pcie_aer: Convert pcie_aer_init to Error
[qemu/kevin.git] / hw / block / m25p80.c
blob4c5f8c3590aaad8bdc2854e5935ea47115b09bb5
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
31 #include "qemu/error-report.h"
32 #include "qapi/error.h"
34 #ifndef M25P80_ERR_DEBUG
35 #define M25P80_ERR_DEBUG 0
36 #endif
38 #define DB_PRINT_L(level, ...) do { \
39 if (M25P80_ERR_DEBUG > (level)) { \
40 fprintf(stderr, ": %s: ", __func__); \
41 fprintf(stderr, ## __VA_ARGS__); \
42 } \
43 } while (0);
45 /* Fields for FlashPartInfo->flags */
47 /* erase capabilities */
48 #define ER_4K 1
49 #define ER_32K 2
50 /* set to allow the page program command to write 0s back to 1. Useful for
51 * modelling EEPROM with SPI flash command set
53 #define EEPROM 0x100
55 /* 16 MiB max in 3 byte address mode */
56 #define MAX_3BYTES_SIZE 0x1000000
58 #define SPI_NOR_MAX_ID_LEN 6
60 typedef struct FlashPartInfo {
61 const char *part_name;
63 * This array stores the ID bytes.
64 * The first three bytes are the JEDIC ID.
65 * JEDEC ID zero means "no ID" (mostly older chips).
67 uint8_t id[SPI_NOR_MAX_ID_LEN];
68 uint8_t id_len;
69 /* there is confusion between manufacturers as to what a sector is. In this
70 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
71 * command (opcode 0xd8).
73 uint32_t sector_size;
74 uint32_t n_sectors;
75 uint32_t page_size;
76 uint16_t flags;
77 } FlashPartInfo;
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82 .part_name = _part_name,\
83 .id = {\
84 ((_jedec_id) >> 16) & 0xff,\
85 ((_jedec_id) >> 8) & 0xff,\
86 (_jedec_id) & 0xff,\
87 ((_ext_id) >> 8) & 0xff,\
88 (_ext_id) & 0xff,\
89 },\
90 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91 .sector_size = (_sector_size),\
92 .n_sectors = (_n_sectors),\
93 .page_size = 256,\
94 .flags = (_flags),
96 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
97 .part_name = _part_name,\
98 .id = {\
99 ((_jedec_id) >> 16) & 0xff,\
100 ((_jedec_id) >> 8) & 0xff,\
101 (_jedec_id) & 0xff,\
102 ((_ext_id) >> 16) & 0xff,\
103 ((_ext_id) >> 8) & 0xff,\
104 (_ext_id) & 0xff,\
106 .id_len = 6,\
107 .sector_size = (_sector_size),\
108 .n_sectors = (_n_sectors),\
109 .page_size = 256,\
110 .flags = (_flags),\
112 #define JEDEC_NUMONYX 0x20
113 #define JEDEC_WINBOND 0xEF
114 #define JEDEC_SPANSION 0x01
116 /* Numonyx (Micron) Configuration register macros */
117 #define VCFG_DUMMY 0x1
118 #define VCFG_WRAP_SEQUENTIAL 0x2
119 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
120 #define NVCFG_XIP_MODE_MASK (7 << 9)
121 #define VCFG_XIP_MODE_ENABLED (1 << 3)
122 #define CFG_DUMMY_CLK_LEN 4
123 #define NVCFG_DUMMY_CLK_POS 12
124 #define VCFG_DUMMY_CLK_POS 4
125 #define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
126 #define EVCFG_VPP_ACCELERATOR (1 << 3)
127 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
128 #define NVCFG_DUAL_IO_MASK (1 << 2)
129 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
130 #define NVCFG_QUAD_IO_MASK (1 << 3)
131 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
132 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
133 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
135 /* Numonyx (Micron) Flag Status Register macros */
136 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
137 #define FSR_FLASH_READY (1 << 7)
139 /* Spansion configuration registers macros. */
140 #define SPANSION_QUAD_CFG_POS 0
141 #define SPANSION_QUAD_CFG_LEN 1
142 #define SPANSION_DUMMY_CLK_POS 0
143 #define SPANSION_DUMMY_CLK_LEN 4
144 #define SPANSION_ADDR_LEN_POS 7
145 #define SPANSION_ADDR_LEN_LEN 1
148 * Spansion read mode command length in bytes,
149 * the mode is currently not supported.
