cpus: make pause_all_cpus() play with SMP on single threaded TCG
[qemu/ericb.git] / exec.c
blob3e7c57e914c3d2186138ba64ee5e3e93c7a8174b
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 #endif
104 #ifdef TARGET_PAGE_BITS_VARY
105 int target_page_bits;
106 bool target_page_bits_decided;
107 #endif
109 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
110 /* current CPU in the current thread. It is only valid inside
111 cpu_exec() */
112 __thread CPUState *current_cpu;
113 /* 0 = Do not count executed instructions.
114 1 = Precise instruction counting.
115 2 = Adaptive rate instruction counting. */
116 int use_icount;
118 uintptr_t qemu_host_page_size;
119 intptr_t qemu_host_page_mask;
121 bool set_preferred_target_page_bits(int bits)
123 /* The target page size is the lowest common denominator for all
124 * the CPUs in the system, so we can only make it smaller, never
125 * larger. And we can't make it smaller once we've committed to
126 * a particular size.
128 #ifdef TARGET_PAGE_BITS_VARY
129 assert(bits >= TARGET_PAGE_BITS_MIN);
130 if (target_page_bits == 0 || target_page_bits > bits) {
131 if (target_page_bits_decided) {
132 return false;
134 target_page_bits = bits;
136 #endif
137 return true;
140 #if !defined(CONFIG_USER_ONLY)
142 static void finalize_target_page_bits(void)
144 #ifdef TARGET_PAGE_BITS_VARY
145 if (target_page_bits == 0) {
146 target_page_bits = TARGET_PAGE_BITS_MIN;
148 target_page_bits_decided = true;
149 #endif
152 typedef struct PhysPageEntry PhysPageEntry;
154 struct PhysPageEntry {
155 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
156 uint32_t skip : 6;
157 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
158 uint32_t ptr : 26;
161 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
163 /* Size of the L2 (and L3, etc) page tables. */
164 #define ADDR_SPACE_BITS 64
166 #define P_L2_BITS 9
167 #define P_L2_SIZE (1 << P_L2_BITS)
169 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
171 typedef PhysPageEntry Node[P_L2_SIZE];
173 typedef struct PhysPageMap {
174 struct rcu_head rcu;
176 unsigned sections_nb;
177 unsigned sections_nb_alloc;
178 unsigned nodes_nb;
179 unsigned nodes_nb_alloc;
180 Node *nodes;
181 MemoryRegionSection *sections;
182 } PhysPageMap;
184 struct AddressSpaceDispatch {
185 MemoryRegionSection *mru_section;
186 /* This is a multi-level map on the physical address space.
187 * The bottom level has pointers to MemoryRegionSections.
189 PhysPageEntry phys_map;
190 PhysPageMap map;
193 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194 typedef struct subpage_t {
195 MemoryRegion iomem;
196 FlatView *fv;
197 hwaddr base;
198 uint16_t sub_section[];
199 } subpage_t;
201 #define PHYS_SECTION_UNASSIGNED 0
202 #define PHYS_SECTION_NOTDIRTY 1
203 #define PHYS_SECTION_ROM 2
204 #define PHYS_SECTION_WATCH 3
206 static void io_mem_init(void);
207 static void memory_map_init(void);
208 static void tcg_commit(MemoryListener *listener);
210 static MemoryRegion io_mem_watch;
213 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
214 * @cpu: the CPU whose AddressSpace this is
215 * @as: the AddressSpace itself
216 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
217 * @tcg_as_listener: listener for tracking changes to the AddressSpace
219 struct CPUAddressSpace {
220 CPUState *cpu;
221 AddressSpace *as;
222 struct AddressSpaceDispatch *memory_dispatch;
223 MemoryListener tcg_as_listener;
226 struct DirtyBitmapSnapshot {
227 ram_addr_t start;
228 ram_addr_t end;
229 unsigned long dirty[];
232 #endif
234 #if !defined(CONFIG_USER_ONLY)
236 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
238 static unsigned alloc_hint = 16;
239 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
240 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
241 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
242 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
243 alloc_hint = map->nodes_nb_alloc;
247 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
249 unsigned i;
250 uint32_t ret;
251 PhysPageEntry e;
252 PhysPageEntry *p;
254 ret = map->nodes_nb++;
255 p = map->nodes[ret];
256 assert(ret != PHYS_MAP_NODE_NIL);
257 assert(ret != map->nodes_nb_alloc);
259 e.skip = leaf ? 0 : 1;
260 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
261 for (i = 0; i < P_L2_SIZE; ++i) {
262 memcpy(&p[i], &e, sizeof(e));
264 return ret;
267 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
268 hwaddr *index, hwaddr *nb, uint16_t leaf,
269 int level)
271 PhysPageEntry *p;
272 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
274 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
275 lp->ptr = phys_map_node_alloc(map, level == 0);
277 p = map->nodes[lp->ptr];
278 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
280 while (*nb && lp < &p[P_L2_SIZE]) {
281 if ((*index & (step - 1)) == 0 && *nb >= step) {
282 lp->skip = 0;
283 lp->ptr = leaf;
284 *index += step;
285 *nb -= step;
286 } else {
287 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
289 ++lp;
293 static void phys_page_set(AddressSpaceDispatch *d,
294 hwaddr index, hwaddr nb,
295 uint16_t leaf)
297 /* Wildly overreserve - it doesn't matter much. */
298 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
300 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
303 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
304 * and update our entry so we can skip it and go directly to the destination.
306 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
308 unsigned valid_ptr = P_L2_SIZE;
309 int valid = 0;
310 PhysPageEntry *p;
311 int i;
313 if (lp->ptr == PHYS_MAP_NODE_NIL) {
314 return;
317 p = nodes[lp->ptr];
318 for (i = 0; i < P_L2_SIZE; i++) {
319 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
320 continue;
323 valid_ptr = i;
324 valid++;
325 if (p[i].skip) {
326 phys_page_compact(&p[i], nodes);
330 /* We can only compress if there's only one child. */
331 if (valid != 1) {
332 return;
335 assert(valid_ptr < P_L2_SIZE);
337 /* Don't compress if it won't fit in the # of bits we have. */
338 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
339 return;
342 lp->ptr = p[valid_ptr].ptr;
343 if (!p[valid_ptr].skip) {
344 /* If our only child is a leaf, make this a leaf. */
345 /* By design, we should have made this node a leaf to begin with so we
346 * should never reach here.
347 * But since it's so simple to handle this, let's do it just in case we
348 * change this rule.
350 lp->skip = 0;
351 } else {
352 lp->skip += p[valid_ptr].skip;
356 void address_space_dispatch_compact(AddressSpaceDispatch *d)
358 if (d->phys_map.skip) {
359 phys_page_compact(&d->phys_map, d->map.nodes);
363 static inline bool section_covers_addr(const MemoryRegionSection *section,
364 hwaddr addr)
366 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
367 * the section must cover the entire address space.
369 return int128_gethi(section->size) ||
370 range_covers_byte(section->offset_within_address_space,
371 int128_getlo(section->size), addr);
374 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
376 PhysPageEntry lp = d->phys_map, *p;
377 Node *nodes = d->map.nodes;
378 MemoryRegionSection *sections = d->map.sections;
379 hwaddr index = addr >> TARGET_PAGE_BITS;
380 int i;
382 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
383 if (lp.ptr == PHYS_MAP_NODE_NIL) {
384 return &sections[PHYS_SECTION_UNASSIGNED];
386 p = nodes[lp.ptr];
387 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
390 if (section_covers_addr(&sections[lp.ptr], addr)) {
391 return &sections[lp.ptr];
392 } else {
393 return &sections[PHYS_SECTION_UNASSIGNED];
397 bool memory_region_is_unassigned(MemoryRegion *mr)
399 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
400 && mr != &io_mem_watch;
403 /* Called from RCU critical section */
404 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
405 hwaddr addr,
406 bool resolve_subpage)
408 MemoryRegionSection *section = atomic_read(&d->mru_section);
409 subpage_t *subpage;
411 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
412 !section_covers_addr(section, addr)) {
413 section = phys_page_find(d, addr);
414 atomic_set(&d->mru_section, section);
416 if (resolve_subpage && section->mr->subpage) {
417 subpage = container_of(section->mr, subpage_t, iomem);
418 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
420 return section;
423 /* Called from RCU critical section */
424 static MemoryRegionSection *
425 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
426 hwaddr *plen, bool resolve_subpage)
428 MemoryRegionSection *section;
429 MemoryRegion *mr;
430 Int128 diff;
432 section = address_space_lookup_region(d, addr, resolve_subpage);
433 /* Compute offset within MemoryRegionSection */
434 addr -= section->offset_within_address_space;
436 /* Compute offset within MemoryRegion */
437 *xlat = addr + section->offset_within_region;
439 mr = section->mr;
441 /* MMIO registers can be expected to perform full-width accesses based only
442 * on their address, without considering adjacent registers that could
443 * decode to completely different MemoryRegions. When such registers
444 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
445 * regions overlap wildly. For this reason we cannot clamp the accesses
446 * here.
