Merge tag 'pull-request-2024-06-12' of https://gitlab.com/thuth/qemu into staging
[qemu/kevin.git] / target / ppc / kvm.c
blob005f2239f38ba41d5d264aebfe7f6b210ac3cfb3
1 /*
2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
22 #include <linux/kvm.h>
24 #include "qapi/error.h"
25 #include "qemu/error-report.h"
26 #include "cpu.h"
27 #include "cpu-models.h"
28 #include "qemu/timer.h"
29 #include "sysemu/hw_accel.h"
30 #include "kvm_ppc.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "mmu-hash64.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/ppc/spapr_cpu_core.h"
37 #include "hw/hw.h"
38 #include "hw/ppc/ppc.h"
39 #include "migration/qemu-file-types.h"
40 #include "sysemu/watchdog.h"
41 #include "trace.h"
42 #include "exec/gdbstub.h"
43 #include "exec/memattrs.h"
44 #include "exec/ram_addr.h"
45 #include "sysemu/hostmem.h"
46 #include "qemu/cutils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/mmap-alloc.h"
49 #include "elf.h"
50 #include "sysemu/kvm_int.h"
52 #include CONFIG_DEVICES
54 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
56 #define DEBUG_RETURN_GUEST 0
57 #define DEBUG_RETURN_GDB 1
59 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
60 KVM_CAP_LAST_INFO
63 static int cap_interrupt_unset;
64 static int cap_segstate;
65 static int cap_booke_sregs;
66 static int cap_ppc_smt;
67 static int cap_ppc_smt_possible;
68 static int cap_spapr_tce;
69 static int cap_spapr_tce_64;
70 static int cap_spapr_multitce;
71 static int cap_spapr_vfio;
72 static int cap_hior;
73 static int cap_one_reg;
74 static int cap_epr;
75 static int cap_ppc_watchdog;
76 static int cap_htab_fd;
77 static int cap_fixup_hcalls;
78 static int cap_htm; /* Hardware transactional memory support */
79 static int cap_mmu_radix;
80 static int cap_mmu_hash_v3;
81 static int cap_xive;
82 static int cap_resize_hpt;
83 static int cap_ppc_pvr_compat;
84 static int cap_ppc_safe_cache;
85 static int cap_ppc_safe_bounds_check;
86 static int cap_ppc_safe_indirect_branch;
87 static int cap_ppc_count_cache_flush_assist;
88 static int cap_ppc_nested_kvm_hv;
89 static int cap_large_decr;
90 static int cap_fwnmi;
91 static int cap_rpt_invalidate;
92 static int cap_ail_mode_3;
94 #ifdef CONFIG_PSERIES
95 static int cap_papr;
96 #else
97 #define cap_papr (0)
98 #endif
100 static uint32_t debug_inst_opcode;
103 * Check whether we are running with KVM-PR (instead of KVM-HV). This
104 * should only be used for fallback tests - generally we should use
105 * explicit capabilities for the features we want, rather than
106 * assuming what is/isn't available depending on the KVM variant.
108 static bool kvmppc_is_pr(KVMState *ks)
110 /* Assume KVM-PR if the GET_PVINFO capability is available */
111 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
114 static int kvm_ppc_register_host_cpu_type(void);
115 static void kvmppc_get_cpu_characteristics(KVMState *s);
116 static int kvmppc_get_dec_bits(void);
118 int kvm_arch_get_default_type(MachineState *ms)
120 return 0;
123 int kvm_arch_init(MachineState *ms, KVMState *s)
125 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
126 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
127 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
128 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
129 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
130 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
131 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
132 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
133 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
134 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
135 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
136 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
138 * Note: we don't set cap_papr here, because this capability is
139 * only activated after this by kvmppc_set_papr()
141 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
142 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
143 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
144 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
145 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
146 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
147 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
148 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
149 kvmppc_get_cpu_characteristics(s);
150 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
151 cap_large_decr = kvmppc_get_dec_bits();
152 cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
154 * Note: setting it to false because there is not such capability
155 * in KVM at this moment.
157 * TODO: call kvm_vm_check_extension() with the right capability
158 * after the kernel starts implementing it.
160 cap_ppc_pvr_compat = false;
162 if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
163 error_report("KVM: Host kernel doesn't have level irq capability");
164 exit(1);
167 cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
168 cap_ail_mode_3 = kvm_vm_check_extension(s, KVM_CAP_PPC_AIL_MODE_3);
169 kvm_ppc_register_host_cpu_type();
171 return 0;
174 int kvm_arch_irqchip_create(KVMState *s)
176 return 0;
179 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
181 CPUPPCState *cenv = &cpu->env;
182 CPUState *cs = CPU(cpu);
183 struct kvm_sregs sregs;
184 int ret;
186 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
188 * What we're really trying to say is "if we're on BookE, we
189 * use the native PVR for now". This is the only sane way to
190 * check it though, so we potentially confuse users that they
191 * can run BookE guests on BookS. Let's hope nobody dares
192 * enough :)
194 return 0;
195 } else {
196 if (!cap_segstate) {
197 fprintf(stderr, "kvm error: missing PVR setting capability\n");
198 return -ENOSYS;
202 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
203 if (ret) {
204 return ret;
207 sregs.pvr = cenv->spr[SPR_PVR];
208 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
211 /* Set up a shared TLB array with KVM */
212 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
214 CPUPPCState *env = &cpu->env;
215 CPUState *cs = CPU(cpu);
216 struct kvm_book3e_206_tlb_params params = {};
217 struct kvm_config_tlb cfg = {};
218 unsigned int entries = 0;
219 int ret, i;
221 if (!kvm_enabled() ||
222 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
223 return 0;
226 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
228 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
229 params.tlb_sizes[i] = booke206_tlb_size(env, i);
230 params.tlb_ways[i] = booke206_tlb_ways(env, i);
231 entries += params.tlb_sizes[i];
234 assert(entries == env->nb_tlb);
235 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
237 env->tlb_dirty = true;
239 cfg.array = (uintptr_t)env->tlb.tlbm;
240 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
241 cfg.params = (uintptr_t)&params;
242 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
244 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
245 if (ret < 0) {
246 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
247 __func__, strerror(-ret));
248 return ret;
251 env->kvm_sw_tlb = true;
252 return 0;
256 #if defined(TARGET_PPC64)
257 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
259 int ret;
261 assert(kvm_state != NULL);
263 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
264 error_setg(errp, "KVM doesn't expose the MMU features it supports");
265 error_append_hint(errp, "Consider switching to a newer KVM\n");
266 return;
269 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
270 if (ret == 0) {
271 return;
274 error_setg_errno(errp, -ret,
275 "KVM failed to provide the MMU features it supports");
278 static struct ppc_radix_page_info *kvmppc_get_radix_page_info(void)
280 KVMState *s = KVM_STATE(current_accel());
281 struct ppc_radix_page_info *radix_page_info;
282 struct kvm_ppc_rmmu_info rmmu_info = { };
283 int i;
285 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
286 return NULL;
288 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
289 return NULL;
291 radix_page_info = g_malloc0(sizeof(*radix_page_info));
292 radix_page_info->count = 0;
293 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
294 if (rmmu_info.ap_encodings[i]) {
295 radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
296 radix_page_info->count++;
299 return radix_page_info;
302 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
303 bool radix, bool gtse,
304 uint64_t proc_tbl)
306 CPUState *cs = CPU(cpu);
307 int ret;
308 uint64_t flags = 0;
309 struct kvm_ppc_mmuv3_cfg cfg = {
310 .process_table = proc_tbl,
313 if (radix) {
314 flags |= KVM_PPC_MMUV3_RADIX;
316 if (gtse) {
317 flags |= KVM_PPC_MMUV3_GTSE;
319 cfg.flags = flags;
320 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
321 switch (ret) {
322 case 0:
323 return H_SUCCESS;
324 case -EINVAL:
325 return H_PARAMETER;
326 case -ENODEV:
327 return H_NOT_AVAILABLE;
328 default:
329 return H_HARDWARE;
333 bool kvmppc_hpt_needs_host_contiguous_pages(void)
335 static struct kvm_ppc_smmu_info smmu_info;
337 if (!kvm_enabled()) {
338 return false;
341 kvm_get_smmu_info(&smmu_info, &error_fatal);
342 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
345 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
347 struct kvm_ppc_smmu_info smmu_info;
348 int iq, ik, jq, jk;
349 Error *local_err = NULL;
351 /* For now, we only have anything to check on hash64 MMUs */
352 if (!cpu->hash64_opts || !kvm_enabled()) {
353 return;
356 kvm_get_smmu_info(&smmu_info, &local_err);
357 if (local_err) {
358 error_propagate(errp, local_err);
359 return;
362 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
363 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
364 error_setg(errp,
365 "KVM does not support 1TiB segments which guest expects");
366 return;
369 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
370 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
371 smmu_info.slb_size, cpu->hash64_opts->slb_size);
372 return;
376 * Verify that every pagesize supported by the cpu model is
377 * supported by KVM with the same encodings
379 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
380 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
381 struct kvm_ppc_one_seg_page_size *ksps;
383 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
384 if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
385 break;
388 if (ik >= ARRAY_SIZE(smmu_info.sps)) {
389 error_setg(errp, "KVM doesn't support for base page shift %u",
390 qsps->page_shift);
391 return;
394 ksps = &smmu_info.sps[ik];
395 if (ksps->slb_enc != qsps->slb_enc) {
396 error_setg(errp,
397 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
398 ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
399 return;
402 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
403 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
404 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
405 break;
409 if (jk >= ARRAY_SIZE(ksps->enc)) {
410 error_setg(errp, "KVM doesn't support page shift %u/%u",
411 qsps->enc[jq].page_shift, qsps->page_shift);
412 return;
414 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
415 error_setg(errp,
416 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
417 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
418 qsps->page_shift, qsps->enc[jq].pte_enc);
419 return;
424 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
426 * Mostly what guest pagesizes we can use are related to the
427 * host pages used to map guest RAM, which is handled in the
428 * platform code. Cache-Inhibited largepages (64k) however are
429 * used for I/O, so if they're mapped to the host at all it
430 * will be a normal mapping, not a special hugepage one used
431 * for RAM.
