2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qemu/units.h"
17 #include "qapi/error.h"
19 #include "hw/sysbus.h"
20 #include "migration/vmstate.h"
21 #include "hw/registerfields.h"
22 #include "hw/arm/armsse.h"
23 #include "hw/arm/armsse-version.h"
24 #include "hw/arm/boot.h"
26 #include "hw/qdev-clock.h"
29 * The SSE-300 puts some devices in different places to the
30 * SSE-200 (and original IoTKit). We use an array of these structs
31 * to define how each variant lays out these devices. (Parts of the
32 * SoC that are the same for all variants aren't handled via these
39 * Special values for ARMSSEDeviceInfo::irq to indicate that this
40 * device uses one of the inputs to the OR gate that feeds into the
46 typedef struct ARMSSEDeviceInfo
{
47 const char *name
; /* name to use for the QOM object; NULL terminates list */
48 const char *type
; /* QOM type name */
49 unsigned int index
; /* Which of the N devices of this type is this ? */
51 hwaddr size
; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
52 int ppc
; /* Index of APB PPC this device is wired up to, or NO_PPC */
53 int ppc_port
; /* Port number of this device on the PPC */
54 int irq
; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
55 bool slowclk
; /* true if device uses the slow 32KHz clock */
63 uint32_t sram_bank_base
;
76 const ARMSSEDeviceInfo
*devinfo
;
77 const bool *irq_is_common
;
80 static Property iotkit_properties
[] = {
81 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
83 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
84 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
85 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
86 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], true),
87 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], true),
88 DEFINE_PROP_END_OF_LIST()
91 static Property sse200_properties
[] = {
92 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
94 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
95 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
96 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
97 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], false),
98 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], false),
99 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE
, cpu_fpu
[1], true),
100 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE
, cpu_dsp
[1], true),
101 DEFINE_PROP_END_OF_LIST()
104 static Property sse300_properties
[] = {
105 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
107 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
108 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 18),
109 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
110 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], true),
111 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], true),
112 DEFINE_PROP_END_OF_LIST()
115 static const ARMSSEDeviceInfo iotkit_devices
[] = {
118 .type
= TYPE_CMSDK_APB_TIMER
,
127 .type
= TYPE_CMSDK_APB_TIMER
,
136 .type
= TYPE_CMSDK_APB_TIMER
,
146 .type
= TYPE_CMSDK_APB_DUALTIMER
,
154 .name
= "s32kwatchdog",
155 .type
= TYPE_CMSDK_APB_WATCHDOG
,
163 .name
= "nswatchdog",
164 .type
= TYPE_CMSDK_APB_WATCHDOG
,
172 .type
= TYPE_CMSDK_APB_WATCHDOG
,
179 .name
= "armsse-sysinfo",
180 .type
= TYPE_IOTKIT_SYSINFO
,
187 .name
= "armsse-sysctl",
188 .type
= TYPE_IOTKIT_SYSCTL
,
199 static const ARMSSEDeviceInfo sse200_devices
[] = {
202 .type
= TYPE_CMSDK_APB_TIMER
,
211 .type
= TYPE_CMSDK_APB_TIMER
,
220 .type
= TYPE_CMSDK_APB_TIMER
,
230 .type
= TYPE_CMSDK_APB_DUALTIMER
,
238 .name
= "s32kwatchdog",
239 .type
= TYPE_CMSDK_APB_WATCHDOG
,
247 .name
= "nswatchdog",
248 .type
= TYPE_CMSDK_APB_WATCHDOG
,
256 .type
= TYPE_CMSDK_APB_WATCHDOG
,
263 .name
= "armsse-sysinfo",
264 .type
= TYPE_IOTKIT_SYSINFO
,
271 .name
= "armsse-sysctl",
272 .type
= TYPE_IOTKIT_SYSCTL
,
279 .name
= "CPU0CORE_PPU",
280 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
288 .name
= "CPU1CORE_PPU",
289 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
298 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
307 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
316 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
325 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
334 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
343 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
355 static const ARMSSEDeviceInfo sse300_devices
[] = {
358 .type
= TYPE_SSE_TIMER
,
367 .type
= TYPE_SSE_TIMER
,
376 .type
= TYPE_SSE_TIMER
,
385 .type
= TYPE_SSE_TIMER
,
394 .type
= TYPE_CMSDK_APB_TIMER
,
403 .name
= "s32kwatchdog",
404 .type
= TYPE_CMSDK_APB_WATCHDOG
,
413 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
421 .name
= "armsse-sysinfo",
422 .type
= TYPE_IOTKIT_SYSINFO
,
429 .name
= "armsse-sysctl",
430 .type
= TYPE_IOTKIT_SYSCTL
,
438 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
446 .name
= "CPU0CORE_PPU",
447 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
456 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
465 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
477 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
478 static const bool sse200_irq_is_common
[32] = {
480 /* 6, 7: per-CPU MHU interrupts */
482 /* 13: per-CPU icache interrupt */
488 /* 28, 29: per-CPU CTI interrupts */
489 /* 30, 31: reserved */
492 static const bool sse300_irq_is_common
[32] = {
494 /* 6, 7: per-CPU MHU interrupts */
498 /* 17-25: reserved */
500 /* 28, 29: per-CPU CTI interrupts */
501 /* 30, 31: reserved */
504 static const ARMSSEInfo armsse_variants
[] = {
507 .sse_version
= ARMSSE_IOTKIT
,
508 .cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33"),
510 .sram_bank_base
= 0x20000000,
512 .sys_version
= 0x41743,
516 .has_cachectrl
= false,
517 .has_cpusecctrl
= false,
519 .has_cpu_pwrctrl
= false,
520 .has_sse_counter
= false,
522 .props
= iotkit_properties
,
523 .devinfo
= iotkit_devices
,
524 .irq_is_common
= sse200_irq_is_common
,
528 .sse_version
= ARMSSE_SSE200
,
529 .cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33"),
531 .sram_bank_base
= 0x20000000,
533 .sys_version
= 0x22041743,
537 .has_cachectrl
= true,
538 .has_cpusecctrl
= true,
540 .has_cpu_pwrctrl
= false,
541 .has_sse_counter
= false,
543 .props
= sse200_properties
,
544 .devinfo
= sse200_devices
,
545 .irq_is_common
= sse200_irq_is_common
,
549 .sse_version
= ARMSSE_SSE300
,
550 .cpu_type
= ARM_CPU_TYPE_NAME("cortex-m55"),
552 .sram_bank_base
= 0x21000000,
554 .sys_version
= 0x7e00043b,
558 .has_cachectrl
= false,
559 .has_cpusecctrl
= true,
561 .has_cpu_pwrctrl
= true,
562 .has_sse_counter
= true,
564 .props
= sse300_properties
,
565 .devinfo
= sse300_devices
,
566 .irq_is_common
= sse300_irq_is_common
,
570 static uint32_t armsse_sys_config_value(ARMSSE
*s
, const ARMSSEInfo
*info
)
572 /* Return the SYS_CONFIG value for this SSE */
575 switch (info
->sse_version
) {
578 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
579 sys_config
= deposit32(sys_config
, 4, 4, s
->sram_addr_width
- 12);
583 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
584 sys_config
= deposit32(sys_config
, 4, 5, s
->sram_addr_width
);
585 sys_config
= deposit32(sys_config
, 24, 4, 2);
586 if (info
->num_cpus
> 1) {
587 sys_config
= deposit32(sys_config
, 10, 1, 1);
588 sys_config
= deposit32(sys_config
, 20, 4, info
->sram_banks
- 1);
589 sys_config
= deposit32(sys_config
, 28, 4, 2);
594 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
595 sys_config
= deposit32(sys_config
, 4, 5, s
->sram_addr_width
);
596 sys_config
= deposit32(sys_config
, 16, 3, 3); /* CPU0 = Cortex-M55 */
599 g_assert_not_reached();
604 /* Clock frequency in HZ of the 32KHz "slow clock" */
605 #define S32KCLK (32 * 1000)
608 * Create an alias region in @container of @size bytes starting at @base
609 * which mirrors the memory starting at @orig.
