2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/error-report.h"
25 #include "sysemu/hw_accel.h"
27 #include "mmu-hash64.h"
30 #include "mmu-book3s-v3.h"
35 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
37 # define LOG_SLB(...) do { } while (0)
44 static ppc_slb_t
*slb_lookup(PowerPCCPU
*cpu
, target_ulong eaddr
)
46 CPUPPCState
*env
= &cpu
->env
;
47 uint64_t esid_256M
, esid_1T
;
50 LOG_SLB("%s: eaddr " TARGET_FMT_lx
"\n", __func__
, eaddr
);
52 esid_256M
= (eaddr
& SEGMENT_MASK_256M
) | SLB_ESID_V
;
53 esid_1T
= (eaddr
& SEGMENT_MASK_1T
) | SLB_ESID_V
;
55 for (n
= 0; n
< cpu
->hash64_opts
->slb_size
; n
++) {
56 ppc_slb_t
*slb
= &env
->slb
[n
];
58 LOG_SLB("%s: slot %d %016" PRIx64
" %016"
59 PRIx64
"\n", __func__
, n
, slb
->esid
, slb
->vsid
);
60 /* We check for 1T matches on all MMUs here - if the MMU
61 * doesn't have 1T segment support, we will have prevented 1T
62 * entries from being inserted in the slbmte code. */
63 if (((slb
->esid
== esid_256M
) &&
64 ((slb
->vsid
& SLB_VSID_B
) == SLB_VSID_B_256M
))
65 || ((slb
->esid
== esid_1T
) &&
66 ((slb
->vsid
& SLB_VSID_B
) == SLB_VSID_B_1T
))) {
74 void dump_slb(FILE *f
, fprintf_function cpu_fprintf
, PowerPCCPU
*cpu
)
76 CPUPPCState
*env
= &cpu
->env
;
80 cpu_synchronize_state(CPU(cpu
));
82 cpu_fprintf(f
, "SLB\tESID\t\t\tVSID\n");
83 for (i
= 0; i
< cpu
->hash64_opts
->slb_size
; i
++) {
84 slbe
= env
->slb
[i
].esid
;
85 slbv
= env
->slb
[i
].vsid
;
86 if (slbe
== 0 && slbv
== 0) {
89 cpu_fprintf(f
, "%d\t0x%016" PRIx64
"\t0x%016" PRIx64
"\n",
94 void helper_slbia(CPUPPCState
*env
)
96 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
99 /* XXX: Warning: slbia never invalidates the first segment */
100 for (n
= 1; n
< cpu
->hash64_opts
->slb_size
; n
++) {
101 ppc_slb_t
*slb
= &env
->slb
[n
];
103 if (slb
->esid
& SLB_ESID_V
) {
104 slb
->esid
&= ~SLB_ESID_V
;
105 /* XXX: given the fact that segment size is 256 MB or 1TB,
106 * and we still don't have a tlb_flush_mask(env, n, mask)
107 * in QEMU, we just invalidate all TLBs
109 env
->tlb_need_flush
|= TLB_NEED_LOCAL_FLUSH
;
114 static void __helper_slbie(CPUPPCState
*env
, target_ulong addr
,
117 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
120 slb
= slb_lookup(cpu
, addr
);
125 if (slb
->esid
& SLB_ESID_V
) {
126 slb
->esid
&= ~SLB_ESID_V
;
128 /* XXX: given the fact that segment size is 256 MB or 1TB,
129 * and we still don't have a tlb_flush_mask(env, n, mask)
130 * in QEMU, we just invalidate all TLBs
132 env
->tlb_need_flush
|=
133 (global
== false ? TLB_NEED_LOCAL_FLUSH
: TLB_NEED_GLOBAL_FLUSH
);
137 void helper_slbie(CPUPPCState
*env
, target_ulong addr
)
139 __helper_slbie(env
, addr
, false);
142 void helper_slbieg(CPUPPCState
*env
, target_ulong addr
)
144 __helper_slbie(env
, addr
, true);
147 int ppc_store_slb(PowerPCCPU
*cpu
, target_ulong slot
,
148 target_ulong esid
, target_ulong vsid
)
150 CPUPPCState
*env
= &cpu
->env
;
151 ppc_slb_t
*slb
= &env
->slb
[slot
];
152 const PPCHash64SegmentPageSizes
*sps
= NULL
;
155 if (slot
>= cpu
->hash64_opts
->slb_size
) {
156 return -1; /* Bad slot number */
158 if (esid
& ~(SLB_ESID_ESID
| SLB_ESID_V
)) {
159 return -1; /* Reserved bits set */
161 if (vsid
& (SLB_VSID_B
& ~SLB_VSID_B_1T
)) {
162 return -1; /* Bad segment size */
164 if ((vsid
& SLB_VSID_B
) && !(ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
))) {
165 return -1; /* 1T segment on MMU that doesn't support it */
168 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
169 const PPCHash64SegmentPageSizes
*sps1
= &cpu
->hash64_opts
->sps
[i
];
171 if (!sps1
->page_shift
) {
175 if ((vsid
& SLB_VSID_LLP_MASK
) == sps1
->slb_enc
) {
182 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
183 " esid 0x"TARGET_FMT_lx
" vsid 0x"TARGET_FMT_lx
,
192 LOG_SLB("%s: " TARGET_FMT_lu
" " TARGET_FMT_lx
" - " TARGET_FMT_lx
193 " => %016" PRIx64
" %016" PRIx64
"\n", __func__
, slot
, esid
, vsid
,
194 slb
->esid
, slb
->vsid
);
199 static int ppc_load_slb_esid(PowerPCCPU