433 if (qemu_real_host_page_size() < 0x10000) {
434 error_setg(errp,
435 "KVM can't supply 64kiB CI pages, which guest expects");
439 #endif /* !defined (TARGET_PPC64) */
441 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
443 return POWERPC_CPU(cpu)->vcpu_id;
447 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
448 * only 1 watchpoint, so array size of 4 is sufficient for now.
450 #define MAX_HW_BKPTS 4
452 static struct HWBreakpoint {
453 target_ulong addr;
454 int type;
455 } hw_debug_points[MAX_HW_BKPTS];
457 static CPUWatchpoint hw_watchpoint;
459 /* Default there is no breakpoint and watchpoint supported */
460 static int max_hw_breakpoint;
461 static int max_hw_watchpoint;
462 static int nb_hw_breakpoint;
463 static int nb_hw_watchpoint;
465 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
467 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
468 max_hw_breakpoint = 2;
469 max_hw_watchpoint = 2;
472 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
473 fprintf(stderr, "Error initializing h/w breakpoints\n");
474 return;
478 int kvm_arch_init_vcpu(CPUState *cs)
480 PowerPCCPU *cpu = POWERPC_CPU(cs);
481 CPUPPCState *cenv = &cpu->env;
482 int ret;
484 /* Synchronize sregs with kvm */
485 ret = kvm_arch_sync_sregs(cpu);
486 if (ret) {
487 if (ret == -EINVAL) {
488 error_report("Register sync failed... If you're using kvm-hv.ko,"
489 " only \"-cpu host\" is possible");
491 return ret;
494 switch (cenv->mmu_model) {
495 case POWERPC_MMU_BOOKE206:
496 /* This target supports access to KVM's guest TLB */
497 ret = kvm_booke206_tlb_init(cpu);
498 break;
499 case POWERPC_MMU_2_07:
500 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
502 * KVM-HV has transactional memory on POWER8 also without
503 * the KVM_CAP_PPC_HTM extension, so enable it here
504 * instead as long as it's available to userspace on the
505 * host.
507 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
508 cap_htm = true;
511 break;
512 default:
513 break;
516 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
517 kvmppc_hw_debug_points_init(cenv);
519 return ret;
522 int kvm_arch_destroy_vcpu(CPUState *cs)
524 return 0;
527 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
529 CPUPPCState *env = &cpu->env;
530 CPUState *cs = CPU(cpu);
531 struct kvm_dirty_tlb dirty_tlb;
532 unsigned char *bitmap;
533 int ret;
535 if (!env->kvm_sw_tlb) {
536 return;
539 bitmap = g_malloc((env->nb_tlb + 7) / 8);
540 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
542 dirty_tlb.bitmap = (uintptr_t)bitmap;
543 dirty_tlb.num_dirty = env->nb_tlb;
545 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
546 if (ret) {
547 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
548 __func__, strerror(-ret));
551 g_free(bitmap);
554 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
556 CPUPPCState *env = cpu_env(cs);
557 /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
558 union {
559 uint32_t u32;
560 uint64_t u64;
561 } val = { };
562 struct kvm_one_reg reg = {
563 .id = id,
564 .addr = (uintptr_t) &val,
566 int ret;
568 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
569 if (ret != 0) {
570 trace_kvm_failed_spr_get(spr, strerror(errno));
571 } else {
572 switch (id & KVM_REG_SIZE_MASK) {
573 case KVM_REG_SIZE_U32:
574 env->spr[spr] = val.u32;
575 break;
577 case KVM_REG_SIZE_U64:
578 env->spr[spr] = val.u64;
579 break;
581 default:
582 /* Don't handle this size yet */
583 abort();
588 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
590 CPUPPCState *env = cpu_env(cs);
591 union {
592 uint32_t u32;
593 uint64_t u64;
594 } val;
595 struct kvm_one_reg reg = {
596 .id = id,
597 .addr = (uintptr_t) &val,
599 int ret;
601 switch (id & KVM_REG_SIZE_MASK) {
602 case KVM_REG_SIZE_U32:
603 val.u32 = env->spr[spr];
604 break;
606 case KVM_REG_SIZE_U64:
607 val.u64 = env->spr[spr];
608 break;
610 default:
611 /* Don't handle this size yet */
612 abort();
615 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
616 if (ret != 0) {
617 trace_kvm_failed_spr_set(spr, strerror(errno));
621 static int kvm_put_fp(CPUState *cs)
623 CPUPPCState *env = cpu_env(cs);
624 struct kvm_one_reg reg;
625 int i;
626 int ret;
628 if (env->insns_flags & PPC_FLOAT) {
629 uint64_t fpscr = env->fpscr;
630 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
632 reg.id = KVM_REG_PPC_FPSCR;
633 reg.addr = (uintptr_t)&fpscr;
634 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
635 if (ret < 0) {
636 trace_kvm_failed_fpscr_set(strerror(errno));
637 return ret;
640 for (i = 0; i < 32; i++) {
641 uint64_t vsr[2];
642 uint64_t *fpr = cpu_fpr_ptr(env, i);
643 uint64_t *vsrl = cpu_vsrl_ptr(env, i);
645 #if HOST_BIG_ENDIAN
646 vsr[0] = float64_val(*fpr);
647 vsr[1] = *vsrl;
648 #else
649 vsr[0] = *vsrl;
650 vsr[1] = float64_val(*fpr);
651 #endif
652 reg.addr = (uintptr_t) &vsr;
653 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
655 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
656 if (ret < 0) {
657 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
658 strerror(errno));
659 return ret;
664 if (env->insns_flags & PPC_ALTIVEC) {
665 reg.id = KVM_REG_PPC_VSCR;
666 reg.addr = (uintptr_t)&env->vscr;
667 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
668 if (ret < 0) {
669 trace_kvm_failed_vscr_set(strerror(errno));
670 return ret;
673 for (i = 0; i < 32; i++) {
674 reg.id = KVM_REG_PPC_VR(i);
675 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
676 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
677 if (ret < 0) {
678 trace_kvm_failed_vr_set(i, strerror(errno));
679 return ret;
684 return 0;
687 static int kvm_get_fp(CPUState *cs)
689 CPUPPCState *env = cpu_env(cs);
690 struct kvm_one_reg reg;
691 int i;
692 int ret;
694 if (env->insns_flags & PPC_FLOAT) {
695 uint64_t fpscr;
696 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
698 reg.id = KVM_REG_PPC_FPSCR;
699 reg.addr = (uintptr_t)&fpscr;
700 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
701 if (ret < 0) {
702 trace_kvm_failed_fpscr_get(strerror(errno));
703 return ret;
704 } else {
705 env->fpscr = fpscr;
708 for (i = 0; i < 32; i++) {
709 uint64_t vsr[2];
710 uint64_t *fpr = cpu_fpr_ptr(env, i);
711 uint64_t *vsrl = cpu_vsrl_ptr(env, i);
713 reg.addr = (uintptr_t) &vsr;
714 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
716 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
717 if (ret < 0) {