611 static void make_alias(ARMSSE
*s
, MemoryRegion
*mr
, MemoryRegion
*container
,
612 const char *name
, hwaddr base
, hwaddr size
, hwaddr orig
)
614 memory_region_init_alias(mr
, NULL
, name
, container
, orig
, size
);
615 /* The alias is even lower priority than unimplemented_device regions */
616 memory_region_add_subregion_overlap(container
, base
, mr
, -1500);
619 static void irq_status_forwarder(void *opaque
, int n
, int level
)
621 qemu_irq destirq
= opaque
;
623 qemu_set_irq(destirq
, level
);
626 static void nsccfg_handler(void *opaque
, int n
, int level
)
628 ARMSSE
*s
= ARM_SSE(opaque
);
633 static void armsse_forward_ppc(ARMSSE
*s
, const char *ppcname
, int ppcnum
)
635 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
636 * system using the ARMSSE has a collection of control lines which
637 * are provided by the security controller and which we want to
638 * expose as control lines on the ARMSSE device itself, so the
639 * code using the ARMSSE can wire them up to the PPCs.
641 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[ppcnum
];
642 DeviceState
*armssedev
= DEVICE(s
);
643 DeviceState
*dev_secctl
= DEVICE(&s
->secctl
);
644 DeviceState
*dev_splitter
= DEVICE(splitter
);
647 name
= g_strdup_printf("%s_nonsec", ppcname
);
648 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
650 name
= g_strdup_printf("%s_ap", ppcname
);
651 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
653 name
= g_strdup_printf("%s_irq_enable", ppcname
);
654 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
656 name
= g_strdup_printf("%s_irq_clear", ppcname
);
657 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
660 /* irq_status is a little more tricky, because we need to
661 * split it so we can send it both to the security controller
662 * and to our OR gate for the NVIC interrupt line.
663 * Connect up the splitter's outputs, and create a GPIO input
664 * which will pass the line state to the input splitter.
666 name
= g_strdup_printf("%s_irq_status", ppcname
);
667 qdev_connect_gpio_out(dev_splitter
, 0,
668 qdev_get_gpio_in_named(dev_secctl
,
670 qdev_connect_gpio_out(dev_splitter
, 1,
671 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), ppcnum
));
672 s
->irq_status_in
[ppcnum
] = qdev_get_gpio_in(dev_splitter
, 0);
673 qdev_init_gpio_in_named_with_opaque(armssedev
, irq_status_forwarder
,
674 s
->irq_status_in
[ppcnum
], name
, 1);
678 static void armsse_forward_sec_resp_cfg(ARMSSE
*s
)
680 /* Forward the 3rd output from the splitter device as a
681 * named GPIO output of the armsse object.
683 DeviceState
*dev
= DEVICE(s
);
684 DeviceState
*dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
686 qdev_init_gpio_out_named(dev
, &s
->sec_resp_cfg
, "sec_resp_cfg", 1);
687 s
->sec_resp_cfg_in
= qemu_allocate_irq(irq_status_forwarder
,
689 qdev_connect_gpio_out(dev_splitter
, 2, s
->sec_resp_cfg_in
);
692 static void armsse_init(Object
*obj
)
694 ARMSSE
*s
= ARM_SSE(obj
);
695 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(obj
);
696 const ARMSSEInfo
*info
= asc
->info
;
697 const ARMSSEDeviceInfo
*devinfo
;
700 assert(info
->sram_banks
<= MAX_SRAM_BANKS
);
701 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
703 s
->mainclk
= qdev_init_clock_in(DEVICE(s
), "MAINCLK", NULL
, NULL
, 0);
704 s
->s32kclk
= qdev_init_clock_in(DEVICE(s
), "S32KCLK", NULL
, NULL
, 0);
706 memory_region_init(&s
->container
, obj
, "armsse-container", UINT64_MAX
);
708 for (i
= 0; i
< info
->num_cpus
; i
++) {
710 * We put each CPU in its own cluster as they are logically
711 * distinct and may be configured differently.
