Merge tag 'pull-request-2024-06-12' of https://gitlab.com/thuth/qemu into staging
[qemu/kevin.git] / target / ppc / mmu-hash64.c
blobcbc8efa0c3746e341c0b942ce1d99b94f6ecc5dd
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/page-protection.h"
25 #include "qemu/error-report.h"
26 #include "qemu/qemu-print.h"
27 #include "sysemu/hw_accel.h"
28 #include "kvm_ppc.h"
29 #include "mmu-hash64.h"
30 #include "exec/log.h"
31 #include "hw/hw.h"
32 #include "internal.h"
33 #include "mmu-book3s-v3.h"
34 #include "helper_regs.h"
36 #ifdef CONFIG_TCG
37 #include "exec/helper-proto.h"
38 #endif
40 /* #define DEBUG_SLB */
42 #ifdef DEBUG_SLB
43 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
44 #else
45 # define LOG_SLB(...) do { } while (0)
46 #endif
49 * SLB handling
52 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
54 CPUPPCState *env = &cpu->env;
55 uint64_t esid_256M, esid_1T;
56 int n;
58 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
60 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
61 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
63 for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
64 ppc_slb_t *slb = &env->slb[n];
66 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
67 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
69 * We check for 1T matches on all MMUs here - if the MMU
70 * doesn't have 1T segment support, we will have prevented 1T
71 * entries from being inserted in the slbmte code.
73 if (((slb->esid == esid_256M) &&
74 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
75 || ((slb->esid == esid_1T) &&
76 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
77 return slb;
81 return NULL;
84 void dump_slb(PowerPCCPU *cpu)
86 CPUPPCState *env = &cpu->env;
87 int i;
88 uint64_t slbe, slbv;
90 cpu_synchronize_state(CPU(cpu));
92 qemu_printf("SLB\tESID\t\t\tVSID\n");
93 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
94 slbe = env->slb[i].esid;
95 slbv = env->slb[i].vsid;
96 if (slbe == 0 && slbv == 0) {
97 continue;
99 qemu_printf("%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
100 i, slbe, slbv);
104 #ifdef CONFIG_TCG
105 void helper_SLBIA(CPUPPCState *env, uint32_t ih)
107 PowerPCCPU *cpu = env_archcpu(env);
108 int starting_entry;
109 int n;
112 * slbia must always flush all TLB (which is equivalent to ERAT in ppc
113 * architecture). Matching on SLB_ESID_V is not good enough, because slbmte
114 * can overwrite a valid SLB without flushing its lookaside information.
116 * It would be possible to keep the TLB in synch with the SLB by flushing
117 * when a valid entry is overwritten by slbmte, and therefore slbia would
118 * not have to flush unless it evicts a valid SLB entry. However it is
119 * expected that slbmte is more common than slbia, and slbia is usually
120 * going to evict valid SLB entries, so that tradeoff is unlikely to be a
121 * good one.
123 * ISA v2.05 introduced IH field with values 0,1,2,6. These all invalidate
124 * the same SLB entries (everything but entry 0), but differ in what
125 * "lookaside information" is invalidated. TCG can ignore this and flush
126 * everything.
128 * ISA v3.0 introduced additional values 3,4,7, which change what SLBs are
129 * invalidated.
132 env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
134 starting_entry = 1; /* default for IH=0,1,2,6 */
136 if (env->mmu_model == POWERPC_MMU_3_00) {
137 switch (ih) {
138 case 0x7:
139 /* invalidate no SLBs, but all lookaside information */
140 return;
142 case 0x3:
143 case 0x4:
144 /* also considers SLB entry 0 */
145 starting_entry = 0;
146 break;
148 case 0x5:
149 /* treat undefined values as ih==0, and warn */
150 qemu_log_mask(LOG_GUEST_ERROR,
151 "slbia undefined IH field %u.\n", ih);
152 break;
154 default:
155 /* 0,1,2,6 */
156 break;
160 for (n = starting_entry; n < cpu->hash64_opts->slb_size; n++) {
161 ppc_slb_t *slb = &env->slb[n];
163 if (!(slb->esid & SLB_ESID_V)) {
164 continue;
166 if (env->mmu_model == POWERPC_MMU_3_00) {
167 if (ih == 0x3 && (slb->vsid & SLB_VSID_C) == 0) {
168 /* preserves entries with a class value of 0 */
169 continue;
173 slb->esid &= ~SLB_ESID_V;
177 #if defined(TARGET_PPC64)
178 void helper_SLBIAG(CPUPPCState *env, target_ulong rs, uint32_t l)
180 PowerPCCPU *cpu = env_archcpu(env);
181 int n;
184 * slbiag must always flush all TLB (which is equivalent to ERAT in ppc
185 * architecture). Matching on SLB_ESID_V is not good enough, because slbmte
186 * can overwrite a valid SLB without flushing its lookaside information.
