2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
23 #include "exec/exec-all.h"
24 #include "qemu/error-report.h"
25 #include "qemu/qemu-print.h"
26 #include "sysemu/hw_accel.h"
28 #include "mmu-hash64.h"
32 #include "mmu-book3s-v3.h"
33 #include "helper_regs.h"
36 #include "exec/helper-proto.h"
39 /* #define DEBUG_SLB */
42 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
44 # define LOG_SLB(...) do { } while (0)
51 static ppc_slb_t
*slb_lookup(PowerPCCPU
*cpu
, target_ulong eaddr
)
53 CPUPPCState
*env
= &cpu
->env
;
54 uint64_t esid_256M
, esid_1T
;
57 LOG_SLB("%s: eaddr " TARGET_FMT_lx
"\n", __func__
, eaddr
);
59 esid_256M
= (eaddr
& SEGMENT_MASK_256M
) | SLB_ESID_V
;
60 esid_1T
= (eaddr
& SEGMENT_MASK_1T
) | SLB_ESID_V
;
62 for (n
= 0; n
< cpu
->hash64_opts
->slb_size
; n
++) {
63 ppc_slb_t
*slb
= &env
->slb
[n
];
65 LOG_SLB("%s: slot %d %016" PRIx64
" %016"
66 PRIx64
"\n", __func__
, n
, slb
->esid
, slb
->vsid
);
68 * We check for 1T matches on all MMUs here - if the MMU
69 * doesn't have 1T segment support, we will have prevented 1T
70 * entries from being inserted in the slbmte code.
72 if (((slb
->esid
== esid_256M
) &&
73 ((slb
->vsid
& SLB_VSID_B
) == SLB_VSID_B_256M
))
74 || ((slb
->esid
== esid_1T
) &&
75 ((slb
->vsid
& SLB_VSID_B
) == SLB_VSID_B_1T
))) {
83 void dump_slb(PowerPCCPU
*cpu
)
85 CPUPPCState
*env
= &cpu
->env
;
89 cpu_synchronize_state(CPU(cpu
));
91 qemu_printf("SLB\tESID\t\t\tVSID\n");
92 for (i
= 0; i
< cpu
->hash64_opts
->slb_size
; i
++) {
93 slbe
= env
->slb
[i
].esid
;
94 slbv
= env
->slb
[i
].vsid
;
95 if (slbe
== 0 && slbv
== 0) {
98 qemu_printf("%d\t0x%016" PRIx64
"\t0x%016" PRIx64
"\n",
104 void helper_SLBIA(CPUPPCState
*env
, uint32_t ih
)
106 PowerPCCPU
*cpu
= env_archcpu(env
);
111 * slbia must always flush all TLB (which is equivalent to ERAT in ppc
112 * architecture). Matching on SLB_ESID_V is not good enough, because slbmte
113 * can overwrite a valid SLB without flushing its lookaside information.
115 * It would be possible to keep the TLB in synch with the SLB by flushing
116 * when a valid entry is overwritten by slbmte, and therefore slbia would
117 * not have to flush unless it evicts a valid SLB entry. However it is
118 * expected that slbmte is more common than slbia, and slbia is usually
119 * going to evict valid SLB entries, so that tradeoff is unlikely to be a
122 * ISA v2.05 introduced IH field with values 0,1,2,6. These all invalidate
123 * the same SLB entries (everything but entry 0), but differ in what
124 * "lookaside information" is invalidated. TCG can ignore this and flush
127 * ISA v3.0 introduced additional values 3,4,7, which change what SLBs are
131 env
->tlb_need_flush
|= TLB_NEED_LOCAL_FLUSH
;
133 starting_entry
= 1; /* default for IH=0,1,2,6 */
135 if (env
->mmu_model
== POWERPC_MMU_3_00
) {
138 /* invalidate no SLBs, but all lookaside information */
143 /* also considers SLB entry 0 */
148 /* treat undefined values as ih==0, and warn */
149 qemu_log_mask(LOG_GUEST_ERROR
,
150 "slbia undefined IH field %u.\n", ih
);
159 for (n
= starting_entry
; n
< cpu
->hash64_opts
->slb_size
; n
++) {
160 ppc_slb_t
*slb
= &env
->slb
[n
];
162 if (!(slb
->esid
& SLB_ESID_V
)) {
165 if (env
->mmu_model
== POWERPC_MMU_3_00
) {
166 if (ih
== 0x3 && (slb
->vsid
& SLB_VSID_C
) == 0) {
167 /* preserves entries with a class value of 0 */
172 slb
->esid
&= ~SLB_ESID_V
;
176 #if defined(TARGET_PPC64)
177 void helper_SLBIAG(CPUPPCState
*env
, target_ulong rs
, uint32_t l
)
179 PowerPCCPU
*cpu
= env_archcpu(env
);
183 * slbiag must always flush all TLB (which is equivalent to ERAT in ppc
184 * architecture). Matching on SLB_ESID_V is not good enough, because slbmte
185 * can overwrite a valid SLB without flushing its lookaside information.