152 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
153 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
155 static const FlashPartInfo known_devices[] = {
156 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
157 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
158 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
160 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
161 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
162 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
164 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
165 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
166 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
167 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
169 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
171 /* Atmel EEPROMS - it is assumed, that don't care bit in command
172 * is set to 0. Block protection is not supported.
174 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
175 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
177 /* EON -- en25xxx */
178 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
179 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
180 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
181 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
182 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
184 /* GigaDevice */
185 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
186 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
188 /* Intel/Numonyx -- xxxs33b */
189 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
190 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
191 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
192 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
194 /* Macronix */
195 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
196 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
197 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
198 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
199 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
200 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
201 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
202 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
203 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
204 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
205 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
206 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
207 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
209 /* Micron */
210 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
211 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
212 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
213 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
214 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
215 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
216 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
217 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
218 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
219 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
220 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
221 { INFO("mt25ql01g", 0x20ba21, 0, 64 << 10, 2048, ER_4K) },
222 { INFO("mt25qu01g", 0x20bb21, 0, 64 << 10, 2048, ER_4K) },
224 /* Spansion -- single (large) sector size only, at least
225 * for the chips listed here (without boot sectors).
227 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
228 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
229 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
230 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
231 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
232 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
233 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
234 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
235 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
236 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
237 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
238 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
