Merge tag 'pull-trivial-patches' of https://gitlab.com/mjt0k/qemu into staging
[qemu/kevin.git] / hw / block / m25p80.c
blob9e99107b42e2255770394bc51a259c536640c441
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/block/block.h"
28 #include "hw/block/flash.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/qdev-properties-system.h"
31 #include "hw/ssi/ssi.h"
32 #include "migration/vmstate.h"
33 #include "qemu/bitops.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "qemu/error-report.h"
37 #include "qapi/error.h"
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "m25p80_sfdp.h"
42 /* 16 MiB max in 3 byte address mode */
43 #define MAX_3BYTES_SIZE 0x1000000
44 #define SPI_NOR_MAX_ID_LEN 6
46 /* Fields for FlashPartInfo->flags */
47 enum spi_flash_option_flags {
48 ER_4K = BIT(0),
49 ER_32K = BIT(1),
50 EEPROM = BIT(2),
51 HAS_SR_TB = BIT(3),
52 HAS_SR_BP3_BIT6 = BIT(4),
55 typedef struct FlashPartInfo {
56 const char *part_name;
58 * This array stores the ID bytes.
59 * The first three bytes are the JEDIC ID.
60 * JEDEC ID zero means "no ID" (mostly older chips).
62 uint8_t id[SPI_NOR_MAX_ID_LEN];
63 uint8_t id_len;
64 /* there is confusion between manufacturers as to what a sector is. In this
65 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
66 * command (opcode 0xd8).
68 uint32_t sector_size;
69 uint32_t n_sectors;
70 uint32_t page_size;
71 uint16_t flags;
73 * Big sized spi nor are often stacked devices, thus sometime
74 * replace chip erase with die erase.
75 * This field inform how many die is in the chip.
77 uint8_t die_cnt;
78 uint8_t (*sfdp_read)(uint32_t sfdp_addr);
79 } FlashPartInfo;
81 /* adapted from linux */
82 /* Used when the "_ext_id" is two bytes at most */
83 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
84 .part_name = _part_name,\
85 .id = {\
86 ((_jedec_id) >> 16) & 0xff,\
87 ((_jedec_id) >> 8) & 0xff,\
88 (_jedec_id) & 0xff,\
89 ((_ext_id) >> 8) & 0xff,\
90 (_ext_id) & 0xff,\
91 },\
92 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
93 .sector_size = (_sector_size),\
94 .n_sectors = (_n_sectors),\
95 .page_size = 256,\
96 .flags = (_flags),\
97 .die_cnt = 0
99 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
100 .part_name = _part_name,\
101 .id = {\
102 ((_jedec_id) >> 16) & 0xff,\
103 ((_jedec_id) >> 8) & 0xff,\
104 (_jedec_id) & 0xff,\
105 ((_ext_id) >> 16) & 0xff,\
106 ((_ext_id) >> 8) & 0xff,\
107 (_ext_id) & 0xff,\
109 .id_len = 6,\
110 .sector_size = (_sector_size),\
111 .n_sectors = (_n_sectors),\
112 .page_size = 256,\
113 .flags = (_flags),\
114 .die_cnt = 0
116 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
117 _flags, _die_cnt)\
118 .part_name = _part_name,\
119 .id = {\
120 ((_jedec_id) >> 16) & 0xff,\
121 ((_jedec_id) >> 8) & 0xff,\
122 (_jedec_id) & 0xff,\
123 ((_ext_id) >> 8) & 0xff,\
124 (_ext_id) & 0xff,\
126 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
127 .sector_size = (_sector_size),\
128 .n_sectors = (_n_sectors),\
129 .page_size = 256,\
130 .flags = (_flags),\
131 .die_cnt = _die_cnt
133 #define JEDEC_NUMONYX 0x20
134 #define JEDEC_WINBOND 0xEF
135 #define JEDEC_SPANSION 0x01
137 /* Numonyx (Micron) Configuration register macros */
138 #define VCFG_DUMMY 0x1
139 #define VCFG_WRAP_SEQUENTIAL 0x2
140 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
141 #define NVCFG_XIP_MODE_MASK (7 << 9)
142 #define VCFG_XIP_MODE_DISABLED (1 << 3)
143 #define CFG_DUMMY_CLK_LEN 4
144 #define NVCFG_DUMMY_CLK_POS 12
145 #define VCFG_DUMMY_CLK_POS 4
146 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
147 #define EVCFG_VPP_ACCELERATOR (1 << 3)
148 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
149 #define NVCFG_DUAL_IO_MASK (1 << 2)
150 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
151 #define NVCFG_QUAD_IO_MASK (1 << 3)
152 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
153 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
154 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
156 /* Numonyx (Micron) Flag Status Register macros */
157 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
158 #define FSR_FLASH_READY (1 << 7)
160 /* Spansion configuration registers macros. */
161 #define SPANSION_QUAD_CFG_POS 0
162 #define SPANSION_QUAD_CFG_LEN 1
163 #define SPANSION_DUMMY_CLK_POS 0
164 #define SPANSION_DUMMY_CLK_LEN 4
165 #define SPANSION_ADDR_LEN_POS 7
166 #define SPANSION_ADDR_LEN_LEN 1
169 * Spansion read mode command length in bytes,
170 * the mode is currently not supported.
173 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
174 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
176 static const FlashPartInfo known_devices[] = {
177 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
178 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
179 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
181 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
182 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
183 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
185 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
186 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
187 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
188 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
190 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
192 /* Atmel EEPROMS - it is assumed, that don't care bit in command
193 * is set to 0. Block protection is not supported.