187 * It would be possible to keep the TLB in synch with the SLB by flushing
188 * when a valid entry is overwritten by slbmte, and therefore slbiag would
189 * not have to flush unless it evicts a valid SLB entry. However it is
190 * expected that slbmte is more common than slbiag, and slbiag is usually
191 * going to evict valid SLB entries, so that tradeoff is unlikely to be a
194 env
->tlb_need_flush
|= TLB_NEED_LOCAL_FLUSH
;
196 for (n
= 0; n
< cpu
->hash64_opts
->slb_size
; n
++) {
197 ppc_slb_t
*slb
= &env
->slb
[n
];
198 slb
->esid
&= ~SLB_ESID_V
;
203 static void __helper_slbie(CPUPPCState
*env
, target_ulong addr
,
206 PowerPCCPU
*cpu
= env_archcpu(env
);
209 slb
= slb_lookup(cpu
, addr
);
214 if (slb
->esid
& SLB_ESID_V
) {
215 slb
->esid
&= ~SLB_ESID_V
;
218 * XXX: given the fact that segment size is 256 MB or 1TB,
219 * and we still don't have a tlb_flush_mask(env, n, mask)
220 * in QEMU, we just invalidate all TLBs
222 env
->tlb_need_flush
|=
223 (global
== false ? TLB_NEED_LOCAL_FLUSH
: TLB_NEED_GLOBAL_FLUSH
);
227 void helper_SLBIE(CPUPPCState
*env
, target_ulong addr
)
229 __helper_slbie(env
, addr
, false);
232 void helper_SLBIEG(CPUPPCState
*env
, target_ulong addr
)
234 __helper_slbie(env
, addr
, true);
238 int ppc_store_slb(PowerPCCPU
*cpu
, target_ulong slot
,
239 target_ulong esid
, target_ulong vsid
)
241 CPUPPCState
*env
= &cpu
->env
;
242 ppc_slb_t
*slb
= &env
->slb
[slot
];
243 const PPCHash64SegmentPageSizes
*sps
= NULL
;
246 if (slot
>= cpu
->hash64_opts
->slb_size
) {
247 return -1; /* Bad slot number */
249 if (esid
& ~(SLB_ESID_ESID
| SLB_ESID_V
)) {
250 return -1; /* Reserved bits set */
252 if (vsid
& (SLB_VSID_B
& ~SLB_VSID_B_1T
)) {
253 return -1; /* Bad segment size */
255 if ((vsid
& SLB_VSID_B
) && !(ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
))) {
256 return -1; /* 1T segment on MMU that doesn't support it */
259 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
260 const PPCHash64SegmentPageSizes
*sps1
= &cpu
->hash64_opts
->sps
[i
];
262 if (!sps1
->page_shift
) {
266 if ((vsid
& SLB_VSID_LLP_MASK
) == sps1
->slb_enc
) {
273 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
274 " esid 0x"TARGET_FMT_lx
" vsid 0x"TARGET_FMT_lx
,
283 LOG_SLB("%s: " TARGET_FMT_lu
" " TARGET_FMT_lx
" - " TARGET_FMT_lx
284 " => %016" PRIx64
" %016" PRIx64
"\n", __func__
, slot
, esid
, vsid
,
285 slb
->esid
, slb
->vsid
);
291 static int ppc_load_slb_esid(PowerPCCPU
*cpu
, target_ulong rb
,
294 CPUPPCState
*env
= &cpu
->env
;
295 int slot
= rb
& 0xfff;
296 ppc_slb_t
*slb
= &env
->slb
[slot
];
298 if (slot
>= cpu
->hash64_opts
->slb_size
) {
306 static int ppc_load_slb_vsid(PowerPCCPU
*cpu
, target_ulong rb
,
309 CPUPPCState
*env
= &cpu
->env
;
310 int slot
= rb
& 0xfff;
311 ppc_slb_t
*slb
= &env
->slb
[slot
];
313 if (slot
>= cpu
->hash64_opts
->slb_size
) {
321 static int ppc_find_slb_vsid(PowerPCCPU
*cpu
, target_ulong rb
,
324 CPUPPCState
*env
= &cpu
->env
;
327 if (!msr_is_64bit(env
, env
->msr
)) {
330 slb
= slb_lookup(cpu
, rb
);
332 *rt
= (target_ulong
)-1ul;
339 void helper_SLBMTE(CPUPPCState
*env
, target_ulong rb
, target_ulong rs
)
341 PowerPCCPU
*cpu
= env_archcpu(env
);
343 if (ppc_store_slb(cpu
, rb
& 0xfff, rb
& ~0xfffULL
, rs
) < 0) {
344 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
345 POWERPC_EXCP_INVAL
, GETPC());
349 target_ulong
helper_SLBMFEE(CPUPPCState
*env
, target_ulong rb
)
351 PowerPCCPU
*cpu
= env_archcpu(env
);
354 if (ppc_load_slb_esid(cpu
, rb
, &rt
) < 0) {
355 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
356 POWERPC_EXCP_INVAL
, GETPC());
361 target_ulong
helper_SLBFEE(CPUPPCState
*env
, target_ulong rb
)
363 PowerPCCPU
*cpu
= env_archcpu(env
);
366 if (ppc_find_slb_vsid(cpu
, rb
, &rt
) < 0) {
367 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
368 POWERPC_EXCP_INVAL
, GETPC());
373 target_ulong
helper_SLBMFEV(CPUPPCState
*env
, target_ulong rb
)
375 PowerPCCPU
*cpu
= env_archcpu(env
);
378 if (ppc_load_slb_vsid(cpu
, rb
, &rt
) < 0) {
379 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
380 POWERPC_EXCP_INVAL
, GETPC());
386 /* Check No-Execute or Guarded Storage */
387 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU
*cpu
,
388 ppc_hash_pte64_t pte
)
390 /* Exec permissions CANNOT take away read or write permissions */
391 return (pte
.pte1
& HPTE64_R_N
) || (pte
.pte1
& HPTE64_R_G
) ?