239 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
240 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
241 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
242 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
243 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
245 /* Spansion -- boot sectors support */
246 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
247 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
249 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
250 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
251 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
252 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
253 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
254 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
255 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
256 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
257 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
258 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
260 /* ST Microelectronics -- newer production may have feature updates */
261 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
262 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
263 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
264 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
265 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
266 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
267 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
268 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
269 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
270 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
272 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
273 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
274 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
276 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
277 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
278 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
280 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
281 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
282 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
283 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
285 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
286 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
287 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
288 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
289 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
290 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
291 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
292 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
293 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
294 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
295 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
296 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
297 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
298 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
301 typedef enum {
302 NOP = 0,
303 WRSR = 0x1,
304 WRDI = 0x4,
305 RDSR = 0x5,
306 WREN = 0x6,
307 JEDEC_READ = 0x9f,
308 BULK_ERASE = 0xc7,
309 READ_FSR = 0x70,
310 RDCR = 0x15,
312 READ = 0x03,
313 READ4 = 0x13,
314 FAST_READ = 0x0b,
315 FAST_READ4 = 0x0c,
316 DOR = 0x3b,
317 DOR4 = 0x3c,
318 QOR = 0x6b,
319 QOR4 = 0x6c,
320 DIOR = 0xbb,
321 DIOR4 = 0xbc,
322 QIOR = 0xeb,
323 QIOR4 = 0xec,
325 PP = 0x02,
326 PP4 = 0x12,
327 PP4_4 = 0x3e,
328 DPP = 0xa2,
329 QPP = 0x32,
331 ERASE_4K = 0x20,
332 ERASE4_4K = 0x21,
333 ERASE_32K = 0x52,
334 ERASE4_32K = 0x5c,
335 ERASE_SECTOR = 0xd8,
336 ERASE4_SECTOR = 0xdc,
338 EN_4BYTE_ADDR = 0xB7,
339 EX_4BYTE_ADDR = 0xE9,
341 EXTEND_ADDR_READ = 0xC8,
342 EXTEND_ADDR_WRITE = 0xC5,
344 RESET_ENABLE = 0x66,
345 RESET_MEMORY = 0x99,
348 * Micron: 0x35 - enable QPI
349 * Spansion: 0x35 - read control register
351 RDCR_EQIO = 0x35,
352 RSTQIO = 0xf5,
354 RNVCR = 0xB5,
355 WNVCR = 0xB1,
357 RVCR = 0x85,
358 WVCR = 0x81,
360 REVCR = 0x65,
361 WEVCR = 0x61,
362 } FlashCMD;
364 typedef enum {
365 STATE_IDLE,
366 STATE_PAGE_PROGRAM,
367 STATE_READ,
