2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
19 #include <sys/ioctl.h>
22 #include <linux/kvm.h>
24 #include "qapi/error.h"
25 #include "qemu/error-report.h"
27 #include "cpu-models.h"
28 #include "qemu/timer.h"
29 #include "sysemu/hw_accel.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "mmu-hash64.h"
35 #include "hw/sysbus.h"
36 #include "hw/ppc/spapr.h"
37 #include "hw/ppc/spapr_cpu_core.h"
39 #include "hw/ppc/ppc.h"
40 #include "migration/qemu-file-types.h"
41 #include "sysemu/watchdog.h"
43 #include "exec/gdbstub.h"
44 #include "exec/memattrs.h"
45 #include "exec/ram_addr.h"
46 #include "sysemu/hostmem.h"
47 #include "qemu/cutils.h"
48 #include "qemu/main-loop.h"
49 #include "qemu/mmap-alloc.h"
51 #include "sysemu/kvm_int.h"
53 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
55 #define DEBUG_RETURN_GUEST 0
56 #define DEBUG_RETURN_GDB 1
58 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
62 static int cap_interrupt_unset
;
63 static int cap_segstate
;
64 static int cap_booke_sregs
;
65 static int cap_ppc_smt
;
66 static int cap_ppc_smt_possible
;
67 static int cap_spapr_tce
;
68 static int cap_spapr_tce_64
;
69 static int cap_spapr_multitce
;
70 static int cap_spapr_vfio
;
72 static int cap_one_reg
;
74 static int cap_ppc_watchdog
;
76 static int cap_htab_fd
;
77 static int cap_fixup_hcalls
;
78 static int cap_htm
; /* Hardware transactional memory support */
79 static int cap_mmu_radix
;
80 static int cap_mmu_hash_v3
;
82 static int cap_resize_hpt
;
83 static int cap_ppc_pvr_compat
;
84 static int cap_ppc_safe_cache
;
85 static int cap_ppc_safe_bounds_check
;
86 static int cap_ppc_safe_indirect_branch
;
87 static int cap_ppc_count_cache_flush_assist
;
88 static int cap_ppc_nested_kvm_hv
;
89 static int cap_large_decr
;
91 static int cap_rpt_invalidate
;
93 static uint32_t debug_inst_opcode
;
96 * Check whether we are running with KVM-PR (instead of KVM-HV). This
97 * should only be used for fallback tests - generally we should use
98 * explicit capabilities for the features we want, rather than
99 * assuming what is/isn't available depending on the KVM variant.
101 static bool kvmppc_is_pr(KVMState
*ks
)
103 /* Assume KVM-PR if the GET_PVINFO capability is available */
104 return kvm_vm_check_extension(ks
, KVM_CAP_PPC_GET_PVINFO
) != 0;
107 static int kvm_ppc_register_host_cpu_type(void);
108 static void kvmppc_get_cpu_characteristics(KVMState
*s
);
109 static int kvmppc_get_dec_bits(void);
111 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
113 cap_interrupt_unset
= kvm_check_extension(s
, KVM_CAP_PPC_UNSET_IRQ
);
114 cap_segstate
= kvm_check_extension(s
, KVM_CAP_PPC_SEGSTATE
);
115 cap_booke_sregs
= kvm_check_extension(s
, KVM_CAP_PPC_BOOKE_SREGS
);
116 cap_ppc_smt_possible
= kvm_vm_check_extension(s
, KVM_CAP_PPC_SMT_POSSIBLE
);
117 cap_spapr_tce
= kvm_check_extension(s
, KVM_CAP_SPAPR_TCE
);
118 cap_spapr_tce_64
= kvm_check_extension(s
, KVM_CAP_SPAPR_TCE_64
);
119 cap_spapr_multitce
= kvm_check_extension(s
, KVM_CAP_SPAPR_MULTITCE
);
120 cap_spapr_vfio
= kvm_vm_check_extension(s
, KVM_CAP_SPAPR_TCE_VFIO
);
121 cap_one_reg
= kvm_check_extension(s
, KVM_CAP_ONE_REG
);
122 cap_hior
= kvm_check_extension(s
, KVM_CAP_PPC_HIOR
);
123 cap_epr
= kvm_check_extension(s
, KVM_CAP_PPC_EPR
);
124 cap_ppc_watchdog
= kvm_check_extension(s
, KVM_CAP_PPC_BOOKE_WATCHDOG
);
126 * Note: we don't set cap_papr here, because this capability is
127 * only activated after this by kvmppc_set_papr()
129 cap_htab_fd
= kvm_vm_check_extension(s
, KVM_CAP_PPC_HTAB_FD
);
130 cap_fixup_hcalls
= kvm_check_extension(s
, KVM_CAP_PPC_FIXUP_HCALL
);
131 cap_ppc_smt
= kvm_vm_check_extension(s
, KVM_CAP_PPC_SMT
);
132 cap_htm
= kvm_vm_check_extension(s
, KVM_CAP_PPC_HTM
);
133 cap_mmu_radix
= kvm_vm_check_extension(s
, KVM_CAP_PPC_MMU_RADIX
);
134 cap_mmu_hash_v3
= kvm_vm_check_extension(s
, KVM_CAP_PPC_MMU_HASH_V3
);
135 cap_xive
= kvm_vm_check_extension(s
, KVM_CAP_PPC_IRQ_XIVE
);
136 cap_resize_hpt
= kvm_vm_check_extension(s
, KVM_CAP_SPAPR_RESIZE_HPT
);
137 kvmppc_get_cpu_characteristics(s
);
138 cap_ppc_nested_kvm_hv
= kvm_vm_check_extension(s
, KVM_CAP_PPC_NESTED_HV
);
139 cap_large_decr
= kvmppc_get_dec_bits();
140 cap_fwnmi
= kvm_vm_check_extension(s
, KVM_CAP_PPC_FWNMI
);
142 * Note: setting it to false because there is not such capability
143 * in KVM at this moment.
145 * TODO: call kvm_vm_check_extension() with the right capability
146 * after the kernel starts implementing it.
148 cap_ppc_pvr_compat
= false;
150 if (!kvm_check_extension(s
, KVM_CAP_PPC_IRQ_LEVEL
)) {
151 error_report("KVM: Host kernel doesn't have level irq capability");
155 cap_rpt_invalidate
= kvm_vm_check_extension(s
, KVM_CAP_PPC_RPT_INVALIDATE
);
156 kvm_ppc_register_host_cpu_type();
161 int kvm_arch_irqchip_create(KVMState
*s
)
166 static int kvm_arch_sync_sregs(PowerPCCPU
*cpu
)
168 CPUPPCState
*cenv
= &cpu
->env
;
169 CPUState
*cs
= CPU(cpu
);
170 struct kvm_sregs sregs
;
173 if (cenv
->excp_model
== POWERPC_EXCP_BOOKE
) {
175 * What we're really trying to say is "if we're on BookE, we
176 * use the native PVR for now". This is the only sane way to
177 * check it though, so we potentially confuse users that they
178 * can run BookE guests on BookS. Let's hope nobody dares
184 fprintf(stderr
, "kvm error: missing PVR setting capability\n");
189 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
194 sregs
.pvr
= cenv
->spr
[SPR_PVR
];
195 return kvm_vcpu_ioctl(cs
, KVM_SET_SREGS
, &sregs
);
198 /* Set up a shared TLB array with KVM */
199 static int kvm_booke206_tlb_init(PowerPCCPU
*cpu
)
201 CPUPPCState
*env
= &cpu
->env
;
202 CPUState
*cs
= CPU(cpu
);
203 struct kvm_book3e_206_tlb_params params
= {};
204 struct kvm_config_tlb cfg
= {};
205 unsigned int entries
= 0;
208 if (!kvm_enabled() ||
209 !kvm_check_extension(cs
->kvm_state
, KVM_CAP_SW_TLB
)) {
213 assert(ARRAY_SIZE(params
.tlb_sizes
) == BOOKE206_MAX_TLBN
);
215 for (i
= 0; i
< BOOKE206_MAX_TLBN
; i
++) {
216 params
.tlb_sizes
[i
] = booke206_tlb_size(env
, i
);
217 params
.tlb_ways
[i
] = booke206_tlb_ways(env
, i
);
218 entries
+= params
.tlb_sizes
[i
];
221 assert(entries
== env
->nb_tlb
);
222 assert(sizeof(struct kvm_book3e_206_tlb_entry
) == sizeof(ppcmas_tlb_t
));
224 env
->tlb_dirty
= true;
226 cfg
.array
= (uintptr_t)env
->tlb
.tlbm
;
227 cfg
.array_len
= sizeof(ppcmas_tlb_t
) * entries
;
228 cfg
.params
= (uintptr_t)¶ms
;
229 cfg
.mmu_type
= KVM_MMU_FSL_BOOKE_NOHV
;
231 ret
= kvm_vcpu_enable_cap(cs
, KVM_CAP_SW_TLB
, 0, (uintptr_t)&cfg
);
233 fprintf(stderr
, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
234 __func__
, strerror(-ret
));
238 env
->kvm_sw_tlb
= true;
243 #if defined(TARGET_PPC64)
244 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info
*info
, Error
**errp
)
248 assert(kvm_state
!= NULL
);
250 if (!kvm_check_extension(kvm_state
, KVM_CAP_PPC_GET_SMMU_INFO
)) {
251 error_setg(errp
, "KVM doesn't expose the MMU features it supports");
252 error_append_hint(errp
, "Consider switching to a newer KVM\n");
256 ret
= kvm_vm_ioctl(kvm_state
, KVM_PPC_GET_SMMU_INFO
, info
);
261 error_setg_errno(errp
, -ret
,
262 "KVM failed to provide the MMU features it supports");
265 struct ppc_radix_page_info
*kvm_get_radix_page_info(void)
267 KVMState
*s
= KVM_STATE(current_accel());
268 struct ppc_radix_page_info
*radix_page_info
;
269 struct kvm_ppc_rmmu_info rmmu_info
= { };
272 if (!kvm_check_extension(s
, KVM_CAP_PPC_MMU_RADIX
)) {
275 if (kvm_vm_ioctl(s
, KVM_PPC_GET_RMMU_INFO
, &rmmu_info
)) {
278 radix_page_info
= g_malloc0(sizeof(*radix_page_info
));
279 radix_page_info
->count
= 0;
280 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
281 if (rmmu_info
.ap_encodings
[i
]) {
282 radix_page_info
->entries
[i
] = rmmu_info
.ap_encodings
[i
];
283 radix_page_info
->count
++;
286 return radix_page_info
;
289 target_ulong
kvmppc_configure_v3_mmu(PowerPCCPU
*cpu
,
290 bool radix
, bool gtse
,
293 CPUState
*cs
= CPU(cpu
);
296 struct kvm_ppc_mmuv3_cfg cfg
= {
297 .process_table
= proc_tbl
,
301 flags
|= KVM_PPC_MMUV3_RADIX
;
304 flags
|= KVM_PPC_MMUV3_GTSE
;
307 ret
= kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_CONFIGURE_V3_MMU
, &cfg
);
314 return H_NOT_AVAILABLE
;
320 bool kvmppc_hpt_needs_host_contiguous_pages(void)
322 static struct kvm_ppc_smmu_info smmu_info
;
324 if (!kvm_enabled()) {
328 kvm_get_smmu_info(&smmu_info
, &error_fatal
);
329 return !!(smmu_info
.flags
& KVM_PPC_PAGE_SIZES_REAL
);
332 void kvm_check_mmu(PowerPCCPU
*cpu
, Error
**errp
)
334 struct kvm_ppc_smmu_info smmu_info
;
336 Error
*local_err
= NULL
;
338 /* For now, we only have anything to check on hash64 MMUs */
339 if (!cpu
->hash64_opts
|| !kvm_enabled()) {
343 kvm_get_smmu_info(&smmu_info
, &local_err
);
345 error_propagate(errp
, local_err
);
349 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)
350 && !(smmu_info
.flags
& KVM_PPC_1T_SEGMENTS
)) {
352 "KVM does not support 1TiB segments which guest expects");
356 if (smmu_info
.slb_size
< cpu
->hash64_opts
->slb_size
) {
357 error_setg(errp
, "KVM only supports %u SLB entries, but guest needs %u",
358 smmu_info
.slb_size
, cpu
->hash64_opts
->slb_size
);
363 * Verify that every pagesize supported by the cpu model is
364 * supported by KVM with the same encodings
366 for (iq
= 0; iq
< ARRAY_SIZE(cpu
->hash64_opts
->sps
); iq
++) {
367 PPCHash64SegmentPageSizes
*qsps
= &cpu
->hash64_opts
->sps
[iq
];
368 struct kvm_ppc_one_seg_page_size
*ksps
;
370 for (ik
= 0; ik
< ARRAY_SIZE(smmu_info
.sps
); ik
++) {
371 if (qsps
->page_shift
== smmu_info
.sps
[ik
].page_shift
) {
375 if (ik
>= ARRAY_SIZE(smmu_info
.sps
)) {
376 error_setg(errp
, "KVM doesn't support for base page shift %u",
381 ksps
= &smmu_info
.sps
[ik
];
382 if (ksps
->slb_enc
!= qsps
->slb_enc
) {
384 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
385 ksps
->slb_enc
, ksps
->page_shift
, qsps
->slb_enc
);
389 for (jq
= 0; jq
< ARRAY_SIZE(qsps
->enc
); jq
++) {
390 for (jk
= 0; jk
< ARRAY_SIZE(ksps
->enc
); jk
++) {
391 if (qsps
->enc
[jq
].page_shift
== ksps
->enc
[jk
].page_shift
) {
396 if (jk
>= ARRAY_SIZE(ksps
->enc
)) {
397 error_setg(errp
, "KVM doesn't support page shift %u/%u",
398 qsps
->enc
[jq
].page_shift
, qsps
->page_shift
);
401 if (qsps
->enc
[jq
].pte_enc
!= ksps
->enc
[jk
].pte_enc
) {
403 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
404 ksps
->enc
[jk
].pte_enc
, qsps
->enc
[jq
].page_shift
,
405 qsps
->page_shift
, qsps
->enc
[jq
].pte_enc
);
411 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
413 * Mostly what guest pagesizes we can use are related to the
414 * host pages used to map guest RAM, which is handled in the
415 * platform code. Cache-Inhibited largepages (64k) however are
416 * used for I/O, so if they're mapped to the host at all it
417 * will be a normal mapping, not a special hugepage one used
420 if (qemu_real_host_page_size() < 0x10000) {
422 "KVM can't supply 64kiB CI pages, which guest expects");
426 #endif /* !defined (TARGET_PPC64) */
428 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
430 return POWERPC_CPU(cpu
)->vcpu_id
;
434 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
435 * only 1 watchpoint, so array size of 4 is sufficient for now.