188 * It would be possible to keep the TLB in synch with the SLB by flushing
189 * when a valid entry is overwritten by slbmte, and therefore slbiag would
190 * not have to flush unless it evicts a valid SLB entry. However it is
191 * expected that slbmte is more common than slbiag, and slbiag is usually
192 * going to evict valid SLB entries, so that tradeoff is unlikely to be a
193 * good one.
195 env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
197 for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
198 ppc_slb_t *slb = &env->slb[n];
199 slb->esid &= ~SLB_ESID_V;
202 #endif
204 static void __helper_slbie(CPUPPCState *env, target_ulong addr,
205 target_ulong global)
207 PowerPCCPU *cpu = env_archcpu(env);
208 ppc_slb_t *slb;
210 slb = slb_lookup(cpu, addr);
211 if (!slb) {
212 return;
215 if (slb->esid & SLB_ESID_V) {
216 slb->esid &= ~SLB_ESID_V;
219 * XXX: given the fact that segment size is 256 MB or 1TB,
220 * and we still don't have a tlb_flush_mask(env, n, mask)
221 * in QEMU, we just invalidate all TLBs
223 env->tlb_need_flush |=
224 (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
228 void helper_SLBIE(CPUPPCState *env, target_ulong addr)
230 __helper_slbie(env, addr, false);
233 void helper_SLBIEG(CPUPPCState *env, target_ulong addr)
235 __helper_slbie(env, addr, true);
237 #endif
239 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
240 target_ulong esid, target_ulong vsid)
242 CPUPPCState *env = &cpu->env;
243 ppc_slb_t *slb = &env->slb[slot];
244 const PPCHash64SegmentPageSizes *sps = NULL;
245 int i;
247 if (slot >= cpu->hash64_opts->slb_size) {
248 return -1; /* Bad slot number */
250 if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
251 return -1; /* Reserved bits set */
253 if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
254 return -1; /* Bad segment size */
256 if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) {
257 return -1; /* 1T segment on MMU that doesn't support it */
260 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
261 const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
263 if (!sps1->page_shift) {
264 break;
267 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
268 sps = sps1;
269 break;
273 if (!sps) {
274 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
275 " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
276 slot, esid, vsid);
277 return -1;
280 slb->esid = esid;
281 slb->vsid = vsid;
282 slb->sps = sps;
284 LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
285 " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
286 slb->esid, slb->vsid);
288 return 0;
291 #ifdef CONFIG_TCG
292 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
293 target_ulong *rt)
295 CPUPPCState *env = &cpu->env;
296 int slot = rb & 0xfff;
297 ppc_slb_t *slb = &env->slb[slot];
299 if (slot >= cpu->hash64_opts->slb_size) {
300 return -1;
303 *rt = slb->esid;
304 return 0;
307 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
308 target_ulong *rt)
310 CPUPPCState *env = &cpu->env;
311 int slot = rb & 0xfff;
312 ppc_slb_t *slb = &env->slb[slot];
314 if (slot >= cpu->hash64_opts->slb_size) {
315 return -1;
318 *rt = slb->vsid;
319 return 0;
322 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
323 target_ulong *rt)
325 CPUPPCState *env = &cpu->env;
326 ppc_slb_t *slb;
328 if (!msr_is_64bit(env, env->msr)) {
329 rb &= 0xffffffff;
331 slb = slb_lookup(cpu, rb);
332 if (slb == NULL) {
333 *rt = (target_ulong)-1ul;
334 } else {
335 *rt = slb->vsid;
337 return 0;
340 void helper_SLBMTE(CPUPPCState *env, target_ulong rb, target_ulong rs)
342 PowerPCCPU *cpu = env_archcpu(env);
344 if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
345 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
346 POWERPC_EXCP_INVAL, GETPC());