718 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
719 strerror(errno));
720 return ret;
721 } else {
722 #if HOST_BIG_ENDIAN
723 *fpr = vsr[0];
724 if (vsx) {
725 *vsrl = vsr[1];
727 #else
728 *fpr = vsr[1];
729 if (vsx) {
730 *vsrl = vsr[0];
732 #endif
737 if (env->insns_flags & PPC_ALTIVEC) {
738 reg.id = KVM_REG_PPC_VSCR;
739 reg.addr = (uintptr_t)&env->vscr;
740 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
741 if (ret < 0) {
742 trace_kvm_failed_vscr_get(strerror(errno));
743 return ret;
746 for (i = 0; i < 32; i++) {
747 reg.id = KVM_REG_PPC_VR(i);
748 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
749 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
750 if (ret < 0) {
751 trace_kvm_failed_vr_get(i, strerror(errno));
752 return ret;
757 return 0;
760 #if defined(TARGET_PPC64)
761 static int kvm_get_vpa(CPUState *cs)
763 PowerPCCPU *cpu = POWERPC_CPU(cs);
764 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
765 struct kvm_one_reg reg;
766 int ret;
768 reg.id = KVM_REG_PPC_VPA_ADDR;
769 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
770 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
771 if (ret < 0) {
772 trace_kvm_failed_vpa_addr_get(strerror(errno));
773 return ret;
776 assert((uintptr_t)&spapr_cpu->slb_shadow_size
777 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
778 reg.id = KVM_REG_PPC_VPA_SLB;
779 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
780 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
781 if (ret < 0) {
782 trace_kvm_failed_slb_get(strerror(errno));
783 return ret;
786 assert((uintptr_t)&spapr_cpu->dtl_size
787 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
788 reg.id = KVM_REG_PPC_VPA_DTL;
789 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
790 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
791 if (ret < 0) {
792 trace_kvm_failed_dtl_get(strerror(errno));
793 return ret;
796 return 0;
799 static int kvm_put_vpa(CPUState *cs)
801 PowerPCCPU *cpu = POWERPC_CPU(cs);
802 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
803 struct kvm_one_reg reg;
804 int ret;
807 * SLB shadow or DTL can't be registered unless a master VPA is
808 * registered. That means when restoring state, if a VPA *is*
809 * registered, we need to set that up first. If not, we need to
810 * deregister the others before deregistering the master VPA
812 assert(spapr_cpu->vpa_addr
813 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
815 if (spapr_cpu->vpa_addr) {
816 reg.id = KVM_REG_PPC_VPA_ADDR;
817 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
818 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
819 if (ret < 0) {
820 trace_kvm_failed_vpa_addr_set(strerror(errno));
821 return ret;
825 assert((uintptr_t)&spapr_cpu->slb_shadow_size
826 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
827 reg.id = KVM_REG_PPC_VPA_SLB;
828 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
829 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
830 if (ret < 0) {
831 trace_kvm_failed_slb_set(strerror(errno));
832 return ret;
835 assert((uintptr_t)&spapr_cpu->dtl_size
836 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
837 reg.id = KVM_REG_PPC_VPA_DTL;
838 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
839 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
840 if (ret < 0) {
841 trace_kvm_failed_dtl_set(strerror(errno));
842 return ret;
845 if (!spapr_cpu->vpa_addr) {
846 reg.id = KVM_REG_PPC_VPA_ADDR;
847 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
848 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
849 if (ret < 0) {
850 trace_kvm_failed_null_vpa_addr_set(strerror(errno));
851 return ret;
855 return 0;
857 #endif /* TARGET_PPC64 */
859 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
861 CPUPPCState *env = &cpu->env;
862 struct kvm_sregs sregs = { };
863 int i;
865 sregs.pvr = env->spr[SPR_PVR];
867 if (cpu->vhyp) {
868 sregs.u.s.sdr1 = cpu->vhyp_class->encode_hpt_for_kvm_pr(cpu->vhyp);
869 } else {
870 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
873 /* Sync SLB */
874 #ifdef TARGET_PPC64
875 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
876 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
877 if (env->slb[i].esid & SLB_ESID_V) {
878 sregs.u.s.ppc64.slb[i].slbe |= i;
880 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
882 #endif
884 /* Sync SRs */
885 for (i = 0; i < 16; i++) {
886 sregs.u.s.ppc32.sr[i] = env->sr[i];
889 /* Sync BATs */
890 for (i = 0; i < 8; i++) {
891 /* Beware. We have to swap upper and lower bits here */
892 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
893 | env->DBAT[1][i];
894 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
895 | env->IBAT[1][i];
898 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
901 int kvm_arch_put_registers(CPUState *cs, int level)
903 PowerPCCPU *cpu = POWERPC_CPU(cs);
904 CPUPPCState *env = &cpu->env;
905 struct kvm_regs regs;
906 int ret;
907 int i;
909 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
910 if (ret < 0) {
911 return ret;
914 regs.ctr = env->ctr;
915 regs.lr = env->lr;
916 regs.xer = cpu_read_xer(env);
917 regs.msr = env->msr;
918 regs.pc = env->nip;
920 regs.srr0 = env->spr[SPR_SRR0];
921 regs.srr1 = env->spr[SPR_SRR1];
923 regs.sprg0 = env->spr[SPR_SPRG0];
924 regs.sprg1 = env->spr[SPR_SPRG1];
925 regs.sprg2 = env->spr[SPR_SPRG2];
926 regs.sprg3 = env->spr[SPR_SPRG3];
927 regs.sprg4 = env->spr[SPR_SPRG4];
928 regs.sprg5 = env->spr[SPR_SPRG5];
929 regs.sprg6 = env->spr[SPR_SPRG6];
930 regs.sprg7 = env->spr[SPR_SPRG7];
932 regs.pid = env->spr[SPR_BOOKE_PID];
934 for (i = 0; i < 32; i++) {
935 regs.gpr[i] = env->gpr[i];
938 regs.cr = ppc_get_cr(env);
940 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
941 if (ret < 0) {
942 return ret;
945 kvm_put_fp(cs);
947 if (env->tlb_dirty) {
948 kvm_sw_tlb_put(cpu);
949 env->tlb_dirty = false;
952 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
953 ret = kvmppc_put_books_sregs(cpu);
954 if (ret < 0) {
955 return ret;
959 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
960 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
963 if (cap_one_reg) {
965 * We deliberately ignore errors here, for kernels which have
966 * the ONE_REG calls, but don't support the specific
967 * registers, there's a reasonable chance things will still
968 * work, at least until we try to migrate.