437 #define MAX_HW_BKPTS 4
439 static struct HWBreakpoint
{
442 } hw_debug_points
[MAX_HW_BKPTS
];
444 static CPUWatchpoint hw_watchpoint
;
446 /* Default there is no breakpoint and watchpoint supported */
447 static int max_hw_breakpoint
;
448 static int max_hw_watchpoint
;
449 static int nb_hw_breakpoint
;
450 static int nb_hw_watchpoint
;
452 static void kvmppc_hw_debug_points_init(CPUPPCState
*cenv
)
454 if (cenv
->excp_model
== POWERPC_EXCP_BOOKE
) {
455 max_hw_breakpoint
= 2;
456 max_hw_watchpoint
= 2;
459 if ((max_hw_breakpoint
+ max_hw_watchpoint
) > MAX_HW_BKPTS
) {
460 fprintf(stderr
, "Error initializing h/w breakpoints\n");
465 int kvm_arch_init_vcpu(CPUState
*cs
)
467 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
468 CPUPPCState
*cenv
= &cpu
->env
;
471 /* Synchronize sregs with kvm */
472 ret
= kvm_arch_sync_sregs(cpu
);
474 if (ret
== -EINVAL
) {
475 error_report("Register sync failed... If you're using kvm-hv.ko,"
476 " only \"-cpu host\" is possible");
481 switch (cenv
->mmu_model
) {
482 case POWERPC_MMU_BOOKE206
:
483 /* This target supports access to KVM's guest TLB */
484 ret
= kvm_booke206_tlb_init(cpu
);
486 case POWERPC_MMU_2_07
:
487 if (!cap_htm
&& !kvmppc_is_pr(cs
->kvm_state
)) {
489 * KVM-HV has transactional memory on POWER8 also without
490 * the KVM_CAP_PPC_HTM extension, so enable it here
491 * instead as long as it's available to userspace on the
494 if (qemu_getauxval(AT_HWCAP2
) & PPC_FEATURE2_HAS_HTM
) {
503 kvm_get_one_reg(cs
, KVM_REG_PPC_DEBUG_INST
, &debug_inst_opcode
);
504 kvmppc_hw_debug_points_init(cenv
);
509 int kvm_arch_destroy_vcpu(CPUState
*cs
)
514 static void kvm_sw_tlb_put(PowerPCCPU
*cpu
)
516 CPUPPCState
*env
= &cpu
->env
;
517 CPUState
*cs
= CPU(cpu
);
518 struct kvm_dirty_tlb dirty_tlb
;
519 unsigned char *bitmap
;
522 if (!env
->kvm_sw_tlb
) {
526 bitmap
= g_malloc((env
->nb_tlb
+ 7) / 8);
527 memset(bitmap
, 0xFF, (env
->nb_tlb
+ 7) / 8);
529 dirty_tlb
.bitmap
= (uintptr_t)bitmap
;
530 dirty_tlb
.num_dirty
= env
->nb_tlb
;
532 ret
= kvm_vcpu_ioctl(cs
, KVM_DIRTY_TLB
, &dirty_tlb
);
534 fprintf(stderr
, "%s: KVM_DIRTY_TLB: %s\n",
535 __func__
, strerror(-ret
));
541 static void kvm_get_one_spr(CPUState
*cs
, uint64_t id
, int spr
)
543 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
544 CPUPPCState
*env
= &cpu
->env
;
545 /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
550 struct kvm_one_reg reg
= {
552 .addr
= (uintptr_t) &val
,
556 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
558 trace_kvm_failed_spr_get(spr
, strerror(errno
));
560 switch (id
& KVM_REG_SIZE_MASK
) {
561 case KVM_REG_SIZE_U32
:
562 env
->spr
[spr
] = val
.u32
;
565 case KVM_REG_SIZE_U64
:
566 env
->spr
[spr
] = val
.u64
;
570 /* Don't handle this size yet */
576 static void kvm_put_one_spr(CPUState
*cs
, uint64_t id
, int spr
)
578 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
579 CPUPPCState
*env
= &cpu
->env
;
584 struct kvm_one_reg reg
= {
586 .addr
= (uintptr_t) &val
,
590 switch (id
& KVM_REG_SIZE_MASK
) {
591 case KVM_REG_SIZE_U32
:
592 val
.u32
= env
->spr
[spr
];
595 case KVM_REG_SIZE_U64
:
596 val
.u64
= env
->spr
[spr
];
600 /* Don't handle this size yet */
604 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
606 trace_kvm_failed_spr_set(spr
, strerror(errno
));
610 static int kvm_put_fp(CPUState
*cs
)
612 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
613 CPUPPCState
*env
= &cpu
->env
;
614 struct kvm_one_reg reg
;
618 if (env
->insns_flags
& PPC_FLOAT
) {
619 uint64_t fpscr
= env
->fpscr
;
620 bool vsx
= !!(env
->insns_flags2
& PPC2_VSX
);
622 reg
.id
= KVM_REG_PPC_FPSCR
;
623 reg
.addr
= (uintptr_t)&fpscr
;
624 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
626 trace_kvm_failed_fpscr_set(strerror(errno
));
630 for (i
= 0; i
< 32; i
++) {
632 uint64_t *fpr
= cpu_fpr_ptr(&cpu
->env
, i
);
633 uint64_t *vsrl
= cpu_vsrl_ptr(&cpu
->env
, i
);
636 vsr
[0] = float64_val(*fpr
);
640 vsr
[1] = float64_val(*fpr
);
642 reg
.addr
= (uintptr_t) &vsr
;
643 reg
.id
= vsx
? KVM_REG_PPC_VSR(i
) : KVM_REG_PPC_FPR(i
);
645 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
647 trace_kvm_failed_fp_set(vsx
? "VSR" : "FPR", i
,
654 if (env
->insns_flags
& PPC_ALTIVEC
) {
655 reg
.id
= KVM_REG_PPC_VSCR
;
656 reg
.addr
= (uintptr_t)&env
->vscr
;
657 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
659 trace_kvm_failed_vscr_set(strerror(errno
));
663 for (i
= 0; i
< 32; i
++) {
664 reg
.id
= KVM_REG_PPC_VR(i
);
665 reg
.addr
= (uintptr_t)cpu_avr_ptr(env
, i
);
666 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
668 trace_kvm_failed_vr_set(i
, strerror(errno
));
677 static int kvm_get_fp(CPUState
*cs
)
679 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
680 CPUPPCState
*env
= &cpu
->env
;
681 struct kvm_one_reg reg
;
685 if (env
->insns_flags
& PPC_FLOAT
) {
687 bool vsx
= !!(env
->insns_flags2
& PPC2_VSX
);
689 reg
.id
= KVM_REG_PPC_FPSCR
;
690 reg
.addr
= (uintptr_t)&fpscr
;
691 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
693 trace_kvm_failed_fpscr_get(strerror(errno
));
699 for (i
= 0; i
< 32; i
++) {
701 uint64_t *fpr
= cpu_fpr_ptr(&cpu
->env
, i
);
702 uint64_t *vsrl
= cpu_vsrl_ptr(&cpu
->env
, i
);
704 reg
.addr
= (uintptr_t) &vsr
;
705 reg
.id
= vsx
? KVM_REG_PPC_VSR(i
) : KVM_REG_PPC_FPR(i
);
707 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
709 trace_kvm_failed_fp_get(vsx
? "VSR" : "FPR", i
,
728 if (env
->insns_flags
& PPC_ALTIVEC
) {
729 reg
.id
= KVM_REG_PPC_VSCR
;
730 reg
.addr
= (uintptr_t)&env
->vscr
;
731 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
733 trace_kvm_failed_vscr_get(strerror(errno
));
737 for (i
= 0; i
< 32; i
++) {
738 reg
.id
= KVM_REG_PPC_VR(i
);
739 reg
.addr
= (uintptr_t)cpu_avr_ptr(env
, i
);
740 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
742 trace_kvm_failed_vr_get(i
, strerror(errno
));
751 #if defined(TARGET_PPC64)
752 static int kvm_get_vpa(CPUState
*cs
)
754 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
755 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
756 struct kvm_one_reg reg
;
759 reg
.id
= KVM_REG_PPC_VPA_ADDR
;
760 reg
.addr
= (uintptr_t)&spapr_cpu
->vpa_addr
;
761 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
763 trace_kvm_failed_vpa_addr_get(strerror(errno
));
767 assert((uintptr_t)&spapr_cpu
->slb_shadow_size
768 == ((uintptr_t)&spapr_cpu
->slb_shadow_addr
+ 8));
769 reg
.id
= KVM_REG_PPC_VPA_SLB
;
770 reg
.addr
= (uintptr_t)&spapr_cpu
->slb_shadow_addr
;
771 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
773 trace_kvm_failed_slb_get(strerror(errno
));
777 assert((uintptr_t)&spapr_cpu
->dtl_size
778 == ((uintptr_t)&spapr_cpu
->dtl_addr
+ 8));
779 reg
.id
= KVM_REG_PPC_VPA_DTL
;
780 reg
.addr
= (uintptr_t)&spapr_cpu
->dtl_addr
;
781 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
783 trace_kvm_failed_dtl_get(strerror(errno
));
790 static int kvm_put_vpa(CPUState
*cs
)
792 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