*cpu
, target_ulong rb
,
202 CPUPPCState
*env
= &cpu
->env
;
203 int slot
= rb
& 0xfff;
204 ppc_slb_t
*slb
= &env
->slb
[slot
];
206 if (slot
>= cpu
->hash64_opts
->slb_size
) {
214 static int ppc_load_slb_vsid(PowerPCCPU
*cpu
, target_ulong rb
,
217 CPUPPCState
*env
= &cpu
->env
;
218 int slot
= rb
& 0xfff;
219 ppc_slb_t
*slb
= &env
->slb
[slot
];
221 if (slot
>= cpu
->hash64_opts
->slb_size
) {
229 static int ppc_find_slb_vsid(PowerPCCPU
*cpu
, target_ulong rb
,
232 CPUPPCState
*env
= &cpu
->env
;
235 if (!msr_is_64bit(env
, env
->msr
)) {
238 slb
= slb_lookup(cpu
, rb
);
240 *rt
= (target_ulong
)-1ul;
247 void helper_store_slb(CPUPPCState
*env
, target_ulong rb
, target_ulong rs
)
249 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
251 if (ppc_store_slb(cpu
, rb
& 0xfff, rb
& ~0xfffULL
, rs
) < 0) {
252 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
253 POWERPC_EXCP_INVAL
, GETPC());
257 target_ulong
helper_load_slb_esid(CPUPPCState
*env
, target_ulong rb
)
259 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
262 if (ppc_load_slb_esid(cpu
, rb
, &rt
) < 0) {
263 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
264 POWERPC_EXCP_INVAL
, GETPC());
269 target_ulong
helper_find_slb_vsid(CPUPPCState
*env
, target_ulong rb
)
271 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
274 if (ppc_find_slb_vsid(cpu
, rb
, &rt
) < 0) {
275 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
276 POWERPC_EXCP_INVAL
, GETPC());
281 target_ulong
helper_load_slb_vsid(CPUPPCState
*env
, target_ulong rb
)
283 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
286 if (ppc_load_slb_vsid(cpu
, rb
, &rt
) < 0) {
287 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
288 POWERPC_EXCP_INVAL
, GETPC());
293 /* Check No-Execute or Guarded Storage */
294 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU
*cpu
,
295 ppc_hash_pte64_t pte
)
297 /* Exec permissions CANNOT take away read or write permissions */
298 return (pte
.pte1
& HPTE64_R_N
) || (pte
.pte1
& HPTE64_R_G
) ?
299 PAGE_READ
| PAGE_WRITE
: PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
302 /* Check Basic Storage Protection */
303 static int ppc_hash64_pte_prot(PowerPCCPU
*cpu
,
304 ppc_slb_t
*slb
, ppc_hash_pte64_t pte
)
306 CPUPPCState
*env
= &cpu
->env
;
308 /* Some pp bit combinations have undefined behaviour, so default
309 * to no access in those cases */
312 key
= !!(msr_pr
? (slb
->vsid
& SLB_VSID_KP
)
313 : (slb
->vsid
& SLB_VSID_KS
));
314 pp
= (pte
.pte1
& HPTE64_R_PP
) | ((pte
.pte1
& HPTE64_R_PP0
) >> 61);
321 prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
326 prot
= PAGE_READ
| PAGE_EXEC
;
337 prot
= PAGE_READ
| PAGE_EXEC
;
341 prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
349 /* Check the instruction access permissions specified in the IAMR */
350 static int ppc_hash64_iamr_prot(PowerPCCPU
*cpu
, int key
)
352 CPUPPCState
*env
= &cpu
->env
;
353 int iamr_bits
= (env
->spr
[SPR_IAMR
] >> 2 * (31 - key
)) & 0x3;
356 * An instruction fetch is permitted if the IAMR bit is 0.
357 * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
358 * can only take away EXEC permissions not READ or WRITE permissions.
359 * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
360 * EXEC permissions are allowed.
362 return (iamr_bits
& 0x1) ? PAGE_READ
| PAGE_WRITE
:
363 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
366 static int ppc_hash64_amr_prot(PowerPCCPU
*cpu
, ppc_hash_pte64_t pte
)
368 CPUPPCState
*env
= &cpu
->env
;
370 int prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
372 /* Only recent MMUs implement Virtual Page Class Key Protection */
373 if (!ppc_hash64_has(cpu
, PPC_HASH64_AMR
)) {
377 key
= HPTE64_R_KEY(pte
.pte1
);
378 amrbits
= (env
->spr
[SPR_AMR
] >> 2*(31 - key
)) & 0x3;
380 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
381 /* env->spr[SPR_AMR]); */
384 * A store is permitted if the AMR bit is 0. Remove write
385 * protection if it is set.