350 target_ulong helper_SLBMFEE(CPUPPCState *env, target_ulong rb)
352 PowerPCCPU *cpu = env_archcpu(env);
353 target_ulong rt = 0;
355 if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
356 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
357 POWERPC_EXCP_INVAL, GETPC());
359 return rt;
362 target_ulong helper_SLBFEE(CPUPPCState *env, target_ulong rb)
364 PowerPCCPU *cpu = env_archcpu(env);
365 target_ulong rt = 0;
367 if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
368 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
369 POWERPC_EXCP_INVAL, GETPC());
371 return rt;
374 target_ulong helper_SLBMFEV(CPUPPCState *env, target_ulong rb)
376 PowerPCCPU *cpu = env_archcpu(env);
377 target_ulong rt = 0;
379 if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
380 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
381 POWERPC_EXCP_INVAL, GETPC());
383 return rt;
385 #endif
387 /* Check No-Execute or Guarded Storage */
388 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
389 ppc_hash_pte64_t pte)
391 /* Exec permissions CANNOT take away read or write permissions */
392 return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
393 PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
396 /* Check Basic Storage Protection */
397 static int ppc_hash64_pte_prot(int mmu_idx,
398 ppc_slb_t *slb, ppc_hash_pte64_t pte)
400 unsigned pp, key;
402 * Some pp bit combinations have undefined behaviour, so default
403 * to no access in those cases
405 int prot = 0;
407 key = !!(mmuidx_pr(mmu_idx) ? (slb->vsid & SLB_VSID_KP)
408 : (slb->vsid & SLB_VSID_KS));
409 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
411 if (key == 0) {
412 switch (pp) {
413 case 0x0:
414 case 0x1:
415 case 0x2:
416 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
417 break;
419 case 0x3:
420 case 0x6:
421 prot = PAGE_READ | PAGE_EXEC;
422 break;
424 } else {
425 switch (pp) {
426 case 0x0:
427 case 0x6:
428 break;
430 case 0x1:
431 case 0x3:
432 prot = PAGE_READ | PAGE_EXEC;
433 break;
435 case 0x2:
436 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
437 break;
441 return prot;
444 /* Check the instruction access permissions specified in the IAMR */
445 static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
447 CPUPPCState *env = &cpu->env;
448 int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
451 * An instruction fetch is permitted if the IAMR bit is 0.
452 * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
453 * can only take away EXEC permissions not READ or WRITE permissions.
454 * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
455 * EXEC permissions are allowed.
457 return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
458 PAGE_READ | PAGE_WRITE | PAGE_EXEC;
461 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
463 CPUPPCState *env = &cpu->env;
464 int key, amrbits;
465 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
467 /* Only recent MMUs implement Virtual Page Class Key Protection */
468 if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) {
469 return prot;
472 key = HPTE64_R_KEY(pte.pte1);
473 amrbits = (env->spr[SPR_AMR] >> 2 * (31 - key)) & 0x3;
475 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
476 /* env->spr[SPR_AMR]); */
479 * A store is permitted if the AMR bit is 0. Remove write
480 * protection if it is set.
482 if (amrbits & 0x2) {
483 prot &= ~PAGE_WRITE;
486 * A load is permitted if the AMR bit is 0. Remove read
487 * protection if it is set.
489 if (amrbits & 0x1) {
490 prot &= ~PAGE_READ;
493 switch (env->mmu_model) {
495 * MMU version 2.07 and later support IAMR
496 * Check if the IAMR allows the instruction access - it will return
497 * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
498 * if it does (and prot will be unchanged indicating execution support).