195 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
196 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
198 /* EON -- en25xxx */
199 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
200 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
201 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
202 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
203 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
205 /* GigaDevice */
206 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
207 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
209 /* Intel/Numonyx -- xxxs33b */
210 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
211 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
212 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
213 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
215 /* ISSI */
216 { INFO("is25lq040b", 0x9d4013, 0, 64 << 10, 8, ER_4K) },
217 { INFO("is25lp080d", 0x9d6014, 0, 64 << 10, 16, ER_4K) },
218 { INFO("is25lp016d", 0x9d6015, 0, 64 << 10, 32, ER_4K) },
219 { INFO("is25lp032", 0x9d6016, 0, 64 << 10, 64, ER_4K) },
220 { INFO("is25lp064", 0x9d6017, 0, 64 << 10, 128, ER_4K) },
221 { INFO("is25lp128", 0x9d6018, 0, 64 << 10, 256, ER_4K) },
222 { INFO("is25lp256", 0x9d6019, 0, 64 << 10, 512, ER_4K) },
223 { INFO("is25wp032", 0x9d7016, 0, 64 << 10, 64, ER_4K) },
224 { INFO("is25wp064", 0x9d7017, 0, 64 << 10, 128, ER_4K) },
225 { INFO("is25wp128", 0x9d7018, 0, 64 << 10, 256, ER_4K) },
226 { INFO("is25wp256", 0x9d7019, 0, 64 << 10, 512, ER_4K),
227 .sfdp_read = m25p80_sfdp_is25wp256 },
229 /* Macronix */
230 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
231 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
232 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
233 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
234 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
235 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
236 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
237 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
238 { INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512,
239 ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635e },
240 { INFO6("mx25l25635f", 0xc22019, 0xc22019, 64 << 10, 512,
241 ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635f },
242 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
243 { INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
244 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
245 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
246 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K),
247 .sfdp_read = m25p80_sfdp_mx66l1g45g },
249 /* Micron */
250 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
251 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
252 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
253 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
254 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
255 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
256 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
257 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K),
258 .sfdp_read = m25p80_sfdp_n25q256a },
259 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) },
260 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
261 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
262 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512,
263 ER_4K | HAS_SR_BP3_BIT6 | HAS_SR_TB),
264 .sfdp_read = m25p80_sfdp_n25q256a },
265 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
266 { INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K) },
267 { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
268 { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
269 ER_4K | ER_32K, 2) },
270 { INFO_STACKED("mt35xu02gbba", 0x2c5b1c, 0x104100, 128 << 10, 2048,
271 ER_4K | ER_32K, 4),
272 .sfdp_read = m25p80_sfdp_mt35xu02g },
273 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
274 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
275 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
276 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
277 { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
278 { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
280 /* Spansion -- single (large) sector size only, at least
281 * for the chips listed here (without boot sectors).
283 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
284 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
285 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
286 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
287 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
288 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
289 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
290 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
291 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
292 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
293 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
294 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
295 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
296 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
297 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
298 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
299 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
301 /* Spansion -- boot sectors support */
302 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
303 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
305 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
306 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
307 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
308 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
309 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
310 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
311 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
312 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
313 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
314 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
316 /* ST Microelectronics -- newer production may have feature updates */
317 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
318 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
319 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
320 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
321 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
322 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
323 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
324 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
325 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
326 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
328 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
329 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
330 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
332 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
333 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
334 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
336 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
337 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
338 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
339 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
341 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
342 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
343 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
344 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
345 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
346 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
347 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
348 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
349 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
350 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
351 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
352 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
353 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
354 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K),
355 .sfdp_read = m25p80_sfdp_w25q256 },
356 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K),
357 .sfdp_read = m25p80_sfdp_w25q512jv },
358 { INFO("w25q01jvq", 0xef4021, 0, 64 << 10, 2048, ER_4K),
359 .sfdp_read = m25p80_sfdp_w25q01jvq },
362 typedef enum {
363 NOP = 0,
364 WRSR = 0x1,
365 WRDI = 0x4,
366 RDSR = 0x5,
367 WREN = 0x6,
368 BRRD = 0x16,
369 BRWR = 0x17,
370 JEDEC_READ = 0x9f,
371 BULK_ERASE_60 = 0x60,
372 BULK_ERASE = 0xc7,
373 READ_FSR = 0x70,
374 RDCR = 0x15,
375 RDSFDP = 0x5a,
377 READ = 0x03,
378 READ4 = 0x13,
379 FAST_READ = 0x0b,
380 FAST_READ4 = 0x0c,
381 DOR = 0x3b,
382 DOR4 = 0x3c,
383 QOR = 0x6b,
384 QOR4 = 0x6c,
385 DIOR = 0xbb,
386 DIOR4 = 0xbc,
387 QIOR = 0xeb,
388 QIOR4 = 0xec,
390 PP = 0x02,
391 PP4 = 0x12,
392 PP4_4 = 0x3e,
393 DPP = 0xa2,
394 QPP = 0x32,
395 QPP_4 = 0x34,
396 RDID_90 = 0x90,
397 RDID_AB = 0xab,
398 AAI_WP = 0xad,
400 ERASE_4K = 0x20,
401 ERASE4_4K = 0x21,
402 ERASE_32K = 0x52,
403 ERASE4_32K = 0x5c,
404 ERASE_SECTOR = 0xd8,
405 ERASE4_SECTOR = 0xdc,
407 EN_4BYTE_ADDR = 0xB7,
408 EX_4BYTE_ADDR = 0xE9,
410 EXTEND_ADDR_READ = 0xC8,
411 EXTEND_ADDR_WRITE = 0xC5,
413 RESET_ENABLE = 0x66,
414 RESET_MEMORY = 0x99,
417 * Micron: 0x35 - enable QPI
418 * Spansion: 0x35 - read control register
419 * Winbond: 0x35 - quad enable
421 RDCR_EQIO = 0x35,
422 RSTQIO = 0xf5,
424 RNVCR = 0xB5,
425 WNVCR = 0xB1,
427 RVCR = 0x85,
428 WVCR = 0x81,
430 REVCR = 0x65,
431 WEVCR = 0x61,
433 DIE_ERASE = 0xC4,
434 } FlashCMD;
436 typedef enum {
437 STATE_IDLE,
438 STATE_PAGE_PROGRAM,
439 STATE_READ,
440 STATE_COLLECTING_DATA,
441 STATE_COLLECTING_VAR_LEN_DATA,
442 STATE_READING_DATA,
443 STATE_READING_SFDP,
444 } CMDState;
446 typedef enum {
447 MAN_SPANSION,
448 MAN_MACRONIX,
449 MAN_NUMONYX,
450 MAN_WINBOND,
451 MAN_SST,
452 MAN_ISSI,
453 MAN_GENERIC,
454 } Manufacturer;
456 typedef enum {
457 MODE_STD = 0,
458 MODE_DIO = 1,
459 MODE_QIO = 2
460 } SPIMode;
462 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
464 struct Flash {
465 SSIPeripheral parent_obj;
467 BlockBackend *blk;
469 uint8_t *storage;
470 uint32_t size;
471 int page_size;
473 uint8_t state;
474 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
475 uint32_t len;
476 uint32_t pos;
477 bool data_read_loop;
478 uint8_t needed_bytes;
479 uint8_t cmd_in_progress;
480 uint32_t cur_addr;
481 uint32_t nonvolatile_cfg;
482 /* Configuration register for Macronix */
483 uint32_t volatile_cfg;
484 uint32_t enh_volatile_cfg;
485 /* Spansion cfg registers. */
486 uint8_t spansion_cr1nv;
487 uint8_t spansion_cr2nv;
488 uint8_t spansion_cr3nv;
489 uint8_t spansion_cr4nv;
490 uint8_t spansion_cr1v;
491 uint8_t spansion_cr2v;
492 uint8_t spansion_cr3v;
493 uint8_t spansion_cr4v;
494 bool wp_level;
495 bool write_enable;
496 bool four_bytes_address_mode;
497 bool reset_enable;
498 bool quad_enable;
499 bool aai_enable;
500 bool block_protect0;
501 bool block_protect1;
502 bool block_protect2;
503 bool block_protect3;
504 bool top_bottom_bit;
505 bool status_register_write_disabled;
506 uint8_t ear;
508 int64_t dirty_page;
510 const FlashPartInfo *pi;
514 struct M25P80Class {
515 SSIPeripheralClass parent_class;
516 FlashPartInfo *pi;
519 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
521 static inline Manufacturer get_man(Flash *s)
523 switch (s->pi->id[0]) {
524 case 0x20:
525 return MAN_NUMONYX;
526 case 0xEF:
527 return MAN_WINBOND;
528 case 0x01:
529 return MAN_SPANSION;
530 case 0xC2:
531 return MAN_MACRONIX;
532 case 0xBF:
533 return MAN_SST;
534 case 0x9D:
535 return MAN_ISSI;
536 default:
537 return MAN_GENERIC;
541 static void blk_sync_complete(void *opaque, int ret)
543 QEMUIOVector *iov = opaque;
545 qemu_iovec_destroy(iov);
546 g_free(iov);
548 /* do nothing. Masters do not directly interact with the backing store,
549 * only the working copy so no mutexing required.