793 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
794 struct kvm_one_reg reg
;
798 * SLB shadow or DTL can't be registered unless a master VPA is
799 * registered. That means when restoring state, if a VPA *is*
800 * registered, we need to set that up first. If not, we need to
801 * deregister the others before deregistering the master VPA
803 assert(spapr_cpu
->vpa_addr
804 || !(spapr_cpu
->slb_shadow_addr
|| spapr_cpu
->dtl_addr
));
806 if (spapr_cpu
->vpa_addr
) {
807 reg
.id
= KVM_REG_PPC_VPA_ADDR
;
808 reg
.addr
= (uintptr_t)&spapr_cpu
->vpa_addr
;
809 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
811 trace_kvm_failed_vpa_addr_set(strerror(errno
));
816 assert((uintptr_t)&spapr_cpu
->slb_shadow_size
817 == ((uintptr_t)&spapr_cpu
->slb_shadow_addr
+ 8));
818 reg
.id
= KVM_REG_PPC_VPA_SLB
;
819 reg
.addr
= (uintptr_t)&spapr_cpu
->slb_shadow_addr
;
820 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
822 trace_kvm_failed_slb_set(strerror(errno
));
826 assert((uintptr_t)&spapr_cpu
->dtl_size
827 == ((uintptr_t)&spapr_cpu
->dtl_addr
+ 8));
828 reg
.id
= KVM_REG_PPC_VPA_DTL
;
829 reg
.addr
= (uintptr_t)&spapr_cpu
->dtl_addr
;
830 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
832 trace_kvm_failed_dtl_set(strerror(errno
));
836 if (!spapr_cpu
->vpa_addr
) {
837 reg
.id
= KVM_REG_PPC_VPA_ADDR
;
838 reg
.addr
= (uintptr_t)&spapr_cpu
->vpa_addr
;
839 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
841 trace_kvm_failed_null_vpa_addr_set(strerror(errno
));
848 #endif /* TARGET_PPC64 */
850 int kvmppc_put_books_sregs(PowerPCCPU
*cpu
)
852 CPUPPCState
*env
= &cpu
->env
;
853 struct kvm_sregs sregs
= { };
856 sregs
.pvr
= env
->spr
[SPR_PVR
];
859 PPCVirtualHypervisorClass
*vhc
=
860 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu
->vhyp
);
861 sregs
.u
.s
.sdr1
= vhc
->encode_hpt_for_kvm_pr(cpu
->vhyp
);
863 sregs
.u
.s
.sdr1
= env
->spr
[SPR_SDR1
];
868 for (i
= 0; i
< ARRAY_SIZE(env
->slb
); i
++) {
869 sregs
.u
.s
.ppc64
.slb
[i
].slbe
= env
->slb
[i
].esid
;
870 if (env
->slb
[i
].esid
& SLB_ESID_V
) {
871 sregs
.u
.s
.ppc64
.slb
[i
].slbe
|= i
;
873 sregs
.u
.s
.ppc64
.slb
[i
].slbv
= env
->slb
[i
].vsid
;
878 for (i
= 0; i
< 16; i
++) {
879 sregs
.u
.s
.ppc32
.sr
[i
] = env
->sr
[i
];
883 for (i
= 0; i
< 8; i
++) {
884 /* Beware. We have to swap upper and lower bits here */
885 sregs
.u
.s
.ppc32
.dbat
[i
] = ((uint64_t)env
->DBAT
[0][i
] << 32)
887 sregs
.u
.s
.ppc32
.ibat
[i
] = ((uint64_t)env
->IBAT
[0][i
] << 32)
891 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
894 int kvm_arch_put_registers(CPUState
*cs
, int level
)
896 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
897 CPUPPCState
*env
= &cpu
->env
;
898 struct kvm_regs regs
;
902 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
909 regs
.xer
= cpu_read_xer(env
);
913 regs
.srr0
= env
->spr
[SPR_SRR0
];
914 regs
.srr1
= env
->spr
[SPR_SRR1
];
916 regs
.sprg0
= env
->spr
[SPR_SPRG0
];
917 regs
.sprg1
= env
->spr
[SPR_SPRG1
];
918 regs
.sprg2
= env
->spr
[SPR_SPRG2
];
919 regs
.sprg3
= env
->spr
[SPR_SPRG3
];
920 regs
.sprg4
= env
->spr
[SPR_SPRG4
];
921 regs
.sprg5
= env
->spr
[SPR_SPRG5
];
922 regs
.sprg6
= env
->spr
[SPR_SPRG6
];
923 regs
.sprg7
= env
->spr
[SPR_SPRG7
];
925 regs
.pid
= env
->spr
[SPR_BOOKE_PID
];
927 for (i
= 0; i
< 32; i
++) {
928 regs
.gpr
[i
] = env
->gpr
[i
];
932 for (i
= 0; i
< 8; i
++) {
933 regs
.cr
|= (env
->crf
[i
] & 15) << (4 * (7 - i
));
936 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_REGS
, ®s
);
943 if (env
->tlb_dirty
) {
945 env
->tlb_dirty
= false;
948 if (cap_segstate
&& (level
>= KVM_PUT_RESET_STATE
)) {
949 ret
= kvmppc_put_books_sregs(cpu
);
955 if (cap_hior
&& (level
>= KVM_PUT_RESET_STATE
)) {
956 kvm_put_one_spr(cs
, KVM_REG_PPC_HIOR
, SPR_HIOR
);
963 * We deliberately ignore errors here, for kernels which have
964 * the ONE_REG calls, but don't support the specific
965 * registers, there's a reasonable chance things will still
966 * work, at least until we try to migrate.
968 for (i
= 0; i
< 1024; i
++) {
969 uint64_t id
= env
->spr_cb
[i
].one_reg_id
;
972 kvm_put_one_spr(cs
, id
, i
);
977 if (FIELD_EX64(env
->msr
, MSR
, TS
)) {
978 for (i
= 0; i
< ARRAY_SIZE(env
->tm_gpr
); i
++) {
979 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_GPR(i
), &env
->tm_gpr
[i
]);
981 for (i
= 0; i
< ARRAY_SIZE(env
->tm_vsr
); i
++) {
982 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_VSR(i
), &env
->tm_vsr
[i
]);
984 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_CR
, &env
->tm_cr
);
985 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_LR
, &env
->tm_lr
);
986 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_CTR
, &env
->tm_ctr
);
987 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_FPSCR
, &env
->tm_fpscr
);
988 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_AMR
, &env
->tm_amr
);
989 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_PPR
, &env
->tm_ppr
);
990 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_VRSAVE
, &env
->tm_vrsave
);
991 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_VSCR
, &env
->tm_vscr
);
992 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_DSCR
, &env
->tm_dscr
);
993 kvm_set_one_reg(cs
, KVM_REG_PPC_TM_TAR
, &env
->tm_tar
);
997 if (kvm_put_vpa(cs
) < 0) {
998 trace_kvm_failed_put_vpa();
1002 kvm_set_one_reg(cs
, KVM_REG_PPC_TB_OFFSET
, &env
->tb_env
->tb_offset
);
1004 if (level
> KVM_PUT_RUNTIME_STATE
) {
1005 kvm_put_one_spr(cs
, KVM_REG_PPC_DPDES
, SPR_DPDES
);
1007 #endif /* TARGET_PPC64 */
1013 static void kvm_sync_excp(CPUPPCState
*env
, int vector
, int ivor
)
1015 env
->excp_vectors
[vector
] = env
->spr
[ivor
] + env
->spr
[SPR_BOOKE_IVPR
];
1018 static int kvmppc_get_booke_sregs(PowerPCCPU
*cpu
)
1020 CPUPPCState
*env
= &cpu
->env
;
1021 struct kvm_sregs sregs
;
1024 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1029 if (sregs
.u
.e
.features
& KVM_SREGS_E_BASE
) {
1030 env
->spr
[SPR_BOOKE_CSRR0
] = sregs
.u
.e
.csrr0
;
1031 env
->spr
[SPR_BOOKE_CSRR1
] = sregs
.u
.e
.csrr1
;
1032 env
->spr
[SPR_BOOKE_ESR
] = sregs
.u
.e
.esr
;
1033 env
->spr
[SPR_BOOKE_DEAR
] = sregs
.u
.e
.dear
;
1034 env
->spr
[SPR_BOOKE_MCSR
] = sregs
.u
.e
.mcsr
;
1035 env
->spr
[SPR_BOOKE_TSR
] = sregs
.u
.e
.tsr
;
1036 env
->spr
[SPR_BOOKE_TCR
] = sregs
.u
.e
.tcr
;
1037 env
->spr
[SPR_DECR
] = sregs
.u
.e
.dec
;
1038 env
->spr
[SPR_TBL
] = sregs
.u
.e
.tb
& 0xffffffff;
1039 env
->spr
[SPR_TBU
] = sregs
.u
.e
.tb
>> 32;
1040 env
->spr
[SPR_VRSAVE
] = sregs
.u
.e
.vrsave
;
1043 if (sregs
.u
.e
.features
& KVM_SREGS_E_ARCH206
) {
1044 env
->spr
[SPR_BOOKE_PIR
] = sregs
.u
.e
.pir
;
1045 env
->spr
[SPR_BOOKE_MCSRR0
] = sregs
.u
.e
.mcsrr0
;
1046 env
->spr
[SPR_BOOKE_MCSRR1
] = sregs
.u
.e
.mcsrr1
;
1047 env
->spr
[SPR_BOOKE_DECAR
] = sregs
.u
.e
.decar
;
1048 env
->spr
[SPR_BOOKE_IVPR
] = sregs
.u
.e
.ivpr
;
1051 if (sregs
.u
.e
.features
& KVM_SREGS_E_64
) {
1052 env
->spr
[SPR_BOOKE_EPCR
] = sregs
.u
.e
.epcr
;
1055 if (sregs
.u
.e
.features
& KVM_SREGS_E_SPRG8