970 for (i = 0; i < 1024; i++) {
971 uint64_t id = env->spr_cb[i].one_reg_id;
973 if (id != 0) {
974 kvm_put_one_spr(cs, id, i);
978 #ifdef TARGET_PPC64
979 if (FIELD_EX64(env->msr, MSR, TS)) {
980 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
981 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
983 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
984 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
986 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
987 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
988 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
989 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
990 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
991 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
992 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
993 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
994 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
995 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
998 if (cap_papr) {
999 if (kvm_put_vpa(cs) < 0) {
1000 trace_kvm_failed_put_vpa();
1004 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1006 if (level > KVM_PUT_RUNTIME_STATE) {
1007 kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1009 #endif /* TARGET_PPC64 */
1012 return ret;
1015 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1017 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1020 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1022 CPUPPCState *env = &cpu->env;
1023 struct kvm_sregs sregs;
1024 int ret;
1026 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1027 if (ret < 0) {
1028 return ret;
1031 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1032 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1033 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1034 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1035 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1036 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1037 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1038 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1039 env->spr[SPR_DECR] = sregs.u.e.dec;
1040 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1041 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1042 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1045 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1046 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1047 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1048 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1049 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1050 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1053 if (sregs.u.e.features & KVM_SREGS_E_64) {
1054 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1057 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1058 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1061 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1062 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1063 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
1064 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1065 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
1066 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1067 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
1068 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1069 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
1070 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1071 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
1072 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1073 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
1074 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1075 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
1076 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1077 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
1078 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1079 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
1080 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1081 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
1082 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1083 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
1084 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1085 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
1086 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1087 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
1088 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1089 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
1090 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1091 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
1092 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1093 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
1095 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1096 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1097 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
1098 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1099 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
1100 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1101 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
1104 if (sregs.u.e.features & KVM_SREGS_E_PM) {
1105 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1106 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
1109 if (sregs.u.e.features & KVM_SREGS_E_PC) {
1110 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1111 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
1112 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1113 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1117 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1118 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1119 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1120 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1121 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1122 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1123 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1124 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1125 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1126 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1127 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1130 if (sregs.u.e.features & KVM_SREGS_EXP) {
1131 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1134 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1135 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1136 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1139 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1140 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1141 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1142 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1144 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1145 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1146 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1150 return 0;
1153 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1155 CPUPPCState *env = &cpu->env;
1156 struct kvm_sregs sregs;
1157 int ret;
1158 int i;
1160 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1161 if (ret < 0) {
1162 return ret;
1165 if (!cpu->vhyp) {
1166 ppc_store_sdr1(env, sregs.u.s.sdr1);
1169 /* Sync SLB */
1170 #ifdef TARGET_PPC64
1172 * The packed SLB array we get from KVM_GET_SREGS only contains
1173 * information about valid entries. So we flush our internal copy
1174 * to get rid of stale ones, then put all valid SLB entries back
1175 * in.
1177 memset(env->slb, 0, sizeof(env->slb));
1178 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1179 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1180 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1182 * Only restore valid entries
1184 if (rb & SLB_ESID_V) {
1185 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1188 #endif
1190 /* Sync SRs */
1191 for (i = 0; i < 16; i++) {
1192 env->sr[i] = sregs.u.s.ppc32.sr[i];
1195 /* Sync BATs */
1196 for (i = 0; i < 8; i++) {
1197 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1198 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1199 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1200 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1203 return 0;
1206 int kvm_arch_get_registers(CPUState *cs)
1208 PowerPCCPU *cpu = POWERPC_CPU(cs);
1209 CPUPPCState *env = &cpu->env;
1210 struct kvm_regs regs;
1211 int i, ret;
1213 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1214 if (ret < 0) {
1215 return ret;
1218 ppc_set_cr(env, regs.cr);
1219 env->ctr = regs.ctr;
1220 env->lr = regs.lr;
1221 cpu_write_xer(env, regs.xer);
1222 env->msr = regs.msr;
1223 env->nip = regs.pc;
1225 env->spr[SPR_SRR0] = regs.srr0;
1226 env->spr[SPR_SRR1] = regs.srr1;
1228 env->spr[SPR_SPRG0] = regs.sprg0;
1229 env->spr[SPR_SPRG1] = regs.sprg1;
1230 env->spr[SPR_SPRG2] = regs.sprg2;
1231 env->spr[SPR_SPRG3] = regs.sprg3;
1232 env->spr[SPR_SPRG4] = regs.sprg4;
1233 env->spr[SPR_SPRG5] = regs.sprg5;
1234 env->spr[SPR_SPRG6] = regs.sprg6;
1235 env->spr[SPR_SPRG7] = regs.sprg7;
1237 env->spr[SPR_BOOKE_PID] = regs.pid;
1239 for (i = 0; i < 32; i++) {
1240 env->gpr[i] = regs.gpr[i];
1243 kvm_get_fp(cs);
1245 if (cap_booke_sregs) {
1246 ret = kvmppc_get_booke_sregs(cpu);
1247 if (ret < 0) {
1248 return ret;
1252 if (cap_segstate) {
1253 ret = kvmppc_get_books_sregs(cpu);
1254 if (ret < 0) {
1255 return ret;
1259 if (cap_hior) {
1260 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1263 if (cap_one_reg) {