553 static void flash_sync_page(Flash *s, int page)
555 QEMUIOVector *iov;
557 if (!s->blk || !blk_is_writable(s->blk)) {
558 return;
561 iov = g_new(QEMUIOVector, 1);
562 qemu_iovec_init(iov, 1);
563 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
564 s->pi->page_size);
565 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
566 blk_sync_complete, iov);
569 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
571 QEMUIOVector *iov;
573 if (!s->blk || !blk_is_writable(s->blk)) {
574 return;
577 assert(!(len % BDRV_SECTOR_SIZE));
578 iov = g_new(QEMUIOVector, 1);
579 qemu_iovec_init(iov, 1);
580 qemu_iovec_add(iov, s->storage + off, len);
581 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
584 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
586 uint32_t len;
587 uint8_t capa_to_assert = 0;
589 switch (cmd) {
590 case ERASE_4K:
591 case ERASE4_4K:
592 len = 4 * KiB;
593 capa_to_assert = ER_4K;
594 break;
595 case ERASE_32K:
596 case ERASE4_32K:
597 len = 32 * KiB;
598 capa_to_assert = ER_32K;
599 break;
600 case ERASE_SECTOR:
601 case ERASE4_SECTOR:
602 len = s->pi->sector_size;
603 break;
604 case BULK_ERASE:
605 len = s->size;
606 break;
607 case DIE_ERASE:
608 if (s->pi->die_cnt) {
609 len = s->size / s->pi->die_cnt;
610 offset = offset & (~(len - 1));
611 } else {
612 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
613 " by device\n");
614 return;
616 break;
617 default:
618 abort();
621 trace_m25p80_flash_erase(s, offset, len);
623 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
624 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
625 " device\n", len);
628 if (!s->write_enable) {
629 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
630 return;
632 memset(s->storage + offset, 0xff, len);
633 flash_sync_area(s, offset, len);
636 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
638 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
639 flash_sync_page(s, s->dirty_page);
640 s->dirty_page = newpage;
644 static inline
645 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
647 uint32_t page = addr / s->pi->page_size;
648 uint8_t prev = s->storage[s->cur_addr];
649 uint32_t block_protect_value = (s->block_protect3 << 3) |
650 (s->block_protect2 << 2) |
651 (s->block_protect1 << 1) |
652 (s->block_protect0 << 0);
654 if (!s->write_enable) {
655 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
656 return;
659 if (block_protect_value > 0) {
660 uint32_t num_protected_sectors = 1 << (block_protect_value - 1);
661 uint32_t sector = addr / s->pi->sector_size;
663 /* top_bottom_bit == 0 means TOP */
664 if (!s->top_bottom_bit) {
665 if (s->pi->n_sectors <= sector + num_protected_sectors) {
666 qemu_log_mask(LOG_GUEST_ERROR,
667 "M25P80: write with write protect!\n");
668 return;
670 } else {
671 if (sector < num_protected_sectors) {
672 qemu_log_mask(LOG_GUEST_ERROR,
673 "M25P80: write with write protect!\n");
674 return;
679 if ((prev ^ data) & data) {
680 trace_m25p80_programming_zero_to_one(s, addr, prev, data);
683 if (s->pi->flags & EEPROM) {
684 s->storage[s->cur_addr] = data;
685 } else {
686 s->storage[s->cur_addr] &= data;
689 flash_sync_dirty(s, page);
690 s->dirty_page = page;
693 static inline int get_addr_length(Flash *s)
695 /* check if eeprom is in use */
696 if (s->pi->flags == EEPROM) {
697 return 2;
700 switch (s->cmd_in_progress) {
701 case RDSFDP:
702 return 3;
703 case PP4:
704 case PP4_4:
705 case QPP_4:
706 case READ4:
707 case QIOR4:
708 case ERASE4_4K:
709 case ERASE4_32K:
710 case ERASE4_SECTOR:
711 case FAST_READ4:
712 case DOR4:
713 case QOR4:
714 case DIOR4:
715 return 4;
716 default:
717 return s->four_bytes_address_mode ? 4 : 3;
721 static void complete_collecting_data(Flash *s)
723 int i, n;
725 n = get_addr_length(s);
726 s->cur_addr = (n == 3 ? s->ear : 0);
727 for (i = 0; i < n; ++i) {
728 s->cur_addr <<= 8;
729 s->cur_addr |= s->data[i];
732 s->cur_addr &= s->size - 1;
734 s->state = STATE_IDLE;
736 trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
737 s->cur_addr);
739 switch (s->cmd_in_progress) {
740 case DPP:
741 case QPP:
742 case QPP_4:
743 case PP:
744 case PP4:
745 case PP4_4:
746 s->state = STATE_PAGE_PROGRAM;
747 break;
748 case AAI_WP:
749 /* AAI programming starts from the even address */
750 s->cur_addr &= ~BIT(0);
751 s->state = STATE_PAGE_PROGRAM;
752 break;
753 case READ:
754 case READ4:
755 case FAST_READ:
756 case FAST_READ4:
757 case DOR:
758 case DOR4:
759 case QOR:
760 case QOR4:
761 case DIOR:
762 case DIOR4:
763 case QIOR:
764 case QIOR4:
765 s->state = STATE_READ;
766 break;
767 case ERASE_4K:
768 case ERASE4_4K:
769 case ERASE_32K:
770 case ERASE4_32K:
771 case ERASE_SECTOR:
772 case ERASE4_SECTOR:
773 case DIE_ERASE:
774 flash_erase(s, s->cur_addr, s->cmd_in_progress);
775 break;
776 case WRSR:
777 s->status_register_write_disabled = extract32(s->data[0], 7, 1);
778 s->block_protect0 = extract32(s->data[0], 2, 1);
779 s->block_protect1 = extract32(s->data[0], 3, 1);
780 s->block_protect2 = extract32(s->data[0], 4, 1);
781 if (s->pi->flags & HAS_SR_TB) {
782 s->top_bottom_bit = extract32(s->data[0], 5, 1);
784 if (s->pi->flags & HAS_SR_BP3_BIT6) {