) {
1056 env
->spr
[SPR_BOOKE_SPRG8
] = sregs
.u
.e
.sprg8
;
1059 if (sregs
.u
.e
.features
& KVM_SREGS_E_IVOR
) {
1060 env
->spr
[SPR_BOOKE_IVOR0
] = sregs
.u
.e
.ivor_low
[0];
1061 kvm_sync_excp(env
, POWERPC_EXCP_CRITICAL
, SPR_BOOKE_IVOR0
);
1062 env
->spr
[SPR_BOOKE_IVOR1
] = sregs
.u
.e
.ivor_low
[1];
1063 kvm_sync_excp(env
, POWERPC_EXCP_MCHECK
, SPR_BOOKE_IVOR1
);
1064 env
->spr
[SPR_BOOKE_IVOR2
] = sregs
.u
.e
.ivor_low
[2];
1065 kvm_sync_excp(env
, POWERPC_EXCP_DSI
, SPR_BOOKE_IVOR2
);
1066 env
->spr
[SPR_BOOKE_IVOR3
] = sregs
.u
.e
.ivor_low
[3];
1067 kvm_sync_excp(env
, POWERPC_EXCP_ISI
, SPR_BOOKE_IVOR3
);
1068 env
->spr
[SPR_BOOKE_IVOR4
] = sregs
.u
.e
.ivor_low
[4];
1069 kvm_sync_excp(env
, POWERPC_EXCP_EXTERNAL
, SPR_BOOKE_IVOR4
);
1070 env
->spr
[SPR_BOOKE_IVOR5
] = sregs
.u
.e
.ivor_low
[5];
1071 kvm_sync_excp(env
, POWERPC_EXCP_ALIGN
, SPR_BOOKE_IVOR5
);
1072 env
->spr
[SPR_BOOKE_IVOR6
] = sregs
.u
.e
.ivor_low
[6];
1073 kvm_sync_excp(env
, POWERPC_EXCP_PROGRAM
, SPR_BOOKE_IVOR6
);
1074 env
->spr
[SPR_BOOKE_IVOR7
] = sregs
.u
.e
.ivor_low
[7];
1075 kvm_sync_excp(env
, POWERPC_EXCP_FPU
, SPR_BOOKE_IVOR7
);
1076 env
->spr
[SPR_BOOKE_IVOR8
] = sregs
.u
.e
.ivor_low
[8];
1077 kvm_sync_excp(env
, POWERPC_EXCP_SYSCALL
, SPR_BOOKE_IVOR8
);
1078 env
->spr
[SPR_BOOKE_IVOR9
] = sregs
.u
.e
.ivor_low
[9];
1079 kvm_sync_excp(env
, POWERPC_EXCP_APU
, SPR_BOOKE_IVOR9
);
1080 env
->spr
[SPR_BOOKE_IVOR10
] = sregs
.u
.e
.ivor_low
[10];
1081 kvm_sync_excp(env
, POWERPC_EXCP_DECR
, SPR_BOOKE_IVOR10
);
1082 env
->spr
[SPR_BOOKE_IVOR11
] = sregs
.u
.e
.ivor_low
[11];
1083 kvm_sync_excp(env
, POWERPC_EXCP_FIT
, SPR_BOOKE_IVOR11
);
1084 env
->spr
[SPR_BOOKE_IVOR12
] = sregs
.u
.e
.ivor_low
[12];
1085 kvm_sync_excp(env
, POWERPC_EXCP_WDT
, SPR_BOOKE_IVOR12
);
1086 env
->spr
[SPR_BOOKE_IVOR13
] = sregs
.u
.e
.ivor_low
[13];
1087 kvm_sync_excp(env
, POWERPC_EXCP_DTLB
, SPR_BOOKE_IVOR13
);
1088 env
->spr
[SPR_BOOKE_IVOR14
] = sregs
.u
.e
.ivor_low
[14];
1089 kvm_sync_excp(env
, POWERPC_EXCP_ITLB
, SPR_BOOKE_IVOR14
);
1090 env
->spr
[SPR_BOOKE_IVOR15
] = sregs
.u
.e
.ivor_low
[15];
1091 kvm_sync_excp(env
, POWERPC_EXCP_DEBUG
, SPR_BOOKE_IVOR15
);
1093 if (sregs
.u
.e
.features
& KVM_SREGS_E_SPE
) {
1094 env
->spr
[SPR_BOOKE_IVOR32
] = sregs
.u
.e
.ivor_high
[0];
1095 kvm_sync_excp(env
, POWERPC_EXCP_SPEU
, SPR_BOOKE_IVOR32
);
1096 env
->spr
[SPR_BOOKE_IVOR33
] = sregs
.u
.e
.ivor_high
[1];
1097 kvm_sync_excp(env
, POWERPC_EXCP_EFPDI
, SPR_BOOKE_IVOR33
);
1098 env
->spr
[SPR_BOOKE_IVOR34
] = sregs
.u
.e
.ivor_high
[2];
1099 kvm_sync_excp(env
, POWERPC_EXCP_EFPRI
, SPR_BOOKE_IVOR34
);
1102 if (sregs
.u
.e
.features
& KVM_SREGS_E_PM
) {
1103 env
->spr
[SPR_BOOKE_IVOR35
] = sregs
.u
.e
.ivor_high
[3];
1104 kvm_sync_excp(env
, POWERPC_EXCP_EPERFM
, SPR_BOOKE_IVOR35
);
1107 if (sregs
.u
.e
.features
& KVM_SREGS_E_PC
) {
1108 env
->spr
[SPR_BOOKE_IVOR36
] = sregs
.u
.e
.ivor_high
[4];
1109 kvm_sync_excp(env
, POWERPC_EXCP_DOORI
, SPR_BOOKE_IVOR36
);
1110 env
->spr
[SPR_BOOKE_IVOR37
] = sregs
.u
.e
.ivor_high
[5];
1111 kvm_sync_excp(env
, POWERPC_EXCP_DOORCI
, SPR_BOOKE_IVOR37
);
1115 if (sregs
.u
.e
.features
& KVM_SREGS_E_ARCH206_MMU
) {
1116 env
->spr
[SPR_BOOKE_MAS0
] = sregs
.u
.e
.mas0
;
1117 env
->spr
[SPR_BOOKE_MAS1
] = sregs
.u
.e
.mas1
;
1118 env
->spr
[SPR_BOOKE_MAS2
] = sregs
.u
.e
.mas2
;
1119 env
->spr
[SPR_BOOKE_MAS3
] = sregs
.u
.e
.mas7_3
& 0xffffffff;
1120 env
->spr
[SPR_BOOKE_MAS4
] = sregs
.u
.e
.mas4
;
1121 env
->spr
[SPR_BOOKE_MAS6
] = sregs
.u
.e
.mas6
;
1122 env
->spr
[SPR_BOOKE_MAS7
] = sregs
.u
.e
.mas7_3
>> 32;
1123 env
->spr
[SPR_MMUCFG
] = sregs
.u
.e
.mmucfg
;
1124 env
->spr
[SPR_BOOKE_TLB0CFG
] = sregs
.u
.e
.tlbcfg
[0];
1125 env
->spr
[SPR_BOOKE_TLB1CFG
] = sregs
.u
.e
.tlbcfg
[1];
1128 if (sregs
.u
.e
.features
& KVM_SREGS_EXP
) {
1129 env
->spr
[SPR_BOOKE_EPR
] = sregs
.u
.e
.epr
;
1132 if (sregs
.u
.e
.features
& KVM_SREGS_E_PD
) {
1133 env
->spr
[SPR_BOOKE_EPLC
] = sregs
.u
.e
.eplc
;
1134 env
->spr
[SPR_BOOKE_EPSC
] = sregs
.u
.e
.epsc
;
1137 if (sregs
.u
.e
.impl_id
== KVM_SREGS_E_IMPL_FSL
) {
1138 env
->spr
[SPR_E500_SVR
] = sregs
.u
.e
.impl
.fsl
.svr
;
1139 env
->spr
[SPR_Exxx_MCAR
] = sregs
.u
.e
.impl
.fsl
.mcar
;
1140 env
->spr
[SPR_HID0
] = sregs
.u
.e
.impl
.fsl
.hid0
;
1142 if (sregs
.u
.e
.impl
.fsl
.features
& KVM_SREGS_E_FSL_PIDn
) {
1143 env
->spr
[SPR_BOOKE_PID1
] = sregs
.u
.e
.impl
.fsl
.pid1
;
1144 env
->spr
[SPR_BOOKE_PID2
] = sregs
.u
.e
.impl
.fsl
.pid2
;
1151 static int kvmppc_get_books_sregs(PowerPCCPU
*cpu
)
1153 CPUPPCState
*env
= &cpu
->env
;
1154 struct kvm_sregs sregs
;
1158 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1164 ppc_store_sdr1(env
, sregs
.u
.s
.sdr1
);
1170 * The packed SLB array we get from KVM_GET_SREGS only contains
1171 * information about valid entries. So we flush our internal copy
1172 * to get rid of stale ones, then put all valid SLB entries back
1175 memset(env
->slb
, 0, sizeof(env
->slb
));
1176 for (i
= 0; i
< ARRAY_SIZE(env
->slb
); i
++) {
1177 target_ulong rb
= sregs
.u
.s
.ppc64
.slb
[i
].slbe
;
1178 target_ulong rs
= sregs
.u
.s
.ppc64
.slb
[i
].slbv
;
1180 * Only restore valid entries
1182 if (rb
& SLB_ESID_V
) {
1183 ppc_store_slb(cpu
, rb
& 0xfff, rb
& ~0xfffULL
, rs
);
1189 for (i
= 0; i
< 16; i
++) {
1190 env
->sr
[i
] = sregs
.u
.s
.ppc32
.sr
[i
];
1194 for (i
= 0; i
< 8; i
++) {
1195 env
->DBAT
[0][i
] = sregs
.u
.s
.ppc32
.dbat
[i
] & 0xffffffff;
1196 env
->DBAT
[1][i
] = sregs
.u
.s
.ppc32
.dbat
[i
] >> 32;
1197 env
->IBAT
[0][i
] = sregs
.u
.s
.ppc32
.ibat
[i
] & 0xffffffff;
1198 env
->IBAT
[1][i
] = sregs
.u
.s
.ppc32
.ibat
[i
] >> 32;
1204 int kvm_arch_get_registers(CPUState
*cs
)
1206 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1207 CPUPPCState
*env
= &cpu
->env
;
1208 struct kvm_regs regs
;
1212 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
1218 for (i
= 7; i
>= 0; i
--) {
1219 env
->crf
[i
] = cr
& 15;
1223 env
->ctr
= regs
.ctr
;
1225 cpu_write_xer(env
, regs
.xer
);
1226 env
->msr
= regs
.msr
;
1229 env
->spr
[SPR_SRR0
] = regs
.srr0
;
1230 env
->spr
[SPR_SRR1
] = regs
.srr1
;
1232 env
->spr
[SPR_SPRG0
] = regs
.sprg0
;
1233 env
->spr
[SPR_SPRG1
] = regs
.sprg1
;
1234 env
->spr
[SPR_SPRG2
] = regs
.sprg2
;
1235 env
->spr
[SPR_SPRG3
] = regs
.sprg3
;
1236 env
->spr
[SPR_SPRG4
] = regs
.sprg4
;
1237 env
->spr
[SPR_SPRG5
] = regs
.sprg5
;
1238 env
->spr
[SPR_SPRG6
] = regs
.sprg6
;
1239 env
->spr
[SPR_SPRG7
] = regs
.sprg7
;
1241 env
->spr
[SPR_BOOKE_PID
] = regs
.pid
;
1243 for (i
= 0; i
< 32; i
++) {
1244 env
->gpr
[i
] = regs
.gpr
[i
];
1249 if (cap_booke_sregs
) {
1250 ret
= kvmppc_get_booke_sregs(cpu
);
1257 ret
= kvmppc_get_books_sregs(cpu
);
1264 kvm_get_one_spr(cs
, KVM_REG_PPC_HIOR
, SPR_HIOR
);
1271 * We deliberately ignore errors here, for kernels which have
1272 * the ONE_REG calls, but don't support the specific
1273 * registers, there's a reasonable chance things will still
1274 * work, at least until we try to migrate.