368 STATE_COLLECTING_DATA,
369 STATE_COLLECTING_VAR_LEN_DATA,
370 STATE_READING_DATA,
371 } CMDState;
373 typedef enum {
374 MAN_SPANSION,
375 MAN_MACRONIX,
376 MAN_NUMONYX,
377 MAN_WINBOND,
378 MAN_GENERIC,
379 } Manufacturer;
381 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
383 typedef struct Flash {
384 SSISlave parent_obj;
386 BlockBackend *blk;
388 uint8_t *storage;
389 uint32_t size;
390 int page_size;
392 uint8_t state;
393 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
394 uint32_t len;
395 uint32_t pos;
396 uint8_t needed_bytes;
397 uint8_t cmd_in_progress;
398 uint32_t cur_addr;
399 uint32_t nonvolatile_cfg;
400 /* Configuration register for Macronix */
401 uint32_t volatile_cfg;
402 uint32_t enh_volatile_cfg;
403 /* Spansion cfg registers. */
404 uint8_t spansion_cr1nv;
405 uint8_t spansion_cr2nv;
406 uint8_t spansion_cr3nv;
407 uint8_t spansion_cr4nv;
408 uint8_t spansion_cr1v;
409 uint8_t spansion_cr2v;
410 uint8_t spansion_cr3v;
411 uint8_t spansion_cr4v;
412 bool write_enable;
413 bool four_bytes_address_mode;
414 bool reset_enable;
415 bool quad_enable;
416 uint8_t ear;
418 int64_t dirty_page;
420 const FlashPartInfo *pi;
422 } Flash;
424 typedef struct M25P80Class {
425 SSISlaveClass parent_class;
426 FlashPartInfo *pi;
427 } M25P80Class;
429 #define TYPE_M25P80 "m25p80-generic"
430 #define M25P80(obj) \
431 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
432 #define M25P80_CLASS(klass) \
433 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
434 #define M25P80_GET_CLASS(obj) \
435 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
437 static inline Manufacturer get_man(Flash *s)
439 switch (s->pi->id[0]) {
440 case 0x20:
441 return MAN_NUMONYX;
442 case 0xEF:
443 return MAN_WINBOND;
444 case 0x01:
445 return MAN_SPANSION;
446 case 0xC2:
447 return MAN_MACRONIX;
448 default:
449 return MAN_GENERIC;
453 static void blk_sync_complete(void *opaque, int ret)
455 QEMUIOVector *iov = opaque;
457 qemu_iovec_destroy(iov);
458 g_free(iov);
460 /* do nothing. Masters do not directly interact with the backing store,
461 * only the working copy so no mutexing required.
465 static void flash_sync_page(Flash *s, int page)
467 QEMUIOVector *iov;
469 if (!s->blk || blk_is_read_only(s->blk)) {
470 return;
473 iov = g_new(QEMUIOVector, 1);
474 qemu_iovec_init(iov, 1);
475 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
476 s->pi->page_size);
477 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
478 blk_sync_complete, iov);
481 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
483 QEMUIOVector *iov;
485 if (!s->blk || blk_is_read_only(s->blk)) {
486 return;
489 assert(!(len % BDRV_SECTOR_SIZE));
490 iov = g_new(QEMUIOVector, 1);
491 qemu_iovec_init(iov, 1);
492 qemu_iovec_add(iov, s->storage + off, len);
493 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
496 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
498 uint32_t len;
499 uint8_t capa_to_assert = 0;
501 switch (cmd) {
502 case ERASE_4K:
503 case ERASE4_4K:
504 len = 4 << 10;
505 capa_to_assert = ER_4K;
506 break;
507 case ERASE_32K:
508 case ERASE4_32K:
509 len = 32 << 10;
510 capa_to_assert = ER_32K;
511 break;
512 case ERASE_SECTOR:
513 case ERASE4_SECTOR:
514 len = s->pi->sector_size;
515 break;
516 case BULK_ERASE:
517 len = s->size;
518 break;
519 default:
520 abort();
523 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
524 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
525 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
526 " device\n", len);
529 if (!s->write_enable) {
530 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
531 return;
533 memset(s->storage + offset, 0xff, len);
534 flash_sync_area(s, offset, len);
537 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
539 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
540 flash_sync_page(s, s->dirty_page);
541 s->dirty_page = newpage;
545 static inline
546 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
548 uint32_t page = addr / s->pi->page_size;
549 uint8_t prev = s->storage[s->cur_addr];
551 if (!s->write_enable) {
552 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