785 s->block_protect3 = extract32(s->data[0], 6, 1);
788 switch (get_man(s)) {
789 case MAN_SPANSION:
790 s->quad_enable = !!(s->data[1] & 0x02);
791 break;
792 case MAN_ISSI:
793 s->quad_enable = extract32(s->data[0], 6, 1);
794 break;
795 case MAN_MACRONIX:
796 s->quad_enable = extract32(s->data[0], 6, 1);
797 if (s->len > 1) {
798 s->volatile_cfg = s->data[1];
799 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
801 break;
802 case MAN_WINBOND:
803 if (s->len > 1) {
804 s->quad_enable = !!(s->data[1] & 0x02);
806 break;
807 default:
808 break;
810 if (s->write_enable) {
811 s->write_enable = false;
813 break;
814 case BRWR:
815 case EXTEND_ADDR_WRITE:
816 s->ear = s->data[0];
817 break;
818 case WNVCR:
819 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
820 break;
821 case WVCR:
822 s->volatile_cfg = s->data[0];
823 break;
824 case WEVCR:
825 s->enh_volatile_cfg = s->data[0];
826 break;
827 case RDID_90:
828 case RDID_AB:
829 if (get_man(s) == MAN_SST) {
830 if (s->cur_addr <= 1) {
831 if (s->cur_addr) {
832 s->data[0] = s->pi->id[2];
833 s->data[1] = s->pi->id[0];
834 } else {
835 s->data[0] = s->pi->id[0];
836 s->data[1] = s->pi->id[2];
838 s->pos = 0;
839 s->len = 2;
840 s->data_read_loop = true;
841 s->state = STATE_READING_DATA;
842 } else {
843 qemu_log_mask(LOG_GUEST_ERROR,
844 "M25P80: Invalid read id address\n");
846 } else {
847 qemu_log_mask(LOG_GUEST_ERROR,
848 "M25P80: Read id (command 0x90/0xAB) is not supported"
849 " by device\n");
851 break;
853 case RDSFDP:
854 s->state = STATE_READING_SFDP;
855 break;
857 default:
858 break;
862 static void reset_memory(Flash *s)
864 s->cmd_in_progress = NOP;
865 s->cur_addr = 0;
866 s->ear = 0;
867 s->four_bytes_address_mode = false;
868 s->len = 0;
869 s->needed_bytes = 0;
870 s->pos = 0;
871 s->state = STATE_IDLE;
872 s->write_enable = false;
873 s->reset_enable = false;
874 s->quad_enable = false;
875 s->aai_enable = false;
877 switch (get_man(s)) {
878 case MAN_NUMONYX:
879 s->volatile_cfg = 0;
880 s->volatile_cfg |= VCFG_DUMMY;
881 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
882 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
883 == NVCFG_XIP_MODE_DISABLED) {
884 s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
886 s->volatile_cfg |= deposit32(s->volatile_cfg,
887 VCFG_DUMMY_CLK_POS,
888 CFG_DUMMY_CLK_LEN,
889 extract32(s->nonvolatile_cfg,
890 NVCFG_DUMMY_CLK_POS,
891 CFG_DUMMY_CLK_LEN)
894 s->enh_volatile_cfg = 0;
895 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
896 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
897 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
898 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
899 s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
901 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
902 s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
904 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
905 s->four_bytes_address_mode = true;
907 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
908 s->ear = s->size / MAX_3BYTES_SIZE - 1;
910 break;
911 case MAN_MACRONIX:
912 s->volatile_cfg = 0x7;
913 break;
914 case MAN_SPANSION:
915 s->spansion_cr1v = s->spansion_cr1nv;
916 s->spansion_cr2v = s->spansion_cr2nv;
917 s->spansion_cr3v = s->spansion_cr3nv;
918 s->spansion_cr4v = s->spansion_cr4nv;
919 s->quad_enable = extract32(s->spansion_cr1v,
920 SPANSION_QUAD_CFG_POS,
921 SPANSION_QUAD_CFG_LEN
923 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
924 SPANSION_ADDR_LEN_POS,
925 SPANSION_ADDR_LEN_LEN
927 break;
928 default:
929 break;
932 trace_m25p80_reset_done(s);
935 static uint8_t numonyx_mode(Flash *s)
937 if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
938 return MODE_QIO;
939 } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
940 return MODE_DIO;
941 } else {
942 return MODE_STD;
946 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
948 uint8_t num_dummies;
949 uint8_t mode;
950 assert(get_man(s) == MAN_NUMONYX);
952 mode = numonyx_mode(s);
953 num_dummies = extract32(s->volatile_cfg, 4, 4);
955 if (num_dummies == 0x0 || num_dummies == 0xf) {
956 switch (s->cmd_in_progress) {
957 case QIOR:
958 case QIOR4:
959 num_dummies = 10;
960 break;
961 default:
962 num_dummies = (mode == MODE_QIO) ? 10 : 8;
963 break;
967 return num_dummies;
970 static void decode_fast_read_cmd(Flash *s)
972 s->needed_bytes = get_addr_length(s);
973 switch (get_man(s)) {
974 /* Dummy cycles - modeled with bytes writes instead of bits */
975 case MAN_SST:
976 s->needed_bytes += 1;
977 break;
978 case MAN_WINBOND:
979 s->needed_bytes += 8;
980 break;
981 case MAN_NUMONYX:
982 s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
983 break;
984 case MAN_MACRONIX:
985 if (extract32(s->volatile_cfg, 6, 2) == 1) {
986 s->needed_bytes += 6;
987 } else {
988 s->needed_bytes += 8;
990 break;
991 case MAN_SPANSION:
992 s->needed_bytes += extract32(s->spansion_cr2v,
993 SPANSION_DUMMY_CLK_POS,
994 SPANSION_DUMMY_CLK_LEN
996 break;
997 case MAN_ISSI:
999 * The Fast Read instruction code is followed by address bytes and
1000 * dummy cycles, transmitted via the SI line.