1276 for (i
= 0; i
< 1024; i
++) {
1277 uint64_t id
= env
->spr_cb
[i
].one_reg_id
;
1280 kvm_get_one_spr(cs
, id
, i
);
1285 if (FIELD_EX64(env
->msr
, MSR
, TS
)) {
1286 for (i
= 0; i
< ARRAY_SIZE(env
->tm_gpr
); i
++) {
1287 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_GPR(i
), &env
->tm_gpr
[i
]);
1289 for (i
= 0; i
< ARRAY_SIZE(env
->tm_vsr
); i
++) {
1290 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_VSR(i
), &env
->tm_vsr
[i
]);
1292 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_CR
, &env
->tm_cr
);
1293 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_LR
, &env
->tm_lr
);
1294 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_CTR
, &env
->tm_ctr
);
1295 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_FPSCR
, &env
->tm_fpscr
);
1296 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_AMR
, &env
->tm_amr
);
1297 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_PPR
, &env
->tm_ppr
);
1298 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_VRSAVE
, &env
->tm_vrsave
);
1299 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_VSCR
, &env
->tm_vscr
);
1300 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_DSCR
, &env
->tm_dscr
);
1301 kvm_get_one_reg(cs
, KVM_REG_PPC_TM_TAR
, &env
->tm_tar
);
1305 if (kvm_get_vpa(cs
) < 0) {
1306 trace_kvm_failed_get_vpa();
1310 kvm_get_one_reg(cs
, KVM_REG_PPC_TB_OFFSET
, &env
->tb_env
->tb_offset
);
1311 kvm_get_one_spr(cs
, KVM_REG_PPC_DPDES
, SPR_DPDES
);
1318 int kvmppc_set_interrupt(PowerPCCPU
*cpu
, int irq
, int level
)
1320 unsigned virq
= level
? KVM_INTERRUPT_SET_LEVEL
: KVM_INTERRUPT_UNSET
;
1322 if (irq
!= PPC_INTERRUPT_EXT
) {
1326 if (!kvm_enabled() || !cap_interrupt_unset
) {
1330 kvm_vcpu_ioctl(CPU(cpu
), KVM_INTERRUPT
, &virq
);
1335 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
1340 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
1342 return MEMTXATTRS_UNSPECIFIED
;
1345 int kvm_arch_process_async_events(CPUState
*cs
)
1350 static int kvmppc_handle_halt(PowerPCCPU
*cpu
)
1352 CPUState
*cs
= CPU(cpu
);
1353 CPUPPCState
*env
= &cpu
->env
;
1355 if (!(cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1356 FIELD_EX64(env
->msr
, MSR
, EE
)) {
1358 cs
->exception_index
= EXCP_HLT
;
1364 /* map dcr access to existing qemu dcr emulation */
1365 static int kvmppc_handle_dcr_read(CPUPPCState
*env
,
1366 uint32_t dcrn
, uint32_t *data
)
1368 if (ppc_dcr_read(env
->dcr_env
, dcrn
, data
) < 0) {
1369 fprintf(stderr
, "Read to unhandled DCR (0x%x)\n", dcrn
);
1375 static int kvmppc_handle_dcr_write(CPUPPCState
*env
,
1376 uint32_t dcrn
, uint32_t data
)
1378 if (ppc_dcr_write(env
->dcr_env
, dcrn
, data
) < 0) {
1379 fprintf(stderr
, "Write to unhandled DCR (0x%x)\n", dcrn
);
1385 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1387 /* Mixed endian case is not handled */
1388 uint32_t sc
= debug_inst_opcode
;
1390 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
1392 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&sc
, sizeof(sc
), 1)) {
1399 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1403 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&sc
, sizeof(sc
), 0) ||
1404 sc
!= debug_inst_opcode
||
1405 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
1413 static int find_hw_breakpoint(target_ulong addr
, int type
)
1417 assert((nb_hw_breakpoint
+ nb_hw_watchpoint
)
1418 <= ARRAY_SIZE(hw_debug_points
));
1420 for (n
= 0; n
< nb_hw_breakpoint
+ nb_hw_watchpoint
; n
++) {
1421 if (hw_debug_points
[n
].addr
== addr
&&
1422 hw_debug_points
[n
].type
== type
) {
1430 static int find_hw_watchpoint(target_ulong addr
, int *flag
)
1434 n
= find_hw_breakpoint(addr
, GDB_WATCHPOINT_ACCESS
);
1436 *flag
= BP_MEM_ACCESS
;
1440 n
= find_hw_breakpoint(addr
, GDB_WATCHPOINT_WRITE
);
1442 *flag
= BP_MEM_WRITE
;
1446 n
= find_hw_breakpoint(addr
, GDB_WATCHPOINT_READ
);
1448 *flag
= BP_MEM_READ
;
1455 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
1456 target_ulong len
, int type
)
1458 if ((nb_hw_breakpoint
+ nb_hw_watchpoint
) >= ARRAY_SIZE(hw_debug_points
)) {
1462 hw_debug_points
[nb_hw_breakpoint
+ nb_hw_watchpoint
].addr
= addr
;
1463 hw_debug_points
[nb_hw_breakpoint
+ nb_hw_watchpoint
].type
= type
;
1466 case GDB_BREAKPOINT_HW
:
1467 if (nb_hw_breakpoint
>= max_hw_breakpoint
) {
1471 if (find_hw_breakpoint(addr
, type
) >= 0) {
1478 case GDB_WATCHPOINT_WRITE
:
1479 case GDB_WATCHPOINT_READ
:
1480 case GDB_WATCHPOINT_ACCESS
:
1481 if (nb_hw_watchpoint
>= max_hw_watchpoint
) {
1485 if (find_hw_breakpoint(addr
, type
) >= 0) {
1499 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
1500 target_ulong len
, int type
)
1504 n
= find_hw_breakpoint(addr
, type
);
1510 case GDB_BREAKPOINT_HW
:
1514 case GDB_WATCHPOINT_WRITE
:
1515 case GDB_WATCHPOINT_READ
:
1516 case GDB_WATCHPOINT_ACCESS
:
1523 hw_debug_points
[n
] = hw_debug_points
[nb_hw_breakpoint
+ nb_hw_watchpoint
];
1528 void kvm_arch_remove_all_hw_breakpoints(void)
1530 nb_hw_breakpoint
= nb_hw_watchpoint
= 0;
1533 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
1537 /* Software Breakpoint updates */
1538 if (kvm_sw_breakpoints_active(cs
)) {
1539 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
1542 assert((nb_hw_breakpoint
+ nb_hw_watchpoint
)
1543 <= ARRAY_SIZE(hw_debug_points
));
1544 assert((nb_hw_breakpoint
+ nb_hw_watchpoint
) <= ARRAY_SIZE(dbg
->arch
.bp
));
1546 if (nb_hw_breakpoint
+ nb_hw_watchpoint
> 0) {
1547 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
1548 memset(dbg
->arch
.bp
, 0, sizeof(dbg
->arch
.bp
));
1549 for (n
= 0; n
< nb_hw_breakpoint
+ nb_hw_watchpoint
; n
++) {
1550 switch (hw_debug_points
[n
].type
) {
1551 case GDB_BREAKPOINT_HW
:
1552 dbg
->arch
.bp
[n
].type
= KVMPPC_DEBUG_BREAKPOINT
;
1554 case GDB_WATCHPOINT_WRITE
:
1555 dbg
->arch
.bp
[n
].type
= KVMPPC_DEBUG_WATCH_WRITE
;
1557 case GDB_WATCHPOINT_READ
:
1558 dbg
->arch
.bp
[n
].type
= KVMPPC_DEBUG_WATCH_READ
;
1560 case GDB_WATCHPOINT_ACCESS
:
1561 dbg
->arch
.bp
[n
].type
= KVMPPC_DEBUG_WATCH_WRITE
|
1562 KVMPPC_DEBUG_WATCH_READ
;
1565 cpu_abort(cs
, "Unsupported breakpoint type\n");
1567 dbg
->arch
.bp
[n
].addr
= hw_debug_points
[n
].addr
;
1572 static int kvm_handle_hw_breakpoint(CPUState
*cs
,
1573 struct kvm_debug_exit_arch
*arch_info
)
1575 int handle
= DEBUG_RETURN_GUEST
;
1579 if (nb_hw_breakpoint
+ nb_hw_watchpoint
> 0) {
1580 if (arch_info
->status
& KVMPPC_DEBUG_BREAKPOINT
) {
1581 n
= find_hw_breakpoint(arch_info
->address
, GDB_BREAKPOINT_HW
);
1583 handle
= DEBUG_RETURN_GDB
;
1585 } else if (arch_info
->status
& (KVMPPC_DEBUG_WATCH_READ
|
1586 KVMPPC_DEBUG_WATCH_WRITE
)) {
1587 n
= find_hw_watchpoint(arch_info
->address
, &flag
);
1589 handle
= DEBUG_RETURN_GDB
;
1590 cs
->watchpoint_hit
= &hw_watchpoint
;
1591 hw_watchpoint
.vaddr
= hw_debug_points
[n
].addr
;
1592 hw_watchpoint
.flags
= flag
;
1599 static int kvm_handle_singlestep(void)
1601 return DEBUG_RETURN_GDB
;
1604 static int kvm_handle_sw_breakpoint(void)
1606 return DEBUG_RETURN_GDB
;
1609 static int kvm_handle_debug(PowerPCCPU
*cpu
, struct kvm_run
*run
)
1611 CPUState
*cs
= CPU(cpu
);
1612 CPUPPCState
*env
= &cpu
->env
;
1613 struct kvm_debug_exit_arch
*arch_info
= &run
->debug
.arch
;
1615 if (cs
->singlestep_enabled
) {
1616 return kvm_handle_singlestep();
1619 if (arch_info
->status
) {
1620 return kvm_handle_hw_breakpoint(cs
, arch_info
);
1623 if (kvm_find_sw_breakpoint(cs
, arch_info
->address
)) {
1624 return kvm_handle_sw_breakpoint();
1628 * QEMU is not able to handle debug exception, so inject
1629 * program exception to guest;
1630 * Yes program exception NOT debug exception !!
1631 * When QEMU is using debug resources then debug exception must
1632 * be always set. To achieve this we set MSR_DE and also set
1633 * MSRP_DEP so guest cannot change MSR_DE.
1634 * When emulating debug resource for guest we want guest
1635 * to control MSR_DE (enable/disable debug interrupt on need).
1636 * Supporting both configurations are NOT possible.
1637 * So the result is that we cannot share debug resources
1638 * between QEMU and Guest on BOOKE architecture.
1639 * In the current design QEMU gets the priority over guest,
1640 * this means that if QEMU is using debug resources then guest
1642 * For software breakpoint QEMU uses a privileged instruction;
1643 * So there cannot be any reason that we are here for guest
1644 * set debug exception, only possibility is guest executed a
1645 * privileged / illegal instruction and that's why we are
1646 * injecting a program interrupt.