715 name
= g_strdup_printf("cluster%d", i
);
716 object_initialize_child(obj
, name
, &s
->cluster
[i
], TYPE_CPU_CLUSTER
);
717 qdev_prop_set_uint32(DEVICE(&s
->cluster
[i
]), "cluster-id", i
);
720 name
= g_strdup_printf("armv7m%d", i
);
721 object_initialize_child(OBJECT(&s
->cluster
[i
]), name
, &s
->armv7m
[i
],
723 qdev_prop_set_string(DEVICE(&s
->armv7m
[i
]), "cpu-type", info
->cpu_type
);
725 name
= g_strdup_printf("arm-sse-cpu-container%d", i
);
726 memory_region_init(&s
->cpu_container
[i
], obj
, name
, UINT64_MAX
);
729 name
= g_strdup_printf("arm-sse-container-alias%d", i
);
730 memory_region_init_alias(&s
->container_alias
[i
- 1], obj
,
731 name
, &s
->container
, 0, UINT64_MAX
);
736 for (devinfo
= info
->devinfo
; devinfo
->name
; devinfo
++) {
737 assert(devinfo
->ppc
== NO_PPC
|| devinfo
->ppc
< ARRAY_SIZE(s
->apb_ppc
));
738 if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_TIMER
)) {
739 assert(devinfo
->index
< ARRAY_SIZE(s
->timer
));
740 object_initialize_child(obj
, devinfo
->name
,
741 &s
->timer
[devinfo
->index
],
742 TYPE_CMSDK_APB_TIMER
);
743 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_DUALTIMER
)) {
744 assert(devinfo
->index
== 0);
745 object_initialize_child(obj
, devinfo
->name
, &s
->dualtimer
,
746 TYPE_CMSDK_APB_DUALTIMER
);
747 } else if (!strcmp(devinfo
->type
, TYPE_SSE_TIMER
)) {
748 assert(devinfo
->index
< ARRAY_SIZE(s
->sse_timer
));
749 object_initialize_child(obj
, devinfo
->name
,
750 &s
->sse_timer
[devinfo
->index
],
752 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_WATCHDOG
)) {
753 assert(devinfo
->index
< ARRAY_SIZE(s
->cmsdk_watchdog
));
754 object_initialize_child(obj
, devinfo
->name
,
755 &s
->cmsdk_watchdog
[devinfo
->index
],
756 TYPE_CMSDK_APB_WATCHDOG
);
757 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSINFO
)) {
758 assert(devinfo
->index
== 0);
759 object_initialize_child(obj
, devinfo
->name
, &s
->sysinfo
,
760 TYPE_IOTKIT_SYSINFO
);
761 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSCTL
)) {
762 assert(devinfo
->index
== 0);
763 object_initialize_child(obj
, devinfo
->name
, &s
->sysctl
,
765 } else if (!strcmp(devinfo
->type
, TYPE_UNIMPLEMENTED_DEVICE
)) {
766 assert(devinfo
->index
< ARRAY_SIZE(s
->unimp
));
767 object_initialize_child(obj
, devinfo
->name
,
768 &s
->unimp
[devinfo
->index
],
769 TYPE_UNIMPLEMENTED_DEVICE
);
771 g_assert_not_reached();
775 object_initialize_child(obj
, "secctl", &s
->secctl
, TYPE_IOTKIT_SECCTL
);
777 for (i
= 0; i
< ARRAY_SIZE(s
->apb_ppc
); i
++) {
778 g_autofree
char *name
= g_strdup_printf("apb-ppc%d", i
);
779 object_initialize_child(obj
, name
, &s
->apb_ppc
[i
], TYPE_TZ_PPC
);
782 for (i
= 0; i
< info
->sram_banks
; i
++) {
783 char *name
= g_strdup_printf("mpc%d", i
);
784 object_initialize_child(obj
, name
, &s
->mpc
[i
], TYPE_TZ_MPC
);
787 object_initialize_child(obj
, "mpc-irq-orgate", &s
->mpc_irq_orgate
,
790 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
791 char *name
= g_strdup_printf("mpc-irq-splitter-%d", i
);
792 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
794 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
798 if (info
->has_mhus
) {
799 object_initialize_child(obj
, "mhu0", &s
->mhu
[0], TYPE_ARMSSE_MHU
);
800 object_initialize_child(obj
, "mhu1", &s
->mhu
[1], TYPE_ARMSSE_MHU
);
802 if (info
->has_cachectrl
) {
803 for (i
= 0; i
< info
->num_cpus
; i
++) {
804 char *name
= g_strdup_printf("cachectrl%d", i
);
806 object_initialize_child(obj
, name
, &s
->cachectrl
[i
],
807 TYPE_UNIMPLEMENTED_DEVICE
);
811 if (info
->has_cpusecctrl
) {
812 for (i
= 0; i
< info
->num_cpus
; i
++) {
813 char *name
= g_strdup_printf("cpusecctrl%d", i
);
815 object_initialize_child(obj
, name
, &s
->cpusecctrl
[i
],
816 TYPE_UNIMPLEMENTED_DEVICE
);
820 if (info
->has_cpuid
) {
821 for (i
= 0; i
< info
->num_cpus
; i
++) {
822 char *name
= g_strdup_printf("cpuid%d", i
);
824 object_initialize_child(obj
, name
, &s
->cpuid
[i
],
829 if (info
->has_cpu_pwrctrl
) {
830 for (i
= 0; i
< info
->num_cpus
; i
++) {
831 char *name
= g_strdup_printf("cpu_pwrctrl%d", i
);
833 object_initialize_child(obj
, name
, &s
->cpu_pwrctrl
[i
],
834 TYPE_ARMSSE_CPU_PWRCTRL
);
838 if (info
->has_sse_counter
) {
839 object_initialize_child(obj
, "sse-counter", &s
->sse_counter
,
843 object_initialize_child(obj
, "nmi-orgate", &s
->nmi_orgate
, TYPE_OR_IRQ
);
844 object_initialize_child(obj
, "ppc-irq-orgate", &s
->ppc_irq_orgate
,
846 object_initialize_child(obj
, "sec-resp-splitter", &s
->sec_resp_splitter
,
848 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
849 char *name
= g_strdup_printf("ppc-irq-splitter-%d", i
);
850 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[i
];
852 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
855 if (info
->num_cpus
> 1) {
856 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
857 if (info
->irq_is_common
[i
]) {
858 char *name
= g_strdup_printf("cpu-irq-splitter%d", i
);
859 SplitIRQ
*splitter
= &s
->cpu_irq_splitter
[i
];
861 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
868 static void armsse_exp_irq(void *opaque
, int n
, int level
)
870 qemu_irq
*irqarray
= opaque
;
872 qemu_set_irq(irqarray
[n
], level
);
875 static void armsse_mpcexp_status(void *opaque
, int n
, int level
)
877 ARMSSE
*s
= ARM_SSE(opaque
);
878 qemu_set_irq(s
->mpcexp_status_in
[n
], level
);
881 static qemu_irq
armsse_get_common_irq_in(ARMSSE
*s
, int irqno
)
884 * Return a qemu_irq which can be used to signal IRQ n to
885 * all CPUs in the SSE.
