 mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask;
688 BQL_LOCK_GUARD();
690 env->mip = (env->mip & ~mask) | (value & mask);
692 riscv_cpu_interrupt(env);
694 return old;
697 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
698 void *arg)
700 env->rdtime_fn = fn;
701 env->rdtime_fn_arg = arg;
704 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
705 int (*rmw_fn)(void *arg,
706 target_ulong reg,
707 target_ulong *val,
708 target_ulong new_val,
709 target_ulong write_mask),
710 void *rmw_fn_arg)
712 if (priv <= PRV_M) {
713 env->aia_ireg_rmw_fn[priv] = rmw_fn;
714 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
718 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
720 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
722 if (icount_enabled() && newpriv != env->priv) {
723 riscv_itrigger_update_priv(env);
725 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
726 env->priv = newpriv;
727 env->xl = cpu_recompute_xl(env);
728 riscv_cpu_update_mask(env);
731 * Clear the load reservation - otherwise a reservation placed in one
732 * context/process can be used by another, resulting in an SC succeeding
733 * incorrectly. Version 2.2 of the ISA specification explicitly requires
734 * this behaviour, while later revisions say that the kernel "should" use
735 * an SC instruction to force the yielding of a load reservation on a
736 * preemptive context switch. As a result, do both.
738 env->load_res = -1;
742 * get_physical_address_pmp - check PMP permission for this physical address
744 * Match the PMP region and check permission for this physical address and it's
745 * TLB page. Returns 0 if the permission checking was successful
747 * @env: CPURISCVState
748 * @prot: The returned protection attributes
749 * @addr: The physical address to be checked permission
750 * @access_type: The type of MMU access
751 * @mode: Indicates current privilege level.
753 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr,
754 int size, MMUAccessType access_type,
755 int mode)
757 pmp_priv_t pmp_priv;
758 bool pmp_has_privs;
760 if (!riscv_cpu_cfg(env)->pmp) {
761 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
762 return TRANSLATE_SUCCESS;
765 pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type,
766 &pmp_priv, mode);
767 if (!pmp_has_privs) {
768 *prot = 0;
769 return TRANSLATE_PMP_FAIL;
772 *prot = pmp_priv_to_page_prot(pmp_priv);
774 return TRANSLATE_SUCCESS;
778 * get_physical_address - get the physical address for this virtual address
780 * Do a page table walk to obtain the physical address corresponding to a
781 * virtual address. Returns 0 if the translation was successful
783 * Adapted from Spike's mmu_t::translate and mmu_t::walk
785 * @env: CPURISCVState
786 * @physical: This will be set to the calculated physical address
787 * @prot: The returned protection attributes
788 * @addr: The virtual address or guest physical address to be translated
789 * @fault_pte_addr: If not NULL, this will be set to fault pte address
790 * when a error occurs on pte address translation.
791 * This will already be shifted to match htval.
792 * @access_type: The type of MMU access
793 * @mmu_idx: Indicates current privilege level
794 * @first_stage: Are we in first stage translation?
795 * Second stage is used for hypervisor guest translation
796 * @two_stage: Are we going to perform two stage translation
797 * @is_debug: Is this access from a debugger or the monitor?
799 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
800 int *ret_prot, vaddr addr,
801 target_ulong *fault_pte_addr,
802 int access_type, int mmu_idx,
803 bool first_stage, bool two_stage,
804 bool is_debug)
807 * NOTE: the env->pc value visible here will not be
808 * correct, but the value visible to the exception handler
809 * (riscv_cpu_do_interrupt) is correct
811 MemTxResult res;
812 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
813 int mode = mmuidx_priv(mmu_idx);
814 bool use_background = false;
815 hwaddr ppn;
816 int napot_bits = 0;
817 target_ulong napot_mask;
820 * Check if we should use the background registers for the two
821 * stage translation. We don't need to check if we actually need
822 * two stage translation as that happened before this function
823 * was called. Background registers will be used if the guest has
824 * forced a two stage translation to be on (in HS or M mode).