555 if ((prev ^ data) & data) {
556 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 " %" PRIx8
557 " -> %" PRIx8 "\n", addr, prev, data);
560 if (s->pi->flags & EEPROM) {
561 s->storage[s->cur_addr] = data;
562 } else {
563 s->storage[s->cur_addr] &= data;
566 flash_sync_dirty(s, page);
567 s->dirty_page = page;
570 static inline int get_addr_length(Flash *s)
572 /* check if eeprom is in use */
573 if (s->pi->flags == EEPROM) {
574 return 2;
577 switch (s->cmd_in_progress) {
578 case PP4:
579 case PP4_4:
580 case READ4:
581 case QIOR4:
582 case ERASE4_4K:
583 case ERASE4_32K:
584 case ERASE4_SECTOR:
585 case FAST_READ4:
586 case DOR4:
587 case QOR4:
588 case DIOR4:
589 return 4;
590 default:
591 return s->four_bytes_address_mode ? 4 : 3;
595 static void complete_collecting_data(Flash *s)
597 int i, n;
599 n = get_addr_length(s);
600 s->cur_addr = (n == 3 ? s->ear : 0);
601 for (i = 0; i < n; ++i) {
602 s->cur_addr <<= 8;
603 s->cur_addr |= s->data[i];
606 s->cur_addr &= s->size - 1;
608 s->state = STATE_IDLE;
610 switch (s->cmd_in_progress) {
611 case DPP:
612 case QPP:
613 case PP:
614 case PP4:
615 case PP4_4:
616 s->state = STATE_PAGE_PROGRAM;
617 break;
618 case READ:
619 case READ4:
620 case FAST_READ:
621 case FAST_READ4:
622 case DOR:
623 case DOR4:
624 case QOR:
625 case QOR4:
626 case DIOR:
627 case DIOR4:
628 case QIOR:
629 case QIOR4:
630 s->state = STATE_READ;
631 break;
632 case ERASE_4K:
633 case ERASE4_4K:
634 case ERASE_32K:
635 case ERASE4_32K:
636 case ERASE_SECTOR:
637 case ERASE4_SECTOR:
638 flash_erase(s, s->cur_addr, s->cmd_in_progress);
639 break;
640 case WRSR:
641 switch (get_man(s)) {
642 case MAN_SPANSION:
643 s->quad_enable = !!(s->data[1] & 0x02);
644 break;
645 case MAN_MACRONIX:
646 s->quad_enable = extract32(s->data[0], 6, 1);
647 if (s->len > 1) {
648 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
650 break;
651 default:
652 break;
654 if (s->write_enable) {
655 s->write_enable = false;
657 break;
658 case EXTEND_ADDR_WRITE:
659 s->ear = s->data[0];
660 break;
661 case WNVCR:
662 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
663 break;
664 case WVCR:
665 s->volatile_cfg = s->data[0];
666 break;
667 case WEVCR:
668 s->enh_volatile_cfg = s->data[0];
669 break;
670 default:
671 break;
675 static void reset_memory(Flash *s)
677 s->cmd_in_progress = NOP;
678 s->cur_addr = 0;
679 s->ear = 0;
680 s->four_bytes_address_mode = false;
681 s->len = 0;
682 s->needed_bytes = 0;
683 s->pos = 0;
684 s->state = STATE_IDLE;
685 s->write_enable = false;
686 s->reset_enable = false;
687 s->quad_enable = false;
689 switch (get_man(s)) {
690 case MAN_NUMONYX:
691 s->volatile_cfg = 0;
692 s->volatile_cfg |= VCFG_DUMMY;
693 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
694 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
695 != NVCFG_XIP_MODE_DISABLED) {
696 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
698 s->volatile_cfg |= deposit32(s->volatile_cfg,
699 VCFG_DUMMY_CLK_POS,
700 CFG_DUMMY_CLK_LEN,
701 extract32(s->nonvolatile_cfg,
702 NVCFG_DUMMY_CLK_POS,
703 CFG_DUMMY_CLK_LEN)
706 s->enh_volatile_cfg = 0;
707 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
708 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
709 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
710 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
711 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
713 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
714 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
716 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
717 s->four_bytes_address_mode = true;
719 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
720 s->ear = s->size / MAX_3BYTES_SIZE - 1;
722 break;
723 case MAN_MACRONIX:
724 s->volatile_cfg = 0x7;
725 break;
726 case MAN_SPANSION:
727 s->spansion_cr1v = s->spansion_cr1nv;
728 s->spansion_cr2v = s->spansion_cr2nv;
729 s->spansion_cr3v = s->spansion_cr3nv;
730 s->spansion_cr4v = s->spansion_cr4nv;
731 s->quad_enable = extract32(s->spansion_cr1v,
732 SPANSION_QUAD_CFG_POS,
733 SPANSION_QUAD_CFG_LEN
735 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
736 SPANSION_ADDR_LEN_POS,