448 * If the length is small (as is the case for address_space_ldl/stl),
449 * everything works fine. If the incoming length is large, however,
450 * the caller really has to do the clamping through memory_access_size.
452 if (memory_region_is_ram(mr)) {
453 diff = int128_sub(section->size, int128_make64(addr));
454 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
456 return section;
460 * flatview_do_translate - translate an address in FlatView
462 * @fv: the flat view that we want to translate on
463 * @addr: the address to be translated in above address space
464 * @xlat: the translated address offset within memory region. It
465 * cannot be @NULL.
466 * @plen_out: valid read/write length of the translated address. It
467 * can be @NULL when we don't care about it.
468 * @page_mask_out: page mask for the translated address. This
469 * should only be meaningful for IOMMU translated
470 * addresses, since there may be huge pages that this bit
471 * would tell. It can be @NULL if we don't care about it.
472 * @is_write: whether the translation operation is for write
473 * @is_mmio: whether this can be MMIO, set true if it can
475 * This function is called from RCU critical section
477 static MemoryRegionSection flatview_do_translate(FlatView *fv,
478 hwaddr addr,
479 hwaddr *xlat,
480 hwaddr *plen_out,
481 hwaddr *page_mask_out,
482 bool is_write,
483 bool is_mmio,
484 AddressSpace **target_as)
486 IOMMUTLBEntry iotlb;
487 MemoryRegionSection *section;
488 IOMMUMemoryRegion *iommu_mr;
489 IOMMUMemoryRegionClass *imrc;
490 hwaddr page_mask = (hwaddr)(-1);
491 hwaddr plen = (hwaddr)(-1);
493 if (plen_out) {
494 plen = *plen_out;
497 for (;;) {
498 section = address_space_translate_internal(
499 flatview_to_dispatch(fv), addr, &addr,
500 &plen, is_mmio);
502 iommu_mr = memory_region_get_iommu(section->mr);
503 if (!iommu_mr) {
504 break;
506 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
508 iotlb = imrc->translate(iommu_mr, addr, is_write ?
509 IOMMU_WO : IOMMU_RO);
510 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
511 | (addr & iotlb.addr_mask));
512 page_mask &= iotlb.addr_mask;
513 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
514 if (!(iotlb.perm & (1 << is_write))) {
515 goto translate_fail;
518 fv = address_space_to_flatview(iotlb.target_as);
519 *target_as = iotlb.target_as;
522 *xlat = addr;
524 if (page_mask == (hwaddr)(-1)) {
525 /* Not behind an IOMMU, use default page size. */
526 page_mask = ~TARGET_PAGE_MASK;
529 if (page_mask_out) {
530 *page_mask_out = page_mask;
533 if (plen_out) {
534 *plen_out = plen;
537 return *section;
539 translate_fail:
540 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
543 /* Called from RCU critical section */
544 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
545 bool is_write)
547 MemoryRegionSection section;
548 hwaddr xlat, page_mask;
551 * This can never be MMIO, and we don't really care about plen,
552 * but page mask.
554 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
555 NULL, &page_mask, is_write, false, &as);
557 /* Illegal translation */
558 if (section.mr == &io_mem_unassigned) {
559 goto iotlb_fail;
562 /* Convert memory region offset into address space offset */
563 xlat += section.offset_within_address_space -
564 section.offset_within_region;
566 return (IOMMUTLBEntry) {
567 .target_as = as,
568 .iova = addr & ~page_mask,
569 .translated_addr = xlat & ~page_mask,
570 .addr_mask = page_mask,
571 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
572 .perm = IOMMU_RW,
575 iotlb_fail:
576 return (IOMMUTLBEntry) {0};
579 /* Called from RCU critical section */
580 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
581 hwaddr *plen, bool is_write)
583 MemoryRegion *mr;
584 MemoryRegionSection section;
585 AddressSpace *as = NULL;
587 /* This can be MMIO, so setup MMIO bit. */
588 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
589 is_write, true, &as);
590 mr = section.mr;
592 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
593 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
594 *plen = MIN(page, *plen);
597 return mr;
600 /* Called from RCU critical section */
601 MemoryRegionSection *
602 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
603 hwaddr *xlat, hwaddr *plen)
605 MemoryRegionSection *section;
606 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
608 section = address_space_translate_internal(d, addr, xlat, plen, false);
610 assert(!memory_region_is_iommu(section->mr));
611 return section;
613 #endif
615 #if !defined(CONFIG_USER_ONLY)
617 static int cpu_common_post_load(void *opaque, int version_id)
619 CPUState *cpu = opaque;
621 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
622 version_id is increased. */
623 cpu->interrupt_request &= ~0x01;
624 tlb_flush(cpu);
626 return 0;
629 static int cpu_common_pre_load(void *opaque)
631 CPUState *cpu = opaque;
633 cpu->exception_index = -1;
635 return 0;
638 static bool cpu_common_exception_index_needed(void *opaque)
640 CPUState *cpu = opaque;
642 return tcg_enabled() && cpu->exception_index != -1;
645 static const VMStateDescription vmstate_cpu_common_exception_index = {
646 .name = "cpu_common/exception_index",
647 .version_id = 1,
648 .minimum_version_id = 1,
649 .needed = cpu_common_exception_index_needed,
650 .fields = (VMStateField[]) {
651 VMSTATE_INT32(exception_index, CPUState),
652 VMSTATE_END_OF_LIST()
656 static bool cpu_common_crash_occurred_needed(void *opaque)
658 CPUState *cpu = opaque;
660 return cpu->crash_occurred;
663 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
664 .name = "cpu_common/crash_occurred",
665 .version_id = 1,
666 .minimum_version_id = 1,
667 .needed = cpu_common_crash_occurred_needed,
668 .fields = (VMStateField[]) {
669 VMSTATE_BOOL(crash_occurred, CPUState),
670 VMSTATE_END_OF_LIST()
674 const VMStateDescription vmstate_cpu_common = {
675 .name = "cpu_common",
676 .version_id = 1,
677 .minimum_version_id = 1,
678 .pre_load = cpu_common_pre_load,
679 .post_load = cpu_common_post_load,
680 .fields = (VMStateField[]) {
681 VMSTATE_UINT32(halted, CPUState),
682 VMSTATE_UINT32(interrupt_request, CPUState),
683 VMSTATE_END_OF_LIST()
685 .subsections = (const VMStateDescription*[]) {
686 &vmstate_cpu_common_exception_index,
687 &vmstate_cpu_common_crash_occurred,
688 NULL
692 #endif
694 CPUState *qemu_get_cpu(int index)
696 CPUState *cpu;
698 CPU_FOREACH(cpu) {
699 if (cpu->cpu_index == index) {
700 return cpu;
704 return NULL;
707 #if !defined(CONFIG_USER_ONLY)
708 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
710 CPUAddressSpace *newas;
712 /* Target code should have set num_ases before calling us */
713 assert(asidx < cpu->num_ases);
715 if (asidx == 0) {
716 /* address space 0 gets the convenience alias */
717 cpu->as = as;
720 /* KVM cannot currently support multiple address spaces. */
721 assert(asidx == 0 || !kvm_enabled());
723 if (!cpu->cpu_ases) {
724 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
727 newas = &cpu->cpu_ases[asidx];
728 newas->cpu = cpu;
729 newas->as = as;
730 if (tcg_enabled()) {
731 newas->tcg_as_listener.commit = tcg_commit;
732 memory_listener_register(&newas->tcg_as_listener, as);
736 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
738 /* Return the AddressSpace corresponding to the specified index */
739 return cpu->cpu_ases[asidx].as;
741 #endif
743 void cpu_exec_unrealizefn(CPUState *cpu)
745 CPUClass *cc = CPU_GET_CLASS(cpu);
747 cpu_list_remove(cpu);
749 if (cc->vmsd != NULL) {
750 vmstate_unregister(NULL, cc->vmsd, cpu);
752 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
753 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
757 Property cpu_common_props[] = {
758 #ifndef CONFIG_USER_ONLY
759 /* Create a memory property for softmmu CPU object,
760 * so users can wire up its memory. (This can't go in qom/cpu.c
761 * because that file is compiled only once for both user-mode
762 * and system builds.) The default if no link is set up is to use
763 * the system address space.