826 if (!env->virt_enabled && two_stage) {
827 use_background = true;
830 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
831 *physical = addr;
832 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
833 return TRANSLATE_SUCCESS;
836 *ret_prot = 0;
838 hwaddr base;
839 int levels, ptidxbits, ptesize, vm, widened;
841 if (first_stage == true) {
842 if (use_background) {
843 if (riscv_cpu_mxl(env) == MXL_RV32) {
844 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
845 vm = get_field(env->vsatp, SATP32_MODE);
846 } else {
847 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
848 vm = get_field(env->vsatp, SATP64_MODE);
850 } else {
851 if (riscv_cpu_mxl(env) == MXL_RV32) {
852 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
853 vm = get_field(env->satp, SATP32_MODE);
854 } else {
855 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
856 vm = get_field(env->satp, SATP64_MODE);
859 widened = 0;
860 } else {
861 if (riscv_cpu_mxl(env) == MXL_RV32) {
862 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
863 vm = get_field(env->hgatp, SATP32_MODE);
864 } else {
865 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
866 vm = get_field(env->hgatp, SATP64_MODE);
868 widened = 2;
871 switch (vm) {
872 case VM_1_10_SV32:
873 levels = 2; ptidxbits = 10; ptesize = 4; break;
874 case VM_1_10_SV39:
875 levels = 3; ptidxbits = 9; ptesize = 8; break;
876 case VM_1_10_SV48:
877 levels = 4; ptidxbits = 9; ptesize = 8; break;
878 case VM_1_10_SV57:
879 levels = 5; ptidxbits = 9; ptesize = 8; break;
880 case VM_1_10_MBARE:
881 *physical = addr;
882 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
883 return TRANSLATE_SUCCESS;
884 default:
885 g_assert_not_reached();
888 CPUState *cs = env_cpu(env);
889 int va_bits = PGSHIFT + levels * ptidxbits + widened;
891 if (first_stage == true) {
892 target_ulong mask, masked_msbs;
894 if (TARGET_LONG_BITS > (va_bits - 1)) {
895 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
896 } else {
897 mask = 0;
899 masked_msbs = (addr >> (va_bits - 1)) & mask;
901 if (masked_msbs != 0 && masked_msbs != mask) {
902 return TRANSLATE_FAIL;
904 } else {
905 if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
906 return TRANSLATE_FAIL;
910 bool pbmte = env->menvcfg & MENVCFG_PBMTE;
911 bool svade = riscv_cpu_cfg(env)->ext_svade;
912 bool svadu = riscv_cpu_cfg(env)->ext_svadu;
913 bool adue = svadu ? env->menvcfg & MENVCFG_ADUE : !svade;
915 if (first_stage && two_stage && env->virt_enabled) {
916 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
917 adue = adue && (env->henvcfg & HENVCFG_ADUE);
920 int ptshift = (levels - 1) * ptidxbits;
921 target_ulong pte;
922 hwaddr pte_addr;
923 int i;
925 #if !TCG_OVERSIZED_GUEST
926 restart:
927 #endif
928 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
929 target_ulong idx;
930 if (i == 0) {
931 idx = (addr >> (PGSHIFT + ptshift)) &
932 ((1 << (ptidxbits + widened)) - 1);
933 } else {
934 idx = (addr >> (PGSHIFT + ptshift)) &
935 ((1 << ptidxbits) - 1);
938 /* check that physical address of PTE is legal */
940 if (two_stage && first_stage) {
941 int vbase_prot;
942 hwaddr vbase;
944 /* Do the second stage translation on the base PTE address. */
945 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
946 base, NULL, MMU_DATA_LOAD,
947 MMUIdx_U, false, true,
948 is_debug);
950 if (vbase_ret != TRANSLATE_SUCCESS) {
951 if (fault_pte_addr) {
952 *fault_pte_addr = (base + idx * ptesize) >> 2;
954 return TRANSLATE_G_STAGE_FAIL;
957 pte_addr = vbase + idx * ptesize;
958 } else {
959 pte_addr = base + idx * ptesize;
962 int pmp_prot;
963 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr,
964 sizeof(target_ulong),
965 MMU_DATA_LOAD, PRV_S);
966 if (pmp_ret != TRANSLATE_SUCCESS) {
967 return TRANSLATE_PMP_FAIL;
970 if (riscv_cpu_mxl(env) == MXL_RV32) {
971 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
972 } else {
973 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