391 * A load is permitted if the AMR bit is 0. Remove read
392 * protection if it is set.
398 switch (env
->mmu_model
) {
400 * MMU version 2.07 and later support IAMR
401 * Check if the IAMR allows the instruction access - it will return
402 * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
403 * if it does (and prot will be unchanged indicating execution support).
405 case POWERPC_MMU_2_07
:
406 case POWERPC_MMU_3_00
:
407 prot
&= ppc_hash64_iamr_prot(cpu
, key
);
416 const ppc_hash_pte64_t
*ppc_hash64_map_hptes(PowerPCCPU
*cpu
,
419 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
420 hwaddr base
= ppc_hash64_hpt_base(cpu
);
421 hwaddr plen
= n
* HASH_PTE_SIZE_64
;
422 const ppc_hash_pte64_t
*hptes
;
425 PPCVirtualHypervisorClass
*vhc
=
426 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu
->vhyp
);
427 return vhc
->map_hptes(cpu
->vhyp
, ptex
, n
);
434 hptes
= address_space_map(CPU(cpu
)->as
, base
+ pte_offset
, &plen
, false,
435 MEMTXATTRS_UNSPECIFIED
);
436 if (plen
< (n
* HASH_PTE_SIZE_64
)) {
437 hw_error("%s: Unable to map all requested HPTEs\n", __func__
);
442 void ppc_hash64_unmap_hptes(PowerPCCPU
*cpu
, const ppc_hash_pte64_t
*hptes
,
446 PPCVirtualHypervisorClass
*vhc
=
447 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu
->vhyp
);
448 vhc
->unmap_hptes(cpu
->vhyp
, hptes
, ptex
, n
);
452 address_space_unmap(CPU(cpu
)->as
, (void *)hptes
, n
* HASH_PTE_SIZE_64
,
453 false, n
* HASH_PTE_SIZE_64
);
456 static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes
*sps
,
457 uint64_t pte0
, uint64_t pte1
)
461 if (!(pte0
& HPTE64_V_LARGE
)) {
462 if (sps
->page_shift
!= 12) {
463 /* 4kiB page in a non 4kiB segment */
466 /* Normal 4kiB page */
470 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
471 const PPCHash64PageSize
*ps
= &sps
->enc
[i
];
474 if (!ps
->page_shift
) {
478 if (ps
->page_shift
== 12) {
479 /* L bit is set so this can't be a 4kiB page */
483 mask
= ((1ULL << ps
->page_shift
) - 1) & HPTE64_R_RPN
;
485 if ((pte1
& mask
) == ((uint64_t)ps
->pte_enc
<< HPTE64_R_RPN_SHIFT
)) {
486 return ps
->page_shift
;
490 return 0; /* Bad page size encoding */
493 static void ppc64_v3_new_to_old_hpte(target_ulong
*pte0
, target_ulong
*pte1
)
495 /* Insert B into pte0 */
496 *pte0
= (*pte0
& HPTE64_V_COMMON_BITS
) |
497 ((*pte1
& HPTE64_R_3_0_SSIZE_MASK
) <<
498 (HPTE64_V_SSIZE_SHIFT
- HPTE64_R_3_0_SSIZE_SHIFT
));
500 /* Remove B from pte1 */
501 *pte1
= *pte1
& ~HPTE64_R_3_0_SSIZE_MASK
;
505 static hwaddr
ppc_hash64_pteg_search(PowerPCCPU
*cpu
, hwaddr hash
,
506 const PPCHash64SegmentPageSizes
*sps
,
508 ppc_hash_pte64_t
*pte
, unsigned *pshift
)
511 const ppc_hash_pte64_t
*pteg
;
512 target_ulong pte0
, pte1
;
515 ptex
= (hash
& ppc_hash64_hpt_mask(cpu
)) * HPTES_PER_GROUP
;
516 pteg
= ppc_hash64_map_hptes(cpu
, ptex
, HPTES_PER_GROUP
);
520 for (i
= 0; i
< HPTES_PER_GROUP
; i
++) {
521 pte0
= ppc_hash64_hpte0(cpu
, pteg
, i
);
523 * pte0 contains the valid bit and must be read before pte1,
524 * otherwise we might see an old pte1 with a new valid bit and
525 * thus an inconsistent hpte value
528 pte1
= ppc_hash64_hpte1(cpu
, pteg
, i
);
530 /* Convert format if necessary */
531 if (cpu
->env
.mmu_model
== POWERPC_MMU_3_00
&& !cpu
->vhyp
) {
532 ppc64_v3_new_to_old_hpte(&pte0
, &pte1
);
535 /* This compares V, B, H (secondary) and the AVPN */
536 if (HPTE64_V_COMPARE(pte0
, ptem
)) {
537 *pshift
= hpte_page_shift(sps
, pte0
, pte1
);
539 * If there is no match, ignore the PTE, it could simply
540 * be for a different segment size encoding and the
541 * architecture specifies we should not match. Linux will
542 * potentially leave behind PTEs for the wrong base page
543 * size when demoting segments.