765 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
766 MemoryRegion *),
767 #endif
768 DEFINE_PROP_END_OF_LIST(),
771 void cpu_exec_initfn(CPUState *cpu)
773 cpu->as = NULL;
774 cpu->num_ases = 0;
776 #ifndef CONFIG_USER_ONLY
777 cpu->thread_id = qemu_get_thread_id();
778 cpu->memory = system_memory;
779 object_ref(OBJECT(cpu->memory));
780 #endif
783 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
785 CPUClass *cc = CPU_GET_CLASS(cpu);
786 static bool tcg_target_initialized;
788 cpu_list_add(cpu);
790 if (tcg_enabled() && !tcg_target_initialized) {
791 tcg_target_initialized = true;
792 cc->tcg_initialize();
795 #ifndef CONFIG_USER_ONLY
796 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
797 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
799 if (cc->vmsd != NULL) {
800 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
802 #endif
805 #if defined(CONFIG_USER_ONLY)
806 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
808 mmap_lock();
809 tb_lock();
810 tb_invalidate_phys_page_range(pc, pc + 1, 0);
811 tb_unlock();
812 mmap_unlock();
814 #else
815 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
817 MemTxAttrs attrs;
818 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
819 int asidx = cpu_asidx_from_attrs(cpu, attrs);
820 if (phys != -1) {
821 /* Locks grabbed by tb_invalidate_phys_addr */
822 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
823 phys | (pc & ~TARGET_PAGE_MASK));
826 #endif
828 #if defined(CONFIG_USER_ONLY)
829 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
834 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
835 int flags)
837 return -ENOSYS;
840 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
844 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
845 int flags, CPUWatchpoint **watchpoint)
847 return -ENOSYS;
849 #else
850 /* Add a watchpoint. */
851 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
852 int flags, CPUWatchpoint **watchpoint)
854 CPUWatchpoint *wp;
856 /* forbid ranges which are empty or run off the end of the address space */
857 if (len == 0 || (addr + len - 1) < addr) {
858 error_report("tried to set invalid watchpoint at %"
859 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
860 return -EINVAL;
862 wp = g_malloc(sizeof(*wp));
864 wp->vaddr = addr;
865 wp->len = len;
866 wp->flags = flags;
868 /* keep all GDB-injected watchpoints in front */
869 if (flags & BP_GDB) {
870 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
871 } else {
872 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
875 tlb_flush_page(cpu, addr);
877 if (watchpoint)
878 *watchpoint = wp;
879 return 0;
882 /* Remove a specific watchpoint. */
883 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
884 int flags)
886 CPUWatchpoint *wp;
888 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
889 if (addr == wp->vaddr && len == wp->len
890 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
891 cpu_watchpoint_remove_by_ref(cpu, wp);
892 return 0;
895 return -ENOENT;
898 /* Remove a specific watchpoint by reference. */
899 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
901 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
903 tlb_flush_page(cpu, watchpoint->vaddr);
905 g_free(watchpoint);
908 /* Remove all matching watchpoints. */
909 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
911 CPUWatchpoint *wp, *next;
913 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
914 if (wp->flags & mask) {
915 cpu_watchpoint_remove_by_ref(cpu, wp);
920 /* Return true if this watchpoint address matches the specified
921 * access (ie the address range covered by the watchpoint overlaps
922 * partially or completely with the address range covered by the
923 * access).
925 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
926 vaddr addr,
927 vaddr len)
929 /* We know the lengths are non-zero, but a little caution is
930 * required to avoid errors in the case where the range ends
931 * exactly at the top of the address space and so addr + len
932 * wraps round to zero.
934 vaddr wpend = wp->vaddr + wp->len - 1;
935 vaddr addrend = addr + len - 1;
937 return !(addr > wpend || wp->vaddr > addrend);
940 #endif
942 /* Add a breakpoint. */
943 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
944 CPUBreakpoint **breakpoint)
946 CPUBreakpoint *bp;
948 bp = g_malloc(sizeof(*bp));
950 bp->pc = pc;
951 bp->flags = flags;
953 /* keep all GDB-injected breakpoints in front */
954 if (flags & BP_GDB) {
955 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
956 } else {
957 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
960 breakpoint_invalidate(cpu, pc);
962 if (breakpoint) {
963 *breakpoint = bp;
965 return 0;
968 /* Remove a specific breakpoint. */
969 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
971 CPUBreakpoint *bp;
973 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
974 if (bp->pc == pc && bp->flags == flags) {
975 cpu_breakpoint_remove_by_ref(cpu, bp);
976 return 0;
979 return -ENOENT;
982 /* Remove a specific breakpoint by reference. */
983 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
985 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
987 breakpoint_invalidate(cpu, breakpoint->pc);
989 g_free(breakpoint);
992 /* Remove all matching breakpoints. */
993 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
995 CPUBreakpoint *bp, *next;
997 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
998 if (bp->flags & mask) {
999 cpu_breakpoint_remove_by_ref(cpu, bp);
1004 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1005 CPU loop after each instruction */
1006 void cpu_single_step(CPUState *cpu, int enabled)
1008 if (cpu->singlestep_enabled != enabled) {
1009 cpu->singlestep_enabled = enabled;
1010 if (kvm_enabled()) {
1011 kvm_update_guest_debug(cpu, 0);
1012 } else {
1013 /* must flush all the translated code to avoid inconsistencies */
1014 /* XXX: only flush what is necessary */
1015 tb_flush(cpu);
1020 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1022 va_list ap;
1023 va_list ap2;
1025 va_start(ap, fmt);
1026 va_copy(ap2, ap);
1027 fprintf(stderr, "qemu: fatal: ");
1028 vfprintf(stderr, fmt, ap);
1029 fprintf(stderr, "\n");
1030 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1031 if (qemu_log_separate()) {
1032 qemu_log_lock();
1033 qemu_log("qemu: fatal: ");
1034 qemu_log_vprintf(fmt, ap2);
1035 qemu_log("\n");
1036 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1037 qemu_log_flush();
1038 qemu_log_unlock();
1039 qemu_log_close();
1041 va_end(ap2);
1042 va_end(ap);
1043 replay_finish();
1044 #if defined(CONFIG_USER_ONLY)
1046 struct sigaction act;
1047 sigfillset(&act.sa_mask);
1048 act.sa_handler = SIG_DFL;
1049 sigaction(SIGABRT, &act, NULL);
1051 #endif
1052 abort();
1055 #if !defined(CONFIG_USER_ONLY)
1056 /* Called from RCU critical section */
1057 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1059 RAMBlock *block;
1061 block = atomic_rcu_read(&ram_list.mru_block);
1062 if (block && addr - block->offset < block->max_length) {
1063 return block;
1065 RAMBLOCK_FOREACH(block) {
1066 if (addr - block->offset < block->max_length) {
1067 goto found;
1071 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1072 abort();
1074 found:
1075 /* It is safe to write mru_block outside the iothread lock. This
1076 * is what happens:
1078 * mru_block = xxx
1079 * rcu_read_unlock()
1080 * xxx removed from list
1081 * rcu_read_lock()
1082 * read mru_block
1083 * mru_block = NULL;
1084 * call_rcu(reclaim_ramblock, xxx);
1085 * rcu_read_unlock()
1087 * atomic_rcu_set is not needed here. The block was already published
1088 * when it was placed into the list. Here we're just making an extra
1089 * copy of the pointer.