392 PAGE_READ
| PAGE_WRITE
: PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
395 /* Check Basic Storage Protection */
396 static int ppc_hash64_pte_prot(int mmu_idx
,
397 ppc_slb_t
*slb
, ppc_hash_pte64_t pte
)
401 * Some pp bit combinations have undefined behaviour, so default
402 * to no access in those cases
406 key
= !!(mmuidx_pr(mmu_idx
) ? (slb
->vsid
& SLB_VSID_KP
)
407 : (slb
->vsid
& SLB_VSID_KS
));
408 pp
= (pte
.pte1
& HPTE64_R_PP
) | ((pte
.pte1
& HPTE64_R_PP0
) >> 61);
415 prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
420 prot
= PAGE_READ
| PAGE_EXEC
;
431 prot
= PAGE_READ
| PAGE_EXEC
;
435 prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
443 /* Check the instruction access permissions specified in the IAMR */
444 static int ppc_hash64_iamr_prot(PowerPCCPU
*cpu
, int key
)
446 CPUPPCState
*env
= &cpu
->env
;
447 int iamr_bits
= (env
->spr
[SPR_IAMR
] >> 2 * (31 - key
)) & 0x3;
450 * An instruction fetch is permitted if the IAMR bit is 0.
451 * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
452 * can only take away EXEC permissions not READ or WRITE permissions.
453 * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
454 * EXEC permissions are allowed.
456 return (iamr_bits
& 0x1) ? PAGE_READ
| PAGE_WRITE
:
457 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
460 static int ppc_hash64_amr_prot(PowerPCCPU
*cpu
, ppc_hash_pte64_t pte
)
462 CPUPPCState
*env
= &cpu
->env
;
464 int prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
466 /* Only recent MMUs implement Virtual Page Class Key Protection */
467 if (!ppc_hash64_has(cpu
, PPC_HASH64_AMR
)) {
471 key
= HPTE64_R_KEY(pte
.pte1
);
472 amrbits
= (env
->spr
[SPR_AMR
] >> 2 * (31 - key
)) & 0x3;
474 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
475 /* env->spr[SPR_AMR]); */
478 * A store is permitted if the AMR bit is 0. Remove write
479 * protection if it is set.
485 * A load is permitted if the AMR bit is 0. Remove read
486 * protection if it is set.
492 switch (env
->mmu_model
) {
494 * MMU version 2.07 and later support IAMR
495 * Check if the IAMR allows the instruction access - it will return
496 * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
497 * if it does (and prot will be unchanged indicating execution support).