548 /* We don't do anything with pshift yet as qemu TLB only deals
549 * with 4K pages anyway
553 ppc_hash64_unmap_hptes(cpu
, pteg
, ptex
, HPTES_PER_GROUP
);
557 ppc_hash64_unmap_hptes(cpu
, pteg
, ptex
, HPTES_PER_GROUP
);
559 * We didn't find a valid entry.
564 static hwaddr
ppc_hash64_htab_lookup(PowerPCCPU
*cpu
,
565 ppc_slb_t
*slb
, target_ulong eaddr
,
566 ppc_hash_pte64_t
*pte
, unsigned *pshift
)
568 CPUPPCState
*env
= &cpu
->env
;
570 uint64_t vsid
, epnmask
, epn
, ptem
;
571 const PPCHash64SegmentPageSizes
*sps
= slb
->sps
;
573 /* The SLB store path should prevent any bad page size encodings
574 * getting in there, so: */
577 /* If ISL is set in LPCR we need to clamp the page size to 4K */
578 if (env
->spr
[SPR_LPCR
] & LPCR_ISL
) {
579 /* We assume that when using TCG, 4k is first entry of SPS */
580 sps
= &cpu
->hash64_opts
->sps
[0];
581 assert(sps
->page_shift
== 12);
584 epnmask
= ~((1ULL << sps
->page_shift
) - 1);
586 if (slb
->vsid
& SLB_VSID_B
) {
588 vsid
= (slb
->vsid
& SLB_VSID_VSID
) >> SLB_VSID_SHIFT_1T
;
589 epn
= (eaddr
& ~SEGMENT_MASK_1T
) & epnmask
;
590 hash
= vsid
^ (vsid
<< 25) ^ (epn
>> sps
->page_shift
);
593 vsid
= (slb
->vsid
& SLB_VSID_VSID
) >> SLB_VSID_SHIFT
;
594 epn
= (eaddr
& ~SEGMENT_MASK_256M
) & epnmask
;
595 hash
= vsid
^ (epn
>> sps
->page_shift
);
597 ptem
= (slb
->vsid
& SLB_VSID_PTEM
) | ((epn
>> 16) & HPTE64_V_AVPN
);
598 ptem
|= HPTE64_V_VALID
;
600 /* Page address translation */
601 qemu_log_mask(CPU_LOG_MMU
,
602 "htab_base " TARGET_FMT_plx
" htab_mask " TARGET_FMT_plx
603 " hash " TARGET_FMT_plx
"\n",
604 ppc_hash64_hpt_base(cpu
), ppc_hash64_hpt_mask(cpu
), hash
);
606 /* Primary PTEG lookup */
607 qemu_log_mask(CPU_LOG_MMU
,
608 "0 htab=" TARGET_FMT_plx
"/" TARGET_FMT_plx
609 " vsid=" TARGET_FMT_lx
" ptem=" TARGET_FMT_lx
610 " hash=" TARGET_FMT_plx
"\n",
611 ppc_hash64_hpt_base(cpu
), ppc_hash64_hpt_mask(cpu
),
613 ptex
= ppc_hash64_pteg_search(cpu
, hash
, sps
, ptem
, pte
, pshift
);
616 /* Secondary PTEG lookup */
617 ptem
|= HPTE64_V_SECONDARY
;
618 qemu_log_mask(CPU_LOG_MMU
,
619 "1 htab=" TARGET_FMT_plx
"/" TARGET_FMT_plx
620 " vsid=" TARGET_FMT_lx
" api=" TARGET_FMT_lx
621 " hash=" TARGET_FMT_plx
"\n", ppc_hash64_hpt_base(cpu
),
622 ppc_hash64_hpt_mask(cpu
), vsid
, ptem
, ~hash
);
624 ptex
= ppc_hash64_pteg_search(cpu
, ~hash
, sps
, ptem
, pte
, pshift
);
630 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU
*cpu
,
631 uint64_t pte0
, uint64_t pte1
)
635 if (!(pte0
& HPTE64_V_LARGE
)) {
640 * The encodings in env->sps need to be carefully chosen so that
641 * this gives an unambiguous result.