500 case POWERPC_MMU_2_07:
501 case POWERPC_MMU_3_00:
502 prot &= ppc_hash64_iamr_prot(cpu, key);
503 break;
504 default:
505 break;
508 return prot;
511 const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
512 hwaddr ptex, int n)
514 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
515 hwaddr base;
516 hwaddr plen = n * HASH_PTE_SIZE_64;
517 const ppc_hash_pte64_t *hptes;
519 if (cpu->vhyp) {
520 return cpu->vhyp_class->map_hptes(cpu->vhyp, ptex, n);
522 base = ppc_hash64_hpt_base(cpu);
524 if (!base) {
525 return NULL;
528 hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false,
529 MEMTXATTRS_UNSPECIFIED);
530 if (plen < (n * HASH_PTE_SIZE_64)) {
531 hw_error("%s: Unable to map all requested HPTEs\n", __func__);
533 return hptes;
536 void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
537 hwaddr ptex, int n)
539 if (cpu->vhyp) {
540 cpu->vhyp_class->unmap_hptes(cpu->vhyp, hptes, ptex, n);
541 return;
544 address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
545 false, n * HASH_PTE_SIZE_64);
548 static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps,
549 uint64_t pte0, uint64_t pte1)
551 int i;
553 if (!(pte0 & HPTE64_V_LARGE)) {
554 if (sps->page_shift != 12) {
555 /* 4kiB page in a non 4kiB segment */
556 return 0;
558 /* Normal 4kiB page */
559 return 12;
562 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
563 const PPCHash64PageSize *ps = &sps->enc[i];
564 uint64_t mask;
566 if (!ps->page_shift) {
567 break;
570 if (ps->page_shift == 12) {
571 /* L bit is set so this can't be a 4kiB page */
572 continue;
575 mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
577 if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
578 return ps->page_shift;
582 return 0; /* Bad page size encoding */
585 static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1)
587 /* Insert B into pte0 */
588 *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) |
589 ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) <<
590 (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT));
592 /* Remove B from pte1 */
593 *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK;
597 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
598 const PPCHash64SegmentPageSizes *sps,
599 target_ulong ptem,
600 ppc_hash_pte64_t *pte, unsigned *pshift)
602 int i;
603 const ppc_hash_pte64_t *pteg;
604 target_ulong pte0, pte1;
605 target_ulong ptex;
607 ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
608 pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
609 if (!pteg) {
610 return -1;
612 for (i = 0; i < HPTES_PER_GROUP; i++) {
613 pte0 = ppc_hash64_hpte0(cpu, pteg, i);
615 * pte0 contains the valid bit and must be read before pte1,
616 * otherwise we might see an old pte1 with a new valid bit and
617 * thus an inconsistent hpte value
619 smp_rmb();
620 pte1 = ppc_hash64_hpte1(cpu, pteg, i);
622 /* Convert format if necessary */
623 if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) {
624 ppc64_v3_new_to_old_hpte(&pte0, &pte1);
627 /* This compares V, B, H (secondary) and the AVPN */
628 if (HPTE64_V_COMPARE(pte0, ptem)) {
629 *pshift = hpte_page_shift(sps, pte0, pte1);
631 * If there is no match, ignore the PTE, it could simply
632 * be for a different segment size encoding and the
633 * architecture specifies we should not match. Linux will
634 * potentially leave behind PTEs for the wrong base page
635 * size when demoting segments.
637 if (*pshift == 0) {
638 continue;
641 * We don't do anything with pshift yet as qemu TLB only
642 * deals with 4K pages anyway
644 pte->pte0 = pte0;
645 pte->pte1 = pte1;
646 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
647 return ptex + i;
650 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
652 * We didn't find a valid entry.