499 case POWERPC_MMU_2_07
:
500 case POWERPC_MMU_3_00
:
501 prot
&= ppc_hash64_iamr_prot(cpu
, key
);
510 const ppc_hash_pte64_t
*ppc_hash64_map_hptes(PowerPCCPU
*cpu
,
513 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
515 hwaddr plen
= n
* HASH_PTE_SIZE_64
;
516 const ppc_hash_pte64_t
*hptes
;
519 PPCVirtualHypervisorClass
*vhc
=
520 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu
->vhyp
);
521 return vhc
->map_hptes(cpu
->vhyp
, ptex
, n
);
523 base
= ppc_hash64_hpt_base(cpu
);
529 hptes
= address_space_map(CPU(cpu
)->as
, base
+ pte_offset
, &plen
, false,
530 MEMTXATTRS_UNSPECIFIED
);
531 if (plen
< (n
* HASH_PTE_SIZE_64
)) {
532 hw_error("%s: Unable to map all requested HPTEs\n", __func__
);
537 void ppc_hash64_unmap_hptes(PowerPCCPU
*cpu
, const ppc_hash_pte64_t
*hptes
,
541 PPCVirtualHypervisorClass
*vhc
=
542 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu
->vhyp
);
543 vhc
->unmap_hptes(cpu
->vhyp
, hptes
, ptex
, n
);
547 address_space_unmap(CPU(cpu
)->as
, (void *)hptes
, n
* HASH_PTE_SIZE_64
,
548 false, n
* HASH_PTE_SIZE_64
);
551 static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes
*sps
,
552 uint64_t pte0
, uint64_t pte1
)
556 if (!(pte0
& HPTE64_V_LARGE
)) {
557 if (sps
->page_shift
!= 12) {
558 /* 4kiB page in a non 4kiB segment */
561 /* Normal 4kiB page */
565 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
566 const PPCHash64PageSize
*ps
= &sps
->enc
[i
];
569 if (!ps
->page_shift
) {
573 if (ps
->page_shift
== 12) {
574 /* L bit is set so this can't be a 4kiB page */
578 mask
= ((1ULL << ps
->page_shift
) - 1) & HPTE64_R_RPN
;
580 if ((pte1
& mask
) == ((uint64_t)ps
->pte_enc
<< HPTE64_R_RPN_SHIFT
)) {
581 return ps
->page_shift
;
585 return 0; /* Bad page size encoding */
588 static void ppc64_v3_new_to_old_hpte(target_ulong
*pte0
, target_ulong
*pte1
)
590 /* Insert B into pte0 */
591 *pte0
= (*pte0
& HPTE64_V_COMMON_BITS
) |
592 ((*pte1
& HPTE64_R_3_0_SSIZE_MASK
) <<
593 (HPTE64_V_SSIZE_SHIFT
- HPTE64_R_3_0_SSIZE_SHIFT
));
595 /* Remove B from pte1 */
596 *pte1
= *pte1
& ~HPTE64_R_3_0_SSIZE_MASK
;
600 static hwaddr
ppc_hash64_pteg_search(PowerPCCPU
*cpu
, hwaddr hash
,
601 const PPCHash64SegmentPageSizes
*sps
,
603 ppc_hash_pte64_t
*pte
, unsigned *pshift
)
606 const ppc_hash_pte64_t
*pteg
;
607 target_ulong pte0
, pte1
;
610 ptex
= (hash
& ppc_hash64_hpt_mask(cpu
)) * HPTES_PER_GROUP
;
611 pteg
= ppc_hash64_map_hptes(cpu
, ptex
, HPTES_PER_GROUP
);
615 for (i
= 0; i
< HPTES_PER_GROUP
; i
++) {
616 pte0
= ppc_hash64_hpte0(cpu
, pteg
, i
);
618 * pte0 contains the valid bit and must be read before pte1,
619 * otherwise we might see an old pte1 with a new valid bit and
620 * thus an inconsistent hpte value
623 pte1
= ppc_hash64_hpte1(cpu
, pteg
, i
);
625 /* Convert format if necessary */
626 if (cpu
->env
.mmu_model
== POWERPC_MMU_3_00
&& !cpu
->vhyp
) {
627 ppc64_v3_new_to_old_hpte(&pte0
, &pte1
);
630 /* This compares V, B, H (secondary) and the AVPN */
631 if (HPTE64_V_COMPARE(pte0
, ptem
)) {
632 *pshift
= hpte_page_shift(sps
, pte0
, pte1
);
634 * If there is no match, ignore the PTE, it could simply
635 * be for a different segment size encoding and the
636 * architecture specifies we should not match. Linux will
637 * potentially leave behind PTEs for the wrong base page
638 * size when demoting segments.
644 * We don't do anything with pshift yet as qemu TLB only
645 * deals with 4K pages anyway
649 ppc_hash64_unmap_hptes(cpu
, pteg
, ptex
, HPTES_PER_GROUP
);
653 ppc_hash64_unmap_hptes(cpu
, pteg
, ptex
, HPTES_PER_GROUP
);
655 * We didn't find a valid entry.