976 if (res != MEMTX_OK) {
977 return TRANSLATE_FAIL;
980 if (riscv_cpu_sxl(env) == MXL_RV32) {
981 ppn = pte >> PTE_PPN_SHIFT;
982 } else {
983 if (pte & PTE_RESERVED) {
984 return TRANSLATE_FAIL;
987 if (!pbmte && (pte & PTE_PBMT)) {
988 return TRANSLATE_FAIL;
991 if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
992 return TRANSLATE_FAIL;
995 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
998 if (!(pte & PTE_V)) {
999 /* Invalid PTE */
1000 return TRANSLATE_FAIL;
1002 if (pte & (PTE_R | PTE_W | PTE_X)) {
1003 goto leaf;
1006 /* Inner PTE, continue walking */
1007 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
1008 return TRANSLATE_FAIL;
1010 base = ppn << PGSHIFT;
1013 /* No leaf pte at any translation level. */
1014 return TRANSLATE_FAIL;
1016 leaf:
1017 if (ppn & ((1ULL << ptshift) - 1)) {
1018 /* Misaligned PPN */
1019 return TRANSLATE_FAIL;
1021 if (!pbmte && (pte & PTE_PBMT)) {
1022 /* Reserved without Svpbmt. */
1023 return TRANSLATE_FAIL;
1026 /* Check for reserved combinations of RWX flags. */
1027 switch (pte & (PTE_R | PTE_W | PTE_X)) {
1028 case PTE_W:
1029 case PTE_W | PTE_X:
1030 return TRANSLATE_FAIL;
1033 int prot = 0;
1034 if (pte & PTE_R) {
1035 prot |= PAGE_READ;
1037 if (pte & PTE_W) {
1038 prot |= PAGE_WRITE;
1040 if (pte & PTE_X) {
1041 bool mxr = false;
1044 * Use mstatus for first stage or for the second stage without
1045 * virt_enabled (MPRV+MPV)
1047 if (first_stage || !env->virt_enabled) {
1048 mxr = get_field(env->mstatus, MSTATUS_MXR);
1051 /* MPRV+MPV case, check VSSTATUS */
1052 if (first_stage && two_stage && !env->virt_enabled) {
1053 mxr |= get_field(env->vsstatus, MSTATUS_MXR);
1057 * Setting MXR at HS-level overrides both VS-stage and G-stage
1058 * execute-only permissions
1060 if (env->virt_enabled) {
1061 mxr |= get_field(env->mstatus_hs, MSTATUS_MXR);
1064 if (mxr) {
1065 prot |= PAGE_READ;
1067 prot |= PAGE_EXEC;
1070 if (pte & PTE_U) {
1071 if (mode != PRV_U) {
1072 if (!mmuidx_sum(mmu_idx)) {
1073 return TRANSLATE_FAIL;
1075 /* SUM allows only read+write, not execute. */
1076 prot &= PAGE_READ | PAGE_WRITE;
1078 } else if (mode != PRV_S) {
1079 /* Supervisor PTE flags when not S mode */
1080 return TRANSLATE_FAIL;
1083 if (!((prot >> access_type) & 1)) {
1084 /* Access check failed */
1085 return TRANSLATE_FAIL;
1088 target_ulong updated_pte = pte;
1091 * If ADUE is enabled, set accessed and dirty bits.
1092 * Otherwise raise an exception if necessary.
1094 if (adue) {
1095 updated_pte |= PTE_A | (access_type == MMU_DATA_STORE ? PTE_D : 0);
1096 } else if (!(pte & PTE_A) ||
1097 (access_type == MMU_DATA_STORE && !(pte & PTE_D))) {
1098 return TRANSLATE_FAIL;
1101 /* Page table updates need to be atomic with MTTCG enabled */
1102 if (updated_pte != pte && !is_debug) {
1103 if (!adue) {
1104 return TRANSLATE_FAIL;
1108 * - if accessed or dirty bits need updating, and the PTE is
1109 * in RAM, then we do so atomically with a compare and swap.
1110 * - if the PTE is in IO space or ROM, then it can't be updated
1111 * and we return TRANSLATE_FAIL.
1112 * - if the PTE changed by the time we went to update it, then
1113 * it is no longer valid and we must re-walk the page table.
1115 MemoryRegion *mr;
1116 hwaddr l = sizeof(target_ulong), addr1;
1117 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1118 false, MEMTXATTRS_UNSPECIFIED);
1119 if (memory_region_is_ram(mr)) {
1120 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1121 #if TCG_OVERSIZED_GUEST
1123 * MTTCG is not enabled on oversized TCG guests so
1124 * page table updates do not need to be atomic
1126 *pte_pa = pte = updated_pte;
1127 #else
1128 target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1129 if (old_pte != pte) {
1130 goto restart;
1132 pte = updated_pte;
1133 #endif
1134 } else {
1136 * Misconfigured PTE in ROM (AD bits are not preset) or
1137 * PTE is in IO space and can't be updated atomically.