1648 cpu_synchronize_state(cs
);
1650 * env->nip is PC, so increment this by 4 to use
1651 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1654 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
1655 env
->error_code
= POWERPC_EXCP_INVAL
;
1656 ppc_cpu_do_interrupt(cs
);
1658 return DEBUG_RETURN_GUEST
;
1661 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
1663 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1664 CPUPPCState
*env
= &cpu
->env
;
1667 qemu_mutex_lock_iothread();
1669 switch (run
->exit_reason
) {
1671 if (run
->dcr
.is_write
) {
1672 trace_kvm_handle_dcr_write();
1673 ret
= kvmppc_handle_dcr_write(env
, run
->dcr
.dcrn
, run
->dcr
.data
);
1675 trace_kvm_handle_dcr_read();
1676 ret
= kvmppc_handle_dcr_read(env
, run
->dcr
.dcrn
, &run
->dcr
.data
);
1680 trace_kvm_handle_halt();
1681 ret
= kvmppc_handle_halt(cpu
);
1683 #if defined(TARGET_PPC64)
1684 case KVM_EXIT_PAPR_HCALL
:
1685 trace_kvm_handle_papr_hcall(run
->papr_hcall
.nr
);
1686 run
->papr_hcall
.ret
= spapr_hypercall(cpu
,
1688 run
->papr_hcall
.args
);
1693 trace_kvm_handle_epr();
1694 run
->epr
.epr
= ldl_phys(cs
->as
, env
->mpic_iack
);
1697 case KVM_EXIT_WATCHDOG
:
1698 trace_kvm_handle_watchdog_expiry();
1699 watchdog_perform_action();
1703 case KVM_EXIT_DEBUG
:
1704 trace_kvm_handle_debug_exception();
1705 if (kvm_handle_debug(cpu
, run
)) {
1709 /* re-enter, this exception was guest-internal */
1713 #if defined(TARGET_PPC64)
1715 trace_kvm_handle_nmi_exception();
1716 ret
= kvm_handle_nmi(cpu
, run
);
1721 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
1726 qemu_mutex_unlock_iothread();
1730 int kvmppc_or_tsr_bits(PowerPCCPU
*cpu
, uint32_t tsr_bits
)
1732 CPUState
*cs
= CPU(cpu
);
1733 uint32_t bits
= tsr_bits
;
1734 struct kvm_one_reg reg
= {
1735 .id
= KVM_REG_PPC_OR_TSR
,
1736 .addr
= (uintptr_t) &bits
,
1739 return kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1742 int kvmppc_clear_tsr_bits(PowerPCCPU
*cpu
, uint32_t tsr_bits
)
1745 CPUState
*cs
= CPU(cpu
);
1746 uint32_t bits
= tsr_bits
;
1747 struct kvm_one_reg reg
= {
1748 .id
= KVM_REG_PPC_CLEAR_TSR
,
1749 .addr
= (uintptr_t) &bits
,
1752 return kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1755 int kvmppc_set_tcr(PowerPCCPU
*cpu
)
1757 CPUState
*cs
= CPU(cpu
);
1758 CPUPPCState
*env
= &cpu
->env
;
1759 uint32_t tcr
= env
->spr
[SPR_BOOKE_TCR
];
1761 struct kvm_one_reg reg
= {
1762 .id
= KVM_REG_PPC_TCR
,
1763 .addr
= (uintptr_t) &tcr
,
1766 return kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1769 int kvmppc_booke_watchdog_enable(PowerPCCPU
*cpu
)
1771 CPUState
*cs
= CPU(cpu
);
1774 if (!kvm_enabled()) {
1778 if (!cap_ppc_watchdog
) {
1779 printf("warning: KVM does not support watchdog");
1783 ret
= kvm_vcpu_enable_cap(cs
, KVM_CAP_PPC_BOOKE_WATCHDOG
, 0);
1785 fprintf(stderr
, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1786 __func__
, strerror(-ret
));
1793 static int read_cpuinfo(const char *field
, char *value
, int len
)
1797 int field_len
= strlen(field
);
1800 f
= fopen("/proc/cpuinfo", "r");
1806 if (!fgets(line
, sizeof(line
), f
)) {
1809 if (!strncmp(line
, field
, field_len
)) {
1810 pstrcpy(value
, len
, line
);
1821 static uint32_t kvmppc_get_tbfreq_procfs(void)
1825 uint32_t tbfreq_fallback
= NANOSECONDS_PER_SECOND
;
1826 uint32_t tbfreq_procfs
;
1828 if (read_cpuinfo("timebase", line
, sizeof(line
))) {
1829 return tbfreq_fallback
;
1832 ns
= strchr(line
, ':');
1834 return tbfreq_fallback
;
1837 tbfreq_procfs
= atoi(++ns
);
1839 /* 0 is certainly not acceptable by the guest, return fallback value */
1840 return tbfreq_procfs
? tbfreq_procfs
: tbfreq_fallback
;
1843 uint32_t kvmppc_get_tbfreq(void)
1845 static uint32_t cached_tbfreq
;
1847 if (!cached_tbfreq
) {
1848 cached_tbfreq
= kvmppc_get_tbfreq_procfs();
1851 return cached_tbfreq
;
1854 bool kvmppc_get_host_serial(char **value
)
1856 return g_file_get_contents("/proc/device-tree/system-id", value
, NULL
,
1860 bool kvmppc_get_host_model(char **value
)
1862 return g_file_get_contents("/proc/device-tree/model", value
, NULL
, NULL
);
1865 /* Try to find a device tree node for a CPU with clock-frequency property */
1866 static int kvmppc_find_cpu_dt(char *buf
, int buf_len
)
1868 struct dirent
*dirp
;
1871 dp
= opendir(PROC_DEVTREE_CPU
);
1873 printf("Can't open directory " PROC_DEVTREE_CPU
"\n");
1878 while ((dirp
= readdir(dp
)) != NULL
) {
1881 /* Don't accidentally read from the current and parent directories */
1882 if (strcmp(dirp
->d_name
, ".") == 0 || strcmp(dirp
->d_name
, "..") == 0) {
1886 snprintf(buf
, buf_len
, "%s%s/clock-frequency", PROC_DEVTREE_CPU
,
1888 f
= fopen(buf
, "r");
1890 snprintf(buf
, buf_len
, "%s%s", PROC_DEVTREE_CPU
, dirp
->d_name
);
1897 if (buf
[0] == '\0') {
1898 printf("Unknown host!\n");
1905 static uint64_t kvmppc_read_int_dt(const char *filename
)
1914 f
= fopen(filename
, "rb");
1919 len
= fread(&u
, 1, sizeof(u
), f
);
1923 /* property is a 32-bit quantity */
1924 return be32_to_cpu(u
.v32
);
1926 return be64_to_cpu(u
.v64
);
1933 * Read a CPU node property from the host device tree that's a single
1934 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1935 * (can't find or open the property, or doesn't understand the format)
1937 static uint64_t kvmppc_read_int_cpu_dt(const char *propname
)
1939 char buf
[PATH_MAX
], *tmp
;
1942 if (kvmppc_find_cpu_dt(buf
, sizeof(buf
))) {
1946 tmp
= g_strdup_printf("%s/%s", buf
, propname
);
1947 val
= kvmppc_read_int_dt(tmp
);
1953 uint64_t kvmppc_get_clockfreq(void)
1955 return kvmppc_read_int_cpu_dt("clock-frequency");
1958 static int kvmppc_get_dec_bits(void)
1960 int nr_bits
= kvmppc_read_int_cpu_dt("ibm,dec-bits");
1968 static int kvmppc_get_pvinfo(CPUPPCState
*env
, struct kvm_ppc_pvinfo
*pvinfo
)
1970 CPUState
*cs
= env_cpu(env
);
1972 if (kvm_vm_check_extension(cs
->kvm_state
, KVM_CAP_PPC_GET_PVINFO
) &&
1973 !kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_GET_PVINFO
, pvinfo
)) {
1980 int kvmppc_get_hasidle(CPUPPCState
*env
)
1982 struct kvm_ppc_pvinfo pvinfo
;
1984 if (!kvmppc_get_pvinfo(env
, &pvinfo
) &&
1985 (pvinfo
.flags
& KVM_PPC_PVINFO_FLAGS_EV_IDLE
)) {
1992 int kvmppc_get_hypercall(CPUPPCState
*env
, uint8_t *buf
, int buf_len
)
1994 uint32_t *hc
= (uint32_t *)buf
;
1995 struct kvm_ppc_pvinfo pvinfo
;
1997 if (!kvmppc_get_pvinfo(env
, &pvinfo
)) {
1998 memcpy(buf
, pvinfo
.hcall
, buf_len
);
2003 * Fallback to always fail hypercalls regardless of endianness:
2005 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2007 * b .+8 (becomes nop in wrong endian)
2008 * bswap32(li r3, -1)
2011 hc
[0] = cpu_to_be32(0x08000048);
2012 hc
[1] = cpu_to_be32(0x3860ffff);
2013 hc
[2] = cpu_to_be32(0x48000008);
2014 hc
[3] = cpu_to_be32(bswap32(0x3860ffff));
2019 static inline int kvmppc_enable_hcall(KVMState
*s
, target_ulong hcall
)
2021 return kvm_vm_enable_cap(s
, KVM_CAP_PPC_ENABLE_HCALL
, 0, hcall
, 1);
2024 void kvmppc_enable_logical_ci_hcalls(void)
2027 * FIXME: it would be nice if we could detect the cases where
2028 * we're using a device which requires the in kernel
2029 * implementation of these hcalls, but the kernel lacks them and
2030 * produce a warning.
2032 kvmppc_enable_hcall(kvm_state
, H_LOGICAL_CI_LOAD
);
2033 kvmppc_enable_hcall(kvm_state
, H_LOGICAL_CI_STORE
);
2036 void kvmppc_enable_set_mode_hcall(void)
2038 kvmppc_enable_hcall(kvm_state
, H_SET_MODE
);
2041 void kvmppc_enable_clear_ref_mod_hcalls(void)
2043 kvmppc_enable_hcall(kvm_state
, H_CLEAR_REF
);
2044 kvmppc_enable_hcall(kvm_state
, H_CLEAR_MOD
);
2047 void kvmppc_enable_h_page_init(void)
2049 kvmppc_enable_hcall(kvm_state
, H_PAGE_INIT
);
2052 void kvmppc_enable_h_rpt_invalidate(void)
2054 kvmppc_enable_hcall(kvm_state
, H_RPT_INVALIDATE
);
2057 void kvmppc_set_papr(PowerPCCPU
*cpu
)
2059 CPUState
*cs
= CPU(cpu
);
2062 if (!kvm_enabled()) {
2066 ret
= kvm_vcpu_enable_cap(cs
, KVM_CAP_PPC_PAPR
, 0);
2068 error_report("This vCPU type or KVM version does not support PAPR");
2073 * Update the capability flag so we sync the right information
2079 int kvmppc_set_compat(PowerPCCPU
*cpu
, uint32_t compat_pvr
)
2081 return kvm_set_one_reg(CPU(cpu
), KVM_REG_PPC_ARCH_COMPAT
, &compat_pvr
);
2084 void kvmppc_set_mpic_proxy(PowerPCCPU
*cpu
, int mpic_proxy
)
2086 CPUState
*cs
= CPU(cpu
);
2089 ret
= kvm_vcpu_enable_cap(cs
, KVM_CAP_PPC_EPR
, 0, mpic_proxy
);
2090 if (ret
&& mpic_proxy
) {
2091 error_report("This KVM version does not support EPR");
2096 bool kvmppc_get_fwnmi(void)
2101 int kvmppc_set_fwnmi(PowerPCCPU
*cpu
)
2103 CPUState
*cs
= CPU(cpu
);
2105 return kvm_vcpu_enable_cap(cs
, KVM_CAP_PPC_FWNMI
, 0);
2108 int kvmppc_smt_threads(void)
2110 return cap_ppc_smt
? cap_ppc_smt
: 1;
2113 int kvmppc_set_smt_threads(int smt
)
2117 ret
= kvm_vm_enable_cap(kvm_state
, KVM_CAP_PPC_SMT
, 0, smt