887 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(s
);
888 const ARMSSEInfo
*info
= asc
->info
;
890 assert(info
->irq_is_common
[irqno
]);
892 if (info
->num_cpus
== 1) {
893 /* Only one CPU -- just connect directly to it */
894 return qdev_get_gpio_in(DEVICE(&s
->armv7m
[0]), irqno
);
896 /* Connect to the splitter which feeds all CPUs */
897 return qdev_get_gpio_in(DEVICE(&s
->cpu_irq_splitter
[irqno
]), 0);
901 static void armsse_realize(DeviceState
*dev
, Error
**errp
)
904 ARMSSE
*s
= ARM_SSE(dev
);
905 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(dev
);
906 const ARMSSEInfo
*info
= asc
->info
;
907 const ARMSSEDeviceInfo
*devinfo
;
910 SysBusDevice
*sbd_apb_ppc0
;
911 SysBusDevice
*sbd_secctl
;
912 DeviceState
*dev_apb_ppc0
;
913 DeviceState
*dev_apb_ppc1
;
914 DeviceState
*dev_secctl
;
915 DeviceState
*dev_splitter
;
916 uint32_t addr_width_max
;
918 if (!s
->board_memory
) {
919 error_setg(errp
, "memory property was not set");
923 if (!clock_has_source(s
->mainclk
)) {
924 error_setg(errp
, "MAINCLK clock was not connected");
926 if (!clock_has_source(s
->s32kclk
)) {
927 error_setg(errp
, "S32KCLK clock was not connected");
930 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
932 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
933 assert(is_power_of_2(info
->sram_banks
));
934 addr_width_max
= 24 - ctz32(info
->sram_banks
);
935 if (s
->sram_addr_width
< 1 || s
->sram_addr_width
> addr_width_max
) {
936 error_setg(errp
, "SRAM_ADDR_WIDTH must be between 1 and %d",
941 /* Handling of which devices should be available only to secure
942 * code is usually done differently for M profile than for A profile.
943 * Instead of putting some devices only into the secure address space,
944 * devices exist in both address spaces but with hard-wired security
945 * permissions that will cause the CPU to fault for non-secure accesses.
947 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
948 * which specifies hard-wired security permissions for different
949 * areas of the physical address space. For the ARMSSE IDAU, the
950 * top 4 bits of the physical address are the IDAU region ID, and
951 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
952 * region, otherwise it is an S region.
954 * The various devices and RAMs are generally all mapped twice,
955 * once into a region that the IDAU defines as secure and once
956 * into a non-secure region. They sit behind either a Memory
957 * Protection Controller (for RAM) or a Peripheral Protection
958 * Controller (for devices), which allow a more fine grained
959 * configuration of whether non-secure accesses are permitted.
961 * (The other place that guest software can configure security
962 * permissions is in the architected SAU (Security Attribution
963 * Unit), which is entirely inside the CPU. The IDAU can upgrade
964 * the security attributes for a region to more restrictive than
965 * the SAU specifies, but cannot downgrade them.)
967 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
968 * 0x20000000..0x2007ffff 32KB FPGA block RAM
969 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
970 * 0x40000000..0x4000ffff base peripheral region 1
971 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
972 * 0x40020000..0x4002ffff system control element peripherals
973 * 0x40080000..0x400fffff base peripheral region 2
974 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
977 memory_region_add_subregion_overlap(&s
->container
, 0, s
->board_memory
, -2);
979 for (i
= 0; i
< info
->num_cpus
; i
++) {
980 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[i
]);
981 Object
*cpuobj
= OBJECT(&s
->armv7m
[i
]);
985 qdev_connect_clock_in(cpudev
, "cpuclk", s
->mainclk
);
986 /* The SSE subsystems do not wire up a systick refclk */
988 qdev_prop_set_uint32(cpudev
, "num-irq", s
->exp_numirq
+ NUM_SSE_IRQS
);
990 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
991 * registers in the IoT Kit System Control Register block. In QEMU
992 * we set the initial value here, and also the reset value of the
993 * sysctl register, from this object's QOM init-svtor property.
994 * If the guest changes the INITSVTOR* registers at runtime then the
995 * code in iotkit-sysctl.c will update the CPU init-svtor property
996 * (which will then take effect on the next CPU warm-reset).
998 * Note that typically a board using the SSE-200 will have a system
999 * control processor whose boot firmware initializes the INITSVTOR*
1000 * registers before powering up the CPUs. QEMU doesn't emulate
1001 * the control processor, so instead we behave in the way that the
1002 * firmware does: the initial value should be set by the board code
1003 * (using the init-svtor property on the ARMSSE object) to match
1004 * whatever its firmware does.
1006 qdev_prop_set_uint32(cpudev
, "init-svtor", s
->init_svtor
);
1008 * CPUs start powered down if the corresponding bit in the CPUWAIT
1009 * register is 1. In real hardware the CPUWAIT register reset value is
1010 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
1011 * CPUWAIT1_RST parameters), but since all the boards we care about
1012 * start CPU0 and leave CPU1 powered off, we hard-code that in
1013 * info->cpuwait_rst for now. We can add QOM properties for this
1014 * later if necessary.
1016 if (extract32(info
->cpuwait_rst
, i
, 1)) {
1017 if (!object_property_set_bool(cpuobj
, "start-powered-off", true,
1022 if (!s
->cpu_fpu
[i
]) {
1023 if (!object_property_set_bool(cpuobj
, "vfp", false, errp
)) {
1027 if (!s
->cpu_dsp
[i
]) {
1028 if (!object_property_set_bool(cpuobj
, "dsp", false, errp
)) {
1034 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
1035 &s
->container_alias
[i
- 1], -1);
1037 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
1040 object_property_set_link(cpuobj
, "memory",
1041 OBJECT(&s
->cpu_container
[i
]), &error_abort
);
1042 object_property_set_link(cpuobj
, "idau", OBJECT(s
), &error_abort
);
1043 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj
), errp
)) {
1047 * The cluster must be realized after the armv7m container, as
1048 * the container's CPU object is only created on realize, and the
1049 * CPU must exist and have been parented into the cluster before
1050 * the cluster is realized.