1139 return TRANSLATE_FAIL;
1143 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1144 target_ulong vpn = addr >> PGSHIFT;
1146 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1147 napot_bits = ctzl(ppn) + 1;
1148 if ((i != (levels - 1)) || (napot_bits != 4)) {
1149 return TRANSLATE_FAIL;
1153 napot_mask = (1 << napot_bits) - 1;
1154 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1155 (vpn & (((target_ulong)1 << ptshift) - 1))
1156 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1159 * Remove write permission unless this is a store, or the page is
1160 * already dirty, so that we TLB miss on later writes to update
1161 * the dirty bit.
1163 if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1164 prot &= ~PAGE_WRITE;
1166 *ret_prot = prot;
1168 return TRANSLATE_SUCCESS;
1171 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1172 MMUAccessType access_type, bool pmp_violation,
1173 bool first_stage, bool two_stage,
1174 bool two_stage_indirect)
1176 CPUState *cs = env_cpu(env);
1178 switch (access_type) {
1179 case MMU_INST_FETCH:
1180 if (pmp_violation) {
1181 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1182 } else if (env->virt_enabled && !first_stage) {
1183 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1184 } else {
1185 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
1187 break;
1188 case MMU_DATA_LOAD:
1189 if (pmp_violation) {
1190 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1191 } else if (two_stage && !first_stage) {
1192 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1193 } else {
1194 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
1196 break;
1197 case MMU_DATA_STORE:
1198 if (pmp_violation) {
1199 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1200 } else if (two_stage && !first_stage) {
1201 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1202 } else {
1203 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
1205 break;
1206 default:
1207 g_assert_not_reached();
1209 env->badaddr = address;
1210 env->two_stage_lookup = two_stage;
1211 env->two_stage_indirect_lookup = two_stage_indirect;
1214 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1216 RISCVCPU *cpu = RISCV_CPU(cs);
1217 CPURISCVState *env = &cpu->env;
1218 hwaddr phys_addr;
1219 int prot;
1220 int mmu_idx = riscv_env_mmu_index(&cpu->env, false);
1222 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1223 true, env->virt_enabled, true)) {
1224 return -1;
1227 if (env->virt_enabled) {
1228 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1229 0, MMUIdx_U, false, true, true)) {
1230 return -1;
1234 return phys_addr & TARGET_PAGE_MASK;
1237 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1238 vaddr addr, unsigned size,
1239 MMUAccessType access_type,
1240 int mmu_idx, MemTxAttrs attrs,
1241 MemTxResult response, uintptr_t retaddr)
1243 RISCVCPU *cpu = RISCV_CPU(cs);
1244 CPURISCVState *env = &cpu->env;
1246 if (access_type == MMU_DATA_STORE) {
1247 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1248 } else if (access_type == MMU_DATA_LOAD) {
1249 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1250 } else {
1251 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1254 env->badaddr = addr;
1255 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1256 env->two_stage_indirect_lookup = false;
1257 cpu_loop_exit_restore(cs, retaddr);
1260 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1261 MMUAccessType access_type, int mmu_idx,
1262 uintptr_t retaddr)
1264 RISCVCPU *cpu = RISCV_CPU(cs);
1265 CPURISCVState *env = &cpu->env;
1266 switch (access_type) {
1267 case MMU_INST_FETCH:
1268 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1269 break;
1270 case MMU_DATA_LOAD:
1271 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1272 break;
1273 case MMU_DATA_STORE:
1274 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1275 break;
1276 default:
1277 g_assert_not_reached();
1279 env->badaddr = addr;
1280 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1281 env->two_stage_indirect_lookup = false;
1282 cpu_loop_exit_restore(cs, retaddr);
1286 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1288 enum riscv_pmu_event_idx pmu_event_type;
1290 switch (access_type) {
1291 case MMU_INST_FETCH:
1292 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1293 break;
1294 case MMU_DATA_LOAD:
1295 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1296 break;
1297 case MMU_DATA_STORE:
1298 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1299 break;
1300 default:
1301 return;
1304 riscv_pmu_incr_ctr(cpu, pmu_event_type);
1307 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1308 MMUAccessType access_type, int mmu_idx,
1309 bool probe, uintptr_t retaddr)
1311 RISCVCPU *cpu = RISCV_CPU(cs);
1312 CPURISCVState *env = &cpu->env;
1313 vaddr im_address;
1314 hwaddr pa = 0;
1315 int prot, prot2, prot_pmp;
1316 bool pmp_violation = false;
1317 bool first_stage_error = true;
1318 bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1319 bool two_stage_indirect_error = false;
1320 int ret = TRANSLATE_FAIL;
1321 int mode = mmuidx_priv(mmu_idx);
1322 /* default TLB page size */
1323 target_ulong tlb_size = TARGET_PAGE_SIZE;
1325 env->guest_phys_fault_addr = 0;
1327 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1328 __func__, address, access_type, mmu_idx);
1330 pmu_tlb_fill_incr_ctr(cpu, access_type);
1331 if (two_stage_lookup) {
1332 /* Two stage lookup */
1333 ret = get_physical_address(env, &pa, &prot, address,
1334 &env->guest_phys_fault_addr, access_type,
1335 mmu_idx, true, true, false);
1338 * A G-stage exception may be triggered during two state lookup.