737 SPANSION_ADDR_LEN_LEN
739 break;
740 default:
741 break;
744 DB_PRINT_L(0, "Reset done.\n");
747 static void decode_fast_read_cmd(Flash *s)
749 s->needed_bytes = get_addr_length(s);
750 switch (get_man(s)) {
751 /* Dummy cycles - modeled with bytes writes instead of bits */
752 case MAN_WINBOND:
753 s->needed_bytes += 8;
754 break;
755 case MAN_NUMONYX:
756 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
757 break;
758 case MAN_MACRONIX:
759 if (extract32(s->volatile_cfg, 6, 2) == 1) {
760 s->needed_bytes += 6;
761 } else {
762 s->needed_bytes += 8;
764 break;
765 case MAN_SPANSION:
766 s->needed_bytes += extract32(s->spansion_cr2v,
767 SPANSION_DUMMY_CLK_POS,
768 SPANSION_DUMMY_CLK_LEN
770 break;
771 default:
772 break;
774 s->pos = 0;
775 s->len = 0;
776 s->state = STATE_COLLECTING_DATA;
779 static void decode_dio_read_cmd(Flash *s)
781 s->needed_bytes = get_addr_length(s);
782 /* Dummy cycles modeled with bytes writes instead of bits */
783 switch (get_man(s)) {
784 case MAN_WINBOND:
785 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
786 break;
787 case MAN_SPANSION:
788 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
789 s->needed_bytes += extract32(s->spansion_cr2v,
790 SPANSION_DUMMY_CLK_POS,
791 SPANSION_DUMMY_CLK_LEN
793 break;
794 case MAN_NUMONYX:
795 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
796 break;
797 case MAN_MACRONIX:
798 switch (extract32(s->volatile_cfg, 6, 2)) {
799 case 1:
800 s->needed_bytes += 6;
801 break;
802 case 2:
803 s->needed_bytes += 8;
804 break;
805 default:
806 s->needed_bytes += 4;
807 break;
809 break;
810 default:
811 break;
813 s->pos = 0;
814 s->len = 0;
815 s->state = STATE_COLLECTING_DATA;
818 static void decode_qio_read_cmd(Flash *s)
820 s->needed_bytes = get_addr_length(s);
821 /* Dummy cycles modeled with bytes writes instead of bits */
822 switch (get_man(s)) {
823 case MAN_WINBOND:
824 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
825 s->needed_bytes += 4;
826 break;
827 case MAN_SPANSION:
828 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
829 s->needed_bytes += extract32(s->spansion_cr2v,
830 SPANSION_DUMMY_CLK_POS,
831 SPANSION_DUMMY_CLK_LEN
833 break;
834 case MAN_NUMONYX:
835 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
836 break;
837 case MAN_MACRONIX:
838 switch (extract32(s->volatile_cfg, 6, 2)) {
839 case 1:
840 s->needed_bytes += 4;
841 break;
842 case 2:
843 s->needed_bytes += 8;
844 break;
845 default:
846 s->needed_bytes += 6;
847 break;
849 break;
850 default:
851 break;
853 s->pos = 0;
854 s->len = 0;
855 s->state = STATE_COLLECTING_DATA;
858 static void decode_new_cmd(Flash *s, uint32_t value)
860 s->cmd_in_progress = value;
861 int i;
862 DB_PRINT_L(0, "decoded new command:%x\n", value);
864 if (value != RESET_MEMORY) {
865 s->reset_enable = false;
868 switch (value) {
870 case ERASE_4K:
871 case ERASE4_4K:
872 case ERASE_32K:
873 case ERASE4_32K:
874 case ERASE_SECTOR:
875 case ERASE4_SECTOR:
876 case READ:
877 case READ4:
878 case DPP:
879 case QPP:
880 case PP:
881 case PP4:
882 case PP4_4:
883 s->needed_bytes = get_addr_length(s);
884 s->pos = 0;
885 s->len = 0;
886 s->state = STATE_COLLECTING_DATA;
887 break;
889 case FAST_READ:
890 case FAST_READ4:
891 case DOR:
892 case DOR4:
893 case QOR:
894 case QOR4:
895 decode_fast_read_cmd(s);
896 break;
898 case DIOR:
899 case DIOR4:
900 decode_dio_read_cmd(s);
901 break;
903 case QIOR:
904 case QIOR4:
905 decode_qio_read_cmd(s);
906 break;
908 case WRSR:
909 if (s->write_enable) {
910 switch (get_man(s)) {
911 case MAN_SPANSION:
912 s->needed_bytes = 2;
913 s->state = STATE_COLLECTING_DATA;
914 break;
915 case MAN_MACRONIX:
916 s->needed_bytes = 2;
917 s->state = STATE_COLLECTING_VAR_LEN_DATA;
918 break;
919 default:
920 s->needed_bytes = 1;
921 s->state = STATE_COLLECTING_DATA;
923 s->pos = 0;
925 break;
927 case WRDI:
928 s->write_enable = false;
929 break;
930 case WREN:
931 s->write_enable = true;
932 break;
934 case RDSR:
935 s->data[0] = (!!s->write_enable) << 1;
936 if (get_man(s) == MAN_MACRONIX) {
937 s->data[0] |= (!!s->quad_enable) << 6;
939 s->pos = 0;
940 s->len = 1;