1265 * We deliberately ignore errors here, for kernels which have
1266 * the ONE_REG calls, but don't support the specific
1267 * registers, there's a reasonable chance things will still
1268 * work, at least until we try to migrate.
1270 for (i = 0; i < 1024; i++) {
1271 uint64_t id = env->spr_cb[i].one_reg_id;
1273 if (id != 0) {
1274 kvm_get_one_spr(cs, id, i);
1278 #ifdef TARGET_PPC64
1279 if (FIELD_EX64(env->msr, MSR, TS)) {
1280 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1281 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1283 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1284 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1286 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1287 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1288 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1289 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1290 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1291 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1292 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1293 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1294 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1295 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1298 if (cap_papr) {
1299 if (kvm_get_vpa(cs) < 0) {
1300 trace_kvm_failed_get_vpa();
1304 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1305 kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1306 #endif
1309 return 0;
1312 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1314 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1316 if (irq != PPC_INTERRUPT_EXT) {
1317 return 0;
1320 if (!cap_interrupt_unset) {
1321 return 0;
1324 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1326 return 0;
1329 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1331 return;
1334 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1336 return MEMTXATTRS_UNSPECIFIED;
1339 int kvm_arch_process_async_events(CPUState *cs)
1341 return cs->halted;
1344 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1346 CPUState *cs = CPU(cpu);
1347 CPUPPCState *env = &cpu->env;
1349 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1350 FIELD_EX64(env->msr, MSR, EE)) {
1351 cs->halted = 1;
1352 cs->exception_index = EXCP_HLT;
1355 return 0;
1358 /* map dcr access to existing qemu dcr emulation */
1359 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1360 uint32_t dcrn, uint32_t *data)
1362 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1363 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1366 return 0;
1369 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1370 uint32_t dcrn, uint32_t data)
1372 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1373 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1376 return 0;
1379 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1381 /* Mixed endian case is not handled */
1382 uint32_t sc = debug_inst_opcode;
1384 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1385 sizeof(sc), 0) ||
1386 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1387 return -EINVAL;
1390 return 0;
1393 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1395 uint32_t sc;
1397 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1398 sc != debug_inst_opcode ||
1399 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1400 sizeof(sc), 1)) {
1401 return -EINVAL;
1404 return 0;
1407 static int find_hw_breakpoint(target_ulong addr, int type)
1409 int n;
1411 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1412 <= ARRAY_SIZE(hw_debug_points));
1414 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1415 if (hw_debug_points[n].addr == addr &&
1416 hw_debug_points[n].type == type) {
1417 return n;
1421 return -1;
1424 static int find_hw_watchpoint(target_ulong addr, int *flag)
1426 int n;
1428 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1429 if (n >= 0) {
1430 *flag = BP_MEM_ACCESS;
1431 return n;
1434 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1435 if (n >= 0) {
1436 *flag = BP_MEM_WRITE;
1437 return n;
1440 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1441 if (n >= 0) {
1442 *flag = BP_MEM_READ;
1443 return n;
1446 return -1;
1449 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1451 const unsigned breakpoint_index = nb_hw_breakpoint + nb_hw_watchpoint;
1452 if (breakpoint_index >= ARRAY_SIZE(hw_debug_points)) {
1453 return -ENOBUFS;
1456 hw_debug_points[breakpoint_index].addr = addr;
1457 hw_debug_points[breakpoint_index].type = type;
1459 switch (type) {
1460 case GDB_BREAKPOINT_HW:
1461 if (nb_hw_breakpoint >= max_hw_breakpoint) {
1462 return -ENOBUFS;
1465 if (find_hw_breakpoint(addr, type) >= 0) {
1466 return -EEXIST;
1469 nb_hw_breakpoint++;
1470 break;
1472 case GDB_WATCHPOINT_WRITE:
1473 case GDB_WATCHPOINT_READ:
1474 case GDB_WATCHPOINT_ACCESS:
1475 if (nb_hw_watchpoint >= max_hw_watchpoint) {
1476 return -ENOBUFS;
1479 if (find_hw_breakpoint(addr, type) >= 0) {
1480 return -EEXIST;
1483 nb_hw_watchpoint++;
1484 break;
1486 default:
1487 return -ENOSYS;
1490 return 0;
1493 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1495 int n;
1497 n = find_hw_breakpoint(addr, type);
1498 if (n < 0) {
1499 return -ENOENT;
1502 switch (type) {
1503 case GDB_BREAKPOINT_HW:
1504 nb_hw_breakpoint--;
1505 break;
1507 case GDB_WATCHPOINT_WRITE:
1508 case GDB_WATCHPOINT_READ:
1509 case GDB_WATCHPOINT_ACCESS:
1510 nb_hw_watchpoint--;
1511 break;
1513 default:
1514 return -ENOSYS;
1516 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1518 return 0;
1521 void kvm_arch_remove_all_hw_breakpoints(void)
1523 nb_hw_breakpoint = nb_hw_watchpoint = 0;
1526 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1528 int n;
1530 /* Software Breakpoint updates */
1531 if (kvm_sw_breakpoints_active(cs)) {
1532 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1535 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1536 <= ARRAY_SIZE(hw_debug_points));
1537 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1539 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1540 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1541 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1542 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1543 switch (hw_debug_points[n].type) {
1544 case GDB_BREAKPOINT_HW:
1545 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1546 break;
1547 case GDB_WATCHPOINT_WRITE:
1548 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1549 break;
1550 case GDB_WATCHPOINT_READ:
1551 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1552 break;
1553 case GDB_WATCHPOINT_ACCESS:
1554 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1555 KVMPPC_DEBUG_WATCH_READ;
1556 break;
1557 default:
1558 cpu_abort(cs, "Unsupported breakpoint type\n");
1560 dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1565 static int kvm_handle_hw_breakpoint(CPUState *cs,
1566 struct kvm_debug_exit_arch *arch_info)
1568 int handle = DEBUG_RETURN_GUEST;
1569 int n;
1570 int flag = 0;
1572 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1573 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1574 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1575 if (n >= 0) {
1576 handle = DEBUG_RETURN_GDB;
1578 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1579 KVMPPC_DEBUG_WATCH_WRITE)) {
1580 n = find_hw_watchpoint(arch_info->address, &flag);
1581 if (n >= 0) {
1582 handle = DEBUG_RETURN_GDB;
1583 cs->watchpoint_hit = &hw_watchpoint;
1584 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1585 hw_watchpoint.flags = flag;
1589 return handle;
1592 static int kvm_handle_singlestep(void)
1594 return DEBUG_RETURN_GDB;
1597 static int kvm_handle_sw_breakpoint(void)
1599 return DEBUG_RETURN_GDB;
1602 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1604 CPUState *cs = CPU(cpu);
1605 CPUPPCState *env = &cpu->env;
1606 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1608 if (cs->singlestep_enabled) {
1609 return kvm_handle_singlestep();
1612 if (arch_info->status) {
1613 return kvm_handle_hw_breakpoint(cs, arch_info);
1616 if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1617 return kvm_handle_sw_breakpoint();
1621 * QEMU is not able to handle debug exception, so inject
1622 * program exception to guest;
1623 * Yes program exception NOT debug exception !!
1624 * When QEMU is using debug resources then debug exception must
1625 * be always set. To achieve this we set MSR_DE and also set
1626 * MSRP_DEP so guest cannot change MSR_DE.
1627 * When emulating debug resource for guest we want guest
1628 * to control MSR_DE (enable/disable debug interrupt on need).
1629 * Supporting both configurations are NOT possible.
1630 * So the result is that we cannot share debug resources
1631 * between QEMU and Guest on BOOKE architecture.
1632 * In the current design QEMU gets the priority over guest,
1633 * this means that if QEMU is using debug resources then guest
1634 * cannot use them;
1635 * For software breakpoint QEMU uses a privileged instruction;
1636 * So there cannot be any reason that we are here for guest
1637 * set debug exception, only possibility is guest executed a
1638 * privileged / illegal instruction and that's why we are
1639 * injecting a program interrupt.
1641 cpu_synchronize_state(cs);
1643 * env->nip is PC, so increment this by 4 to use
1644 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1646 env->nip += 4;
1647 cs->exception_index = POWERPC_EXCP_PROGRAM;
1648 env->error_code = POWERPC_EXCP_INVAL;
1649 ppc_cpu_do_interrupt(cs);
1651 return DEBUG_RETURN_GUEST;