1339 * And the env->guest_phys_fault_addr has already been set in
1340 * get_physical_address().
1342 if (ret == TRANSLATE_G_STAGE_FAIL) {
1343 first_stage_error = false;
1344 two_stage_indirect_error = true;
1347 qemu_log_mask(CPU_LOG_MMU,
1348 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1349 HWADDR_FMT_plx " prot %d\n",
1350 __func__, address, ret, pa, prot);
1352 if (ret == TRANSLATE_SUCCESS) {
1353 /* Second stage lookup */
1354 im_address = pa;
1356 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1357 access_type, MMUIdx_U, false, true,
1358 false);
1360 qemu_log_mask(CPU_LOG_MMU,
1361 "%s 2nd-stage address=%" VADDR_PRIx
1362 " ret %d physical "
1363 HWADDR_FMT_plx " prot %d\n",
1364 __func__, im_address, ret, pa, prot2);
1366 prot &= prot2;
1368 if (ret == TRANSLATE_SUCCESS) {
1369 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1370 size, access_type, mode);
1371 tlb_size = pmp_get_tlb_size(env, pa);
1373 qemu_log_mask(CPU_LOG_MMU,
1374 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1375 " %d tlb_size " TARGET_FMT_lu "\n",
1376 __func__, pa, ret, prot_pmp, tlb_size);
1378 prot &= prot_pmp;
1379 } else {
1381 * Guest physical address translation failed, this is a HS
1382 * level exception
1384 first_stage_error = false;
1385 if (ret != TRANSLATE_PMP_FAIL) {
1386 env->guest_phys_fault_addr = (im_address |
1387 (address &
1388 (TARGET_PAGE_SIZE - 1))) >> 2;
1392 } else {
1393 /* Single stage lookup */
1394 ret = get_physical_address(env, &pa, &prot, address, NULL,
1395 access_type, mmu_idx, true, false, false);
1397 qemu_log_mask(CPU_LOG_MMU,
1398 "%s address=%" VADDR_PRIx " ret %d physical "
1399 HWADDR_FMT_plx " prot %d\n",
1400 __func__, address, ret, pa, prot);
1402 if (ret == TRANSLATE_SUCCESS) {
1403 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1404 size, access_type, mode);
1405 tlb_size = pmp_get_tlb_size(env, pa);
1407 qemu_log_mask(CPU_LOG_MMU,
1408 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1409 " %d tlb_size " TARGET_FMT_lu "\n",
1410 __func__, pa, ret, prot_pmp, tlb_size);
1412 prot &= prot_pmp;
1416 if (ret == TRANSLATE_PMP_FAIL) {
1417 pmp_violation = true;
1420 if (ret == TRANSLATE_SUCCESS) {
1421 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1422 prot, mmu_idx, tlb_size);
1423 return true;
1424 } else if (probe) {
1425 return false;
1426 } else {
1427 raise_mmu_exception(env, address, access_type, pmp_violation,
1428 first_stage_error, two_stage_lookup,
1429 two_stage_indirect_error);
1430 cpu_loop_exit_restore(cs, retaddr);
1433 return true;
1436 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1437 target_ulong insn,
1438 target_ulong taddr)
1440 target_ulong xinsn = 0;
1441 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1444 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1445 * be uncompressed. The Quadrant 1 of RVC instruction space need
1446 * not be transformed because these instructions won't generate
1447 * any load/store trap.