1052 if (!qdev_realize(DEVICE(&s
->cluster
[i
]), NULL
, errp
)) {
1056 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
1057 s
->exp_irqs
[i
] = g_new(qemu_irq
, s
->exp_numirq
);
1058 for (j
= 0; j
< s
->exp_numirq
; j
++) {
1059 s
->exp_irqs
[i
][j
] = qdev_get_gpio_in(cpudev
, j
+ NUM_SSE_IRQS
);
1062 gpioname
= g_strdup("EXP_IRQ");
1064 gpioname
= g_strdup_printf("EXP_CPU%d_IRQ", i
);
1066 qdev_init_gpio_in_named_with_opaque(dev
, armsse_exp_irq
,
1068 gpioname
, s
->exp_numirq
);
1072 /* Wire up the splitters that connect common IRQs to all CPUs */
1073 if (info
->num_cpus
> 1) {
1074 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
1075 if (info
->irq_is_common
[i
]) {
1076 Object
*splitter
= OBJECT(&s
->cpu_irq_splitter
[i
]);
1077 DeviceState
*devs
= DEVICE(splitter
);
1080 if (!object_property_set_int(splitter
, "num-lines",
1081 info
->num_cpus
, errp
)) {
1084 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1087 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
1088 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
1090 qdev_connect_gpio_out(devs
, cpunum
,
1091 qdev_get_gpio_in(cpudev
, i
));
1097 /* Set up the big aliases first */
1098 make_alias(s
, &s
->alias1
, &s
->container
, "alias 1",
1099 0x10000000, 0x10000000, 0x00000000);
1100 make_alias(s
, &s
->alias2
, &s
->container
,
1101 "alias 2", 0x30000000, 0x10000000, 0x20000000);
1102 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
1103 * a few extra devices that only appear there (generally the
1104 * control interfaces for the protection controllers).
1105 * We implement this by mapping those devices over the top of this
1106 * alias MR at a higher priority. Some of the devices in this range
1107 * are per-CPU, so we must put this alias in the per-cpu containers.
1109 for (i
= 0; i
< info
->num_cpus
; i
++) {
1110 make_alias(s
, &s
->alias3
[i
], &s
->cpu_container
[i
],
1111 "alias 3", 0x50000000, 0x10000000, 0x40000000);
1114 /* Security controller */
1115 object_property_set_int(OBJECT(&s
->secctl
), "sse-version",
1116 info
->sse_version
, &error_abort
);
1117 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->secctl
), errp
)) {
1120 sbd_secctl
= SYS_BUS_DEVICE(&s
->secctl
);
1121 dev_secctl
= DEVICE(&s
->secctl
);
1122 sysbus_mmio_map(sbd_secctl
, 0, 0x50080000);
1123 sysbus_mmio_map(sbd_secctl
, 1, 0x40080000);
1125 s
->nsc_cfg_in
= qemu_allocate_irq(nsccfg_handler
, s
, 1);
1126 qdev_connect_gpio_out_named(dev_secctl
, "nsc_cfg", 0, s
->nsc_cfg_in
);
1128 /* The sec_resp_cfg output from the security controller must be split into
1129 * multiple lines, one for each of the PPCs within the ARMSSE and one
1130 * that will be an output from the ARMSSE to the system.
1132 if (!object_property_set_int(OBJECT(&s
->sec_resp_splitter
),
1133 "num-lines", 3, errp
)) {
1136 if (!qdev_realize(DEVICE(&s
->sec_resp_splitter
), NULL
, errp
)) {
1139 dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
1140 qdev_connect_gpio_out_named(dev_secctl
, "sec_resp_cfg", 0,
1141 qdev_get_gpio_in(dev_splitter
, 0));
1143 /* Each SRAM bank lives behind its own Memory Protection Controller */
1144 for (i
= 0; i
< info
->sram_banks
; i
++) {
1145 char *ramname
= g_strdup_printf("armsse.sram%d", i
);
1146 SysBusDevice
*sbd_mpc
;
1147 uint32_t sram_bank_size
= 1 << s
->sram_addr_width
;
1149 memory_region_init_ram(&s
->sram
[i
], NULL
, ramname
,
1150 sram_bank_size
, errp
);
1155 object_property_set_link(OBJECT(&s
->mpc
[i
]), "downstream",
1156 OBJECT(&s
->sram
[i
]), &error_abort
);
1157 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->mpc
[i
]), errp
)) {
1160 /* Map the upstream end of the MPC into the right place... */
1161 sbd_mpc
= SYS_BUS_DEVICE(&s
->mpc
[i
]);
1162 memory_region_add_subregion(&s
->container
,
1163 info
->sram_bank_base
+ i
* sram_bank_size
,
1164 sysbus_mmio_get_region(sbd_mpc
, 1));
1165 /* ...and its register interface */
1166 memory_region_add_subregion(&s
->container
, 0x50083000 + i
* 0x1000,
1167 sysbus_mmio_get_region(sbd_mpc
, 0));
1170 /* We must OR together lines from the MPC splitters to go to the NVIC */
1171 if (!object_property_set_int(OBJECT(&s
->mpc_irq_orgate
), "num-lines",
1172 IOTS_NUM_EXP_MPC
+ info
->sram_banks
,
1176 if (!qdev_realize(DEVICE(&s
->mpc_irq_orgate
), NULL
, errp
)) {
1179 qdev_connect_gpio_out(DEVICE(&s
->mpc_irq_orgate
), 0,
1180 armsse_get_common_irq_in(s
, 9));
1182 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1183 if (!object_property_set_int(OBJECT(&s
->nmi_orgate
), "num-lines", 2,
1187 if (!qdev_realize(DEVICE(&s
->nmi_orgate
), NULL
, errp
)) {
1190 qdev_connect_gpio_out(DEVICE(&s
->nmi_orgate
), 0,
1191 qdev_get_gpio_in_named(DEVICE(&s
->armv7m
), "NMI", 0));
1193 /* The SSE-300 has a System Counter / System Timestamp Generator */
1194 if (info
->has_sse_counter
) {
1195 SysBusDevice
*sbd
= SYS_BUS_DEVICE(&s
->sse_counter
);
1197 qdev_connect_clock_in(DEVICE(sbd
), "CLK", s
->mainclk
);
1198 if (!sysbus_realize(sbd
, errp
)) {
1202 * The control frame is only in the Secure region;
1203 * the status frame is in the NS region (and visible in the
1204 * S region via the alias mapping).