1654 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1656 PowerPCCPU *cpu = POWERPC_CPU(cs);
1657 CPUPPCState *env = &cpu->env;
1658 int ret;
1660 bql_lock();
1662 switch (run->exit_reason) {
1663 case KVM_EXIT_DCR:
1664 if (run->dcr.is_write) {
1665 trace_kvm_handle_dcr_write();
1666 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1667 } else {
1668 trace_kvm_handle_dcr_read();
1669 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1671 break;
1672 case KVM_EXIT_HLT:
1673 trace_kvm_handle_halt();
1674 ret = kvmppc_handle_halt(cpu);
1675 break;
1676 #if defined(CONFIG_PSERIES)
1677 case KVM_EXIT_PAPR_HCALL:
1678 trace_kvm_handle_papr_hcall(run->papr_hcall.nr);
1679 run->papr_hcall.ret = spapr_hypercall(cpu,
1680 run->papr_hcall.nr,
1681 run->papr_hcall.args);
1682 ret = 0;
1683 break;
1684 #endif
1685 case KVM_EXIT_EPR:
1686 trace_kvm_handle_epr();
1687 run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1688 ret = 0;
1689 break;
1690 case KVM_EXIT_WATCHDOG:
1691 trace_kvm_handle_watchdog_expiry();
1692 watchdog_perform_action();
1693 ret = 0;
1694 break;
1696 case KVM_EXIT_DEBUG:
1697 trace_kvm_handle_debug_exception();
1698 if (kvm_handle_debug(cpu, run)) {
1699 ret = EXCP_DEBUG;
1700 break;
1702 /* re-enter, this exception was guest-internal */
1703 ret = 0;
1704 break;
1706 #if defined(CONFIG_PSERIES)
1707 case KVM_EXIT_NMI:
1708 trace_kvm_handle_nmi_exception();
1709 ret = kvm_handle_nmi(cpu, run);
1710 break;
1711 #endif
1713 default:
1714 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1715 ret = -1;
1716 break;
1719 bql_unlock();
1720 return ret;
1723 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1725 CPUState *cs = CPU(cpu);
1726 uint32_t bits = tsr_bits;
1727 struct kvm_one_reg reg = {
1728 .id = KVM_REG_PPC_OR_TSR,
1729 .addr = (uintptr_t) &bits,
1732 if (!kvm_enabled()) {
1733 return 0;
1736 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1739 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1742 CPUState *cs = CPU(cpu);
1743 uint32_t bits = tsr_bits;
1744 struct kvm_one_reg reg = {
1745 .id = KVM_REG_PPC_CLEAR_TSR,
1746 .addr = (uintptr_t) &bits,
1749 if (!kvm_enabled()) {
1750 return 0;
1753 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1756 int kvmppc_set_tcr(PowerPCCPU *cpu)
1758 CPUState *cs = CPU(cpu);
1759 CPUPPCState *env = &cpu->env;
1760 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1762 struct kvm_one_reg reg = {
1763 .id = KVM_REG_PPC_TCR,
1764 .addr = (uintptr_t) &tcr,
1767 if (!kvm_enabled()) {
1768 return 0;
1771 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1774 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1776 CPUState *cs = CPU(cpu);
1777 int ret;
1779 if (!kvm_enabled()) {
1780 return -1;
1783 if (!cap_ppc_watchdog) {
1784 printf("warning: KVM does not support watchdog");
1785 return -1;
1788 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1789 if (ret < 0) {
1790 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1791 __func__, strerror(-ret));
1792 return ret;
1795 return ret;
1798 static int read_cpuinfo(const char *field, char *value, int len)
1800 FILE *f;
1801 int ret = -1;
1802 int field_len = strlen(field);
1803 char line[512];
1805 f = fopen("/proc/cpuinfo", "r");
1806 if (!f) {
1807 return -1;
1810 do {
1811 if (!fgets(line, sizeof(line), f)) {
1812 break;
1814 if (!strncmp(line, field, field_len)) {
1815 pstrcpy(value, len, line);
1816 ret = 0;
1817 break;
1819 } while (*line);
1821 fclose(f);
1823 return ret;
1826 static uint32_t kvmppc_get_tbfreq_procfs(void)
1828 char line[512];
1829 char *ns;
1830 uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1831 uint32_t tbfreq_procfs;
1833 if (read_cpuinfo("timebase", line, sizeof(line))) {
1834 return tbfreq_fallback;
1837 ns = strchr(line, ':');
1838 if (!ns) {
1839 return tbfreq_fallback;
1842 tbfreq_procfs = atoi(++ns);
1844 /* 0 is certainly not acceptable by the guest, return fallback value */
1845 return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1848 uint32_t kvmppc_get_tbfreq(void)
1850 static uint32_t cached_tbfreq;
1852 if (!cached_tbfreq) {
1853 cached_tbfreq = kvmppc_get_tbfreq_procfs();
1856 return cached_tbfreq;
1859 bool kvmppc_get_host_serial(char **value)
1861 return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1862 NULL);
1865 bool kvmppc_get_host_model(char **value)
1867 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1870 /* Try to find a device tree node for a CPU with clock-frequency property */
1871 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1873 struct dirent *dirp;
1874 DIR *dp;
1876 dp = opendir(PROC_DEVTREE_CPU);
1877 if (!dp) {
1878 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1879 return -1;
1882 buf[0] = '\0';
1883 while ((dirp = readdir(dp)) != NULL) {
1884 FILE *f;
1886 /* Don't accidentally read from the current and parent directories */
1887 if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) {
1888 continue;
1891 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1892 dirp->d_name);
1893 f = fopen(buf, "r");
1894 if (f) {
1895 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1896 fclose(f);
1897 break;
1899 buf[0] = '\0';
1901 closedir(dp);
1902 if (buf[0] == '\0') {
1903 printf("Unknown host!\n");
1904 return -1;
1907 return 0;
1910 static uint64_t kvmppc_read_int_dt(const char *filename)
1912 union {
1913 uint32_t v32;
1914 uint64_t v64;
1915 } u;
1916 FILE *f;
1917 int len;
1919 f = fopen(filename, "rb");
1920 if (!f) {
1921 return -1;
1924 len = fread(&u, 1, sizeof(u), f);
1925 fclose(f);
1926 switch (len) {
1927 case 4:
1928 /* property is a 32-bit quantity */
1929 return be32_to_cpu(u.v32);
1930 case 8:
1931 return be64_to_cpu(u.v64);
1934 return 0;
1938 * Read a CPU node property from the host device tree that's a single
1939 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1940 * (can't find or open the property, or doesn't understand the format)
1942 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1944 char buf[PATH_MAX], *tmp;
1945 uint64_t val;
1947 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1948 return -1;
1951 tmp = g_strdup_printf("%s/%s", buf, propname);
1952 val = kvmppc_read_int_dt(tmp);
1953 g_free(tmp);
1955 return val;
1958 uint64_t kvmppc_get_clockfreq(void)
1960 return kvmppc_read_int_cpu_dt("clock-frequency");
1963 static int kvmppc_get_dec_bits(void)
1965 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1967 if (nr_bits > 0) {
1968 return nr_bits;
1970 return 0;
1973 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1975 CPUState *cs = env_cpu(env);
1977 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1978 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1979 return 0;
1982 return 1;
1985 int kvmppc_get_hasidle(CPUPPCState *env)
1987 struct kvm_ppc_pvinfo pvinfo;
1989 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1990 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1991 return 1;
1994 return 0;
1997 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1999 uint32_t *hc = (uint32_t *)buf;
2000 struct kvm_ppc_pvinfo pvinfo;
2002 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
2003 memcpy(buf, pvinfo.hcall, buf_len);
2004 return 0;
2008 * Fallback to always fail hypercalls regardless of endianness:
2010 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2011 * li r3, -1
2012 * b .+8 (becomes nop in wrong endian)
2013 * bswap32(li r3, -1)
2016 hc[0] = cpu_to_be32(0x08000048);
2017 hc[1] = cpu_to_be32(0x3860ffff);
2018 hc[2] = cpu_to_be32(0x48000008);
2019 hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2021 return 1;
2024 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2026 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2029 void kvmppc_enable_logical_ci_hcalls(void)
2032 * FIXME: it would be nice if we could detect the cases where
2033 * we're using a device which requires the in kernel
2034 * implementation of these hcalls, but the kernel lacks them and
2035 * produce a warning.
2037 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2038 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2041 void kvmppc_enable_set_mode_hcall(void)
2043 kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2046 void kvmppc_enable_clear_ref_mod_hcalls(void)
2048 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2049 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2052 void kvmppc_enable_h_page_init(void)
2054 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2057 void kvmppc_enable_h_rpt_invalidate(void)
2059 kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
2062 #ifdef CONFIG_PSERIES
2063 void kvmppc_set_papr(PowerPCCPU *cpu)
2065 CPUState *cs = CPU(cpu);
2066 int ret;
2068 if (!kvm_enabled()) {
2069 return;
2072 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2073 if (ret) {
2074 error_report("This vCPU type or KVM version does not support PAPR");
2075 exit(1);
2079 * Update the capability flag so we sync the right information
2080 * with kvm
2082 cap_papr = 1;
2084 #endif
2086 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2088 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2091 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2093 CPUState *cs = CPU(cpu);
2094 int ret;
2096 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2097 if (ret && mpic_proxy) {
2098 error_report("This KVM version does not support EPR");
2099 exit(1);
2103 bool kvmppc_get_fwnmi(void)
2105 return cap_fwnmi;
2108 int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2110 CPUState *cs = CPU(cpu);
2112 return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2115 int kvmppc_smt_threads(void)