660 static hwaddr
ppc_hash64_htab_lookup(PowerPCCPU
*cpu
,
661 ppc_slb_t
*slb
, target_ulong eaddr
,
662 ppc_hash_pte64_t
*pte
, unsigned *pshift
)
664 CPUPPCState
*env
= &cpu
->env
;
666 uint64_t vsid
, epnmask
, epn
, ptem
;
667 const PPCHash64SegmentPageSizes
*sps
= slb
->sps
;
670 * The SLB store path should prevent any bad page size encodings
671 * getting in there, so:
675 /* If ISL is set in LPCR we need to clamp the page size to 4K */
676 if (env
->spr
[SPR_LPCR
] & LPCR_ISL
) {
677 /* We assume that when using TCG, 4k is first entry of SPS */
678 sps
= &cpu
->hash64_opts
->sps
[0];
679 assert(sps
->page_shift
== 12);
682 epnmask
= ~((1ULL << sps
->page_shift
) - 1);
684 if (slb
->vsid
& SLB_VSID_B
) {
686 vsid
= (slb
->vsid
& SLB_VSID_VSID
) >> SLB_VSID_SHIFT_1T
;
687 epn
= (eaddr
& ~SEGMENT_MASK_1T
) & epnmask
;
688 hash
= vsid
^ (vsid
<< 25) ^ (epn
>> sps
->page_shift
);
691 vsid
= (slb
->vsid
& SLB_VSID_VSID
) >> SLB_VSID_SHIFT
;
692 epn
= (eaddr
& ~SEGMENT_MASK_256M
) & epnmask
;
693 hash
= vsid
^ (epn
>> sps
->page_shift
);
695 ptem
= (slb
->vsid
& SLB_VSID_PTEM
) | ((epn
>> 16) & HPTE64_V_AVPN
);
696 ptem
|= HPTE64_V_VALID
;
698 /* Page address translation */
699 qemu_log_mask(CPU_LOG_MMU
,
700 "htab_base " HWADDR_FMT_plx
" htab_mask " HWADDR_FMT_plx
701 " hash " HWADDR_FMT_plx
"\n",
702 ppc_hash64_hpt_base(cpu
), ppc_hash64_hpt_mask(cpu
), hash
);
704 /* Primary PTEG lookup */
705 qemu_log_mask(CPU_LOG_MMU
,
706 "0 htab=" HWADDR_FMT_plx
"/" HWADDR_FMT_plx
707 " vsid=" TARGET_FMT_lx
" ptem=" TARGET_FMT_lx
708 " hash=" HWADDR_FMT_plx
"\n",
709 ppc_hash64_hpt_base(cpu
), ppc_hash64_hpt_mask(cpu
),
711 ptex
= ppc_hash64_pteg_search(cpu
, hash
, sps
, ptem
, pte
, pshift
);
714 /* Secondary PTEG lookup */
715 ptem
|= HPTE64_V_SECONDARY
;
716 qemu_log_mask(CPU_LOG_MMU
,
717 "1 htab=" HWADDR_FMT_plx
"/" HWADDR_FMT_plx
718 " vsid=" TARGET_FMT_lx
" api=" TARGET_FMT_lx
719 " hash=" HWADDR_FMT_plx
"\n", ppc_hash64_hpt_base(cpu
),
720 ppc_hash64_hpt_mask(cpu
), vsid
, ptem
, ~hash
);
722 ptex
= ppc_hash64_pteg_search(cpu
, ~hash
, sps
, ptem
, pte
, pshift
);
728 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU
*cpu
,
729 uint64_t pte0
, uint64_t pte1
)
733 if (!(pte0
& HPTE64_V_LARGE
)) {
738 * The encodings in env->sps need to be carefully chosen so that
739 * this gives an unambiguous result.
741 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
742 const PPCHash64SegmentPageSizes
*sps
= &cpu
->hash64_opts
->sps
[i
];
745 if (!sps
->page_shift
) {
749 shift
= hpte_page_shift(sps
, pte0
, pte1
);
758 static bool ppc_hash64_use_vrma(CPUPPCState
*env
)
760 switch (env
->mmu_model
) {
761 case POWERPC_MMU_3_00
:
763 * ISAv3.0 (POWER9) always uses VRMA, the VPM0 field and RMOR
764 * register no longer exist
769 return !!(env
->spr
[SPR_LPCR
] & LPCR_VPM0
);
773 static void ppc_hash64_set_isi(CPUState
*cs
, int mmu_idx
, uint64_t slb_vsid
,
776 CPUPPCState
*env
= &POWERPC_CPU(cs
)->env
;
779 if (!mmuidx_real(mmu_idx
)) {
780 vpm
= !!(env
->spr
[SPR_LPCR
] & LPCR_VPM1
);
782 vpm
= ppc_hash64_use_vrma(env
);
784 if (vpm
&& !mmuidx_hv(mmu_idx
)) {
785 cs
->exception_index
= POWERPC_EXCP_HISI
;
786 env
->spr
[SPR_ASDR
] = slb_vsid
;
788 cs
->exception_index
= POWERPC_EXCP_ISI
;
790 env
->error_code
= error_code
;
793 static void ppc_hash64_set_dsi(CPUState
*cs
, int mmu_idx
, uint64_t slb_vsid
,
794 uint64_t dar
, uint64_t dsisr
)
796 CPUPPCState
*env
= &POWERPC_CPU(cs
)->env
;
799 if (!mmuidx_real(mmu_idx
)) {
800 vpm
= !!(env
->spr
[SPR_LPCR
] & LPCR_VPM1
);
802 vpm
= ppc_hash64_use_vrma(env
);
804 if (vpm