654 return -1;
657 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
658 ppc_slb_t *slb, target_ulong eaddr,
659 ppc_hash_pte64_t *pte, unsigned *pshift)
661 CPUPPCState *env = &cpu->env;
662 hwaddr hash, ptex;
663 uint64_t vsid, epnmask, epn, ptem;
664 const PPCHash64SegmentPageSizes *sps = slb->sps;
667 * The SLB store path should prevent any bad page size encodings
668 * getting in there, so:
670 assert(sps);
672 /* If ISL is set in LPCR we need to clamp the page size to 4K */
673 if (env->spr[SPR_LPCR] & LPCR_ISL) {
674 /* We assume that when using TCG, 4k is first entry of SPS */
675 sps = &cpu->hash64_opts->sps[0];
676 assert(sps->page_shift == 12);
679 epnmask = ~((1ULL << sps->page_shift) - 1);
681 if (slb->vsid & SLB_VSID_B) {
682 /* 1TB segment */
683 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
684 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
685 hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
686 } else {
687 /* 256M segment */
688 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
689 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
690 hash = vsid ^ (epn >> sps->page_shift);
692 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
693 ptem |= HPTE64_V_VALID;
695 /* Page address translation */
696 qemu_log_mask(CPU_LOG_MMU,
697 "htab_base " HWADDR_FMT_plx " htab_mask " HWADDR_FMT_plx
698 " hash " HWADDR_FMT_plx "\n",
699 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
701 /* Primary PTEG lookup */
702 qemu_log_mask(CPU_LOG_MMU,
703 "0 htab=" HWADDR_FMT_plx "/" HWADDR_FMT_plx
704 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
705 " hash=" HWADDR_FMT_plx "\n",
706 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
707 vsid, ptem, hash);
708 ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
710 if (ptex == -1) {
711 /* Secondary PTEG lookup */
712 ptem |= HPTE64_V_SECONDARY;
713 qemu_log_mask(CPU_LOG_MMU,
714 "1 htab=" HWADDR_FMT_plx "/" HWADDR_FMT_plx
715 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
716 " hash=" HWADDR_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
717 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
719 ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
722 return ptex;
725 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
726 uint64_t pte0, uint64_t pte1)
728 int i;
730 if (!(pte0 & HPTE64_V_LARGE)) {
731 return 12;
735 * The encodings in env->sps need to be carefully chosen so that
736 * this gives an unambiguous result.
738 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
739 const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
740 unsigned shift;
742 if (!sps->page_shift) {
743 break;
746 shift = hpte_page_shift(sps, pte0, pte1);
747 if (shift) {
748 return shift;
752 return 0;
755 static bool ppc_hash64_use_vrma(CPUPPCState *env)
757 switch (env->mmu_model) {
758 case POWERPC_MMU_3_00:
760 * ISAv3.0 (POWER9) always uses VRMA, the VPM0 field and RMOR
761 * register no longer exist
763 return true;
765 default:
766 return !!(env->spr[SPR_LPCR] & LPCR_VPM0);
770 static void ppc_hash64_set_isi(CPUState *cs, int mmu_idx, uint64_t slb_vsid,
771 uint64_t error_code)
773 CPUPPCState *env = &POWERPC_CPU(cs)->env;
774 bool vpm;
776 if (!mmuidx_real(mmu_idx)) {
777 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
778 } else {
779 vpm = ppc_hash64_use_vrma(env);
781 if (vpm && !mmuidx_hv(mmu_idx)) {
782 cs->exception_index = POWERPC_EXCP_HISI;
783 env->spr[SPR_ASDR] = slb_vsid;
784 } else {
785 cs->exception_index = POWERPC_EXCP_ISI;
787 env->error_code = error_code;
790 static void ppc_hash64_set_dsi(CPUState *cs, int mmu_idx, uint64_t slb_vsid,
791 uint64_t dar, uint64_t dsisr)
793 CPUPPCState *env = &POWERPC_CPU(cs)->env;
794 bool vpm;
796 if (!mmuidx_real(mmu_idx)) {
797 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
798 } else {
799 vpm = ppc_hash64_use_vrma(env);
801 if (vpm && !mmuidx_hv(mmu_idx)) {
802 cs->exception_index = POWERPC_EXCP_HDSI;
803 env->spr[SPR_HDAR] = dar;
804 env->spr[SPR_HDSISR] = dsisr;
805 env->spr[SPR_ASDR] = slb_vsid;
806 } else {
807 cs->exception_index = POWERPC_EXCP_DSI;
808 env->spr[SPR_DAR] = dar;
809 env->spr[SPR_DSISR] = dsisr;
811 env->error_code = 0;
815 static void ppc_hash64_set_r(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
817 hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
819 if (cpu->vhyp) {
820 cpu->vhyp_class->hpte_set_r(cpu->vhyp, ptex, pte1);
821 return;
823 base = ppc_hash64_hpt_base(cpu);
826 /* The HW performs a non-atomic byte update */
827 stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01);
830 static void ppc_hash64_set_c(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
832 hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
834 if (cpu->vhyp) {
835 cpu->vhyp_class->hpte_set_c(cpu->vhyp, ptex, pte1);
836 return;
838 base = ppc_hash64_hpt_base(cpu);
840 /* The HW performs a non-atomic byte update */
841 stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80);
844 static target_ulong rmls_limit(PowerPCCPU *cpu)
846 CPUPPCState *env = &cpu->env;
848 * In theory the meanings of RMLS values are implementation
849 * dependent. In practice, this seems to have been the set from
850 * POWER4+..POWER8, and RMLS is no longer supported in POWER9.