941 s->state = STATE_READING_DATA;
942 break;
944 case READ_FSR:
945 s->data[0] = FSR_FLASH_READY;
946 if (s->four_bytes_address_mode) {
947 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
949 s->pos = 0;
950 s->len = 1;
951 s->state = STATE_READING_DATA;
952 break;
954 case JEDEC_READ:
955 DB_PRINT_L(0, "populated jedec code\n");
956 for (i = 0; i < s->pi->id_len; i++) {
957 s->data[i] = s->pi->id[i];
960 s->len = s->pi->id_len;
961 s->pos = 0;
962 s->state = STATE_READING_DATA;
963 break;
965 case RDCR:
966 s->data[0] = s->volatile_cfg & 0xFF;
967 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
968 s->pos = 0;
969 s->len = 1;
970 s->state = STATE_READING_DATA;
971 break;
973 case BULK_ERASE:
974 if (s->write_enable) {
975 DB_PRINT_L(0, "chip erase\n");
976 flash_erase(s, 0, BULK_ERASE);
977 } else {
978 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
979 "protect!\n");
981 break;
982 case NOP:
983 break;
984 case EN_4BYTE_ADDR:
985 s->four_bytes_address_mode = true;
986 break;
987 case EX_4BYTE_ADDR:
988 s->four_bytes_address_mode = false;
989 break;
990 case EXTEND_ADDR_READ:
991 s->data[0] = s->ear;
992 s->pos = 0;
993 s->len = 1;
994 s->state = STATE_READING_DATA;
995 break;
996 case EXTEND_ADDR_WRITE:
997 if (s->write_enable) {
998 s->needed_bytes = 1;
999 s->pos = 0;
1000 s->len = 0;
1001 s->state = STATE_COLLECTING_DATA;
1003 break;
1004 case RNVCR:
1005 s->data[0] = s->nonvolatile_cfg & 0xFF;
1006 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1007 s->pos = 0;
1008 s->len = 2;
1009 s->state = STATE_READING_DATA;
1010 break;
1011 case WNVCR:
1012 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1013 s->needed_bytes = 2;
1014 s->pos = 0;
1015 s->len = 0;
1016 s->state = STATE_COLLECTING_DATA;
1018 break;
1019 case RVCR:
1020 s->data[0] = s->volatile_cfg & 0xFF;
1021 s->pos = 0;
1022 s->len = 1;
1023 s->state = STATE_READING_DATA;
1024 break;
1025 case WVCR:
1026 if (s->write_enable) {
1027 s->needed_bytes = 1;
1028 s->pos = 0;
1029 s->len = 0;
1030 s->state = STATE_COLLECTING_DATA;
1032 break;
1033 case REVCR:
1034 s->data[0] = s->enh_volatile_cfg & 0xFF;
1035 s->pos = 0;
1036 s->len = 1;
1037 s->state = STATE_READING_DATA;
1038 break;
1039 case WEVCR:
1040 if (s->write_enable) {
1041 s->needed_bytes = 1;
1042 s->pos = 0;
1043 s->len = 0;
1044 s->state = STATE_COLLECTING_DATA;
1046 break;
1047 case RESET_ENABLE:
1048 s->reset_enable = true;
1049 break;
1050 case RESET_MEMORY:
1051 if (s->reset_enable) {
1052 reset_memory(s);
1054 break;
1055 case RDCR_EQIO:
1056 switch (get_man(s)) {
1057 case MAN_SPANSION:
1058 s->data[0] = (!!s->quad_enable) << 1;
1059 s->pos = 0;
1060 s->len = 1;
1061 s->state = STATE_READING_DATA;
1062 break;
1063 case MAN_MACRONIX:
1064 s->quad_enable = true;
1065 break;
1066 default:
1067 break;
1069 break;
1070 case RSTQIO:
1071 s->quad_enable = false;
1072 break;
1073 default:
1074 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1075 break;
1079 static int m25p80_cs(SSISlave *ss, bool select)
1081 Flash *s = M25P80(ss);
1083 if (select) {
1084 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1085 complete_collecting_data(s);
1087 s->len = 0;
1088 s->pos = 0;
1089 s->state = STATE_IDLE;
1090 flash_sync_dirty(s, -1);
1093 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1095 return 0;
1098 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1100 Flash *s = M25P80(ss);
1101 uint32_t r = 0;
1103 switch (s->state) {
1105 case STATE_PAGE_PROGRAM:
1106 DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1107 s->cur_addr, (uint8_t)tx);
1108 flash_write8(s, s->cur_addr, (uint8_t)tx);
1109 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1110 break;
1112 case STATE_READ:
1113 r = s->storage[s->cur_addr];
1114 DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1115 (uint8_t)r);
1116 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1117 break;
1119 case STATE_COLLECTING_DATA:
1120 case STATE_COLLECTING_VAR_LEN_DATA:
1122 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1123 qemu_log_mask(LOG_GUEST_ERROR,
1124 "M25P80: Write overrun internal data buffer. "
1125 "SPI controller (QEMU emulator or guest driver) "