&& !mmuidx_hv(mmu_idx
)) {
805 cs
->exception_index
= POWERPC_EXCP_HDSI
;
806 env
->spr
[SPR_HDAR
] = dar
;
807 env
->spr
[SPR_HDSISR
] = dsisr
;
808 env
->spr
[SPR_ASDR
] = slb_vsid
;
810 cs
->exception_index
= POWERPC_EXCP_DSI
;
811 env
->spr
[SPR_DAR
] = dar
;
812 env
->spr
[SPR_DSISR
] = dsisr
;
818 static void ppc_hash64_set_r(PowerPCCPU
*cpu
, hwaddr ptex
, uint64_t pte1
)
820 hwaddr base
, offset
= ptex
* HASH_PTE_SIZE_64
+ HPTE64_DW1_R
;
823 PPCVirtualHypervisorClass
*vhc
=
824 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu
->vhyp
);
825 vhc
->hpte_set_r(cpu
->vhyp
, ptex
, pte1
);
828 base
= ppc_hash64_hpt_base(cpu
);
831 /* The HW performs a non-atomic byte update */
832 stb_phys(CPU(cpu
)->as
, base
+ offset
, ((pte1
>> 8) & 0xff) | 0x01);
835 static void ppc_hash64_set_c(PowerPCCPU
*cpu
, hwaddr ptex
, uint64_t pte1
)
837 hwaddr base
, offset
= ptex
* HASH_PTE_SIZE_64
+ HPTE64_DW1_C
;
840 PPCVirtualHypervisorClass
*vhc
=
841 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu
->vhyp
);
842 vhc
->hpte_set_c(cpu
->vhyp
, ptex
, pte1
);
845 base
= ppc_hash64_hpt_base(cpu
);
847 /* The HW performs a non-atomic byte update */
848 stb_phys(CPU(cpu
)->as
, base
+ offset
, (pte1
& 0xff) | 0x80);
851 static target_ulong
rmls_limit(PowerPCCPU
*cpu
)
853 CPUPPCState
*env
= &cpu
->env
;
855 * In theory the meanings of RMLS values are implementation
856 * dependent. In practice, this seems to have been the set from
857 * POWER4+..POWER8, and RMLS is no longer supported in POWER9.
859 * Unsupported values mean the OS has shot itself in the
860 * foot. Return a 0-sized RMA in this case, which we expect
861 * to trigger an immediate DSI or ISI
863 static const target_ulong rma_sizes
[16] = {
872 target_ulong rmls
= (env
->spr
[SPR_LPCR
] & LPCR_RMLS
) >> LPCR_RMLS_SHIFT
;
874 return rma_sizes
[rmls
];
877 /* Return the LLP in SLB_VSID format */
878 static uint64_t get_vrma_llp(PowerPCCPU
*cpu
)
880 CPUPPCState
*env
= &cpu
->env
;
883 if (env
->mmu_model
== POWERPC_MMU_3_00
) {
888 * ISA v3.0 removes the LPCR[VRMASD] field and puts the VRMA base
889 * page size (L||LP equivalent) in the PS field in the HPT partition
892 if (!ppc64_v3_get_pate(cpu
, cpu
->env
.spr
[SPR_LPIDR
], &pate
)) {
893 error_report("Bad VRMA with no partition table entry");
896 ps
= PATE0_GET_PS(pate
.dw0
);
897 /* PS has L||LP in 3 consecutive bits, put them into SLB LLP format */
900 llp
= (l
<< SLB_VSID_L_SHIFT
) | (lp
<< SLB_VSID_LP_SHIFT
);
903 uint64_t lpcr
= env
->spr
[SPR_LPCR
];
904 target_ulong vrmasd
= (lpcr
& LPCR_VRMASD
) >> LPCR_VRMASD_SHIFT
;
906 /* VRMASD LLP matches SLB format, just shift and mask it */
907 llp
= (vrmasd
<< SLB_VSID_LP_SHIFT
) & SLB_VSID_LLP_MASK
;
913 static int build_vrma_slbe(PowerPCCPU
*cpu
, ppc_slb_t
*slb
)
915 uint64_t llp
= get_vrma_llp(cpu
);
916 target_ulong vsid
= SLB_VSID_VRMA
| llp
;
919 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
920 const PPCHash64SegmentPageSizes
*sps
= &cpu
->hash64_opts
->sps
[i
];
922 if (!sps
->page_shift
) {
926 if ((vsid
& SLB_VSID_LLP_MASK
) == sps
->slb_enc
) {
927 slb
->esid
= SLB_ESID_V
;
934 error_report("Bad VRMA page size encoding 0x" TARGET_FMT_lx
, llp
);
939 bool ppc_hash64_xlate(PowerPCCPU
*cpu
, vaddr eaddr
, MMUAccessType access_type
,
940 hwaddr
*raddrp
, int *psizep
, int *protp
, int mmu_idx
,
943 CPUState
*cs
= CPU(cpu
);
944 CPUPPCState
*env
= &cpu
->env
;
949 ppc_hash_pte64_t pte
;
950 int exec_prot
, pp_prot
, amr_prot
, prot
;
955 * Note on LPCR usage: 970 uses HID4, but our special variant of
956 * store_spr copies relevant fields into env->spr[SPR_LPCR].