852 * Unsupported values mean the OS has shot itself in the
853 * foot. Return a 0-sized RMA in this case, which we expect
854 * to trigger an immediate DSI or ISI
856 static const target_ulong rma_sizes[16] = {
857 [0] = 256 * GiB,
858 [1] = 16 * GiB,
859 [2] = 1 * GiB,
860 [3] = 64 * MiB,
861 [4] = 256 * MiB,
862 [7] = 128 * MiB,
863 [8] = 32 * MiB,
865 target_ulong rmls = (env->spr[SPR_LPCR] & LPCR_RMLS) >> LPCR_RMLS_SHIFT;
867 return rma_sizes[rmls];
870 /* Return the LLP in SLB_VSID format */
871 static uint64_t get_vrma_llp(PowerPCCPU *cpu)
873 CPUPPCState *env = &cpu->env;
874 uint64_t llp;
876 if (env->mmu_model == POWERPC_MMU_3_00) {
877 ppc_v3_pate_t pate;
878 uint64_t ps, l, lp;
881 * ISA v3.0 removes the LPCR[VRMASD] field and puts the VRMA base
882 * page size (L||LP equivalent) in the PS field in the HPT partition
883 * table entry.
885 if (!ppc64_v3_get_pate(cpu, cpu->env.spr[SPR_LPIDR], &pate)) {
886 error_report("Bad VRMA with no partition table entry");
887 return 0;
889 ps = PATE0_GET_PS(pate.dw0);
890 /* PS has L||LP in 3 consecutive bits, put them into SLB LLP format */
891 l = (ps >> 2) & 0x1;
892 lp = ps & 0x3;
893 llp = (l << SLB_VSID_L_SHIFT) | (lp << SLB_VSID_LP_SHIFT);
895 } else {
896 uint64_t lpcr = env->spr[SPR_LPCR];
897 target_ulong vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
899 /* VRMASD LLP matches SLB format, just shift and mask it */
900 llp = (vrmasd << SLB_VSID_LP_SHIFT) & SLB_VSID_LLP_MASK;
903 return llp;
906 static int build_vrma_slbe(PowerPCCPU *cpu, ppc_slb_t *slb)
908 uint64_t llp = get_vrma_llp(cpu);
909 target_ulong vsid = SLB_VSID_VRMA | llp;
910 int i;
912 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
913 const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
915 if (!sps->page_shift) {
916 break;
919 if ((vsid & SLB_VSID_LLP_MASK) == sps->slb_enc) {
920 slb->esid = SLB_ESID_V;
921 slb->vsid = vsid;
922 slb->sps = sps;
923 return 0;
927 error_report("Bad VRMA page size encoding 0x" TARGET_FMT_lx, llp);
929 return -1;
932 bool ppc_hash64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
933 hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
934 bool guest_visible)
936 CPUState *cs = CPU(cpu);
937 CPUPPCState *env = &cpu->env;
938 ppc_slb_t vrma_slbe;
939 ppc_slb_t *slb;
940 unsigned apshift;
941 hwaddr ptex;
942 ppc_hash_pte64_t pte;
943 int exec_prot, pp_prot, amr_prot, prot;
944 int need_prot;
945 hwaddr raddr;
948 * Note on LPCR usage: 970 uses HID4, but our special variant of
949 * store_spr copies relevant fields into env->spr[SPR_LPCR].
950 * Similarly we filter unimplemented bits when storing into LPCR
951 * depending on the MMU version. This code can thus just use the
952 * LPCR "as-is".