2117 return cap_ppc_smt ? cap_ppc_smt : 1;
2120 int kvmppc_set_smt_threads(int smt)
2122 int ret;
2124 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2125 if (!ret) {
2126 cap_ppc_smt = smt;
2128 return ret;
2131 void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2133 int i;
2134 GString *g;
2135 char *s;
2137 assert(kvm_enabled());
2138 if (cap_ppc_smt_possible) {
2139 g = g_string_new("Available VSMT modes:");
2140 for (i = 63; i >= 0; i--) {
2141 if ((1UL << i) & cap_ppc_smt_possible) {
2142 g_string_append_printf(g, " %lu", (1UL << i));
2145 s = g_string_free(g, false);
2146 error_append_hint(errp, "%s.\n", s);
2147 g_free(s);
2148 } else {
2149 error_append_hint(errp,
2150 "This KVM seems to be too old to support VSMT.\n");
2155 #ifdef TARGET_PPC64
2156 uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2158 struct kvm_ppc_smmu_info info;
2159 long rampagesize, best_page_shift;
2160 int i;
2163 * Find the largest hardware supported page size that's less than
2164 * or equal to the (logical) backing page size of guest RAM
2166 kvm_get_smmu_info(&info, &error_fatal);
2167 rampagesize = qemu_minrampagesize();
2168 best_page_shift = 0;
2170 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2171 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2173 if (!sps->page_shift) {
2174 continue;
2177 if ((sps->page_shift > best_page_shift)
2178 && ((1UL << sps->page_shift) <= rampagesize)) {
2179 best_page_shift = sps->page_shift;
2183 return 1ULL << (best_page_shift + hash_shift - 7);
2185 #endif
2187 bool kvmppc_spapr_use_multitce(void)
2189 return cap_spapr_multitce;
2192 int kvmppc_spapr_enable_inkernel_multitce(void)
2194 int ret;
2196 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2197 H_PUT_TCE_INDIRECT, 1);
2198 if (!ret) {
2199 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2200 H_STUFF_TCE, 1);
2203 return ret;
2206 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2207 uint64_t bus_offset, uint32_t nb_table,
2208 int *pfd, bool need_vfio)
2210 long len;
2211 int fd;
2212 void *table;
2215 * Must set fd to -1 so we don't try to munmap when called for
2216 * destroying the table, which the upper layers -will- do
2218 *pfd = -1;
2219 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2220 return NULL;
2223 if (cap_spapr_tce_64) {
2224 struct kvm_create_spapr_tce_64 args = {
2225 .liobn = liobn,
2226 .page_shift = page_shift,
2227 .offset = bus_offset >> page_shift,
2228 .size = nb_table,
2229 .flags = 0
2231 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2232 if (fd < 0) {
2233 fprintf(stderr,
2234 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2235 liobn);
2236 return NULL;
2238 } else if (cap_spapr_tce) {
2239 uint64_t window_size = (uint64_t) nb_table << page_shift;
2240 struct kvm_create_spapr_tce args = {
2241 .liobn = liobn,
2242 .window_size = window_size,
2244 if ((window_size != args.window_size) || bus_offset) {
2245 return NULL;
2247 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2248 if (fd < 0) {
2249 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2250 liobn);
2251 return NULL;
2253 } else {
2254 return NULL;
2257 len = nb_table * sizeof(uint64_t);
2258 /* FIXME: round this up to page size */
2260 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2261 if (table == MAP_FAILED) {
2262 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2263 liobn);
2264 close(fd);
2265 return NULL;
2268 *pfd = fd;
2269 return table;
2272 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2274 long len;
2276 if (fd < 0) {
2277 return -1;
2280 len = nb_table * sizeof(uint64_t);
2281 if ((munmap(table, len) < 0) ||
2282 (close(fd) < 0)) {
2283 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2284 strerror(errno));
2285 /* Leak the table */
2288 return 0;
2291 int kvmppc_reset_htab(int shift_hint)
2293 uint32_t shift = shift_hint;
2295 if (!kvm_enabled()) {
2296 /* Full emulation, tell caller to allocate htab itself */
2297 return 0;
2299 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2300 int ret;
2301 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2302 if (ret == -ENOTTY) {
2304 * At least some versions of PR KVM advertise the
2305 * capability, but don't implement the ioctl(). Oops.
2306 * Return 0 so that we allocate the htab in qemu, as is
2307 * correct for PR.
2309 return 0;
2310 } else if (ret < 0) {
2311 return ret;
2313 return shift;
2317 * We have a kernel that predates the htab reset calls. For PR
2318 * KVM, we need to allocate the htab ourselves, for an HV KVM of
2319 * this era, it has allocated a 16MB fixed size hash table
2320 * already.
2322 if (kvmppc_is_pr(kvm_state)) {
2323 /* PR - tell caller to allocate htab */
2324 return 0;
2325 } else {
2326 /* HV - assume 16MB kernel allocated htab */
2327 return 24;
2331 static inline uint32_t mfpvr(void)
2333 uint32_t pvr;
2335 asm ("mfpvr %0"
2336 : "=r"(pvr));
2337 return pvr;
2340 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2342 if (on) {
2343 *word |= flags;
2344 } else {
2345 *word &= ~flags;
2349 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2351 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2352 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2353 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2355 /* Now fix up the class with information we can query from the host */
2356 pcc->pvr = mfpvr();
2358 alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2359 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2360 alter_insns(&pcc->insns_flags2, PPC2_VSX,
2361 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2362 alter_insns(&pcc->insns_flags2, PPC2_DFP,
2363 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2365 if (dcache_size != -1) {
2366 pcc->l1_dcache_size = dcache_size;
2369 if (icache_size != -1) {
2370 pcc->l1_icache_size = icache_size;
2373 #if defined(TARGET_PPC64)
2374 pcc->radix_page_info = kvmppc_get_radix_page_info();
2375 #endif /* defined(TARGET_PPC64) */
2378 bool kvmppc_has_cap_epr(void)
2380 return cap_epr;
2383 bool kvmppc_has_cap_fixup_hcalls(void)
2385 return cap_fixup_hcalls;
2388 bool kvmppc_has_cap_htm(void)
2390 return cap_htm;
2393 bool kvmppc_has_cap_mmu_radix(void)
2395 return cap_mmu_radix;
2398 bool kvmppc_has_cap_mmu_hash_v3(void)
2400 return cap_mmu_hash_v3;
2403 static bool kvmppc_power8_host(void)
2405 bool ret = false;
2406 #ifdef TARGET_PPC64
2408 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2409 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2410 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2411 (base_pvr == CPU_POWERPC_POWER8_BASE);
2413 #endif /* TARGET_PPC64 */
2414 return ret;
2417 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2419 bool l1d_thread_priv_req = !kvmppc_power8_host();
2421 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2422 return 2;
2423 } else if ((!l1d_thread_priv_req ||
2424 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2425 (c.character & c.character_mask
2426 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2427 return 1;
2430 return 0;
2433 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2435 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2436 return 2;
2437 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2438 return 1;
2441 return 0;
2444 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2446 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2447 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2448 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2449 return SPAPR_CAP_FIXED_NA;
2450 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2451 return SPAPR_CAP_WORKAROUND;
2452 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2453 return SPAPR_CAP_FIXED_CCD;
2454 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2455 return SPAPR_CAP_FIXED_IBS;
2458 return 0;
2461 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2463 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2464 return 1;
2466 return 0;
2469 bool kvmppc_has_cap_xive(void)
2471 return cap_xive;
2474 static void kvmppc_get_cpu_characteristics(KVMState *s)
2476 struct kvm_ppc_cpu_char c;
2477 int ret;
2479 /* Assume broken */
2480 cap_ppc_safe_cache = 0;
2481 cap_ppc_safe_bounds_check = 0;
2482 cap_ppc_safe_indirect_branch = 0;
2484 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2485 if (!ret) {
2486 return;
2488 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2489 if (ret < 0) {
2490 return;
2493 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2494 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2495 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2496 cap_ppc_count_cache_flush_assist =
2497 parse_cap_ppc_count_cache_flush_assist(c);
2500 int kvmppc_get_cap_safe_cache(void)
2502 return cap_ppc_safe_cache;
2505 int kvmppc_get_cap_safe_bounds_check(void)
2507 return cap_ppc_safe_bounds_check;
2510 int kvmppc_get_cap_safe_indirect_branch(void)
2512 return cap_ppc_safe_indirect_branch;
2515 int kvmppc_get_cap_count_cache_flush_assist(void)
2517 return cap_ppc_count_cache_flush_assist;
2520 bool kvmppc_has_cap_nested_kvm_hv(void)
2522 return !!cap_ppc_nested_kvm_hv;
2525 int kvmppc_set_cap_nested_kvm_hv(int enable)
2527 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2530 bool kvmppc_has_cap_spapr_vfio(void)
2532 return cap_spapr_vfio;
2535 int kvmppc_get_cap_large_decr(void)
2537 return cap_large_decr;
2540 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2542 CPUState *cs = CPU(cpu);
2543 uint64_t lpcr = 0;
2545 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2546 /* Do we need to modify the LPCR? */