1091 ram_list.mru_block = block;
1092 return block;
1095 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1097 CPUState *cpu;
1098 ram_addr_t start1;
1099 RAMBlock *block;
1100 ram_addr_t end;
1102 end = TARGET_PAGE_ALIGN(start + length);
1103 start &= TARGET_PAGE_MASK;
1105 rcu_read_lock();
1106 block = qemu_get_ram_block(start);
1107 assert(block == qemu_get_ram_block(end - 1));
1108 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1109 CPU_FOREACH(cpu) {
1110 tlb_reset_dirty(cpu, start1, length);
1112 rcu_read_unlock();
1115 /* Note: start and end must be within the same ram block. */
1116 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1117 ram_addr_t length,
1118 unsigned client)
1120 DirtyMemoryBlocks *blocks;
1121 unsigned long end, page;
1122 bool dirty = false;
1124 if (length == 0) {
1125 return false;
1128 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1129 page = start >> TARGET_PAGE_BITS;
1131 rcu_read_lock();
1133 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1135 while (page < end) {
1136 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1137 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1138 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1140 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1141 offset, num);
1142 page += num;
1145 rcu_read_unlock();
1147 if (dirty && tcg_enabled()) {
1148 tlb_reset_dirty_range_all(start, length);
1151 return dirty;
1154 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1155 (ram_addr_t start, ram_addr_t length, unsigned client)
1157 DirtyMemoryBlocks *blocks;
1158 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1159 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1160 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1161 DirtyBitmapSnapshot *snap;
1162 unsigned long page, end, dest;
1164 snap = g_malloc0(sizeof(*snap) +
1165 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1166 snap->start = first;
1167 snap->end = last;
1169 page = first >> TARGET_PAGE_BITS;
1170 end = last >> TARGET_PAGE_BITS;
1171 dest = 0;
1173 rcu_read_lock();
1175 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1177 while (page < end) {
1178 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1179 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1180 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1182 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1183 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1184 offset >>= BITS_PER_LEVEL;
1186 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1187 blocks->blocks[idx] + offset,
1188 num);
1189 page += num;
1190 dest += num >> BITS_PER_LEVEL;
1193 rcu_read_unlock();
1195 if (tcg_enabled()) {
1196 tlb_reset_dirty_range_all(start, length);
1199 return snap;
1202 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1203 ram_addr_t start,
1204 ram_addr_t length)
1206 unsigned long page, end;
1208 assert(start >= snap->start);
1209 assert(start + length <= snap->end);
1211 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1212 page = (start - snap->start) >> TARGET_PAGE_BITS;
1214 while (page < end) {
1215 if (test_bit(page, snap->dirty)) {
1216 return true;
1218 page++;
1220 return false;
1223 /* Called from RCU critical section */
1224 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1225 MemoryRegionSection *section,
1226 target_ulong vaddr,
1227 hwaddr paddr, hwaddr xlat,
1228 int prot,
1229 target_ulong *address)
1231 hwaddr iotlb;
1232 CPUWatchpoint *wp;
1234 if (memory_region_is_ram(section->mr)) {
1235 /* Normal RAM. */
1236 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1237 if (!section->readonly) {
1238 iotlb |= PHYS_SECTION_NOTDIRTY;
1239 } else {
1240 iotlb |= PHYS_SECTION_ROM;
1242 } else {
1243 AddressSpaceDispatch *d;
1245 d = flatview_to_dispatch(section->fv);
1246 iotlb = section - d->map.sections;
1247 iotlb += xlat;
1250 /* Make accesses to pages with watchpoints go via the
1251 watchpoint trap routines. */
1252 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1253 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1254 /* Avoid trapping reads of pages with a write breakpoint. */
1255 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1256 iotlb = PHYS_SECTION_WATCH + paddr;
1257 *address |= TLB_MMIO;
1258 break;
1263 return iotlb;
1265 #endif /* defined(CONFIG_USER_ONLY) */
1267 #if !defined(CONFIG_USER_ONLY)
1269 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1270 uint16_t section);
1271 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1273 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1274 qemu_anon_ram_alloc;
1277 * Set a custom physical guest memory alloator.
1278 * Accelerators with unusual needs may need this. Hopefully, we can
1279 * get rid of it eventually.
1281 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1283 phys_mem_alloc = alloc;
1286 static uint16_t phys_section_add(PhysPageMap *map,
1287 MemoryRegionSection *section)
1289 /* The physical section number is ORed with a page-aligned
1290 * pointer to produce the iotlb entries. Thus it should
1291 * never overflow into the page-aligned value.
1293 assert(map->sections_nb < TARGET_PAGE_SIZE);
1295 if (map->sections_nb == map->sections_nb_alloc) {
1296 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1297 map->sections = g_renew(MemoryRegionSection, map->sections,
1298 map->sections_nb_alloc);
1300 map->sections[map->sections_nb] = *section;
1301 memory_region_ref(section->mr);
1302 return map->sections_nb++;
1305 static void phys_section_destroy(MemoryRegion *mr)
1307 bool have_sub_page = mr->subpage;
1309 memory_region_unref(mr);
1311 if (have_sub_page) {
1312 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1313 object_unref(OBJECT(&subpage->iomem));
1314 g_free(subpage);
1318 static void phys_sections_free(PhysPageMap *map)
1320 while (map->sections_nb > 0) {
1321 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1322 phys_section_destroy(section->mr);
1324 g_free(map->sections);
1325 g_free(map->nodes);
1328 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1330 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1331 subpage_t *subpage;
1332 hwaddr base = section->offset_within_address_space
1333 & TARGET_PAGE_MASK;
1334 MemoryRegionSection *existing = phys_page_find(d, base);
1335 MemoryRegionSection subsection = {
1336 .offset_within_address_space = base,
1337 .size = int128_make64(TARGET_PAGE_SIZE),
1339 hwaddr start, end;
1341 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1343 if (!(existing->mr->subpage)) {
1344 subpage = subpage_init(fv, base);
1345 subsection.fv = fv;
1346 subsection.mr = &subpage->iomem;
1347 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1348 phys_section_add(&d->map, &subsection));
1349 } else {
1350 subpage = container_of(existing->mr, subpage_t, iomem);
1352 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1353 end = start + int128_get64(section->size) - 1;
1354 subpage_register(subpage, start, end,
1355 phys_section_add(&d->map, section));
1359 static void register_multipage(FlatView *fv,
1360 MemoryRegionSection *section)
1362 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1363 hwaddr start_addr = section->offset_within_address_space;
1364 uint16_t section_index = phys_section_add(&d->map, section);
1365 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1366 TARGET_PAGE_BITS));
1368 assert(num_pages);
1369 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1372 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1374 MemoryRegionSection now = *section, remain = *section;
1375 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1377 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1378 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1379 - now.offset_within_address_space;
1381 now.size = int128_min(int128_make64(left), now.size);
1382 register_subpage(fv, &now);
1383 } else {
1384 now.size = int128_zero();
1386 while (int128_ne(remain.size, now.size)) {
1387 remain.size = int128_sub(remain.size, now.size);
1388 remain.offset_within_address_space += int128_get64(now.size);
1389 remain.offset_within_region += int128_get64(now.size);
1390 now = remain;
1391 if (int128_lt(remain.size, page_size)) {
1392 register_subpage(fv, &now);
1393 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1394 now.size = page_size;
1395 register_subpage(fv, &now);
1396 } else {
1397 now.size = int128_and(now.size, int128_neg(page_size));
1398 register_multipage(fv, &now);
1403 void qemu_flush_coalesced_mmio_buffer(void)
1405 if (kvm_enabled())
1406 kvm_flush_coalesced_mmio_buffer();
1409 void qemu_mutex_lock_ramlist(void)
1411 qemu_mutex_lock(&ram_list.mutex);
1414 void qemu_mutex_unlock_ramlist(void)
1416 qemu_mutex_unlock(&ram_list.mutex);
1419 void ram_block_dump(Monitor *mon)
1421 RAMBlock *block;
1422 char *psize;
1424 rcu_read_lock();
1425 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1426 "Block Name", "PSize", "Offset", "Used", "Total");
1427 RAMBLOCK_FOREACH(block) {
1428 psize = size_to_str(block->page_size);
1429 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1430 " 0x%016" PRIx64 "\n", block->idstr, psize,
1431 (uint64_t)block->offset,
1432 (uint64_t)block->used_length,
1433 (uint64_t)block->max_length);
1434 g_free(psize);
1436 rcu_read_unlock();
1439 #ifdef __linux__
1441 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1442 * may or may not name the same files / on the same filesystem now as
1443 * when we actually open and map them. Iterate over the file
1444 * descriptors instead, and use qemu_fd_getpagesize().
1446 static int find_max_supported_pagesize(Object *obj, void *opaque)
1448 char *mem_path;
1449 long *hpsize_min = opaque;
1451 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1452 mem_path = object_property_get_str(obj, "mem-path", NULL);
1453 if (mem_path) {
1454 long hpsize = qemu_mempath_getpagesize(mem_path);
1455 if (hpsize < *hpsize_min) {
1456 *hpsize_min = hpsize;
1458 } else {
1459 *hpsize_min = getpagesize();
1463 return 0;
1466 long qemu_getrampagesize(void)
1468 long hpsize = LONG_MAX;
1469 long mainrampagesize;
1470 Object *memdev_root;
1472 if (mem_path) {
1473 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1474 } else {
1475 mainrampagesize = getpagesize();
1478 /* it's possible we have memory-backend objects with
1479 * hugepage-backed RAM. these may get mapped into system
1480 * address space via -numa parameters or memory hotplug
1481 * hooks. we want to take these into account, but we
1482 * also want to make sure these supported hugepage
1483 * sizes are applicable across the entire range of memory
1484 * we may boot from, so we take the min across all
1485 * backends, and assume normal pages in cases where a
1486 * backend isn't backed by hugepages.