1450 if ((insn & 0x3) != 0x3) {
1451 /* Transform 16bit instruction into 32bit instruction */
1452 switch (GET_C_OP(insn)) {
1453 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1454 switch (GET_C_FUNC(insn)) {
1455 case OPC_RISC_C_FUNC_FLD_LQ:
1456 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1457 xinsn = OPC_RISC_FLD;
1458 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1459 access_rs1 = GET_C_RS1S(insn);
1460 access_imm = GET_C_LD_IMM(insn);
1461 access_size = 8;
1463 break;
1464 case OPC_RISC_C_FUNC_LW: /* C.LW */
1465 xinsn = OPC_RISC_LW;
1466 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1467 access_rs1 = GET_C_RS1S(insn);
1468 access_imm = GET_C_LW_IMM(insn);
1469 access_size = 4;
1470 break;
1471 case OPC_RISC_C_FUNC_FLW_LD:
1472 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1473 xinsn = OPC_RISC_FLW;
1474 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1475 access_rs1 = GET_C_RS1S(insn);
1476 access_imm = GET_C_LW_IMM(insn);
1477 access_size = 4;
1478 } else { /* C.LD (RV64/RV128) */
1479 xinsn = OPC_RISC_LD;
1480 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1481 access_rs1 = GET_C_RS1S(insn);
1482 access_imm = GET_C_LD_IMM(insn);
1483 access_size = 8;
1485 break;
1486 case OPC_RISC_C_FUNC_FSD_SQ:
1487 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1488 xinsn = OPC_RISC_FSD;
1489 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1490 access_rs1 = GET_C_RS1S(insn);
1491 access_imm = GET_C_SD_IMM(insn);
1492 access_size = 8;
1494 break;
1495 case OPC_RISC_C_FUNC_SW: /* C.SW */
1496 xinsn = OPC_RISC_SW;
1497 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1498 access_rs1 = GET_C_RS1S(insn);
1499 access_imm = GET_C_SW_IMM(insn);
1500 access_size = 4;
1501 break;
1502 case OPC_RISC_C_FUNC_FSW_SD:
1503 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1504 xinsn = OPC_RISC_FSW;
1505 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1506 access_rs1 = GET_C_RS1S(insn);
1507 access_imm = GET_C_SW_IMM(insn);
1508 access_size = 4;
1509 } else { /* C.SD (RV64/RV128) */
1510 xinsn = OPC_RISC_SD;
1511 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1512 access_rs1 = GET_C_RS1S(insn);
1513 access_imm = GET_C_SD_IMM(insn);
1514 access_size = 8;
1516 break;
1517 default:
1518 break;
1520 break;
1521 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1522 switch (GET_C_FUNC(insn)) {
1523 case OPC_RISC_C_FUNC_FLDSP_LQSP:
1524 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1525 xinsn = OPC_RISC_FLD;
1526 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1527 access_rs1 = 2;
1528 access_imm = GET_C_LDSP_IMM(insn);
1529 access_size = 8;
1531 break;
1532 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1533 xinsn = OPC_RISC_LW;
1534 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1535 access_rs1 = 2;
1536 access_imm = GET_C_LWSP_IMM(insn);
1537 access_size = 4;
1538 break;
1539 case OPC_RISC_C_FUNC_FLWSP_LDSP:
1540 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1541 xinsn = OPC_RISC_FLW;
1542 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1543 access_rs1 = 2;
1544 access_imm = GET_C_LWSP_IMM(insn);
1545 access_size = 4;
1546 } else { /* C.LDSP (RV64/RV128) */
1547 xinsn = OPC_RISC_LD;
1548 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1549 access_rs1 = 2;
1550 access_imm = GET_C_LDSP_IMM(insn);
1551 access_size = 8;
1553 break;
1554 case OPC_RISC_C_FUNC_FSDSP_SQSP:
1555 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1556 xinsn = OPC_RISC_FSD;
1557 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1558 access_rs1 = 2;
1559 access_imm = GET_C_SDSP_IMM(insn);
1560 access_size = 8;
1562 break;
1563 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1564 xinsn = OPC_RISC_SW;
1565 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1566 access_rs1 = 2;
1567 access_imm = GET_C_SWSP_IMM(insn);
1568 access_size = 4;
1569 break;
1570 case 7:
1571 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1572 xinsn = OPC_RISC_FSW;