, 0);
2124 void kvmppc_error_append_smt_possible_hint(Error
*const *errp
)
2130 assert(kvm_enabled());
2131 if (cap_ppc_smt_possible
) {
2132 g
= g_string_new("Available VSMT modes:");
2133 for (i
= 63; i
>= 0; i
--) {
2134 if ((1UL << i
) & cap_ppc_smt_possible
) {
2135 g_string_append_printf(g
, " %lu", (1UL << i
));
2138 s
= g_string_free(g
, false);
2139 error_append_hint(errp
, "%s.\n", s
);
2142 error_append_hint(errp
,
2143 "This KVM seems to be too old to support VSMT.\n");
2149 uint64_t kvmppc_vrma_limit(unsigned int hash_shift
)
2151 struct kvm_ppc_smmu_info info
;
2152 long rampagesize
, best_page_shift
;
2156 * Find the largest hardware supported page size that's less than
2157 * or equal to the (logical) backing page size of guest RAM
2159 kvm_get_smmu_info(&info
, &error_fatal
);
2160 rampagesize
= qemu_minrampagesize();
2161 best_page_shift
= 0;
2163 for (i
= 0; i
< KVM_PPC_PAGE_SIZES_MAX_SZ
; i
++) {
2164 struct kvm_ppc_one_seg_page_size
*sps
= &info
.sps
[i
];
2166 if (!sps
->page_shift
) {
2170 if ((sps
->page_shift
> best_page_shift
)
2171 && ((1UL << sps
->page_shift
) <= rampagesize
)) {
2172 best_page_shift
= sps
->page_shift
;
2176 return 1ULL << (best_page_shift
+ hash_shift
- 7);
2180 bool kvmppc_spapr_use_multitce(void)
2182 return cap_spapr_multitce
;
2185 int kvmppc_spapr_enable_inkernel_multitce(void)
2189 ret
= kvm_vm_enable_cap(kvm_state
, KVM_CAP_PPC_ENABLE_HCALL
, 0,
2190 H_PUT_TCE_INDIRECT
, 1);
2192 ret
= kvm_vm_enable_cap(kvm_state
, KVM_CAP_PPC_ENABLE_HCALL
, 0,
2199 void *kvmppc_create_spapr_tce(uint32_t liobn
, uint32_t page_shift
,
2200 uint64_t bus_offset
, uint32_t nb_table
,
2201 int *pfd
, bool need_vfio
)
2208 * Must set fd to -1 so we don't try to munmap when called for
2209 * destroying the table, which the upper layers -will- do
2212 if (!cap_spapr_tce
|| (need_vfio
&& !cap_spapr_vfio
)) {
2216 if (cap_spapr_tce_64
) {
2217 struct kvm_create_spapr_tce_64 args
= {
2219 .page_shift
= page_shift
,
2220 .offset
= bus_offset
>> page_shift
,
2224 fd
= kvm_vm_ioctl(kvm_state
, KVM_CREATE_SPAPR_TCE_64
, &args
);
2227 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2231 } else if (cap_spapr_tce
) {
2232 uint64_t window_size
= (uint64_t) nb_table
<< page_shift
;
2233 struct kvm_create_spapr_tce args
= {
2235 .window_size
= window_size
,
2237 if ((window_size
!= args
.window_size
) || bus_offset
) {
2240 fd
= kvm_vm_ioctl(kvm_state
, KVM_CREATE_SPAPR_TCE
, &args
);
2242 fprintf(stderr
, "KVM: Failed to create TCE table for liobn 0x%x\n",
2250 len
= nb_table
* sizeof(uint64_t);
2251 /* FIXME: round this up to page size */
2253 table
= mmap(NULL
, len
, PROT_READ
| PROT_WRITE
, MAP_SHARED
, fd
, 0);
2254 if (table
== MAP_FAILED
) {
2255 fprintf(stderr
, "KVM: Failed to map TCE table for liobn 0x%x\n",
2265 int kvmppc_remove_spapr_tce(void *table
, int fd
, uint32_t nb_table
)
2273 len
= nb_table
* sizeof(uint64_t);
2274 if ((munmap(table
, len
) < 0) ||
2276 fprintf(stderr
, "KVM: Unexpected error removing TCE table: %s",
2278 /* Leak the table */
2284 int kvmppc_reset_htab(int shift_hint
)
2286 uint32_t shift
= shift_hint
;
2288 if (!kvm_enabled()) {
2289 /* Full emulation, tell caller to allocate htab itself */
2292 if (kvm_vm_check_extension(kvm_state
, KVM_CAP_PPC_ALLOC_HTAB
)) {
2294 ret
= kvm_vm_ioctl(kvm_state
, KVM_PPC_ALLOCATE_HTAB
, &shift
);
2295 if (ret
== -ENOTTY
) {
2297 * At least some versions of PR KVM advertise the
2298 * capability, but don't implement the ioctl(). Oops.
2299 * Return 0 so that we allocate the htab in qemu, as is
2303 } else if (ret
< 0) {
2310 * We have a kernel that predates the htab reset calls. For PR
2311 * KVM, we need to allocate the htab ourselves, for an HV KVM of
2312 * this era, it has allocated a 16MB fixed size hash table
2315 if (kvmppc_is_pr(kvm_state
)) {
2316 /* PR - tell caller to allocate htab */
2319 /* HV - assume 16MB kernel allocated htab */
2324 static inline uint32_t mfpvr(void)
2333 static void alter_insns(uint64_t *word
, uint64_t flags
, bool on
)
2342 static void kvmppc_host_cpu_class_init(ObjectClass
*oc
, void *data
)
2344 PowerPCCPUClass
*pcc
= POWERPC_CPU_CLASS(oc
);
2345 uint32_t dcache_size
= kvmppc_read_int_cpu_dt("d-cache-size");
2346 uint32_t icache_size
= kvmppc_read_int_cpu_dt("i-cache-size");
2348 /* Now fix up the class with information we can query from the host */
2351 alter_insns(&pcc
->insns_flags
, PPC_ALTIVEC
,
2352 qemu_getauxval(AT_HWCAP
) & PPC_FEATURE_HAS_ALTIVEC
);
2353 alter_insns(&pcc
->insns_flags2
, PPC2_VSX
,
2354 qemu_getauxval(AT_HWCAP
) & PPC_FEATURE_HAS_VSX
);
2355 alter_insns(&pcc
->insns_flags2
, PPC2_DFP
,
2356 qemu_getauxval(AT_HWCAP
) & PPC_FEATURE_HAS_DFP
);
2358 if (dcache_size
!= -1) {
2359 pcc
->l1_dcache_size
= dcache_size
;
2362 if (icache_size
!= -1) {
2363 pcc
->l1_icache_size
= icache_size
;
2366 #if defined(TARGET_PPC64)
2367 pcc
->radix_page_info
= kvm_get_radix_page_info();
2369 if ((pcc
->pvr
& 0xffffff00) == CPU_POWERPC_POWER9_DD1
) {
2371 * POWER9 DD1 has some bugs which make it not really ISA 3.00
2372 * compliant. More importantly, advertising ISA 3.00
2373 * architected mode may prevent guests from activating
2374 * necessary DD1 workarounds.
2376 pcc
->pcr_supported
&= ~(PCR_COMPAT_3_00
| PCR_COMPAT_2_07
2377 | PCR_COMPAT_2_06
| PCR_COMPAT_2_05
);
2379 #endif /* defined(TARGET_PPC64) */
2382 bool kvmppc_has_cap_epr(void)
2387 bool kvmppc_has_cap_fixup_hcalls(void)
2389 return cap_fixup_hcalls
;
2392 bool kvmppc_has_cap_htm(void)
2397 bool kvmppc_has_cap_mmu_radix(void)
2399 return cap_mmu_radix
;
2402 bool kvmppc_has_cap_mmu_hash_v3(void)
2404 return cap_mmu_hash_v3
;
2407 static bool kvmppc_power8_host(void)
2412 uint32_t base_pvr
= CPU_POWERPC_POWER_SERVER_MASK
& mfpvr();
2413 ret
= (base_pvr
== CPU_POWERPC_POWER8E_BASE
) ||
2414 (base_pvr
== CPU_POWERPC_POWER8NVL_BASE
) ||
2415 (base_pvr
== CPU_POWERPC_POWER8_BASE
);
2417 #endif /* TARGET_PPC64 */
2421 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c
)
2423 bool l1d_thread_priv_req
= !kvmppc_power8_host();
2425 if (~c
.behaviour
& c
.behaviour_mask
& H_CPU_BEHAV_L1D_FLUSH_PR
) {
2427 } else if ((!l1d_thread_priv_req
||
2428 c
.character
& c
.character_mask
& H_CPU_CHAR_L1D_THREAD_PRIV
) &&
2429 (c
.character
& c
.character_mask
2430 & (H_CPU_CHAR_L1D_FLUSH_ORI30
| H_CPU_CHAR_L1D_FLUSH_TRIG2
))) {
2437 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c
)
2439 if (~c
.behaviour
& c
.behaviour_mask
& H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
) {
2441 } else if (c
.character
& c
.character_mask
& H_CPU_CHAR_SPEC_BAR_ORI31
) {
2448 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c
)
2450 if ((~c
.behaviour
& c
.behaviour_mask
& H_CPU_BEHAV_FLUSH_COUNT_CACHE
) &&
2451 (~c
.character
& c
.character_mask
& H_CPU_CHAR_CACHE_COUNT_DIS
) &&
2452 (~c
.character
& c
.character_mask
& H_CPU_CHAR_BCCTRL_SERIALISED
)) {
2453 return SPAPR_CAP_FIXED_NA
;
2454 } else if (c
.behaviour
& c
.behaviour_mask
& H_CPU_BEHAV_FLUSH_COUNT_CACHE
) {
2455 return SPAPR_CAP_WORKAROUND
;
2456 } else if (c
.character
& c
.character_mask
& H_CPU_CHAR_CACHE_COUNT_DIS
) {
2457 return SPAPR_CAP_FIXED_CCD
;
2458 } else if (c
.character
& c
.character_mask
& H_CPU_CHAR_BCCTRL_SERIALISED
) {
2459 return SPAPR_CAP_FIXED_IBS
;
2465 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c
)
2467 if (c
.character
& c
.character_mask
& H_CPU_CHAR_BCCTR_FLUSH_ASSIST
) {
2473 bool kvmppc_has_cap_xive(void)
2478 static void kvmppc_get_cpu_characteristics(KVMState
*s
)
2480 struct kvm_ppc_cpu_char c
;
2484 cap_ppc_safe_cache
= 0;
2485 cap_ppc_safe_bounds_check
= 0;
2486 cap_ppc_safe_indirect_branch
= 0;
2488 ret
= kvm_vm_check_extension(s
, KVM_CAP_PPC_GET_CPU_CHAR
);
2492 ret
= kvm_vm_ioctl(s
, KVM_PPC_GET_CPU_CHAR
, &c
);
2497 cap_ppc_safe_cache
= parse_cap_ppc_safe_cache(c
);
2498 cap_ppc_safe_bounds_check
= parse_cap_ppc_safe_bounds_check(c
);
2499 cap_ppc_safe_indirect_branch
= parse_cap_ppc_safe_indirect_branch(c
);
2500 cap_ppc_count_cache_flush_assist
=
2501 parse_cap_ppc_count_cache_flush_assist(c
);
2504 int kvmppc_get_cap_safe_cache(void)
2506 return cap_ppc_safe_cache
;
2509 int kvmppc_get_cap_safe_bounds_check(void)
2511 return cap_ppc_safe_bounds_check
;
2514 int kvmppc_get_cap_safe_indirect_branch(void)
2516 return cap_ppc_safe_indirect_branch
;
2519 int kvmppc_get_cap_count_cache_flush_assist(void)
2521 return cap_ppc_count_cache_flush_assist
;
2524 bool kvmppc_has_cap_nested_kvm_hv(void)
2526 return !!cap_ppc_nested_kvm_hv
;
2529 int kvmppc_set_cap_nested_kvm_hv(int enable
)
2531 return kvm_vm_enable_cap(kvm_state
, KVM_CAP_PPC_NESTED_HV
, 0, enable
);
2534 bool kvmppc_has_cap_spapr_vfio(void)
2536 return cap_spapr_vfio
;
2539 int kvmppc_get_cap_large_decr(void)
2541 return cap_large_decr
;
2544 int kvmppc_enable_cap_large_decr(PowerPCCPU