1488 memdev_root = object_resolve_path("/objects", NULL);
1489 if (memdev_root) {
1490 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1492 if (hpsize == LONG_MAX) {
1493 /* No additional memory regions found ==> Report main RAM page size */
1494 return mainrampagesize;
1497 /* If NUMA is disabled or the NUMA nodes are not backed with a
1498 * memory-backend, then there is at least one node using "normal" RAM,
1499 * so if its page size is smaller we have got to report that size instead.
1501 if (hpsize > mainrampagesize &&
1502 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1503 static bool warned;
1504 if (!warned) {
1505 error_report("Huge page support disabled (n/a for main memory).");
1506 warned = true;
1508 return mainrampagesize;
1511 return hpsize;
1513 #else
1514 long qemu_getrampagesize(void)
1516 return getpagesize();
1518 #endif
1520 #ifdef __linux__
1521 static int64_t get_file_size(int fd)
1523 int64_t size = lseek(fd, 0, SEEK_END);
1524 if (size < 0) {
1525 return -errno;
1527 return size;
1530 static int file_ram_open(const char *path,
1531 const char *region_name,
1532 bool *created,
1533 Error **errp)
1535 char *filename;
1536 char *sanitized_name;
1537 char *c;
1538 int fd = -1;
1540 *created = false;
1541 for (;;) {
1542 fd = open(path, O_RDWR);
1543 if (fd >= 0) {
1544 /* @path names an existing file, use it */
1545 break;
1547 if (errno == ENOENT) {
1548 /* @path names a file that doesn't exist, create it */
1549 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1550 if (fd >= 0) {
1551 *created = true;
1552 break;
1554 } else if (errno == EISDIR) {
1555 /* @path names a directory, create a file there */
1556 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1557 sanitized_name = g_strdup(region_name);
1558 for (c = sanitized_name; *c != '\0'; c++) {
1559 if (*c == '/') {
1560 *c = '_';
1564 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1565 sanitized_name);
1566 g_free(sanitized_name);
1568 fd = mkstemp(filename);
1569 if (fd >= 0) {
1570 unlink(filename);
1571 g_free(filename);
1572 break;
1574 g_free(filename);
1576 if (errno != EEXIST && errno != EINTR) {
1577 error_setg_errno(errp, errno,
1578 "can't open backing store %s for guest RAM",
1579 path);
1580 return -1;
1583 * Try again on EINTR and EEXIST. The latter happens when
1584 * something else creates the file between our two open().
1588 return fd;
1591 static void *file_ram_alloc(RAMBlock *block,
1592 ram_addr_t memory,
1593 int fd,
1594 bool truncate,
1595 Error **errp)
1597 void *area;
1599 block->page_size = qemu_fd_getpagesize(fd);
1600 block->mr->align = block->page_size;
1601 #if defined(__s390x__)
1602 if (kvm_enabled()) {
1603 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1605 #endif
1607 if (memory < block->page_size) {
1608 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1609 "or larger than page size 0x%zx",
1610 memory, block->page_size);
1611 return NULL;
1614 memory = ROUND_UP(memory, block->page_size);
1617 * ftruncate is not supported by hugetlbfs in older
1618 * hosts, so don't bother bailing out on errors.
1619 * If anything goes wrong with it under other filesystems,
1620 * mmap will fail.
1622 * Do not truncate the non-empty backend file to avoid corrupting
1623 * the existing data in the file. Disabling shrinking is not
1624 * enough. For example, the current vNVDIMM implementation stores
1625 * the guest NVDIMM labels at the end of the backend file. If the
1626 * backend file is later extended, QEMU will not be able to find
1627 * those labels. Therefore, extending the non-empty backend file
1628 * is disabled as well.
1630 if (truncate && ftruncate(fd, memory)) {
1631 perror("ftruncate");
1634 area = qemu_ram_mmap(fd, memory, block->mr->align,
1635 block->flags & RAM_SHARED);
1636 if (area == MAP_FAILED) {
1637 error_setg_errno(errp, errno,
1638 "unable to map backing store for guest RAM");
1639 return NULL;
1642 if (mem_prealloc) {
1643 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1644 if (errp && *errp) {
1645 qemu_ram_munmap(area, memory);
1646 return NULL;
1650 block->fd = fd;
1651 return area;
1653 #endif
1655 /* Called with the ramlist lock held. */
1656 static ram_addr_t find_ram_offset(ram_addr_t size)
1658 RAMBlock *block, *next_block;
1659 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1661 assert(size != 0); /* it would hand out same offset multiple times */
1663 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1664 return 0;
1667 RAMBLOCK_FOREACH(block) {
1668 ram_addr_t end, next = RAM_ADDR_MAX;
1670 end = block->offset + block->max_length;
1672 RAMBLOCK_FOREACH(next_block) {
1673 if (next_block->offset >= end) {
1674 next = MIN(next, next_block->offset);
1677 if (next - end >= size && next - end < mingap) {
1678 offset = end;
1679 mingap = next - end;
1683 if (offset == RAM_ADDR_MAX) {
1684 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1685 (uint64_t)size);
1686 abort();
1689 return offset;
1692 unsigned long last_ram_page(void)
1694 RAMBlock *block;
1695 ram_addr_t last = 0;
1697 rcu_read_lock();
1698 RAMBLOCK_FOREACH(block) {
1699 last = MAX(last, block->offset + block->max_length);
1701 rcu_read_unlock();
1702 return last >> TARGET_PAGE_BITS;
1705 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1707 int ret;
1709 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1710 if (!machine_dump_guest_core(current_machine)) {
1711 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1712 if (ret) {
1713 perror("qemu_madvise");
1714 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1715 "but dump_guest_core=off specified\n");
1720 const char *qemu_ram_get_idstr(RAMBlock *rb)
1722 return rb->idstr;
1725 bool qemu_ram_is_shared(RAMBlock *rb)
1727 return rb->flags & RAM_SHARED;
1730 /* Called with iothread lock held. */
1731 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1733 RAMBlock *block;
1735 assert(new_block);
1736 assert(!new_block->idstr[0]);
1738 if (dev) {
1739 char *id = qdev_get_dev_path(dev);
1740 if (id) {
1741 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1742 g_free(id);
1745 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1747 rcu_read_lock();
1748 RAMBLOCK_FOREACH(block) {
1749 if (block != new_block &&
1750 !strcmp(block->idstr, new_block->idstr)) {
1751 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1752 new_block->idstr);
1753 abort();
1756 rcu_read_unlock();
1759 /* Called with iothread lock held. */
1760 void qemu_ram_unset_idstr(RAMBlock *block)
1762 /* FIXME: arch_init.c assumes that this is not called throughout
1763 * migration. Ignore the problem since hot-unplug during migration
1764 * does not work anyway.
1766 if (block) {
1767 memset(block->idstr, 0, sizeof(block->idstr));
1771 size_t qemu_ram_pagesize(RAMBlock *rb)
1773 return rb->page_size;
1776 /* Returns the largest size of page in use */
1777 size_t qemu_ram_pagesize_largest(void)
1779 RAMBlock *block;
1780 size_t largest = 0;
1782 RAMBLOCK_FOREACH(block) {
1783 largest = MAX(largest, qemu_ram_pagesize(block));
1786 return largest;
1789 static int memory_try_enable_merging(void *addr, size_t len)
1791 if (!machine_mem_merge(current_machine)) {
1792 /* disabled by the user */
1793 return 0;
1796 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1799 /* Only legal before guest might have detected the memory size: e.g. on
1800 * incoming migration, or right after reset.
1802 * As memory core doesn't know how is memory accessed, it is up to
1803 * resize callback to update device state and/or add assertions to detect
1804 * misuse, if necessary.