1573 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1574 access_rs1 = 2;
1575 access_imm = GET_C_SWSP_IMM(insn);
1576 access_size = 4;
1577 } else { /* C.SDSP (RV64/RV128) */
1578 xinsn = OPC_RISC_SD;
1579 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1580 access_rs1 = 2;
1581 access_imm = GET_C_SDSP_IMM(insn);
1582 access_size = 8;
1584 break;
1585 default:
1586 break;
1588 break;
1589 default:
1590 break;
1594 * Clear Bit1 of transformed instruction to indicate that
1595 * original insruction was a 16bit instruction
1597 xinsn &= ~((target_ulong)0x2);
1598 } else {
1599 /* Transform 32bit (or wider) instructions */
1600 switch (MASK_OP_MAJOR(insn)) {
1601 case OPC_RISC_ATOMIC:
1602 xinsn = insn;
1603 access_rs1 = GET_RS1(insn);
1604 access_size = 1 << GET_FUNCT3(insn);
1605 break;
1606 case OPC_RISC_LOAD:
1607 case OPC_RISC_FP_LOAD:
1608 xinsn = SET_I_IMM(insn, 0);
1609 access_rs1 = GET_RS1(insn);
1610 access_imm = GET_IMM(insn);
1611 access_size = 1 << GET_FUNCT3(insn);
1612 break;
1613 case OPC_RISC_STORE:
1614 case OPC_RISC_FP_STORE:
1615 xinsn = SET_S_IMM(insn, 0);
1616 access_rs1 = GET_RS1(insn);
1617 access_imm = GET_STORE_IMM(insn);
1618 access_size = 1 << GET_FUNCT3(insn);
1619 break;
1620 case OPC_RISC_SYSTEM:
1621 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1622 xinsn = insn;
1623 access_rs1 = GET_RS1(insn);
1624 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1625 access_size = 1 << access_size;
1627 break;
1628 default:
1629 break;
1633 if (access_size) {
1634 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1635 (access_size - 1));
1638 return xinsn;
1642 * Handle Traps
1644 * Adapted from Spike's processor_t::take_trap.
1647 void riscv_cpu_do_interrupt(CPUState *cs)
1649 RISCVCPU *cpu = RISCV_CPU(cs);
1650 CPURISCVState *env = &cpu->env;
1651 bool write_gva = false;
1652 uint64_t s;
1655 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1656 * so we mask off the MSB and separate into trap type and cause.
1658 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1659 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1660 uint64_t deleg = async ? env->mideleg : env->medeleg;
1661 bool s_injected = env->mvip & (1 << cause) & env->mvien &&
1662 !(env->mip & (1 << cause));
1663 bool vs_injected = env->hvip & (1 << cause) & env->hvien &&
1664 !(env->mip & (1 << cause));
1665 target_ulong tval = 0;
1666 target_ulong tinst = 0;
1667 target_ulong htval = 0;
1668 target_ulong mtval2 = 0;
1670 if (!async) {
1671 /* set tval to badaddr for traps with address information */
1672 switch (cause) {
1673 case RISCV_EXCP_SEMIHOST:
1674 do_common_semihosting(cs);
1675 env->pc += 4;
1676 return;
1677 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1678 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1679 case RISCV_EXCP_LOAD_ADDR_MIS:
1680 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1681 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1682 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1683 case RISCV_EXCP_LOAD_PAGE_FAULT:
1684 case RISCV_EXCP_STORE_PAGE_FAULT:
1685 write_gva = env->two_stage_lookup;
1686 tval = env->badaddr;
1687 if (env->two_stage_indirect_lookup) {
1689 * special pseudoinstruction for G-stage fault taken while
1690 * doing VS-stage page table walk.
1692 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1693 } else {
1695 * The "Addr. Offset" field in transformed instruction is
1696 * non-zero only for misaligned access.
1698 tinst = riscv_transformed_insn(env, env->bins, tval);
1700 break;
1701 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1702 case RISCV_EXCP_INST_ADDR_MIS:
1703 case RISCV_EXCP_INST_ACCESS_FAULT:
1704 case RISCV_EXCP_INST_PAGE_FAULT:
1705 write_gva = env->two_stage_lookup;
1706 tval = env->badaddr;
1707 if (env->two_stage_indirect_lookup) {
1709 * special pseudoinstruction for G-stage fault taken while
1710 * doing VS-stage page table walk.