955 /* 1. Handle real mode accesses */
956 if (mmuidx_real(mmu_idx)) {
958 * Translation is supposedly "off", but in real mode the top 4
959 * effective address bits are (mostly) ignored
961 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
963 if (cpu->vhyp) {
965 * In virtual hypervisor mode, there's nothing to do:
966 * EA == GPA == qemu guest address
968 } else if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) {
969 /* In HV mode, add HRMOR if top EA bit is clear */
970 if (!(eaddr >> 63)) {
971 raddr |= env->spr[SPR_HRMOR];
973 } else if (ppc_hash64_use_vrma(env)) {
974 /* Emulated VRMA mode */
975 slb = &vrma_slbe;
976 if (build_vrma_slbe(cpu, slb) != 0) {
977 /* Invalid VRMA setup, machine check */
978 if (guest_visible) {
979 cs->exception_index = POWERPC_EXCP_MCHECK;
980 env->error_code = 0;
982 return false;
985 goto skip_slb_search;
986 } else {
987 target_ulong limit = rmls_limit(cpu);
989 /* Emulated old-style RMO mode, bounds check against RMLS */
990 if (raddr >= limit) {
991 if (!guest_visible) {
992 return false;
994 switch (access_type) {
995 case MMU_INST_FETCH:
996 ppc_hash64_set_isi(cs, mmu_idx, 0, SRR1_PROTFAULT);
997 break;
998 case MMU_DATA_LOAD:
999 ppc_hash64_set_dsi(cs, mmu_idx, 0, eaddr, DSISR_PROTFAULT);
1000 break;
1001 case MMU_DATA_STORE:
1002 ppc_hash64_set_dsi(cs, mmu_idx, 0, eaddr,
1003 DSISR_PROTFAULT | DSISR_ISSTORE);
1004 break;
1005 default:
1006 g_assert_not_reached();
1008 return false;
1011 raddr |= env->spr[SPR_RMOR];
1014 *raddrp = raddr;
1015 *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1016 *psizep = TARGET_PAGE_BITS;
1017 return true;
1020 /* 2. Translation is on, so look up the SLB */
1021 slb = slb_lookup(cpu, eaddr);
1022 if (!slb) {
1023 /* No entry found, check if in-memory segment tables are in use */
1024 if (ppc64_use_proc_tbl(cpu)) {
1025 /* TODO - Unsupported */
1026 error_report("Segment Table Support Unimplemented");
1027 exit(1);
1029 /* Segment still not found, generate the appropriate interrupt */
1030 if (!guest_visible) {
1031 return false;
1033 switch (access_type) {
1034 case MMU_INST_FETCH:
1035 cs->exception_index = POWERPC_EXCP_ISEG;
1036 env->error_code = 0;
1037 break;
1038 case MMU_DATA_LOAD:
1039 case MMU_DATA_STORE:
1040 cs->exception_index = POWERPC_EXCP_DSEG;
1041 env->error_code = 0;
1042 env->spr[SPR_DAR] = eaddr;
1043 break;
1044 default:
1045 g_assert_not_reached();
1047 return false;
1050 skip_slb_search:
1052 /* 3. Check for segment level no-execute violation */
1053 if (access_type == MMU_INST_FETCH && (slb->vsid & SLB_VSID_N)) {
1054 if (guest_visible) {
1055 ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, SRR1_NOEXEC_GUARD);
1057 return false;
1060 /* 4. Locate the PTE in the hash table */
1061 ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
1062 if (ptex == -1) {
1063 if (!guest_visible) {
1064 return false;
1066 switch (access_type) {
1067 case MMU_INST_FETCH:
1068 ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, SRR1_NOPTE);
1069 break;
1070 case MMU_DATA_LOAD:
1071 ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr, DSISR_NOPTE);
1072 break;
1073 case MMU_DATA_STORE:
1074 ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr,
1075 DSISR_NOPTE | DSISR_ISSTORE);
1076 break;
1077 default:
1078 g_assert_not_reached();
1080 return false;
1082 qemu_log_mask(CPU_LOG_MMU,
1083 "found PTE at index %08" HWADDR_PRIx "\n", ptex);
1085 /* 5. Check access permissions */
1087 exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
1088 pp_prot = ppc_hash64_pte_prot(mmu_idx, slb, pte);
1089 amr_prot = ppc_hash64_amr_prot(cpu, pte);