1806 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1808 assert(block);
1810 newsize = HOST_PAGE_ALIGN(newsize);
1812 if (block->used_length == newsize) {
1813 return 0;
1816 if (!(block->flags & RAM_RESIZEABLE)) {
1817 error_setg_errno(errp, EINVAL,
1818 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1819 " in != 0x" RAM_ADDR_FMT, block->idstr,
1820 newsize, block->used_length);
1821 return -EINVAL;
1824 if (block->max_length < newsize) {
1825 error_setg_errno(errp, EINVAL,
1826 "Length too large: %s: 0x" RAM_ADDR_FMT
1827 " > 0x" RAM_ADDR_FMT, block->idstr,
1828 newsize, block->max_length);
1829 return -EINVAL;
1832 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1833 block->used_length = newsize;
1834 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1835 DIRTY_CLIENTS_ALL);
1836 memory_region_set_size(block->mr, newsize);
1837 if (block->resized) {
1838 block->resized(block->idstr, newsize, block->host);
1840 return 0;
1843 /* Called with ram_list.mutex held */
1844 static void dirty_memory_extend(ram_addr_t old_ram_size,
1845 ram_addr_t new_ram_size)
1847 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1848 DIRTY_MEMORY_BLOCK_SIZE);
1849 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1850 DIRTY_MEMORY_BLOCK_SIZE);
1851 int i;
1853 /* Only need to extend if block count increased */
1854 if (new_num_blocks <= old_num_blocks) {
1855 return;
1858 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1859 DirtyMemoryBlocks *old_blocks;
1860 DirtyMemoryBlocks *new_blocks;
1861 int j;
1863 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1864 new_blocks = g_malloc(sizeof(*new_blocks) +
1865 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1867 if (old_num_blocks) {
1868 memcpy(new_blocks->blocks, old_blocks->blocks,
1869 old_num_blocks * sizeof(old_blocks->blocks[0]));
1872 for (j = old_num_blocks; j < new_num_blocks; j++) {
1873 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1876 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1878 if (old_blocks) {
1879 g_free_rcu(old_blocks, rcu);
1884 static void ram_block_add(RAMBlock *new_block, Error **errp)
1886 RAMBlock *block;
1887 RAMBlock *last_block = NULL;
1888 ram_addr_t old_ram_size, new_ram_size;
1889 Error *err = NULL;
1891 old_ram_size = last_ram_page();
1893 qemu_mutex_lock_ramlist();
1894 new_block->offset = find_ram_offset(new_block->max_length);
1896 if (!new_block->host) {
1897 if (xen_enabled()) {
1898 xen_ram_alloc(new_block->offset, new_block->max_length,
1899 new_block->mr, &err);
1900 if (err) {
1901 error_propagate(errp, err);
1902 qemu_mutex_unlock_ramlist();
1903 return;
1905 } else {
1906 new_block->host = phys_mem_alloc(new_block->max_length,
1907 &new_block->mr->align);
1908 if (!new_block->host) {
1909 error_setg_errno(errp, errno,
1910 "cannot set up guest memory '%s'",
1911 memory_region_name(new_block->mr));
1912 qemu_mutex_unlock_ramlist();
1913 return;
1915 memory_try_enable_merging(new_block->host, new_block->max_length);
1919 new_ram_size = MAX(old_ram_size,
1920 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1921 if (new_ram_size > old_ram_size) {
1922 dirty_memory_extend(old_ram_size, new_ram_size);
1924 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1925 * QLIST (which has an RCU-friendly variant) does not have insertion at
1926 * tail, so save the last element in last_block.
1928 RAMBLOCK_FOREACH(block) {
1929 last_block = block;
1930 if (block->max_length < new_block->max_length) {
1931 break;
1934 if (block) {
1935 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1936 } else if (last_block) {
1937 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1938 } else { /* list is empty */
1939 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1941 ram_list.mru_block = NULL;
1943 /* Write list before version */
1944 smp_wmb();
1945 ram_list.version++;
1946 qemu_mutex_unlock_ramlist();
1948 cpu_physical_memory_set_dirty_range(new_block->offset,
1949 new_block->used_length,
1950 DIRTY_CLIENTS_ALL);
1952 if (new_block->host) {
1953 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1954 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1955 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1956 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1957 ram_block_notify_add(new_block->host, new_block->max_length);
1961 #ifdef __linux__
1962 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1963 bool share, int fd,
1964 Error **errp)
1966 RAMBlock *new_block;
1967 Error *local_err = NULL;
1968 int64_t file_size;
1970 if (xen_enabled()) {
1971 error_setg(errp, "-mem-path not supported with Xen");
1972 return NULL;
1975 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1976 error_setg(errp,
1977 "host lacks kvm mmu notifiers, -mem-path unsupported");
1978 return NULL;
1981 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1983 * file_ram_alloc() needs to allocate just like
1984 * phys_mem_alloc, but we haven't bothered to provide
1985 * a hook there.
1987 error_setg(errp,
1988 "-mem-path not supported with this accelerator");
1989 return NULL;
1992 size = HOST_PAGE_ALIGN(size);
1993 file_size = get_file_size(fd);
1994 if (file_size > 0 && file_size < size) {
1995 error_setg(errp, "backing store %s size 0x%" PRIx64
1996 " does not match 'size' option 0x" RAM_ADDR_FMT,
1997 mem_path, file_size, size);
1998 return NULL;
2001 new_block = g_malloc0(sizeof(*new_block));
2002 new_block->mr = mr;
2003 new_block->used_length = size;
2004 new_block->max_length = size;
2005 new_block->flags = share ? RAM_SHARED : 0;
2006 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2007 if (!new_block->host) {
2008 g_free(new_block);
2009 return NULL;
2012 ram_block_add(new_block, &local_err);
2013 if (local_err) {
2014 g_free(new_block);
2015 error_propagate(errp, local_err);
2016 return NULL;
2018 return new_block;
2023 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2024 bool share, const char *mem_path,
2025 Error **errp)
2027 int fd;
2028 bool created;
2029 RAMBlock *block;
2031 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2032 if (fd < 0) {
2033 return NULL;
2036 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2037 if (!block) {
2038 if (created) {
2039 unlink(mem_path);
2041 close(fd);
2042 return NULL;
2045 return block;
2047 #endif
2049 static
2050 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2051 void (*resized)(const char*,
2052 uint64_t length,
2053 void *host),
2054 void *host, bool resizeable,
2055 MemoryRegion *mr, Error **errp)
2057 RAMBlock *new_block;
2058 Error *local_err = NULL;
2060 size = HOST_PAGE_ALIGN(size);
2061 max_size = HOST_PAGE_ALIGN(max_size);
2062 new_block = g_malloc0(sizeof(*new_block));
2063 new_block->mr = mr;
2064 new_block->resized = resized;
2065 new_block->used_length = size;
2066 new_block->max_length = max_size;
2067 assert(max_size >= size);
2068 new_block->fd = -1;
2069 new_block->page_size = getpagesize();
2070 new_block->host = host;
2071 if (host) {
2072 new_block->flags |= RAM_PREALLOC;
2074 if (resizeable) {
2075 new_block->flags |= RAM_RESIZEABLE;
2077 ram_block_add(new_block, &local_err);
2078 if (local_err) {
2079 g_free(new_block);
2080 error_propagate(errp, local_err);
2081 return NULL;
2083 return new_block;
2086 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2087 MemoryRegion *mr, Error **errp)
2089 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2092 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2094 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2097 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2098 void (*resized)(const char*,
2099 uint64_t length,
2100 void *host),
2101 MemoryRegion *mr, Error **errp)
2103 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2106 static void reclaim_ramblock(RAMBlock *block)
2108 if (block->flags & RAM_PREALLOC) {
2110 } else if (xen_enabled()) {
2111 xen_invalidate_map_cache_entry(block->host);
2112 #ifndef _WIN32
2113 } else if (block->fd >= 0) {
2114 qemu_ram_munmap(block->host, block->max_length);
2115 close(block->fd);
2116 #endif
2117 } else {
2118 qemu_anon_ram_free(block->host, block->max_length);
2120 g_free(block);
2123 void qemu_ram_free(RAMBlock *block)
2125 if (!block) {
2126 return;
2129 if (block->host) {
2130 ram_block_notify_remove(block->host, block->max_length);
2133 qemu_mutex_lock_ramlist();
2134 QLIST_REMOVE_RCU(block, next);
2135 ram_list.mru_block = NULL;
2136 /* Write list before version */
2137 smp_wmb();
2138 ram_list.version++;
2139 call_rcu(block, reclaim_ramblock, rcu);
2140 qemu_mutex_unlock_ramlist();
2143 #ifndef _WIN32
2144 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2146 RAMBlock *block;
2147 ram_addr_t offset;
2148 int flags;
2149 void *area, *vaddr;
2151 RAMBLOCK_FOREACH(block) {
2152 offset = addr - block->offset;
2153 if (offset < block->max_length) {
2154 vaddr = ramblock_ptr(block, offset);
2155 if (block->flags & RAM_PREALLOC) {
2157 } else if (xen_enabled()) {
2158 abort();
2159 } else {
2160 flags = MAP_FIXED;
2161 if (block->fd >= 0) {
2162 flags |= (block->flags & RAM_SHARED ?