1206 memory_region_add_subregion(&s
->container
, 0x58100000,
1207 sysbus_mmio_get_region(sbd
, 0));
1208 memory_region_add_subregion(&s
->container
, 0x48101000,
1209 sysbus_mmio_get_region(sbd
, 1));
1212 if (info
->has_tcms
) {
1213 /* The SSE-300 has an ITCM at 0x0000_0000 and a DTCM at 0x2000_0000 */
1214 memory_region_init_ram(&s
->itcm
, NULL
, "sse300-itcm", 512 * KiB
, errp
);
1218 memory_region_init_ram(&s
->dtcm
, NULL
, "sse300-dtcm", 512 * KiB
, errp
);
1222 memory_region_add_subregion(&s
->container
, 0x00000000, &s
->itcm
);
1223 memory_region_add_subregion(&s
->container
, 0x20000000, &s
->dtcm
);
1226 /* Devices behind APB PPC0:
1227 * 0x40000000: timer0
1228 * 0x40001000: timer1
1229 * 0x40002000: dual timer
1230 * 0x40003000: MHU0 (SSE-200 only)
1231 * 0x40004000: MHU1 (SSE-200 only)
1232 * We must configure and realize each downstream device and connect
1233 * it to the appropriate PPC port; then we can realize the PPC and
1234 * map its upstream ends to the right place in the container.
1236 for (devinfo
= info
->devinfo
; devinfo
->name
; devinfo
++) {
1240 if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_TIMER
)) {
1241 sbd
= SYS_BUS_DEVICE(&s
->timer
[devinfo
->index
]);
1243 qdev_connect_clock_in(DEVICE(sbd
), "pclk",
1244 devinfo
->slowclk
? s
->s32kclk
: s
->mainclk
);
1245 if (!sysbus_realize(sbd
, errp
)) {
1248 mr
= sysbus_mmio_get_region(sbd
, 0);
1249 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_DUALTIMER
)) {
1250 sbd
= SYS_BUS_DEVICE(&s
->dualtimer
);
1252 qdev_connect_clock_in(DEVICE(sbd
), "TIMCLK", s
->mainclk
);
1253 if (!sysbus_realize(sbd
, errp
)) {
1256 mr
= sysbus_mmio_get_region(sbd
, 0);
1257 } else if (!strcmp(devinfo
->type
, TYPE_SSE_TIMER
)) {
1258 sbd
= SYS_BUS_DEVICE(&s
->sse_timer
[devinfo
->index
]);
1260 assert(info
->has_sse_counter
);
1261 object_property_set_link(OBJECT(sbd
), "counter",
1262 OBJECT(&s
->sse_counter
), &error_abort
);
1263 if (!sysbus_realize(sbd
, errp
)) {
1266 mr
= sysbus_mmio_get_region(sbd
, 0);
1267 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_WATCHDOG
)) {
1268 sbd
= SYS_BUS_DEVICE(&s
->cmsdk_watchdog
[devinfo
->index
]);
1270 qdev_connect_clock_in(DEVICE(sbd
), "WDOGCLK",
1271 devinfo
->slowclk
? s
->s32kclk
: s
->mainclk
);
1272 if (!sysbus_realize(sbd
, errp
)) {
1275 mr
= sysbus_mmio_get_region(sbd
, 0);
1276 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSINFO
)) {
1277 sbd
= SYS_BUS_DEVICE(&s
->sysinfo
);
1279 object_property_set_int(OBJECT(&s
->sysinfo
), "SYS_VERSION",
1280 info
->sys_version
, &error_abort
);
1281 object_property_set_int(OBJECT(&s
->sysinfo
), "SYS_CONFIG",
1282 armsse_sys_config_value(s
, info
),
1284 object_property_set_int(OBJECT(&s
->sysinfo
), "sse-version",
1285 info
->sse_version
, &error_abort
);
1286 object_property_set_int(OBJECT(&s
->sysinfo
), "IIDR",
1287 info
->iidr
, &error_abort
);
1288 if (!sysbus_realize(sbd
, errp
)) {
1291 mr
= sysbus_mmio_get_region(sbd
, 0);
1292 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSCTL
)) {
1293 /* System control registers */
1294 sbd
= SYS_BUS_DEVICE(&s
->sysctl
);
1296 object_property_set_int(OBJECT(&s
->sysctl
), "sse-version",
1297 info
->sse_version
, &error_abort
);
1298 object_property_set_int(OBJECT(&s
->sysctl
), "CPUWAIT_RST",
1299 info
->cpuwait_rst
, &error_abort
);
1300 object_property_set_int(OBJECT(&s
->sysctl
), "INITSVTOR0_RST",
1301 s
->init_svtor
, &error_abort
);
1302 object_property_set_int(OBJECT(&s
->sysctl
), "INITSVTOR1_RST",
1303 s
->init_svtor
, &error_abort
);
1304 if (!sysbus_realize(sbd
, errp
)) {
1307 mr
= sysbus_mmio_get_region(sbd
, 0);
1308 } else if (!strcmp(devinfo
->type
, TYPE_UNIMPLEMENTED_DEVICE
)) {
1309 sbd
= SYS_BUS_DEVICE(&s
->unimp
[devinfo
->index
]);
1311 qdev_prop_set_string(DEVICE(sbd
), "name", devinfo
->name
);
1312 qdev_prop_set_uint64(DEVICE(sbd
), "size", devinfo
->size
);
1313 if (!sysbus_realize(sbd
, errp
)) {
1316 mr
= sysbus_mmio_get_region(sbd
, 0);
1318 g_assert_not_reached();
1321 switch (devinfo
->irq
) {
1325 case 0 ... NUM_SSE_IRQS
- 1:
1326 irq
= armsse_get_common_irq_in(s
, devinfo
->irq
);
1330 irq
= qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
),
1331 devinfo
->irq
- NMI_0
);
1334 g_assert_not_reached();
1338 sysbus_connect_irq(sbd
, 0, irq
);
1342 * Devices connected to a PPC are connected to the port here;
1343 * we will map the upstream end of that port to the right address
1344 * in the container later after the PPC has been realized.
1345 * Devices not connected to a PPC can be mapped immediately.
1347 if (devinfo
->ppc
!= NO_PPC
) {
1348 TZPPC
*ppc
= &s
->apb_ppc
[devinfo
->ppc
];
1349 g_autofree
char *portname
= g_strdup_printf("port[%d]",
1351 object_property_set_link(OBJECT(ppc
), portname
, OBJECT(mr
),
1354 memory_region_add_subregion(&s
->container
, devinfo
->addr
, mr
);
1358 if (info
->has_mhus
) {
1360 * An SSE-200 with only one CPU should have only one MHU created,
1361 * with the region where the second MHU usually is being RAZ/WI.
1362 * We don't implement that SSE-200 config; if we want to support
1363 * it then this code needs to be enhanced to handle creating the
1364 * RAZ/WI region instead of the second MHU.