1002 * The number of dummy cycles is configurable but this is currently
1003 * unmodeled, hence the default value 8 is used.
1005 * QPI (Quad Peripheral Interface) mode has different default value
1006 * of dummy cycles, but this is unsupported at the time being.
1008 s->needed_bytes += 1;
1009 break;
1010 default:
1011 break;
1013 s->pos = 0;
1014 s->len = 0;
1015 s->state = STATE_COLLECTING_DATA;
1018 static void decode_dio_read_cmd(Flash *s)
1020 s->needed_bytes = get_addr_length(s);
1021 /* Dummy cycles modeled with bytes writes instead of bits */
1022 switch (get_man(s)) {
1023 case MAN_WINBOND:
1024 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1025 break;
1026 case MAN_SPANSION:
1027 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1028 s->needed_bytes += extract32(s->spansion_cr2v,
1029 SPANSION_DUMMY_CLK_POS,
1030 SPANSION_DUMMY_CLK_LEN
1032 break;
1033 case MAN_NUMONYX:
1034 s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1035 break;
1036 case MAN_MACRONIX:
1037 switch (extract32(s->volatile_cfg, 6, 2)) {
1038 case 1:
1039 s->needed_bytes += 6;
1040 break;
1041 case 2:
1042 s->needed_bytes += 8;
1043 break;
1044 default:
1045 s->needed_bytes += 4;
1046 break;
1048 break;
1049 case MAN_ISSI:
1051 * The Fast Read Dual I/O instruction code is followed by address bytes
1052 * and dummy cycles, transmitted via the IO1 and IO0 line.
1054 * The number of dummy cycles is configurable but this is currently
1055 * unmodeled, hence the default value 4 is used.
1057 s->needed_bytes += 1;
1058 break;
1059 default:
1060 break;
1062 s->pos = 0;
1063 s->len = 0;
1064 s->state = STATE_COLLECTING_DATA;
1067 static void decode_qio_read_cmd(Flash *s)
1069 s->needed_bytes = get_addr_length(s);
1070 /* Dummy cycles modeled with bytes writes instead of bits */
1071 switch (get_man(s)) {
1072 case MAN_WINBOND:
1073 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1074 s->needed_bytes += 4;
1075 break;
1076 case MAN_SPANSION:
1077 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1078 s->needed_bytes += extract32(s->spansion_cr2v,
1079 SPANSION_DUMMY_CLK_POS,
1080 SPANSION_DUMMY_CLK_LEN
1082 break;
1083 case MAN_NUMONYX:
1084 s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1085 break;
1086 case MAN_MACRONIX:
1087 switch (extract32(s->volatile_cfg, 6, 2)) {
1088 case 1:
1089 s->needed_bytes += 4;
1090 break;
1091 case 2:
1092 s->needed_bytes += 8;
1093 break;
1094 default:
1095 s->needed_bytes += 6;
1096 break;
1098 break;
1099 case MAN_ISSI:
1101 * The Fast Read Quad I/O instruction code is followed by address bytes
1102 * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1104 * The number of dummy cycles is configurable but this is currently
1105 * unmodeled, hence the default value 6 is used.
1107 * QPI (Quad Peripheral Interface) mode has different default value
1108 * of dummy cycles, but this is unsupported at the time being.
1110 s->needed_bytes += 3;
1111 break;
1112 default:
1113 break;
1115 s->pos = 0;
1116 s->len = 0;
1117 s->state = STATE_COLLECTING_DATA;
1120 static bool is_valid_aai_cmd(uint32_t cmd)
1122 return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1125 static void decode_new_cmd(Flash *s, uint32_t value)
1127 int i;
1129 s->cmd_in_progress = value;
1130 trace_m25p80_command_decoded(s, value);
1132 if (value != RESET_MEMORY) {
1133 s->reset_enable = false;
1136 if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1137 qemu_log_mask(LOG_GUEST_ERROR,
1138 "M25P80: Invalid cmd within AAI programming sequence");
1141 switch (value) {
1143 case ERASE_4K:
1144 case ERASE4_4K:
1145 case ERASE_32K:
1146 case ERASE4_32K:
1147 case ERASE_SECTOR:
1148 case ERASE4_SECTOR:
1149 case PP:
1150 case PP4:
1151 case DIE_ERASE:
1152 case RDID_90:
1153 case RDID_AB:
1154 s->needed_bytes = get_addr_length(s);
1155 s->pos = 0;
1156 s->len = 0;
1157 s->state = STATE_COLLECTING_DATA;
1158 break;
1159 case READ:
1160 case READ4:
1161 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1162 s->needed_bytes = get_addr_length(s);
1163 s->pos = 0;
1164 s->len = 0;
1165 s->state = STATE_COLLECTING_DATA;
1166 } else {
1167 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1168 "DIO or QIO mode\n", s->cmd_in_progress);
1170 break;
1171 case DPP:
1172 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1173 s->needed_bytes = get_addr_length(s);
1174 s->pos = 0;
1175 s->len = 0;
1176 s->state = STATE_COLLECTING_DATA;
1177 } else {
1178 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1179 "QIO mode\n", s->cmd_in_progress);
1181 break;
1182 case QPP:
1183 case QPP_4:
1184 case PP4_4:
1185 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1186 s->needed_bytes = get_addr_length(s);
1187 s->pos = 0;
1188 s->len = 0;
1189 s->state = STATE_COLLECTING_DATA;
1190 } else {
1191 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1192 "DIO mode\n", s->cmd_in_progress);
1194 break;
1196 case FAST_READ:
1197 case FAST_READ4:
1198 decode_fast_read_cmd(s);
1199 break;
1200 case DOR:
1201 case DOR4:
1202 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1203 decode_fast_read_cmd(s);
1204 } else {
1205 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1206 "QIO mode\n", s->cmd_in_progress);
1208 break;
1209 case QOR:
1210 case QOR4:
1211 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1212 decode_fast_read_cmd(s);
1213 } else {
1214 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1215 "DIO mode\n", s->cmd_in_progress);
1217 break;
1219 case DIOR:
1220 case DIOR4:
1221 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1222 decode_dio_read_cmd(s);
1223 } else {
1224 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1225 "QIO mode\n", s->cmd_in_progress);
1227 break;
1229 case QIOR:
1230 case QIOR4:
1231 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1232 decode_qio_read_cmd(s);
1233 } else {
1234 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1235 "DIO mode\n", s->cmd_in_progress);
1237 break;
1239 case WRSR:
1241 * If WP# is low and status_register_write_disabled is high,
1242 * status register writes are disabled.