643 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
644 const PPCHash64SegmentPageSizes
*sps
= &cpu
->hash64_opts
->sps
[i
];
647 if (!sps
->page_shift
) {
651 shift
= hpte_page_shift(sps
, pte0
, pte1
);
660 static void ppc_hash64_set_isi(CPUState
*cs
, uint64_t error_code
)
662 CPUPPCState
*env
= &POWERPC_CPU(cs
)->env
;
666 vpm
= !!(env
->spr
[SPR_LPCR
] & LPCR_VPM1
);
668 switch (env
->mmu_model
) {
669 case POWERPC_MMU_3_00
:
670 /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
674 vpm
= !!(env
->spr
[SPR_LPCR
] & LPCR_VPM0
);
678 if (vpm
&& !msr_hv
) {
679 cs
->exception_index
= POWERPC_EXCP_HISI
;
681 cs
->exception_index
= POWERPC_EXCP_ISI
;
683 env
->error_code
= error_code
;
686 static void ppc_hash64_set_dsi(CPUState
*cs
, uint64_t dar
, uint64_t dsisr
)
688 CPUPPCState
*env
= &POWERPC_CPU(cs
)->env
;
692 vpm
= !!(env
->spr
[SPR_LPCR
] & LPCR_VPM1
);
694 switch (env
->mmu_model
) {
695 case POWERPC_MMU_3_00
:
696 /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
700 vpm
= !!(env
->spr
[SPR_LPCR
] & LPCR_VPM0
);
704 if (vpm
&& !msr_hv
) {
705 cs
->exception_index
= POWERPC_EXCP_HDSI
;
706 env
->spr
[SPR_HDAR
] = dar
;
707 env
->spr
[SPR_HDSISR
] = dsisr
;
709 cs
->exception_index
= POWERPC_EXCP_DSI
;
710 env
->spr
[SPR_DAR
] = dar
;
711 env
->spr
[SPR_DSISR
] = dsisr
;
717 int ppc_hash64_handle_mmu_fault(PowerPCCPU
*cpu
, vaddr eaddr
,
718 int rwx
, int mmu_idx
)
720 CPUState
*cs
= CPU(cpu
);
721 CPUPPCState
*env
= &cpu
->env
;
725 ppc_hash_pte64_t pte
;
726 int exec_prot
, pp_prot
, amr_prot
, prot
;
728 const int need_prot
[] = {PAGE_READ
, PAGE_WRITE
, PAGE_EXEC
};
731 assert((rwx
== 0) || (rwx
== 1) || (rwx
== 2));
733 /* Note on LPCR usage: 970 uses HID4, but our special variant
734 * of store_spr copies relevant fields into env->spr[SPR_LPCR].
735 * Similarily we filter unimplemented bits when storing into
736 * LPCR depending on the MMU version. This code can thus just
737 * use the LPCR "as-is".
740 /* 1. Handle real mode accesses */
741 if (((rwx
== 2) && (msr_ir
== 0)) || ((rwx
!= 2) && (msr_dr
== 0))) {
742 /* Translation is supposedly "off" */
743 /* In real mode the top 4 effective address bits are (mostly) ignored */
744 raddr
= eaddr
& 0x0FFFFFFFFFFFFFFFULL
;
746 /* In HV mode, add HRMOR if top EA bit is clear */
747 if (msr_hv
|| !env
->has_hv_mode
) {
748 if (!(eaddr
>> 63)) {
749 raddr
|= env
->spr
[SPR_HRMOR
];
752 /* Otherwise, check VPM for RMA vs VRMA */
753 if (env
->spr
[SPR_LPCR
] & LPCR_VPM0
) {
754 slb
= &env
->vrma_slb
;
756 goto skip_slb_search
;
758 /* Not much else to do here */
759 cs
->exception_index
= POWERPC_EXCP_MCHECK
;
762 } else if (raddr
< env
->rmls
) {
763 /* RMA. Check bounds in RMLS */
764 raddr
|= env
->spr
[SPR_RMOR
];
766 /* The access failed, generate the approriate interrupt */
768 ppc_hash64_set_isi(cs
, SRR1_PROTFAULT
);
770 int dsisr
= DSISR_PROTFAULT
;
772 dsisr
|= DSISR_ISSTORE
;
774 ppc_hash64_set_dsi(cs
, eaddr
, dsisr
);
779 tlb_set_page(cs
, eaddr
& TARGET_PAGE_MASK
, raddr
& TARGET_PAGE_MASK
,
780 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
, mmu_idx
,
785 /* 2. Translation is on, so look up the SLB */
786 slb
= slb_lookup(cpu
, eaddr
);
788 /* No entry found, check if in-memory segment tables are in use */
789 if (ppc64_use_proc_tbl(cpu
)) {
790 /* TODO - Unsupported */
791 error_report("Segment Table Support Unimplemented");