2163 MAP_SHARED : MAP_PRIVATE);
2164 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2165 flags, block->fd, offset);
2166 } else {
2168 * Remap needs to match alloc. Accelerators that
2169 * set phys_mem_alloc never remap. If they did,
2170 * we'd need a remap hook here.
2172 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2174 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2175 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2176 flags, -1, 0);
2178 if (area != vaddr) {
2179 fprintf(stderr, "Could not remap addr: "
2180 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2181 length, addr);
2182 exit(1);
2184 memory_try_enable_merging(vaddr, length);
2185 qemu_ram_setup_dump(vaddr, length);
2190 #endif /* !_WIN32 */
2192 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2193 * This should not be used for general purpose DMA. Use address_space_map
2194 * or address_space_rw instead. For local memory (e.g. video ram) that the
2195 * device owns, use memory_region_get_ram_ptr.
2197 * Called within RCU critical section.
2199 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2201 RAMBlock *block = ram_block;
2203 if (block == NULL) {
2204 block = qemu_get_ram_block(addr);
2205 addr -= block->offset;
2208 if (xen_enabled() && block->host == NULL) {
2209 /* We need to check if the requested address is in the RAM
2210 * because we don't want to map the entire memory in QEMU.
2211 * In that case just map until the end of the page.
2213 if (block->offset == 0) {
2214 return xen_map_cache(addr, 0, 0, false);
2217 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2219 return ramblock_ptr(block, addr);
2222 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2223 * but takes a size argument.
2225 * Called within RCU critical section.
2227 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2228 hwaddr *size, bool lock)
2230 RAMBlock *block = ram_block;
2231 if (*size == 0) {
2232 return NULL;
2235 if (block == NULL) {
2236 block = qemu_get_ram_block(addr);
2237 addr -= block->offset;
2239 *size = MIN(*size, block->max_length - addr);
2241 if (xen_enabled() && block->host == NULL) {
2242 /* We need to check if the requested address is in the RAM
2243 * because we don't want to map the entire memory in QEMU.
2244 * In that case just map the requested area.
2246 if (block->offset == 0) {
2247 return xen_map_cache(addr, *size, lock, lock);
2250 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2253 return ramblock_ptr(block, addr);
2257 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2258 * in that RAMBlock.
2260 * ptr: Host pointer to look up
2261 * round_offset: If true round the result offset down to a page boundary
2262 * *ram_addr: set to result ram_addr
2263 * *offset: set to result offset within the RAMBlock
2265 * Returns: RAMBlock (or NULL if not found)
2267 * By the time this function returns, the returned pointer is not protected
2268 * by RCU anymore. If the caller is not within an RCU critical section and
2269 * does not hold the iothread lock, it must have other means of protecting the
2270 * pointer, such as a reference to the region that includes the incoming
2271 * ram_addr_t.
2273 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2274 ram_addr_t *offset)
2276 RAMBlock *block;
2277 uint8_t *host = ptr;
2279 if (xen_enabled()) {
2280 ram_addr_t ram_addr;
2281 rcu_read_lock();
2282 ram_addr = xen_ram_addr_from_mapcache(ptr);
2283 block = qemu_get_ram_block(ram_addr);
2284 if (block) {
2285 *offset = ram_addr - block->offset;
2287 rcu_read_unlock();
2288 return block;
2291 rcu_read_lock();
2292 block = atomic_rcu_read(&ram_list.mru_block);
2293 if (block && block->host && host - block->host < block->max_length) {
2294 goto found;
2297 RAMBLOCK_FOREACH(block) {
2298 /* This case append when the block is not mapped. */
2299 if (block->host == NULL) {
2300 continue;
2302 if (host - block->host < block->max_length) {
2303 goto found;
2307 rcu_read_unlock();
2308 return NULL;
2310 found:
2311 *offset = (host - block->host);
2312 if (round_offset) {
2313 *offset &= TARGET_PAGE_MASK;
2315 rcu_read_unlock();
2316 return block;
2320 * Finds the named RAMBlock
2322 * name: The name of RAMBlock to find
2324 * Returns: RAMBlock (or NULL if not found)
2326 RAMBlock *qemu_ram_block_by_name(const char *name)
2328 RAMBlock *block;
2330 RAMBLOCK_FOREACH(block) {
2331 if (!strcmp(name, block->idstr)) {
2332 return block;
2336 return NULL;
2339 /* Some of the softmmu routines need to translate from a host pointer
2340 (typically a TLB entry) back to a ram offset. */
2341 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2343 RAMBlock *block;
2344 ram_addr_t offset;
2346 block = qemu_ram_block_from_host(ptr, false, &offset);
2347 if (!block) {
2348 return RAM_ADDR_INVALID;
2351 return block->offset + offset;
2354 /* Called within RCU critical section. */
2355 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2356 CPUState *cpu,
2357 vaddr mem_vaddr,
2358 ram_addr_t ram_addr,
2359 unsigned size)
2361 ndi->cpu = cpu;
2362 ndi->ram_addr = ram_addr;
2363 ndi->mem_vaddr = mem_vaddr;
2364 ndi->size = size;
2365 ndi->locked = false;
2367 assert(tcg_enabled());
2368 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2369 ndi->locked = true;
2370 tb_lock();
2371 tb_invalidate_phys_page_fast(ram_addr, size);
2375 /* Called within RCU critical section. */
2376 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2378 if (ndi->locked) {
2379 tb_unlock();
2382 /* Set both VGA and migration bits for simplicity and to remove
2383 * the notdirty callback faster.
2385 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2386 DIRTY_CLIENTS_NOCODE);
2387 /* we remove the notdirty callback only if the code has been
2388 flushed */
2389 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2390 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2394 /* Called within RCU critical section. */
2395 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2396 uint64_t val, unsigned size)
2398 NotDirtyInfo ndi;
2400 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2401 ram_addr, size);
2403 switch (size) {
2404 case 1:
2405 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2406 break;
2407 case 2:
2408 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2409 break;
2410 case 4:
2411 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2412 break;
2413 case 8:
2414 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2415 break;
2416 default:
2417 abort();
2419 memory_notdirty_write_complete(&ndi);
2422 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2423 unsigned size, bool is_write)
2425 return is_write;
2428 static const MemoryRegionOps notdirty_mem_ops = {
2429 .write = notdirty_mem_write,
2430 .valid.accepts = notdirty_mem_accepts,
2431 .endianness = DEVICE_NATIVE_ENDIAN,
2432 .valid = {
2433 .min_access_size = 1,
2434 .max_access_size = 8,
2435 .unaligned = false,
2437 .impl = {
2438 .min_access_size = 1,
2439 .max_access_size = 8,
2440 .unaligned = false,
2444 /* Generate a debug exception if a watchpoint has been hit. */
2445 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2447 CPUState *cpu = current_cpu;
2448 CPUClass *cc = CPU_GET_CLASS(cpu);
2449 target_ulong vaddr;
2450 CPUWatchpoint *wp;
2452 assert(tcg_enabled());
2453 if (cpu->watchpoint_hit) {
2454 /* We re-entered the check after replacing the TB. Now raise
2455 * the debug interrupt so that is will trigger after the
2456 * current instruction. */
2457 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2458 return;
2460 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2461 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2462 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2463 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2464 && (wp->flags & flags)) {
2465 if (flags == BP_MEM_READ) {
2466 wp->flags |= BP_WATCHPOINT_HIT_READ;
2467 } else {
2468 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2470 wp->hitaddr = vaddr;
2471 wp->hitattrs = attrs;
2472 if (!cpu->watchpoint_hit) {
2473 if (wp->flags & BP_CPU &&
2474 !cc->debug_check_watchpoint(cpu, wp)) {
2475 wp->flags &= ~BP_WATCHPOINT_HIT;
2476 continue;
2478 cpu->watchpoint_hit = wp;
2480 /* Both tb_lock and iothread_mutex will be reset when
2481 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2482 * back into the cpu_exec main loop.