1243 * This is also called "hardware protected mode" (HPM). All other
1244 * combinations of the two states are called "software protected mode"
1245 * (SPM), and status register writes are permitted.
1247 if ((s->wp_level == 0 && s->status_register_write_disabled)
1248 || !s->write_enable) {
1249 qemu_log_mask(LOG_GUEST_ERROR,
1250 "M25P80: Status register write is disabled!\n");
1251 break;
1254 switch (get_man(s)) {
1255 case MAN_SPANSION:
1256 s->needed_bytes = 2;
1257 s->state = STATE_COLLECTING_DATA;
1258 break;
1259 case MAN_MACRONIX:
1260 s->needed_bytes = 2;
1261 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1262 break;
1263 case MAN_WINBOND:
1264 s->needed_bytes = 2;
1265 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1266 break;
1267 default:
1268 s->needed_bytes = 1;
1269 s->state = STATE_COLLECTING_DATA;
1271 s->pos = 0;
1272 break;
1274 case WRDI:
1275 s->write_enable = false;
1276 if (get_man(s) == MAN_SST) {
1277 s->aai_enable = false;
1279 break;
1280 case WREN:
1281 s->write_enable = true;
1282 break;
1284 case RDSR:
1285 s->data[0] = (!!s->write_enable) << 1;
1286 s->data[0] |= (!!s->status_register_write_disabled) << 7;
1287 s->data[0] |= (!!s->block_protect0) << 2;
1288 s->data[0] |= (!!s->block_protect1) << 3;
1289 s->data[0] |= (!!s->block_protect2) << 4;
1290 if (s->pi->flags & HAS_SR_TB) {
1291 s->data[0] |= (!!s->top_bottom_bit) << 5;
1293 if (s->pi->flags & HAS_SR_BP3_BIT6) {
1294 s->data[0] |= (!!s->block_protect3) << 6;
1297 if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1298 s->data[0] |= (!!s->quad_enable) << 6;
1300 if (get_man(s) == MAN_SST) {
1301 s->data[0] |= (!!s->aai_enable) << 6;
1304 s->pos = 0;
1305 s->len = 1;
1306 s->data_read_loop = true;
1307 s->state = STATE_READING_DATA;
1308 break;
1310 case READ_FSR:
1311 s->data[0] = FSR_FLASH_READY;
1312 if (s->four_bytes_address_mode) {
1313 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1315 s->pos = 0;
1316 s->len = 1;
1317 s->data_read_loop = true;
1318 s->state = STATE_READING_DATA;
1319 break;
1321 case JEDEC_READ:
1322 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1323 trace_m25p80_populated_jedec(s);
1324 for (i = 0; i < s->pi->id_len; i++) {
1325 s->data[i] = s->pi->id[i];
1327 for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1328 s->data[i] = 0;
1331 s->len = SPI_NOR_MAX_ID_LEN;
1332 s->pos = 0;
1333 s->state = STATE_READING_DATA;
1334 } else {
1335 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1336 "in DIO or QIO mode\n");
1338 break;
1340 case RDCR:
1341 s->data[0] = s->volatile_cfg & 0xFF;
1342 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1343 s->pos = 0;
1344 s->len = 1;
1345 s->state = STATE_READING_DATA;
1346 break;
1348 case BULK_ERASE_60:
1349 case BULK_ERASE:
1350 if (s->write_enable) {
1351 trace_m25p80_chip_erase(s);
1352 flash_erase(s, 0, BULK_ERASE);
1353 } else {
1354 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1355 "protect!\n");
1357 break;
1358 case NOP:
1359 break;
1360 case EN_4BYTE_ADDR:
1361 s->four_bytes_address_mode = true;
1362 break;
1363 case EX_4BYTE_ADDR:
1364 s->four_bytes_address_mode = false;
1365 break;
1366 case BRRD:
1367 case EXTEND_ADDR_READ:
1368 s->data[0] = s->ear;
1369 s->pos = 0;
1370 s->len = 1;
1371 s->state = STATE_READING_DATA;
1372 break;
1373 case BRWR:
1374 case EXTEND_ADDR_WRITE:
1375 if (s->write_enable) {
1376 s->needed_bytes = 1;
1377 s->pos = 0;
1378 s->len = 0;
1379 s->state = STATE_COLLECTING_DATA;
1381 break;
1382 case RNVCR:
1383 s->data[0] = s->nonvolatile_cfg & 0xFF;
1384 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1385 s->pos = 0;
1386 s->len = 2;
1387 s->state = STATE_READING_DATA;
1388 break;
1389 case WNVCR:
1390 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1391 s->needed_bytes = 2;
1392 s->pos = 0;
1393 s->len = 0;
1394 s->state = STATE_COLLECTING_DATA;
1396 break;
1397 case RVCR:
1398 s->data[0] = s->volatile_cfg & 0xFF;
1399 s->pos = 0;
1400 s->len = 1;
1401 s->state = STATE_READING_DATA;
1402 break;
1403 case WVCR:
1404 if (s->write_enable) {
1405 s->needed_bytes = 1;
1406 s->pos = 0;
1407 s->len = 0;
1408 s->state = STATE_COLLECTING_DATA;
1410 break;
1411 case REVCR:
1412 s->data[0] = s->enh_volatile_cfg & 0xFF;
1413 s->pos = 0;
1414 s->len = 1;
1415 s->state = STATE_READING_DATA;
1416 break;
1417 case WEVCR:
1418 if (s->write_enable) {
1419 s->needed_bytes = 1;
1420 s->pos = 0;
1421 s->len = 0;
1422 s->state = STATE_COLLECTING_DATA;
1424 break;
1425 case RESET_ENABLE:
1426 s->reset_enable = true;
1427 break;
1428 case RESET_MEMORY:
1429 if (s->reset_enable) {
1430 reset_memory(s);
1432 break;
1433 case RDCR_EQIO:
1434 switch (get_man(s)) {
1435 case MAN_SPANSION:
1436 s->data[0] = (!!s->quad_enable) << 1;
1437 s->pos = 0;
1438 s->len = 1;
1439 s->state = STATE_READING_DATA;
1440 break;
1441 case MAN_MACRONIX:
1442 s->quad_enable = true;
1443 break;
1444 case MAN_WINBOND:
1445 s->data[0] = (!!s->quad_enable) << 1;
1446 s->pos = 0;
1447 s->len = 1;
1448 s->state = STATE_READING_DATA;
1449 break;
1450 default:
1451 break;
1453 break;
1454 case RSTQIO:
1455 s->quad_enable = false;
1456 break;