794 /* Segment still not found, generate the appropriate interrupt */
796 cs
->exception_index
= POWERPC_EXCP_ISEG
;
799 cs
->exception_index
= POWERPC_EXCP_DSEG
;
801 env
->spr
[SPR_DAR
] = eaddr
;
808 /* 3. Check for segment level no-execute violation */
809 if ((rwx
== 2) && (slb
->vsid
& SLB_VSID_N
)) {
810 ppc_hash64_set_isi(cs
, SRR1_NOEXEC_GUARD
);
814 /* 4. Locate the PTE in the hash table */
815 ptex
= ppc_hash64_htab_lookup(cpu
, slb
, eaddr
, &pte
, &apshift
);
818 ppc_hash64_set_isi(cs
, SRR1_NOPTE
);
820 int dsisr
= DSISR_NOPTE
;
822 dsisr
|= DSISR_ISSTORE
;
824 ppc_hash64_set_dsi(cs
, eaddr
, dsisr
);
828 qemu_log_mask(CPU_LOG_MMU
,
829 "found PTE at index %08" HWADDR_PRIx
"\n", ptex
);
831 /* 5. Check access permissions */
833 exec_prot
= ppc_hash64_pte_noexec_guard(cpu
, pte
);
834 pp_prot
= ppc_hash64_pte_prot(cpu
, slb
, pte
);
835 amr_prot
= ppc_hash64_amr_prot(cpu
, pte
);
836 prot
= exec_prot
& pp_prot
& amr_prot
;
838 if ((need_prot
[rwx
] & ~prot
) != 0) {
839 /* Access right violation */
840 qemu_log_mask(CPU_LOG_MMU
, "PTE access rejected\n");
843 if (PAGE_EXEC
& ~exec_prot
) {
844 srr1
|= SRR1_NOEXEC_GUARD
; /* Access violates noexec or guard */
845 } else if (PAGE_EXEC
& ~pp_prot
) {
846 srr1
|= SRR1_PROTFAULT
; /* Access violates access authority */
848 if (PAGE_EXEC
& ~amr_prot
) {
849 srr1
|= SRR1_IAMR
; /* Access violates virt pg class key prot */
851 ppc_hash64_set_isi(cs
, srr1
);
854 if (need_prot
[rwx
] & ~pp_prot
) {
855 dsisr
|= DSISR_PROTFAULT
;
858 dsisr
|= DSISR_ISSTORE
;
860 if (need_prot
[rwx
] & ~amr_prot
) {
863 ppc_hash64_set_dsi(cs
, eaddr
, dsisr
);
868 qemu_log_mask(CPU_LOG_MMU
, "PTE access granted !\n");
870 /* 6. Update PTE referenced and changed bits if necessary */
872 new_pte1
= pte
.pte1
| HPTE64_R_R
; /* set referenced bit */
874 new_pte1
|= HPTE64_R_C
; /* set changed (dirty) bit */
876 /* Treat the page as read-only for now, so that a later write
877 * will pass through this function again to set the C bit */
881 if (new_pte1
!= pte
.pte1
) {
882 ppc_hash64_store_hpte(cpu
, ptex
, pte
.pte0
, new_pte1
);
885 /* 7. Determine the real address from the PTE */
887 raddr
= deposit64(pte
.pte1
& HPTE64_R_RPN
, 0, apshift
, eaddr
);
889 tlb_set_page(cs
, eaddr
& TARGET_PAGE_MASK
, raddr
& TARGET_PAGE_MASK
,
890 prot
, mmu_idx
, 1ULL << apshift
);
895 hwaddr
ppc_hash64_get_phys_page_debug(PowerPCCPU
*cpu
, target_ulong addr
)
897 CPUPPCState
*env
= &cpu
->env
;
900 ppc_hash_pte64_t pte
;
903 /* Handle real mode */
905 /* In real mode the top 4 effective address bits are ignored */
906 raddr
= addr
& 0x0FFFFFFFFFFFFFFFULL
;
908 /* In HV mode, add HRMOR if top EA bit is clear */
909 if ((msr_hv
|| !env
->has_hv_mode
) && !(addr
>> 63)) {
910 return raddr
| env
->spr
[SPR_HRMOR
];
913 /* Otherwise, check VPM for RMA vs VRMA */
914 if (env
->spr
[SPR_LPCR
] & LPCR_VPM0
) {
915 slb
= &env
->vrma_slb
;
919 } else if (raddr
< env
->rmls
) {
920 /* RMA. Check bounds in RMLS */
921 return raddr
| env
->spr
[SPR_RMOR
];
926 slb
= slb_lookup(cpu
, addr
);
932 ptex
= ppc_hash64_htab_lookup(cpu
, slb
, addr
, &pte
, &apshift
);
937 return deposit64(pte
.pte1
& HPTE64_R_RPN
, 0, apshift
, addr
)
941 void ppc_hash64_store_hpte(PowerPCCPU
*cpu
, hwaddr ptex
,
942 uint64_t pte0
, uint64_t pte1
)
944 hwaddr base
= ppc_hash64_hpt_base(cpu
);
945 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
948 PPCVirtualHypervisorClass
*vhc
=