1126 "is misbehaving\n");
1127 s->len = s->pos = 0;
1128 s->state = STATE_IDLE;
1129 break;
1132 s->data[s->len] = (uint8_t)tx;
1133 s->len++;
1135 if (s->len == s->needed_bytes) {
1136 complete_collecting_data(s);
1138 break;
1140 case STATE_READING_DATA:
1142 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1143 qemu_log_mask(LOG_GUEST_ERROR,
1144 "M25P80: Read overrun internal data buffer. "
1145 "SPI controller (QEMU emulator or guest driver) "
1146 "is misbehaving\n");
1147 s->len = s->pos = 0;
1148 s->state = STATE_IDLE;
1149 break;
1152 r = s->data[s->pos];
1153 s->pos++;
1154 if (s->pos == s->len) {
1155 s->pos = 0;
1156 s->state = STATE_IDLE;
1158 break;
1160 default:
1161 case STATE_IDLE:
1162 decode_new_cmd(s, (uint8_t)tx);
1163 break;
1166 return r;
1169 static void m25p80_realize(SSISlave *ss, Error **errp)
1171 Flash *s = M25P80(ss);
1172 M25P80Class *mc = M25P80_GET_CLASS(s);
1174 s->pi = mc->pi;
1176 s->size = s->pi->sector_size * s->pi->n_sectors;
1177 s->dirty_page = -1;
1179 if (s->blk) {
1180 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1181 s->storage = blk_blockalign(s->blk, s->size);
1183 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1184 error_setg(errp, "failed to read the initial flash content");
1185 return;
1187 } else {
1188 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1189 s->storage = blk_blockalign(NULL, s->size);
1190 memset(s->storage, 0xFF, s->size);
1194 static void m25p80_reset(DeviceState *d)
1196 Flash *s = M25P80(d);
1198 reset_memory(s);
1201 static void m25p80_pre_save(void *opaque)
1203 flash_sync_dirty((Flash *)opaque, -1);
1206 static Property m25p80_properties[] = {
1207 /* This is default value for Micron flash */
1208 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1209 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1210 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1211 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1212 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1213 DEFINE_PROP_DRIVE("drive", Flash, blk),
1214 DEFINE_PROP_END_OF_LIST(),
1217 static const VMStateDescription vmstate_m25p80 = {
1218 .name = "m25p80",
1219 .version_id = 0,
1220 .minimum_version_id = 0,
1221 .pre_save = m25p80_pre_save,
1222 .fields = (VMStateField[]) {
1223 VMSTATE_UINT8(state, Flash),
1224 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1225 VMSTATE_UINT32(len, Flash),
1226 VMSTATE_UINT32(pos, Flash),
1227 VMSTATE_UINT8(needed_bytes, Flash),
1228 VMSTATE_UINT8(cmd_in_progress, Flash),
1229 VMSTATE_UINT32(cur_addr, Flash),
1230 VMSTATE_BOOL(write_enable, Flash),
1231 VMSTATE_BOOL(reset_enable, Flash),
1232 VMSTATE_UINT8(ear, Flash),
1233 VMSTATE_BOOL(four_bytes_address_mode, Flash),
1234 VMSTATE_UINT32(nonvolatile_cfg, Flash),
1235 VMSTATE_UINT32(volatile_cfg, Flash),
1236 VMSTATE_UINT32(enh_volatile_cfg, Flash),
1237 VMSTATE_BOOL(quad_enable, Flash),
1238 VMSTATE_UINT8(spansion_cr1nv, Flash),
1239 VMSTATE_UINT8(spansion_cr2nv, Flash),
1240 VMSTATE_UINT8(spansion_cr3nv, Flash),
1241 VMSTATE_UINT8(spansion_cr4nv, Flash),
1242 VMSTATE_END_OF_LIST()
1246 static void m25p80_class_init(ObjectClass *klass, void *data)
1248 DeviceClass *dc = DEVICE_CLASS(klass);
1249 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1250 M25P80Class *mc = M25P80_CLASS(klass);
1252 k->realize = m25p80_realize;
1253 k->transfer = m25p80_transfer8;
1254 k->set_cs = m25p80_cs;
1255 k->cs_polarity = SSI_CS_LOW;
1256 dc->vmsd = &vmstate_m25p80;
1257 dc->props = m25p80_properties;
1258 dc->reset = m25p80_reset;
1259 mc->pi = data;
1262 static const TypeInfo m25p80_info = {
1263 .name = TYPE_M25P80,
1264 .parent = TYPE_SSI_SLAVE,
1265 .instance_size = sizeof(Flash),
1266 .class_size = sizeof(M25P80Class),
1267 .abstract = true,
1270 static void m25p80_register_types(void)
1272 int i;
1274 type_register_static(&m25p80_info);
1275 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1276 TypeInfo ti = {
1277 .name = known_devices[i].part_name,
1278 .parent = TYPE_M25P80,
1279 .class_init = m25p80_class_init,
1280 .class_data = (void *)&known_devices[i],
1282 type_register(&ti);
1286 type_init(m25p80_register_types)