1457 case AAI_WP:
1458 if (get_man(s) == MAN_SST) {
1459 if (s->write_enable) {
1460 if (s->aai_enable) {
1461 s->state = STATE_PAGE_PROGRAM;
1462 } else {
1463 s->aai_enable = true;
1464 s->needed_bytes = get_addr_length(s);
1465 s->state = STATE_COLLECTING_DATA;
1467 } else {
1468 qemu_log_mask(LOG_GUEST_ERROR,
1469 "M25P80: AAI_WP with write protect\n");
1471 } else {
1472 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1474 break;
1475 case RDSFDP:
1476 if (s->pi->sfdp_read) {
1477 s->needed_bytes = get_addr_length(s) + 1; /* SFDP addr + dummy */
1478 s->pos = 0;
1479 s->len = 0;
1480 s->state = STATE_COLLECTING_DATA;
1481 break;
1483 /* Fallthrough */
1485 default:
1486 s->pos = 0;
1487 s->len = 1;
1488 s->state = STATE_READING_DATA;
1489 s->data_read_loop = true;
1490 s->data[0] = 0;
1491 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1492 break;
1496 static int m25p80_cs(SSIPeripheral *ss, bool select)
1498 Flash *s = M25P80(ss);
1500 if (select) {
1501 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1502 complete_collecting_data(s);
1504 s->len = 0;
1505 s->pos = 0;
1506 s->state = STATE_IDLE;
1507 flash_sync_dirty(s, -1);
1508 s->data_read_loop = false;
1511 trace_m25p80_select(s, select ? "de" : "");
1513 return 0;
1516 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1518 Flash *s = M25P80(ss);
1519 uint32_t r = 0;
1521 trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1522 s->cur_addr, (uint8_t)tx);
1524 switch (s->state) {
1526 case STATE_PAGE_PROGRAM:
1527 trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1528 flash_write8(s, s->cur_addr, (uint8_t)tx);
1529 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1531 if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1533 * There is no wrap mode during AAI programming once the highest
1534 * unprotected memory address is reached. The Write-Enable-Latch
1535 * bit is automatically reset, and AAI programming mode aborts.
1537 s->write_enable = false;
1538 s->aai_enable = false;
1541 break;
1543 case STATE_READ:
1544 r = s->storage[s->cur_addr];
1545 trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1546 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1547 break;
1549 case STATE_COLLECTING_DATA:
1550 case STATE_COLLECTING_VAR_LEN_DATA:
1552 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1553 qemu_log_mask(LOG_GUEST_ERROR,
1554 "M25P80: Write overrun internal data buffer. "
1555 "SPI controller (QEMU emulator or guest driver) "
1556 "is misbehaving\n");
1557 s->len = s->pos = 0;
1558 s->state = STATE_IDLE;
1559 break;
1562 s->data[s->len] = (uint8_t)tx;
1563 s->len++;
1565 if (s->len == s->needed_bytes) {
1566 complete_collecting_data(s);
1568 break;
1570 case STATE_READING_DATA:
1572 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1573 qemu_log_mask(LOG_GUEST_ERROR,
1574 "M25P80: Read overrun internal data buffer. "
1575 "SPI controller (QEMU emulator or guest driver) "
1576 "is misbehaving\n");
1577 s->len = s->pos = 0;
1578 s->state = STATE_IDLE;
1579 break;
1582 r = s->data[s->pos];
1583 trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1584 s->pos++;
1585 if (s->pos == s->len) {
1586 s->pos = 0;
1587 if (!s->data_read_loop) {
1588 s->state = STATE_IDLE;
1591 break;
1592 case STATE_READING_SFDP:
1593 assert(s->pi->sfdp_read);
1594 r = s->pi->sfdp_read(s->cur_addr);
1595 trace_m25p80_read_sfdp(s, s->cur_addr, (uint8_t)r);
1596 s->cur_addr = (s->cur_addr + 1) & (M25P80_SFDP_MAX_SIZE - 1);
1597 break;
1599 default:
1600 case STATE_IDLE:
1601 decode_new_cmd(s, (uint8_t)tx);
1602 break;
1605 return r;
1608 static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level)
1610 Flash *s = M25P80(opaque);
1611 /* WP# is just a single pin. */
1612 assert(n == 0);
1613 s->wp_level = !!level;
1616 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1618 Flash *s = M25P80(ss);
1619 M25P80Class *mc = M25P80_GET_CLASS(s);
1620 int ret;
1622 s->pi = mc->pi;
1624 s->size = s->pi->sector_size * s->pi->n_sectors;
1625 s->dirty_page = -1;
1627 if (s->blk) {
1628 uint64_t perm = BLK_PERM_CONSISTENT_READ |
1629 (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1630 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1631 if (ret < 0) {
1632 return;
1635 trace_m25p80_binding(s);
1636 s->storage = blk_blockalign(s->blk, s->size);
1638 if (!blk_check_size_and_read_all(s->blk, DEVICE(s),
1639 s->storage, s->size, errp)) {
1640 return;
1642 } else {
1643 trace_m25p80_binding_no_bdrv(s);
1644 s->storage = blk_blockalign(NULL, s->size);
1645 memset(s->storage, 0xFF, s->size);
1648 qdev_init_gpio_in_named(DEVICE(s),
1649 m25p80_write_protect_pin_irq_handler, "WP#", 1);
1652 static void m25p80_reset(DeviceState *d)
1654 Flash *s = M25P80(d);
1656 s->wp_level = true;
1657 s->status_register_write_disabled = false;
1658 s->block_protect0 = false;
1659 s->block_protect1 = false;
1660 s->block_protect2 = false;
1661 s->block_protect3 = false;
1662 s->top_bottom_bit = false;
1664 reset_memory(s);
1667 static int m25p80_pre_save(void *opaque)
1669 flash_sync_dirty((Flash *)opaque, -1);
1671 return 0;
1674 static Property m25p80_properties[] = {