949 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu
->vhyp
);
950 vhc
->store_hpte(cpu
->vhyp
, ptex
, pte0
, pte1
);
954 stq_phys(CPU(cpu
)->as
, base
+ offset
, pte0
);
955 stq_phys(CPU(cpu
)->as
, base
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
958 void ppc_hash64_tlb_flush_hpte(PowerPCCPU
*cpu
, target_ulong ptex
,
959 target_ulong pte0
, target_ulong pte1
)
962 * XXX: given the fact that there are too many segments to
963 * invalidate, and we still don't have a tlb_flush_mask(env, n,
964 * mask) in QEMU, we just invalidate all TLBs
966 cpu
->env
.tlb_need_flush
= TLB_NEED_GLOBAL_FLUSH
| TLB_NEED_LOCAL_FLUSH
;
969 static void ppc_hash64_update_rmls(PowerPCCPU
*cpu
)
971 CPUPPCState
*env
= &cpu
->env
;
972 uint64_t lpcr
= env
->spr
[SPR_LPCR
];
975 * This is the full 4 bits encoding of POWER8. Previous
976 * CPUs only support a subset of these but the filtering
977 * is done when writing LPCR
979 switch ((lpcr
& LPCR_RMLS
) >> LPCR_RMLS_SHIFT
) {
981 env
->rmls
= 0x2000000ull
;
984 env
->rmls
= 0x4000000ull
;
986 case 0x7: /* 128MB */
987 env
->rmls
= 0x8000000ull
;
989 case 0x4: /* 256MB */
990 env
->rmls
= 0x10000000ull
;
993 env
->rmls
= 0x40000000ull
;
996 env
->rmls
= 0x400000000ull
;
999 /* What to do here ??? */
1004 static void ppc_hash64_update_vrma(PowerPCCPU
*cpu
)
1006 CPUPPCState
*env
= &cpu
->env
;
1007 const PPCHash64SegmentPageSizes
*sps
= NULL
;
1008 target_ulong esid
, vsid
, lpcr
;
1009 ppc_slb_t
*slb
= &env
->vrma_slb
;
1013 /* First clear it */
1014 slb
->esid
= slb
->vsid
= 0;
1017 /* Is VRMA enabled ? */
1018 lpcr
= env
->spr
[SPR_LPCR
];
1019 if (!(lpcr
& LPCR_VPM0
)) {
1023 /* Make one up. Mostly ignore the ESID which will not be
1024 * needed for translation
1026 vsid
= SLB_VSID_VRMA
;
1027 vrmasd
= (lpcr
& LPCR_VRMASD
) >> LPCR_VRMASD_SHIFT
;
1028 vsid
|= (vrmasd
<< 4) & (SLB_VSID_L
| SLB_VSID_LP
);
1031 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
1032 const PPCHash64SegmentPageSizes
*sps1
= &cpu
->hash64_opts
->sps
[i
];
1034 if (!sps1
->page_shift
) {
1038 if ((vsid
& SLB_VSID_LLP_MASK
) == sps1
->slb_enc
) {
1045 error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
1046 " vsid 0x"TARGET_FMT_lx
, esid
, vsid
);
1055 void ppc_store_lpcr(PowerPCCPU
*cpu
, target_ulong val
)
1057 CPUPPCState
*env
= &cpu
->env
;
1060 /* Filter out bits */
1061 switch (env
->mmu_model
) {
1062 case POWERPC_MMU_64B
: /* 970 */
1066 if (val
& 0x8000000000000000ull
) {
1070 lpcr
|= (0x4ull
<< LPCR_RMLS_SHIFT
);
1072 if (val
& 0x4000000000000000ull
) {
1073 lpcr
|= (0x2ull
<< LPCR_RMLS_SHIFT
);
1075 if (val
& 0x2000000000000000ull
) {
1076 lpcr
|= (0x1ull
<< LPCR_RMLS_SHIFT
);
1078 env
->spr
[SPR_RMOR
] = ((lpcr
>> 41) & 0xffffull
) << 26;
1080 /* XXX We could also write LPID from HID4 here
1081 * but since we don't tag any translation on it
1082 * it doesn't actually matter
1084 /* XXX For proper emulation of 970 we also need
1085 * to dig HRMOR out of HID5
1088 case POWERPC_MMU_2_03
: /* P5p */
1089 lpcr
= val
& (LPCR_RMLS
| LPCR_ILE
|
1090 LPCR_LPES0
| LPCR_LPES1
|
1091 LPCR_RMI
| LPCR_HDICE
);
1093 case POWERPC_MMU_2_06
: /* P7 */
1094 lpcr
= val
& (LPCR_VPM0
| LPCR_VPM1
| LPCR_ISL
| LPCR_DPFD
|
1095 LPCR_VRMASD
| LPCR_RMLS
| LPCR_ILE
|
1096 LPCR_P7_PECE0
| LPCR_P7_PECE1
| LPCR_P7_PECE2
|
1097 LPCR_MER
| LPCR_TC
|
1098 LPCR_LPES0
| LPCR_LPES1
| LPCR_HDICE
);
1100 case POWERPC_MMU_2_07
: /* P8 */
1101 lpcr
= val
& (LPCR_VPM0