957 * Similarly we filter unimplemented bits when storing into LPCR
958 * depending on the MMU version. This code can thus just use the
962 /* 1. Handle real mode accesses */
963 if (mmuidx_real(mmu_idx
)) {
965 * Translation is supposedly "off", but in real mode the top 4
966 * effective address bits are (mostly) ignored
968 raddr
= eaddr
& 0x0FFFFFFFFFFFFFFFULL
;
972 * In virtual hypervisor mode, there's nothing to do:
973 * EA == GPA == qemu guest address
975 } else if (mmuidx_hv(mmu_idx
) || !env
->has_hv_mode
) {
976 /* In HV mode, add HRMOR if top EA bit is clear */
977 if (!(eaddr
>> 63)) {
978 raddr
|= env
->spr
[SPR_HRMOR
];
980 } else if (ppc_hash64_use_vrma(env
)) {
981 /* Emulated VRMA mode */
983 if (build_vrma_slbe(cpu
, slb
) != 0) {
984 /* Invalid VRMA setup, machine check */
986 cs
->exception_index
= POWERPC_EXCP_MCHECK
;
992 goto skip_slb_search
;
994 target_ulong limit
= rmls_limit(cpu
);
996 /* Emulated old-style RMO mode, bounds check against RMLS */
997 if (raddr
>= limit
) {
998 if (!guest_visible
) {
1001 switch (access_type
) {
1002 case MMU_INST_FETCH
:
1003 ppc_hash64_set_isi(cs
, mmu_idx
, 0, SRR1_PROTFAULT
);
1006 ppc_hash64_set_dsi(cs
, mmu_idx
, 0, eaddr
, DSISR_PROTFAULT
);
1008 case MMU_DATA_STORE
:
1009 ppc_hash64_set_dsi(cs
, mmu_idx
, 0, eaddr
,
1010 DSISR_PROTFAULT
| DSISR_ISSTORE
);
1013 g_assert_not_reached();
1018 raddr
|= env
->spr
[SPR_RMOR
];
1022 *protp
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
1023 *psizep
= TARGET_PAGE_BITS
;
1027 /* 2. Translation is on, so look up the SLB */
1028 slb
= slb_lookup(cpu
, eaddr
);
1030 /* No entry found, check if in-memory segment tables are in use */
1031 if (ppc64_use_proc_tbl(cpu
)) {
1032 /* TODO - Unsupported */
1033 error_report("Segment Table Support Unimplemented");
1036 /* Segment still not found, generate the appropriate interrupt */
1037 if (!guest_visible
) {
1040 switch (access_type
) {
1041 case MMU_INST_FETCH
:
1042 cs
->exception_index
= POWERPC_EXCP_ISEG
;
1043 env
->error_code
= 0;
1046 case MMU_DATA_STORE
:
1047 cs
->exception_index
= POWERPC_EXCP_DSEG
;
1048 env
->error_code
= 0;
1049 env
->spr
[SPR_DAR
] = eaddr
;
1052 g_assert_not_reached();
1059 /* 3. Check for segment level no-execute violation */
1060 if (access_type
== MMU_INST_FETCH
&& (slb
->vsid
& SLB_VSID_N
)) {
1061 if (guest_visible
) {
1062 ppc_hash64_set_isi(cs
, mmu_idx
, slb
->vsid
, SRR1_NOEXEC_GUARD
);
1067 /* 4. Locate the PTE in the hash table */
1068 ptex
= ppc_hash64_htab_lookup(cpu
, slb
, eaddr
, &pte
, &apshift
);
1070 if (!guest_visible
) {
1073 switch (access_type
) {
1074 case MMU_INST_FETCH
:
1075 ppc_hash64_set_isi(cs
, mmu_idx
, slb
->vsid
, SRR1_NOPTE
);
1078 ppc_hash64_set_dsi(cs
, mmu_idx
, slb
->vsid
, eaddr
, DSISR_NOPTE
);
1080 case MMU_DATA_STORE
:
1081 ppc_hash64_set_dsi(cs
, mmu_idx
, slb
->vsid
, eaddr
,
1082 DSISR_NOPTE
| DSISR_ISSTORE
);
1085 g_assert_not_reached();
1089 qemu_log_mask(CPU_LOG_MMU
,
1090 "found PTE at index %08" HWADDR_PRIx
"\n", ptex
);
1092 /* 5. Check access permissions */
1094 exec_prot
= ppc_hash64_pte_noexec_guard(cpu
, pte
);
1095 pp_prot
= ppc_hash64_pte_prot(mmu_idx
, slb
, pte
);
1096 amr_prot
= ppc_hash64_amr_prot(cpu
, pte
);
1097 prot
= exec_prot
& pp_prot
& amr_prot
;
1099 need_prot
= prot_for_access_type(access_type