1675 /* This is default value for Micron flash */
1676 DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false),
1677 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1678 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1679 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1680 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1681 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1682 DEFINE_PROP_DRIVE("drive", Flash, blk),
1683 DEFINE_PROP_END_OF_LIST(),
1686 static int m25p80_pre_load(void *opaque)
1688 Flash *s = (Flash *)opaque;
1690 s->data_read_loop = false;
1691 return 0;
1694 static bool m25p80_data_read_loop_needed(void *opaque)
1696 Flash *s = (Flash *)opaque;
1698 return s->data_read_loop;
1701 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1702 .name = "m25p80/data_read_loop",
1703 .version_id = 1,
1704 .minimum_version_id = 1,
1705 .needed = m25p80_data_read_loop_needed,
1706 .fields = (const VMStateField[]) {
1707 VMSTATE_BOOL(data_read_loop, Flash),
1708 VMSTATE_END_OF_LIST()
1712 static bool m25p80_aai_enable_needed(void *opaque)
1714 Flash *s = (Flash *)opaque;
1716 return s->aai_enable;
1719 static const VMStateDescription vmstate_m25p80_aai_enable = {
1720 .name = "m25p80/aai_enable",
1721 .version_id = 1,
1722 .minimum_version_id = 1,
1723 .needed = m25p80_aai_enable_needed,
1724 .fields = (const VMStateField[]) {
1725 VMSTATE_BOOL(aai_enable, Flash),
1726 VMSTATE_END_OF_LIST()
1730 static bool m25p80_wp_level_srwd_needed(void *opaque)
1732 Flash *s = (Flash *)opaque;
1734 return !s->wp_level || s->status_register_write_disabled;
1737 static const VMStateDescription vmstate_m25p80_write_protect = {
1738 .name = "m25p80/write_protect",
1739 .version_id = 1,
1740 .minimum_version_id = 1,
1741 .needed = m25p80_wp_level_srwd_needed,
1742 .fields = (const VMStateField[]) {
1743 VMSTATE_BOOL(wp_level, Flash),
1744 VMSTATE_BOOL(status_register_write_disabled, Flash),
1745 VMSTATE_END_OF_LIST()
1749 static bool m25p80_block_protect_needed(void *opaque)
1751 Flash *s = (Flash *)opaque;
1753 return s->block_protect0 ||
1754 s->block_protect1 ||
1755 s->block_protect2 ||
1756 s->block_protect3 ||
1757 s->top_bottom_bit;
1760 static const VMStateDescription vmstate_m25p80_block_protect = {
1761 .name = "m25p80/block_protect",
1762 .version_id = 1,
1763 .minimum_version_id = 1,
1764 .needed = m25p80_block_protect_needed,
1765 .fields = (const VMStateField[]) {
1766 VMSTATE_BOOL(block_protect0, Flash),
1767 VMSTATE_BOOL(block_protect1, Flash),
1768 VMSTATE_BOOL(block_protect2, Flash),
1769 VMSTATE_BOOL(block_protect3, Flash),
1770 VMSTATE_BOOL(top_bottom_bit, Flash),
1771 VMSTATE_END_OF_LIST()
1775 static const VMStateDescription vmstate_m25p80 = {
1776 .name = "m25p80",
1777 .version_id = 0,
1778 .minimum_version_id = 0,
1779 .pre_save = m25p80_pre_save,
1780 .pre_load = m25p80_pre_load,
1781 .fields = (const VMStateField[]) {
1782 VMSTATE_UINT8(state, Flash),
1783 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1784 VMSTATE_UINT32(len, Flash),
1785 VMSTATE_UINT32(pos, Flash),
1786 VMSTATE_UINT8(needed_bytes, Flash),
1787 VMSTATE_UINT8(cmd_in_progress, Flash),
1788 VMSTATE_UINT32(cur_addr, Flash),
1789 VMSTATE_BOOL(write_enable, Flash),
1790 VMSTATE_BOOL(reset_enable, Flash),
1791 VMSTATE_UINT8(ear, Flash),
1792 VMSTATE_BOOL(four_bytes_address_mode, Flash),
1793 VMSTATE_UINT32(nonvolatile_cfg, Flash),
1794 VMSTATE_UINT32(volatile_cfg, Flash),
1795 VMSTATE_UINT32(enh_volatile_cfg, Flash),
1796 VMSTATE_BOOL(quad_enable, Flash),
1797 VMSTATE_UINT8(spansion_cr1nv, Flash),
1798 VMSTATE_UINT8(spansion_cr2nv, Flash),
1799 VMSTATE_UINT8(spansion_cr3nv, Flash),
1800 VMSTATE_UINT8(spansion_cr4nv, Flash),
1801 VMSTATE_END_OF_LIST()
1803 .subsections = (const VMStateDescription * const []) {
1804 &vmstate_m25p80_data_read_loop,
1805 &vmstate_m25p80_aai_enable,
1806 &vmstate_m25p80_write_protect,
1807 &vmstate_m25p80_block_protect,
1808 NULL
1812 static void m25p80_class_init(ObjectClass *klass, void *data)
1814 DeviceClass *dc = DEVICE_CLASS(klass);
1815 SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1816 M25P80Class *mc = M25P80_CLASS(klass);
1818 k->realize = m25p80_realize;
1819 k->transfer = m25p80_transfer8;
1820 k->set_cs = m25p80_cs;
1821 k->cs_polarity = SSI_CS_LOW;
1822 dc->vmsd = &vmstate_m25p80;
1823 device_class_set_props(dc, m25p80_properties);
1824 dc->reset = m25p80_reset;
1825 mc->pi = data;
1828 static const TypeInfo m25p80_info = {
1829 .name = TYPE_M25P80,
1830 .parent = TYPE_SSI_PERIPHERAL,
1831 .instance_size = sizeof(Flash),
1832 .class_size = sizeof(M25P80Class),
1833 .abstract = true,
1836 static void m25p80_register_types(void)
1838 int i;
1840 type_register_static(&m25p80_info);
1841 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1842 TypeInfo ti = {
1843 .name = known_devices[i].part_name,
1844 .parent = TYPE_M25P80,
1845 .class_init = m25p80_class_init,
1846 .class_data = (void *)&known_devices[i],
1848 type_register(&ti);
1852 type_init(m25p80_register_types)
1854 BlockBackend *m25p80_get_blk(DeviceState *dev)
1856 return M25P80(dev)->blk;