*cpu
, int enable
)
2546 CPUState
*cs
= CPU(cpu
);
2549 kvm_get_one_reg(cs
, KVM_REG_PPC_LPCR_64
, &lpcr
);
2550 /* Do we need to modify the LPCR? */
2551 if (!!(lpcr
& LPCR_LD
) != !!enable
) {
2557 kvm_set_one_reg(cs
, KVM_REG_PPC_LPCR_64
, &lpcr
);
2558 kvm_get_one_reg(cs
, KVM_REG_PPC_LPCR_64
, &lpcr
);
2560 if (!!(lpcr
& LPCR_LD
) != !!enable
) {
2568 int kvmppc_has_cap_rpt_invalidate(void)
2570 return cap_rpt_invalidate
;
2573 PowerPCCPUClass
*kvm_ppc_get_host_cpu_class(void)
2575 uint32_t host_pvr
= mfpvr();
2576 PowerPCCPUClass
*pvr_pcc
;
2578 pvr_pcc
= ppc_cpu_class_by_pvr(host_pvr
);
2579 if (pvr_pcc
== NULL
) {
2580 pvr_pcc
= ppc_cpu_class_by_pvr_mask(host_pvr
);
2586 static void pseries_machine_class_fixup(ObjectClass
*oc
, void *opaque
)
2588 MachineClass
*mc
= MACHINE_CLASS(oc
);
2590 mc
->default_cpu_type
= TYPE_HOST_POWERPC_CPU
;
2593 static int kvm_ppc_register_host_cpu_type(void)
2595 TypeInfo type_info
= {
2596 .name
= TYPE_HOST_POWERPC_CPU
,
2597 .class_init
= kvmppc_host_cpu_class_init
,
2599 PowerPCCPUClass
*pvr_pcc
;
2604 pvr_pcc
= kvm_ppc_get_host_cpu_class();
2605 if (pvr_pcc
== NULL
) {
2608 type_info
.parent
= object_class_get_name(OBJECT_CLASS(pvr_pcc
));
2609 type_register(&type_info
);
2610 /* override TCG default cpu type with 'host' cpu model */
2611 object_class_foreach(pseries_machine_class_fixup
, TYPE_SPAPR_MACHINE
,
2614 oc
= object_class_by_name(type_info
.name
);
2618 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2619 * we want "POWER8" to be a "family" alias that points to the current
2620 * host CPU type, too)
2622 dc
= DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc
));
2623 for (i
= 0; ppc_cpu_aliases
[i
].alias
!= NULL
; i
++) {
2624 if (strcasecmp(ppc_cpu_aliases
[i
].alias
, dc
->desc
) == 0) {
2627 ppc_cpu_aliases
[i
].model
= g_strdup(object_class_get_name(oc
));
2628 suffix
= strstr(ppc_cpu_aliases
[i
].model
, POWERPC_CPU_TYPE_SUFFIX
);
2639 int kvmppc_define_rtas_kernel_token(uint32_t token
, const char *function
)
2641 struct kvm_rtas_token_args args
= {
2645 if (!kvm_check_extension(kvm_state
, KVM_CAP_PPC_RTAS
)) {
2649 strncpy(args
.name
, function
, sizeof(args
.name
) - 1);
2651 return kvm_vm_ioctl(kvm_state
, KVM_PPC_RTAS_DEFINE_TOKEN
, &args
);
2654 int kvmppc_get_htab_fd(bool write
, uint64_t index
, Error
**errp
)
2656 struct kvm_get_htab_fd s
= {
2657 .flags
= write
? KVM_GET_HTAB_WRITE
: 0,
2658 .start_index
= index
,
2663 error_setg(errp
, "KVM version doesn't support %s the HPT",
2664 write
? "writing" : "reading");
2668 ret
= kvm_vm_ioctl(kvm_state
, KVM_PPC_GET_HTAB_FD
, &s
);
2670 error_setg(errp
, "Unable to open fd for %s HPT %s KVM: %s",
2671 write
? "writing" : "reading", write
? "to" : "from",
2679 int kvmppc_save_htab(QEMUFile
*f
, int fd
, size_t bufsize
, int64_t max_ns
)
2681 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2682 uint8_t buf
[bufsize
];
2686 rc
= read(fd
, buf
, bufsize
);
2688 fprintf(stderr
, "Error reading data from KVM HTAB fd: %s\n",
2692 uint8_t *buffer
= buf
;
2695 struct kvm_get_htab_header
*head
=
2696 (struct kvm_get_htab_header
*) buffer
;
2697 size_t chunksize
= sizeof(*head
) +
2698 HASH_PTE_SIZE_64
* head
->n_valid
;
2700 qemu_put_be32(f
, head
->index
);
2701 qemu_put_be16(f
, head
->n_valid
);
2702 qemu_put_be16(f
, head
->n_invalid
);
2703 qemu_put_buffer(f
, (void *)(head
+ 1),
2704 HASH_PTE_SIZE_64
* head
->n_valid
);
2706 buffer
+= chunksize
;
2712 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) < max_ns
)));
2714 return (rc
== 0) ? 1 : 0;
2717 int kvmppc_load_htab_chunk(QEMUFile
*f
, int fd
, uint32_t index
,
2718 uint16_t n_valid
, uint16_t n_invalid
, Error
**errp
)
2720 struct kvm_get_htab_header
*buf
;
2721 size_t chunksize
= sizeof(*buf
) + n_valid
* HASH_PTE_SIZE_64
;
2724 buf
= alloca(chunksize
);
2726 buf
->n_valid
= n_valid
;
2727 buf
->n_invalid
= n_invalid
;
2729 qemu_get_buffer(f
, (void *)(buf
+ 1), HASH_PTE_SIZE_64
* n_valid
);
2731 rc
= write(fd
, buf
, chunksize
);
2733 error_setg_errno(errp
, errno
, "Error writing the KVM hash table");
2736 if (rc
!= chunksize
) {
2737 /* We should never get a short write on a single chunk */
2738 error_setg(errp
, "Short write while restoring the KVM hash table");
2744 bool kvm_arch_stop_on_emulation_error(CPUState
*cpu
)
2749 void kvm_arch_init_irq_routing(KVMState
*s
)
2753 void kvmppc_read_hptes(ppc_hash_pte64_t
*hptes
, hwaddr ptex
, int n
)
2758 fd
= kvmppc_get_htab_fd(false, ptex
, &error_abort
);
2762 struct kvm_get_htab_header
*hdr
;
2763 int m
= n
< HPTES_PER_GROUP
? n
: HPTES_PER_GROUP
;
2764 char buf
[sizeof(*hdr
) + m
* HASH_PTE_SIZE_64
];
2766 rc
= read(fd
, buf
, sizeof(buf
));
2768 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2771 hdr
= (struct kvm_get_htab_header
*)buf
;
2772 while ((i
< n
) && ((char *)hdr
< (buf
+ rc
))) {
2773 int invalid
= hdr
->n_invalid
, valid
= hdr
->n_valid
;
2775 if (hdr
->index
!= (ptex
+ i
)) {
2776 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2777 " != (%"HWADDR_PRIu
" + %d", hdr
->index
, ptex
, i
);
2780 if (n
- i
< valid
) {
2783 memcpy(hptes
+ i
, hdr
+ 1, HASH_PTE_SIZE_64
* valid
);
2786 if ((n
- i
) < invalid
) {
2789 memset(hptes
+ i
, 0, invalid
* HASH_PTE_SIZE_64
);
2792 hdr
= (struct kvm_get_htab_header
*)
2793 ((char *)(hdr
+ 1) + HASH_PTE_SIZE_64
* hdr
->n_valid
);
2800 void kvmppc_write_hpte(hwaddr ptex
, uint64_t pte0
, uint64_t pte1
)
2804 struct kvm_get_htab_header hdr
;
2809 fd
= kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort
);
2811 buf
.hdr
.n_valid
= 1;
2812 buf
.hdr
.n_invalid
= 0;
2813 buf
.hdr
.index
= ptex
;
2814 buf
.pte0
= cpu_to_be64(pte0
);
2815 buf
.pte1
= cpu_to_be64(pte1
);
2817 rc
= write(fd
, &buf
, sizeof(buf
));
2818 if (rc
!= sizeof(buf
)) {
2819 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2824 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
2825 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
2830 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
2831 int vector
, PCIDevice
*dev
)
2836 int kvm_arch_release_virq_post(int virq
)
2841 int kvm_arch_msi_data_to_gsi(uint32_t data
)
2843 return data
& 0xffff;
2846 #if defined(TARGET_PPC64)
2847 int kvm_handle_nmi(PowerPCCPU
*cpu
, struct kvm_run
*run
)
2849 uint16_t flags
= run
->flags
& KVM_RUN_PPC_NMI_DISP_MASK
;
2851 cpu_synchronize_state(CPU(cpu
));
2853 spapr_mce_req_event(cpu
, flags
== KVM_RUN_PPC_NMI_DISP_FULLY_RECOV
);
2859 int kvmppc_enable_hwrng(void)
2861 if (!kvm_enabled() || !kvm_check_extension(kvm_state
, KVM_CAP_PPC_HWRNG
)) {
2865 return kvmppc_enable_hcall(kvm_state
, H_RANDOM
);
2868 void kvmppc_check_papr_resize_hpt(Error
**errp
)
2870 if (!kvm_enabled()) {
2871 return; /* No KVM, we're good */
2874 if (cap_resize_hpt
) {
2875 return; /* Kernel has explicit support, we're good */
2878 /* Otherwise fallback on looking for PR KVM */
2879 if (kvmppc_is_pr(kvm_state
)) {
2884 "Hash page table resizing not available with this KVM version");
2887 int kvmppc_resize_hpt_prepare(PowerPCCPU
*cpu
, target_ulong flags
, int shift
)
2889 CPUState
*cs
= CPU(cpu
);
2890 struct kvm_ppc_resize_hpt rhpt
= {
2895 if (!cap_resize_hpt
) {
2899 return kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_RESIZE_HPT_PREPARE
, &rhpt
);
2902 int kvmppc_resize_hpt_commit(PowerPCCPU
*cpu
, target_ulong flags
, int shift
)
2904 CPUState
*cs
= CPU(cpu
);
2905 struct kvm_ppc_resize_hpt rhpt
= {
2910 if (!cap_resize_hpt
) {
2914 return kvm_vm_ioctl(cs
->kvm_state
, KVM_PPC_RESIZE_HPT_COMMIT
, &rhpt
);
2918 * This is a helper function to detect a post migration scenario
2919 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2920 * the guest kernel can't handle a PVR value other than the actual host
2921 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2923 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2924 * (so, we're HV), return true. The workaround itself is done in
2927 * The order here is important: we'll only check for KVM PR as a
2928 * fallback if the guest kernel can't handle the situation itself.
2929 * We need to avoid as much as possible querying the running KVM type
2932 bool kvmppc_pvr_workaround_required(PowerPCCPU
*cpu
)
2934 CPUState
*cs
= CPU(cpu
);
2936 if (!kvm_enabled()) {
2940 if (cap_ppc_pvr_compat
) {
2944 return !kvmppc_is_pr(cs
->kvm_state
);
2947 void kvmppc_set_reg_ppc_online(PowerPCCPU
*cpu
, unsigned int online
)
2949 CPUState
*cs
= CPU(cpu
);
2951 if (kvm_enabled()) {
2952 kvm_set_one_reg(cs
, KVM_REG_PPC_ONLINE
, &online
);
2956 void kvmppc_set_reg_tb_offset(PowerPCCPU
*cpu
, int64_t tb_offset
)
2958 CPUState
*cs
= CPU(cpu
);
2960 if (kvm_enabled()) {
2961 kvm_set_one_reg(cs
, KVM_REG_PPC_TB_OFFSET
, &tb_offset
);
2965 bool kvm_arch_cpu_check_are_resettable(void)
2970 void kvm_arch_accel_class_init(ObjectClass
*oc
)