2547 if (!!(lpcr & LPCR_LD) != !!enable) {
2548 if (enable) {
2549 lpcr |= LPCR_LD;
2550 } else {
2551 lpcr &= ~LPCR_LD;
2553 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2554 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2556 if (!!(lpcr & LPCR_LD) != !!enable) {
2557 return -1;
2561 return 0;
2564 int kvmppc_has_cap_rpt_invalidate(void)
2566 return cap_rpt_invalidate;
2569 bool kvmppc_supports_ail_3(void)
2571 return cap_ail_mode_3;
2574 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2576 uint32_t host_pvr = mfpvr();
2577 PowerPCCPUClass *pvr_pcc;
2579 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2580 if (pvr_pcc == NULL) {
2581 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2584 return pvr_pcc;
2587 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2589 MachineClass *mc = MACHINE_CLASS(oc);
2591 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2594 static int kvm_ppc_register_host_cpu_type(void)
2596 TypeInfo type_info = {
2597 .name = TYPE_HOST_POWERPC_CPU,
2598 .class_init = kvmppc_host_cpu_class_init,
2600 PowerPCCPUClass *pvr_pcc;
2601 ObjectClass *oc;
2602 DeviceClass *dc;
2603 int i;
2605 pvr_pcc = kvm_ppc_get_host_cpu_class();
2606 if (pvr_pcc == NULL) {
2607 return -1;
2609 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2610 type_register(&type_info);
2611 /* override TCG default cpu type with 'host' cpu model */
2612 object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2613 false, NULL);
2615 oc = object_class_by_name(type_info.name);
2616 g_assert(oc);
2619 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2620 * we want "POWER8" to be a "family" alias that points to the current
2621 * host CPU type, too)
2623 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2624 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2625 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2626 char *suffix;
2628 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2629 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2630 if (suffix) {
2631 *suffix = 0;
2633 break;
2637 return 0;
2640 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2642 struct kvm_rtas_token_args args = {
2643 .token = token,
2646 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2647 return -ENOENT;
2650 strncpy(args.name, function, sizeof(args.name) - 1);
2652 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2655 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2657 struct kvm_get_htab_fd s = {
2658 .flags = write ? KVM_GET_HTAB_WRITE : 0,
2659 .start_index = index,
2661 int ret;
2663 if (!cap_htab_fd) {
2664 error_setg(errp, "KVM version doesn't support %s the HPT",
2665 write ? "writing" : "reading");
2666 return -ENOTSUP;
2669 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2670 if (ret < 0) {
2671 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2672 write ? "writing" : "reading", write ? "to" : "from",
2673 strerror(errno));
2674 return -errno;
2677 return ret;
2680 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2682 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2683 g_autofree uint8_t *buf = g_malloc(bufsize);
2684 ssize_t rc;
2686 do {
2687 rc = read(fd, buf, bufsize);
2688 if (rc < 0) {
2689 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2690 strerror(errno));
2691 return rc;
2692 } else if (rc) {
2693 uint8_t *buffer = buf;
2694 ssize_t n = rc;
2695 while (n) {
2696 struct kvm_get_htab_header *head =
2697 (struct kvm_get_htab_header *) buffer;
2698 size_t chunksize = sizeof(*head) +
2699 HASH_PTE_SIZE_64 * head->n_valid;
2701 qemu_put_be32(f, head->index);
2702 qemu_put_be16(f, head->n_valid);
2703 qemu_put_be16(f, head->n_invalid);
2704 qemu_put_buffer(f, (void *)(head + 1),
2705 HASH_PTE_SIZE_64 * head->n_valid);
2707 buffer += chunksize;
2708 n -= chunksize;
2711 } while ((rc != 0)
2712 && ((max_ns < 0) ||
2713 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2715 return (rc == 0) ? 1 : 0;
2718 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2719 uint16_t n_valid, uint16_t n_invalid, Error **errp)
2721 struct kvm_get_htab_header *buf;
2722 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2723 ssize_t rc;
2725 buf = alloca(chunksize);
2726 buf->index = index;
2727 buf->n_valid = n_valid;
2728 buf->n_invalid = n_invalid;
2730 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2732 rc = write(fd, buf, chunksize);
2733 if (rc < 0) {
2734 error_setg_errno(errp, errno, "Error writing the KVM hash table");
2735 return -errno;
2737 if (rc != chunksize) {
2738 /* We should never get a short write on a single chunk */
2739 error_setg(errp, "Short write while restoring the KVM hash table");
2740 return -ENOSPC;
2742 return 0;
2745 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2747 return true;
2750 void kvm_arch_init_irq_routing(KVMState *s)
2754 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2756 int fd, rc;
2757 int i;
2759 fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2761 i = 0;
2762 while (i < n) {
2763 struct kvm_get_htab_header *hdr;
2764 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2765 char buf[sizeof(*hdr) + HPTES_PER_GROUP * HASH_PTE_SIZE_64];
2767 rc = read(fd, buf, sizeof(*hdr) + m * HASH_PTE_SIZE_64);
2768 if (rc < 0) {
2769 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2772 hdr = (struct kvm_get_htab_header *)buf;
2773 while ((i < n) && ((char *)hdr < (buf + rc))) {
2774 int invalid = hdr->n_invalid, valid = hdr->n_valid;
2776 if (hdr->index != (ptex + i)) {
2777 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2778 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2781 if (n - i < valid) {
2782 valid = n - i;
2784 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2785 i += valid;
2787 if ((n - i) < invalid) {
2788 invalid = n - i;
2790 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2791 i += invalid;
2793 hdr = (struct kvm_get_htab_header *)
2794 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2798 close(fd);
2801 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2803 int fd, rc;
2804 struct {
2805 struct kvm_get_htab_header hdr;
2806 uint64_t pte0;
2807 uint64_t pte1;
2808 } buf;
2810 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2812 buf.hdr.n_valid = 1;
2813 buf.hdr.n_invalid = 0;
2814 buf.hdr.index = ptex;
2815 buf.pte0 = cpu_to_be64(pte0);
2816 buf.pte1 = cpu_to_be64(pte1);
2818 rc = write(fd, &buf, sizeof(buf));
2819 if (rc != sizeof(buf)) {
2820 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2822 close(fd);
2825 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2826 uint64_t address, uint32_t data, PCIDevice *dev)
2828 return 0;
2831 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2832 int vector, PCIDevice *dev)
2834 return 0;
2837 int kvm_arch_release_virq_post(int virq)
2839 return 0;
2842 int kvm_arch_msi_data_to_gsi(uint32_t data)
2844 return data & 0xffff;
2847 #if defined(CONFIG_PSERIES)
2848 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2850 uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2852 cpu_synchronize_state(CPU(cpu));
2854 spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2856 return 0;
2858 #endif
2860 int kvmppc_enable_hwrng(void)
2862 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2863 return -1;
2866 return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2869 void kvmppc_check_papr_resize_hpt(Error **errp)
2871 if (!kvm_enabled()) {
2872 return; /* No KVM, we're good */
2875 if (cap_resize_hpt) {
2876 return; /* Kernel has explicit support, we're good */
2879 /* Otherwise fallback on looking for PR KVM */
2880 if (kvmppc_is_pr(kvm_state)) {
2881 return;
2884 error_setg(errp,
2885 "Hash page table resizing not available with this KVM version");
2888 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2890 CPUState *cs = CPU(cpu);
2891 struct kvm_ppc_resize_hpt rhpt = {
2892 .flags = flags,
2893 .shift = shift,
2896 if (!cap_resize_hpt) {
2897 return -ENOSYS;
2900 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2903 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2905 CPUState *cs = CPU(cpu);
2906 struct kvm_ppc_resize_hpt rhpt = {
2907 .flags = flags,
2908 .shift = shift,
2911 if (!cap_resize_hpt) {
2912 return -ENOSYS;
2915 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2919 * This is a helper function to detect a post migration scenario
2920 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2921 * the guest kernel can't handle a PVR value other than the actual host
2922 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2924 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2925 * (so, we're HV), return true. The workaround itself is done in
2926 * cpu_post_load.
2928 * The order here is important: we'll only check for KVM PR as a
2929 * fallback if the guest kernel can't handle the situation itself.
2930 * We need to avoid as much as possible querying the running KVM type
2931 * in QEMU level.
2933 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2935 CPUState *cs = CPU(cpu);
2937 if (!kvm_enabled()) {
2938 return false;
2941 if (cap_ppc_pvr_compat) {
2942 return false;
2945 return !kvmppc_is_pr(cs->kvm_state);
2948 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2950 CPUState *cs = CPU(cpu);
2952 if (kvm_enabled()) {
2953 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2957 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2959 CPUState *cs = CPU(cpu);
2961 if (kvm_enabled()) {
2962 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2966 void kvm_arch_accel_class_init(ObjectClass *oc)