1366 assert(info
->num_cpus
== ARRAY_SIZE(s
->mhu
));
1368 for (i
= 0; i
< ARRAY_SIZE(s
->mhu
); i
++) {
1371 SysBusDevice
*mhu_sbd
= SYS_BUS_DEVICE(&s
->mhu
[i
]);
1373 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->mhu
[i
]), errp
)) {
1376 port
= g_strdup_printf("port[%d]", i
+ 3);
1377 mr
= sysbus_mmio_get_region(mhu_sbd
, 0);
1378 object_property_set_link(OBJECT(&s
->apb_ppc
[0]), port
, OBJECT(mr
),
1383 * Each MHU has an irq line for each CPU:
1384 * MHU 0 irq line 0 -> CPU 0 IRQ 6
1385 * MHU 0 irq line 1 -> CPU 1 IRQ 6
1386 * MHU 1 irq line 0 -> CPU 0 IRQ 7
1387 * MHU 1 irq line 1 -> CPU 1 IRQ 7
1389 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
1390 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
1392 sysbus_connect_irq(mhu_sbd
, cpunum
,
1393 qdev_get_gpio_in(cpudev
, 6 + i
));
1398 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->apb_ppc
[0]), errp
)) {
1402 sbd_apb_ppc0
= SYS_BUS_DEVICE(&s
->apb_ppc
[0]);
1403 dev_apb_ppc0
= DEVICE(&s
->apb_ppc
[0]);
1405 if (info
->has_mhus
) {
1406 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 3);
1407 memory_region_add_subregion(&s
->container
, 0x40003000, mr
);
1408 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 4);
1409 memory_region_add_subregion(&s
->container
, 0x40004000, mr
);
1411 for (i
= 0; i
< IOTS_APB_PPC0_NUM_PORTS
; i
++) {
1412 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_nonsec", i
,
1413 qdev_get_gpio_in_named(dev_apb_ppc0
,
1415 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_ap", i
,
1416 qdev_get_gpio_in_named(dev_apb_ppc0
,
1419 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_enable", 0,
1420 qdev_get_gpio_in_named(dev_apb_ppc0
,
1422 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_clear", 0,
1423 qdev_get_gpio_in_named(dev_apb_ppc0
,
1425 qdev_connect_gpio_out(dev_splitter
, 0,
1426 qdev_get_gpio_in_named(dev_apb_ppc0
,
1427 "cfg_sec_resp", 0));
1429 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1430 * ones) are sent individually to the security controller, and also
1431 * ORed together to give a single combined PPC interrupt to the NVIC.
1433 if (!object_property_set_int(OBJECT(&s
->ppc_irq_orgate
),
1434 "num-lines", NUM_PPCS
, errp
)) {
1437 if (!qdev_realize(DEVICE(&s
->ppc_irq_orgate
), NULL
, errp
)) {
1440 qdev_connect_gpio_out(DEVICE(&s
->ppc_irq_orgate
), 0,
1441 armsse_get_common_irq_in(s
, 10));
1444 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1445 * private per-CPU region (all these devices are SSE-200 only):
1446 * 0x50010000: L1 icache control registers
1447 * 0x50011000: CPUSECCTRL (CPU local security control registers)
1448 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1449 * The SSE-300 has an extra:
1450 * 0x40012000 and 0x50012000: CPU_PWRCTRL register block
1452 if (info
->has_cachectrl
) {
1453 for (i
= 0; i
< info
->num_cpus
; i
++) {
1454 char *name
= g_strdup_printf("cachectrl%d", i
);
1457 qdev_prop_set_string(DEVICE(&s
->cachectrl
[i
]), "name", name
);
1459 qdev_prop_set_uint64(DEVICE(&s
->cachectrl
[i
]), "size", 0x1000);
1460 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), errp
)) {
1464 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), 0);
1465 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50010000, mr
);
1468 if (info
->has_cpusecctrl
) {
1469 for (i
= 0; i
< info
->num_cpus
; i
++) {
1470 char *name
= g_strdup_printf("CPUSECCTRL%d", i
);
1473 qdev_prop_set_string(DEVICE(&s
->cpusecctrl
[i
]), "name", name
);
1475 qdev_prop_set_uint64(DEVICE(&s
->cpusecctrl
[i
]), "size", 0x1000);
1476 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), errp
)) {
1480 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), 0);
1481 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50011000, mr
);
1484 if (info
->has_cpuid
) {
1485 for (i
= 0; i
< info
->num_cpus
; i
++) {
1488 qdev_prop_set_uint32(DEVICE(&s
->cpuid
[i
]), "CPUID", i
);
1489 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpuid
[i
]), errp
)) {
1493 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpuid
[i
]), 0);
1494 memory_region_add_subregion(&s
->cpu_container
[i
], 0x4001F000, mr
);
1497 if (info
->has_cpu_pwrctrl
) {
1498 for (i
= 0; i
< info
->num_cpus
; i
++) {
1501 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpu_pwrctrl
[i
]), errp
)) {
1505 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpu_pwrctrl
[i
]), 0);
1506 memory_region_add_subregion(&s
->cpu_container
[i
], 0x40012000, mr
);
1510 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->apb_ppc
[1]), errp
)) {
1514 dev_apb_ppc1
= DEVICE(&s
->apb_ppc
[1]);
1515 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_nonsec", 0,
1516 qdev_get_gpio_in_named(dev_apb_ppc1
,
1518 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_ap", 0,
1519 qdev_get_gpio_in_named(dev_apb_ppc1
,
1521 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_enable", 0,
1522 qdev_get_gpio_in_named(dev_apb_ppc1
,
1524 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_clear", 0,
1525 qdev_get_gpio_in_named(dev_apb_ppc1
,
1527 qdev_connect_gpio_out(dev_splitter
, 1,
1528 qdev_get_gpio_in_named(dev_apb_ppc1
,
1529 "cfg_sec_resp", 0));
1532 * Now both PPCs are realized we can map the upstream ends of
1533 * ports which correspond to entries in the devinfo array.
1534 * The ports which are connected to non-devinfo devices have
1535 * already been mapped.