);
1100 if (need_prot
& ~prot
) {
1101 /* Access right violation */
1102 qemu_log_mask(CPU_LOG_MMU
, "PTE access rejected\n");
1103 if (!guest_visible
) {
1106 if (access_type
== MMU_INST_FETCH
) {
1108 if (PAGE_EXEC
& ~exec_prot
) {
1109 srr1
|= SRR1_NOEXEC_GUARD
; /* Access violates noexec or guard */
1110 } else if (PAGE_EXEC
& ~pp_prot
) {
1111 srr1
|= SRR1_PROTFAULT
; /* Access violates access authority */
1113 if (PAGE_EXEC
& ~amr_prot
) {
1114 srr1
|= SRR1_IAMR
; /* Access violates virt pg class key prot */
1116 ppc_hash64_set_isi(cs
, mmu_idx
, slb
->vsid
, srr1
);
1119 if (need_prot
& ~pp_prot
) {
1120 dsisr
|= DSISR_PROTFAULT
;
1122 if (access_type
== MMU_DATA_STORE
) {
1123 dsisr
|= DSISR_ISSTORE
;
1125 if (need_prot
& ~amr_prot
) {
1128 ppc_hash64_set_dsi(cs
, mmu_idx
, slb
->vsid
, eaddr
, dsisr
);
1133 qemu_log_mask(CPU_LOG_MMU
, "PTE access granted !\n");
1135 /* 6. Update PTE referenced and changed bits if necessary */
1137 if (!(pte
.pte1
& HPTE64_R_R
)) {
1138 ppc_hash64_set_r(cpu
, ptex
, pte
.pte1
);
1140 if (!(pte
.pte1
& HPTE64_R_C
)) {
1141 if (access_type
== MMU_DATA_STORE
) {
1142 ppc_hash64_set_c(cpu
, ptex
, pte
.pte1
);
1145 * Treat the page as read-only for now, so that a later write
1146 * will pass through this function again to set the C bit
1148 prot
&= ~PAGE_WRITE
;
1152 /* 7. Determine the real address from the PTE */
1154 *raddrp
= deposit64(pte
.pte1
& HPTE64_R_RPN
, 0, apshift
, eaddr
);
1160 void ppc_hash64_tlb_flush_hpte(PowerPCCPU
*cpu
, target_ulong ptex
,
1161 target_ulong pte0
, target_ulong pte1
)
1164 * XXX: given the fact that there are too many segments to
1165 * invalidate, and we still don't have a tlb_flush_mask(env, n,
1166 * mask) in QEMU, we just invalidate all TLBs
1168 cpu
->env
.tlb_need_flush
= TLB_NEED_GLOBAL_FLUSH
| TLB_NEED_LOCAL_FLUSH
;
1172 void helper_store_lpcr(CPUPPCState
*env
, target_ulong val
)
1174 PowerPCCPU
*cpu
= env_archcpu(env
);
1176 ppc_store_lpcr(cpu
, val
);
1180 void ppc_hash64_init(PowerPCCPU
*cpu
)
1182 CPUPPCState
*env
= &cpu
->env
;
1183 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
1185 if (!pcc
->hash64_opts
) {
1186 assert(!mmu_is_64bit(env
->mmu_model
));
1190 cpu
->hash64_opts
= g_memdup(pcc
->hash64_opts
, sizeof(*cpu
->hash64_opts
));
1193 void ppc_hash64_finalize(PowerPCCPU
*cpu
)
1195 g_free(cpu
->hash64_opts
);
1198 const PPCHash64Options ppc_hash64_opts_basic
= {
1202 { .page_shift
= 12, /* 4K */
1204 .enc
= { { .page_shift
= 12, .pte_enc
= 0 } }
1206 { .page_shift
= 24, /* 16M */
1208 .enc
= { { .page_shift
= 24, .pte_enc
= 0 } }
1213 const PPCHash64Options ppc_hash64_opts_POWER7
= {
1214 .flags
= PPC_HASH64_1TSEG
| PPC_HASH64_AMR
| PPC_HASH64_CI_LARGEPAGE
,
1218 .page_shift
= 12, /* 4K */
1220 .enc
= { { .page_shift
= 12, .pte_enc
= 0 },
1221 { .page_shift
= 16, .pte_enc
= 0x7 },
1222 { .page_shift
= 24, .pte_enc
= 0x38 }, },
1225 .page_shift
= 16, /* 64K */
1226 .slb_enc
= SLB_VSID_64K
,
1227 .enc
= { { .page_shift
= 16, .pte_enc
= 0x1 },
1228 { .page_shift
= 24, .pte_enc
= 0x8 }, },
1231 .page_shift
= 24, /* 16M */
1232 .slb_enc
= SLB_VSID_16M
,
1233 .enc
= { { .page_shift
= 24, .pte_enc
= 0 }, },
1236 .page_shift
= 34, /* 16G */
1237 .slb_enc
= SLB_VSID_16G
,
1238 .enc
= { { .page_shift
= 34, .pte_enc
= 0x3 }, },