1090 prot = exec_prot & pp_prot & amr_prot;
1092 need_prot = check_prot_access_type(PAGE_RWX, access_type);
1093 if (need_prot & ~prot) {
1094 /* Access right violation */
1095 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
1096 if (!guest_visible) {
1097 return false;
1099 if (access_type == MMU_INST_FETCH) {
1100 int srr1 = 0;
1101 if (PAGE_EXEC & ~exec_prot) {
1102 srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
1103 } else if (PAGE_EXEC & ~pp_prot) {
1104 srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
1106 if (PAGE_EXEC & ~amr_prot) {
1107 srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
1109 ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, srr1);
1110 } else {
1111 int dsisr = 0;
1112 if (need_prot & ~pp_prot) {
1113 dsisr |= DSISR_PROTFAULT;
1115 if (access_type == MMU_DATA_STORE) {
1116 dsisr |= DSISR_ISSTORE;
1118 if (need_prot & ~amr_prot) {
1119 dsisr |= DSISR_AMR;
1121 ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr, dsisr);
1123 return false;
1126 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
1128 /* 6. Update PTE referenced and changed bits if necessary */
1130 if (!(pte.pte1 & HPTE64_R_R)) {
1131 ppc_hash64_set_r(cpu, ptex, pte.pte1);
1133 if (!(pte.pte1 & HPTE64_R_C)) {
1134 if (access_type == MMU_DATA_STORE) {
1135 ppc_hash64_set_c(cpu, ptex, pte.pte1);
1136 } else {
1138 * Treat the page as read-only for now, so that a later write
1139 * will pass through this function again to set the C bit
1141 prot &= ~PAGE_WRITE;
1145 /* 7. Determine the real address from the PTE */
1147 *raddrp = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
1148 *protp = prot;
1149 *psizep = apshift;
1150 return true;
1153 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
1154 target_ulong pte0, target_ulong pte1)
1157 * XXX: given the fact that there are too many segments to
1158 * invalidate, and we still don't have a tlb_flush_mask(env, n,
1159 * mask) in QEMU, we just invalidate all TLBs
1161 cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
1164 #ifdef CONFIG_TCG
1165 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1167 PowerPCCPU *cpu = env_archcpu(env);
1169 ppc_store_lpcr(cpu, val);
1171 #endif
1173 void ppc_hash64_init(PowerPCCPU *cpu)
1175 CPUPPCState *env = &cpu->env;
1176 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1178 if (!pcc->hash64_opts) {
1179 assert(!mmu_is_64bit(env->mmu_model));
1180 return;
1183 cpu->hash64_opts = g_memdup2(pcc->hash64_opts, sizeof(*cpu->hash64_opts));
1186 void ppc_hash64_finalize(PowerPCCPU *cpu)
1188 g_free(cpu->hash64_opts);
1191 const PPCHash64Options ppc_hash64_opts_basic = {
1192 .flags = 0,
1193 .slb_size = 64,
1194 .sps = {
1195 { .page_shift = 12, /* 4K */
1196 .slb_enc = 0,
1197 .enc = { { .page_shift = 12, .pte_enc = 0 } }
1199 { .page_shift = 24, /* 16M */
1200 .slb_enc = 0x100,
1201 .enc = { { .page_shift = 24, .pte_enc = 0 } }
1206 const PPCHash64Options ppc_hash64_opts_POWER7 = {
1207 .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE,
1208 .slb_size = 32,
1209 .sps = {
1211 .page_shift = 12, /* 4K */
1212 .slb_enc = 0,
1213 .enc = { { .page_shift = 12, .pte_enc = 0 },
1214 { .page_shift = 16, .pte_enc = 0x7 },
1215 { .page_shift = 24, .pte_enc = 0x38 }, },
1218 .page_shift = 16, /* 64K */
1219 .slb_enc = SLB_VSID_64K,
1220 .enc = { { .page_shift = 16, .pte_enc = 0x1 },
1221 { .page_shift = 24, .pte_enc = 0x8 }, },
1224 .page_shift = 24, /* 16M */
1225 .slb_enc = SLB_VSID_16M,
1226 .enc = { { .page_shift = 24, .pte_enc = 0 }, },
1229 .page_shift = 34, /* 16G */
1230 .slb_enc = SLB_VSID_16G,
1231 .enc = { { .page_shift = 34, .pte_enc = 0x3 }, },