1537 for (devinfo
= info
->devinfo
; devinfo
->name
; devinfo
++) {
1538 SysBusDevice
*ppc_sbd
;
1540 if (devinfo
->ppc
== NO_PPC
) {
1543 ppc_sbd
= SYS_BUS_DEVICE(&s
->apb_ppc
[devinfo
->ppc
]);
1544 mr
= sysbus_mmio_get_region(ppc_sbd
, devinfo
->ppc_port
);
1545 memory_region_add_subregion(&s
->container
, devinfo
->addr
, mr
);
1548 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
1549 Object
*splitter
= OBJECT(&s
->ppc_irq_splitter
[i
]);
1551 if (!object_property_set_int(splitter
, "num-lines", 2, errp
)) {
1554 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1559 for (i
= 0; i
< IOTS_NUM_AHB_EXP_PPC
; i
++) {
1560 char *ppcname
= g_strdup_printf("ahb_ppcexp%d", i
);
1562 armsse_forward_ppc(s
, ppcname
, i
);
1566 for (i
= 0; i
< IOTS_NUM_APB_EXP_PPC
; i
++) {
1567 char *ppcname
= g_strdup_printf("apb_ppcexp%d", i
);
1569 armsse_forward_ppc(s
, ppcname
, i
+ IOTS_NUM_AHB_EXP_PPC
);
1573 for (i
= NUM_EXTERNAL_PPCS
; i
< NUM_PPCS
; i
++) {
1574 /* Wire up IRQ splitter for internal PPCs */
1575 DeviceState
*devs
= DEVICE(&s
->ppc_irq_splitter
[i
]);
1576 char *gpioname
= g_strdup_printf("apb_ppc%d_irq_status",
1577 i
- NUM_EXTERNAL_PPCS
);
1578 TZPPC
*ppc
= &s
->apb_ppc
[i
- NUM_EXTERNAL_PPCS
];
1580 qdev_connect_gpio_out(devs
, 0,
1581 qdev_get_gpio_in_named(dev_secctl
, gpioname
, 0));
1582 qdev_connect_gpio_out(devs
, 1,
1583 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), i
));
1584 qdev_connect_gpio_out_named(DEVICE(ppc
), "irq", 0,
1585 qdev_get_gpio_in(devs
, 0));
1589 /* Wire up the splitters for the MPC IRQs */
1590 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
1591 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
1592 DeviceState
*dev_splitter
= DEVICE(splitter
);
1594 if (!object_property_set_int(OBJECT(splitter
), "num-lines", 2,
1598 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1602 if (i
< IOTS_NUM_EXP_MPC
) {
1603 /* Splitter input is from GPIO input line */
1604 s
->mpcexp_status_in
[i
] = qdev_get_gpio_in(dev_splitter
, 0);
1605 qdev_connect_gpio_out(dev_splitter
, 0,
1606 qdev_get_gpio_in_named(dev_secctl
,
1607 "mpcexp_status", i
));
1609 /* Splitter input is from our own MPC */
1610 qdev_connect_gpio_out_named(DEVICE(&s
->mpc
[i
- IOTS_NUM_EXP_MPC
]),
1612 qdev_get_gpio_in(dev_splitter
, 0));
1613 qdev_connect_gpio_out(dev_splitter
, 0,
1614 qdev_get_gpio_in_named(dev_secctl
,
1616 i
- IOTS_NUM_EXP_MPC
));
1619 qdev_connect_gpio_out(dev_splitter
, 1,
1620 qdev_get_gpio_in(DEVICE(&s
->mpc_irq_orgate
), i
));
1622 /* Create GPIO inputs which will pass the line state for our
1623 * mpcexp_irq inputs to the correct splitter devices.
1625 qdev_init_gpio_in_named(dev
, armsse_mpcexp_status
, "mpcexp_status",
1628 armsse_forward_sec_resp_cfg(s
);
1630 /* Forward the MSC related signals */
1631 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_status");
1632 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_clear");
1633 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_ns");
1634 qdev_connect_gpio_out_named(dev_secctl
, "msc_irq", 0,
1635 armsse_get_common_irq_in(s
, 11));
1638 * Expose our container region to the board model; this corresponds
1639 * to the AHB Slave Expansion ports which allow bus master devices
1640 * (eg DMA controllers) in the board model to make transactions into
1641 * devices in the ARMSSE.
1643 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->container
);
1646 static void armsse_idau_check(IDAUInterface
*ii
, uint32_t address
,
1647 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
1650 * For ARMSSE systems the IDAU responses are simple logical functions
1651 * of the address bits. The NSC attribute is guest-adjustable via the
1652 * NSCCFG register in the security controller.
1654 ARMSSE
*s
= ARM_SSE(ii
);
1655 int region
= extract32(address
, 28, 4);
1657 *ns
= !(region
& 1);
1658 *nsc
= (region
== 1 && (s
->nsccfg
& 1)) || (region
== 3 && (s
->nsccfg
& 2));
1659 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1660 *exempt
= (address
& 0xeff00000) == 0xe0000000;
1664 static const VMStateDescription armsse_vmstate
= {
1667 .minimum_version_id
= 2,
1668 .fields
= (VMStateField
[]) {
1669 VMSTATE_CLOCK(mainclk
, ARMSSE
),
1670 VMSTATE_CLOCK(s32kclk
, ARMSSE
),
1671 VMSTATE_UINT32(nsccfg
, ARMSSE
),
1672 VMSTATE_END_OF_LIST()
1676 static void armsse_reset(DeviceState
*dev
)
1678 ARMSSE
*s
= ARM_SSE(dev
);
1683 static void armsse_class_init(ObjectClass
*klass
, void *data
)
1685 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1686 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(klass
);
1687 ARMSSEClass
*asc
= ARM_SSE_CLASS(klass
);
1688 const ARMSSEInfo
*info
= data
;
1690 dc
->realize
= armsse_realize
;
1691 dc
->vmsd
= &armsse_vmstate
;
1692 device_class_set_props(dc
, info
->props
);
1693 dc
->reset
= armsse_reset
;
1694 iic
->check
= armsse_idau_check
;
1698 static const TypeInfo armsse_info
= {
1699 .name
= TYPE_ARM_SSE
,
1700 .parent
= TYPE_SYS_BUS_DEVICE
,
1701 .instance_size
= sizeof(ARMSSE
),
1702 .class_size
= sizeof(ARMSSEClass
),
1703 .instance_init
= armsse_init
,
1705 .interfaces
= (InterfaceInfo
[]) {
1706 { TYPE_IDAU_INTERFACE
},
1711 static void armsse_register_types(void)
1715 type_register_static(&armsse_info
);
1717 for (i
= 0; i
< ARRAY_SIZE(armsse_variants
); i
++) {
1719 .name
= armsse_variants
[i
].name
,
1720 .parent
= TYPE_ARM_SSE
,
1721 .class_init
= armsse_class_init
,
1722 .class_data
= (void *)&armsse_variants
[i
],
1728 type_init(armsse_register_types
);