1712 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1714 break;
1715 case RISCV_EXCP_ILLEGAL_INST:
1716 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1717 tval = env->bins;
1718 break;
1719 case RISCV_EXCP_BREAKPOINT:
1720 tval = env->badaddr;
1721 if (cs->watchpoint_hit) {
1722 tval = cs->watchpoint_hit->hitaddr;
1723 cs->watchpoint_hit = NULL;
1725 break;
1726 default:
1727 break;
1729 /* ecall is dispatched as one cause so translate based on mode */
1730 if (cause == RISCV_EXCP_U_ECALL) {
1731 assert(env->priv <= 3);
1733 if (env->priv == PRV_M) {
1734 cause = RISCV_EXCP_M_ECALL;
1735 } else if (env->priv == PRV_S && env->virt_enabled) {
1736 cause = RISCV_EXCP_VS_ECALL;
1737 } else if (env->priv == PRV_S && !env->virt_enabled) {
1738 cause = RISCV_EXCP_S_ECALL;
1739 } else if (env->priv == PRV_U) {
1740 cause = RISCV_EXCP_U_ECALL;
1745 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1746 riscv_cpu_get_trap_name(cause, async));
1748 qemu_log_mask(CPU_LOG_INT,
1749 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1750 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1751 __func__, env->mhartid, async, cause, env->pc, tval,
1752 riscv_cpu_get_trap_name(cause, async));
1754 if (env->priv <= PRV_S && cause < 64 &&
1755 (((deleg >> cause) & 1) || s_injected || vs_injected)) {
1756 /* handle the trap in S-mode */
1757 if (riscv_has_ext(env, RVH)) {
1758 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1760 if (env->virt_enabled &&
1761 (((hdeleg >> cause) & 1) || vs_injected)) {
1762 /* Trap to VS mode */
1764 * See if we need to adjust cause. Yes if its VS mode interrupt
1765 * no if hypervisor has delegated one of hs mode's interrupt
1767 if (async && (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1768 cause == IRQ_VS_EXT)) {
1769 cause = cause - 1;
1771 write_gva = false;
1772 } else if (env->virt_enabled) {
1773 /* Trap into HS mode, from virt */
1774 riscv_cpu_swap_hypervisor_regs(env);
1775 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1776 env->priv);
1777 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1779 htval = env->guest_phys_fault_addr;
1781 riscv_cpu_set_virt_enabled(env, 0);
1782 } else {
1783 /* Trap into HS mode */
1784 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1785 htval = env->guest_phys_fault_addr;
1787 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1790 s = env->mstatus;
1791 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1792 s = set_field(s, MSTATUS_SPP, env->priv);
1793 s = set_field(s, MSTATUS_SIE, 0);
1794 env->mstatus = s;
1795 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1796 env->sepc = env->pc;
1797 env->stval = tval;
1798 env->htval = htval;
1799 env->htinst = tinst;
1800 env->pc = (env->stvec >> 2 << 2) +
1801 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1802 riscv_cpu_set_mode(env, PRV_S);
1803 } else {
1804 /* handle the trap in M-mode */
1805 if (riscv_has_ext(env, RVH)) {
1806 if (env->virt_enabled) {
1807 riscv_cpu_swap_hypervisor_regs(env);
1809 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1810 env->virt_enabled);
1811 if (env->virt_enabled && tval) {
1812 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1815 mtval2 = env->guest_phys_fault_addr;
1817 /* Trapping to M mode, virt is disabled */
1818 riscv_cpu_set_virt_enabled(env, 0);
1821 s = env->mstatus;
1822 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1823 s = set_field(s, MSTATUS_MPP, env->priv);
1824 s = set_field(s, MSTATUS_MIE, 0);
1825 env->mstatus = s;
1826 env->mcause = cause | ~(((target_ulong)-1) >> async);
1827 env->mepc = env->pc;
1828 env->mtval = tval;
1829 env->mtval2 = mtval2;
1830 env->mtinst = tinst;
1831 env->pc = (env->mtvec >> 2 << 2) +
1832 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1833 riscv_cpu_set_mode(env, PRV_M);
1837 * NOTE: it is not necessary to yield load reservations here. It is only
1838 * necessary for an SC from "another hart" to cause a load reservation
1839 * to be yielded. Refer to the memory consistency model section of the
1840 * RISC-V ISA Specification.
1843 env->two_stage_lookup = false;
1844 env->two_stage_indirect_lookup = false;
1847 #endif /* !CONFIG_USER_ONLY */