| LPCR_VPM1
| LPCR_ISL
| LPCR_KBV
|
1102 LPCR_DPFD
| LPCR_VRMASD
| LPCR_RMLS
| LPCR_ILE
|
1103 LPCR_AIL
| LPCR_ONL
| LPCR_P8_PECE0
| LPCR_P8_PECE1
|
1104 LPCR_P8_PECE2
| LPCR_P8_PECE3
| LPCR_P8_PECE4
|
1105 LPCR_MER
| LPCR_TC
| LPCR_LPES0
| LPCR_HDICE
);
1107 case POWERPC_MMU_3_00
: /* P9 */
1108 lpcr
= val
& (LPCR_VPM1
| LPCR_ISL
| LPCR_KBV
| LPCR_DPFD
|
1109 (LPCR_PECE_U_MASK
& LPCR_HVEE
) | LPCR_ILE
| LPCR_AIL
|
1110 LPCR_UPRT
| LPCR_EVIRT
| LPCR_ONL
| LPCR_HR
|
1111 (LPCR_PECE_L_MASK
& (LPCR_PDEE
| LPCR_HDEE
| LPCR_EEE
|
1112 LPCR_DEE
| LPCR_OEE
)) | LPCR_MER
| LPCR_GTSE
| LPCR_TC
|
1113 LPCR_HEIC
| LPCR_LPES0
| LPCR_HVICE
| LPCR_HDICE
);
1115 * If we have a virtual hypervisor, we need to bring back RMLS. It
1116 * doesn't exist on an actual P9 but that's all we know how to
1117 * configure with softmmu at the moment
1120 lpcr
|= (val
& LPCR_RMLS
);
1126 env
->spr
[SPR_LPCR
] = lpcr
;
1127 ppc_hash64_update_rmls(cpu
);
1128 ppc_hash64_update_vrma(cpu
);
1131 void helper_store_lpcr(CPUPPCState
*env
, target_ulong val
)
1133 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
1135 ppc_store_lpcr(cpu
, val
);
1138 void ppc_hash64_init(PowerPCCPU
*cpu
)
1140 CPUPPCState
*env
= &cpu
->env
;
1141 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
1143 if (!pcc
->hash64_opts
) {
1144 assert(!(env
->mmu_model
& POWERPC_MMU_64
));
1148 cpu
->hash64_opts
= g_memdup(pcc
->hash64_opts
, sizeof(*cpu
->hash64_opts
));
1151 void ppc_hash64_finalize(PowerPCCPU
*cpu
)
1153 g_free(cpu
->hash64_opts
);
1156 const PPCHash64Options ppc_hash64_opts_basic
= {
1160 { .page_shift
= 12, /* 4K */
1162 .enc
= { { .page_shift
= 12, .pte_enc
= 0 } }
1164 { .page_shift
= 24, /* 16M */
1166 .enc
= { { .page_shift
= 24, .pte_enc
= 0 } }
1171 const PPCHash64Options ppc_hash64_opts_POWER7
= {
1172 .flags
= PPC_HASH64_1TSEG
| PPC_HASH64_AMR
| PPC_HASH64_CI_LARGEPAGE
,
1176 .page_shift
= 12, /* 4K */
1178 .enc
= { { .page_shift
= 12, .pte_enc
= 0 },
1179 { .page_shift
= 16, .pte_enc
= 0x7 },
1180 { .page_shift
= 24, .pte_enc
= 0x38 }, },
1183 .page_shift
= 16, /* 64K */
1184 .slb_enc
= SLB_VSID_64K
,
1185 .enc
= { { .page_shift
= 16, .pte_enc
= 0x1 },
1186 { .page_shift
= 24, .pte_enc
= 0x8 }, },
1189 .page_shift
= 24, /* 16M */
1190 .slb_enc
= SLB_VSID_16M
,
1191 .enc
= { { .page_shift
= 24, .pte_enc
= 0 }, },
1194 .page_shift
= 34, /* 16G */
1195 .slb_enc
= SLB_VSID_16G
,
1196 .enc
= { { .page_shift
= 34, .pte_enc
= 0x3 }, },
1201 void ppc_hash64_filter_pagesizes(PowerPCCPU
*cpu
,
1202 bool (*cb
)(void *, uint32_t, uint32_t),
1205 PPCHash64Options
*opts
= cpu
->hash64_opts
;
1208 bool ci_largepage
= false;
1213 for (i
= 0; i
< ARRAY_SIZE(opts
->sps
); i
++) {
1214 PPCHash64SegmentPageSizes
*sps
= &opts
->sps
[i
];
1220 if (!sps
->page_shift
) {
1224 for (j
= 0; j
< ARRAY_SIZE(sps
->enc
); j
++) {
1225 PPCHash64PageSize
*ps
= &sps
->enc
[j
];
1228 if (!ps
->page_shift
) {
1232 if (cb(opaque
, sps
->page_shift
, ps
->page_shift
)) {
1233 if (ps
->page_shift
>= 16) {
1234 ci_largepage
= true;
1236 sps
->enc
[m
++] = *ps
;
1240 /* Clear rest of the row */
1241 for (j
= m
; j
< ARRAY_SIZE(sps
->enc
); j
++) {
1242 memset(&sps
->enc
[j
], 0, sizeof(sps
->enc
[j
]));
1250 /* Clear the rest of the table */
1251 for (i
= n
; i
< ARRAY_SIZE(opts
->sps
); i
++) {
1252 memset(&opts
->sps
[i
], 0, sizeof(opts
->sps
[i
]));
1255 if (!ci_largepage
) {
1256 opts
->flags
&= ~PPC_HASH64_CI_LARGEPAGE
;