2484 tb_lock();
2485 tb_check_watchpoint(cpu);
2486 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2487 cpu->exception_index = EXCP_DEBUG;
2488 cpu_loop_exit(cpu);
2489 } else {
2490 /* Force execution of one insn next time. */
2491 cpu->cflags_next_tb = 1 | curr_cflags();
2492 cpu_loop_exit_noexc(cpu);
2495 } else {
2496 wp->flags &= ~BP_WATCHPOINT_HIT;
2501 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2502 so these check for a hit then pass through to the normal out-of-line
2503 phys routines. */
2504 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2505 unsigned size, MemTxAttrs attrs)
2507 MemTxResult res;
2508 uint64_t data;
2509 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2510 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2512 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2513 switch (size) {
2514 case 1:
2515 data = address_space_ldub(as, addr, attrs, &res);
2516 break;
2517 case 2:
2518 data = address_space_lduw(as, addr, attrs, &res);
2519 break;
2520 case 4:
2521 data = address_space_ldl(as, addr, attrs, &res);
2522 break;
2523 case 8:
2524 data = address_space_ldq(as, addr, attrs, &res);
2525 break;
2526 default: abort();
2528 *pdata = data;
2529 return res;
2532 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2533 uint64_t val, unsigned size,
2534 MemTxAttrs attrs)
2536 MemTxResult res;
2537 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2538 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2540 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2541 switch (size) {
2542 case 1:
2543 address_space_stb(as, addr, val, attrs, &res);
2544 break;
2545 case 2:
2546 address_space_stw(as, addr, val, attrs, &res);
2547 break;
2548 case 4:
2549 address_space_stl(as, addr, val, attrs, &res);
2550 break;
2551 case 8:
2552 address_space_stq(as, addr, val, attrs, &res);
2553 break;
2554 default: abort();
2556 return res;
2559 static const MemoryRegionOps watch_mem_ops = {
2560 .read_with_attrs = watch_mem_read,
2561 .write_with_attrs = watch_mem_write,
2562 .endianness = DEVICE_NATIVE_ENDIAN,
2563 .valid = {
2564 .min_access_size = 1,
2565 .max_access_size = 8,
2566 .unaligned = false,
2568 .impl = {
2569 .min_access_size = 1,
2570 .max_access_size = 8,
2571 .unaligned = false,
2575 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2576 const uint8_t *buf, int len);
2577 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2578 bool is_write);
2580 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2581 unsigned len, MemTxAttrs attrs)
2583 subpage_t *subpage = opaque;
2584 uint8_t buf[8];
2585 MemTxResult res;
2587 #if defined(DEBUG_SUBPAGE)
2588 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2589 subpage, len, addr);
2590 #endif
2591 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2592 if (res) {
2593 return res;
2595 switch (len) {
2596 case 1:
2597 *data = ldub_p(buf);
2598 return MEMTX_OK;
2599 case 2:
2600 *data = lduw_p(buf);
2601 return MEMTX_OK;
2602 case 4:
2603 *data = ldl_p(buf);
2604 return MEMTX_OK;
2605 case 8:
2606 *data = ldq_p(buf);
2607 return MEMTX_OK;
2608 default:
2609 abort();
2613 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2614 uint64_t value, unsigned len, MemTxAttrs attrs)
2616 subpage_t *subpage = opaque;
2617 uint8_t buf[8];
2619 #if defined(DEBUG_SUBPAGE)
2620 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2621 " value %"PRIx64"\n",
2622 __func__, subpage, len, addr, value);
2623 #endif
2624 switch (len) {
2625 case 1:
2626 stb_p(buf, value);
2627 break;
2628 case 2:
2629 stw_p(buf, value);
2630 break;
2631 case 4:
2632 stl_p(buf, value);
2633 break;
2634 case 8:
2635 stq_p(buf, value);
2636 break;
2637 default:
2638 abort();
2640 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2643 static bool subpage_accepts(void *opaque, hwaddr addr,
2644 unsigned len, bool is_write)
2646 subpage_t *subpage = opaque;
2647 #if defined(DEBUG_SUBPAGE)
2648 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2649 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2650 #endif
2652 return flatview_access_valid(subpage->fv, addr + subpage->base,
2653 len, is_write);
2656 static const MemoryRegionOps subpage_ops = {
2657 .read_with_attrs = subpage_read,
2658 .write_with_attrs = subpage_write,
2659 .impl.min_access_size = 1,
2660 .impl.max_access_size = 8,
2661 .valid.min_access_size = 1,
2662 .valid.max_access_size = 8,
2663 .valid.accepts = subpage_accepts,
2664 .endianness = DEVICE_NATIVE_ENDIAN,
2667 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2668 uint16_t section)
2670 int idx, eidx;
2672 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2673 return -1;
2674 idx = SUBPAGE_IDX(start);
2675 eidx = SUBPAGE_IDX(end);
2676 #if defined(DEBUG_SUBPAGE)
2677 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2678 __func__, mmio, start, end, idx, eidx, section);
2679 #endif
2680 for (; idx <= eidx; idx++) {
2681 mmio->sub_section[idx] = section;
2684 return 0;
2687 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2689 subpage_t *mmio;
2691 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2692 mmio->fv = fv;
2693 mmio->base = base;
2694 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2695 NULL, TARGET_PAGE_SIZE);
2696 mmio->iomem.subpage = true;
2697 #if defined(DEBUG_SUBPAGE)
2698 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2699 mmio, base, TARGET_PAGE_SIZE);
2700 #endif
2701 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2703 return mmio;
2706 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2708 assert(fv);
2709 MemoryRegionSection section = {
2710 .fv = fv,
2711 .mr = mr,
2712 .offset_within_address_space = 0,
2713 .offset_within_region = 0,
2714 .size = int128_2_64(),
2717 return phys_section_add(map, &section);
2720 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2722 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2723 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2724 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2725 MemoryRegionSection *sections = d->map.sections;
2727 return sections[index & ~TARGET_PAGE_MASK].mr;
2730 static void io_mem_init(void)
2732 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2733 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2734 NULL, UINT64_MAX);
2736 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2737 * which can be called without the iothread mutex.
2739 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2740 NULL, UINT64_MAX);
2741 memory_region_clear_global_locking(&io_mem_notdirty);
2743 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2744 NULL, UINT64_MAX);
2747 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2749 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2750 uint16_t n;
2752 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2753 assert(n == PHYS_SECTION_UNASSIGNED);
2754 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2755 assert(n == PHYS_SECTION_NOTDIRTY);
2756 n = dummy_section(&d->map, fv, &io_mem_rom);
2757 assert(n == PHYS_SECTION_ROM);
2758 n = dummy_section(&d->map, fv, &io_mem_watch);
2759 assert(n == PHYS_SECTION_WATCH);
2761 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2763 return d;
2766 void address_space_dispatch_free(AddressSpaceDispatch *d)
2768 phys_sections_free(&d->map);
2769 g_free(d);
2772 static void tcg_commit(MemoryListener *listener)
2774 CPUAddressSpace *cpuas;
2775 AddressSpaceDispatch *d;
2777 /* since each CPU stores ram addresses in its TLB cache, we must
2778 reset the modified entries */
2779 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2780 cpu_reloading_memory_map();
2781 /* The CPU and TLB are protected by the iothread lock.
2782 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2783 * may have split the RCU critical section.
2785 d = address_space_to_dispatch(cpuas->as);
2786 atomic_rcu_set(&cpuas->memory_dispatch, d);
2787 tlb_flush(cpuas->cpu);
2790 static void memory_map_init(void)
2792 system_memory = g_malloc(sizeof(*system_memory));
2794 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2795 address_space_init(&address_space_memory, system_memory, "memory");
2797 system_io = g_malloc(sizeof(*system_io));
2798 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2799 65536);
2800 address_space_init(&address_space_io, system_io, "I/O");
2803 MemoryRegion *get_system_memory(void)
2805 return system_memory;
2808 MemoryRegion *get_system_io(void)
2810 return system_io;
2813 #endif /* !defined(CONFIG_USER_ONLY) */
2815 /* physical memory access (slow version, mainly for debug) */
2816 #if defined(CONFIG_USER_ONLY)
2817 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2818 uint8_t *buf, int len, int is_write)
2820 int l, flags;
2821 target_ulong page;
2822 void * p;
2824 while (len > 0) {
2825 page = addr & TARGET_PAGE_MASK;
2826 l = (page + TARGET_PAGE_SIZE) - addr;
2827 if (l > len)
2828 l = len;
2829 flags = page_get_flags(page);
2830 if (!(flags & PAGE_VALID))
2831 return -1;
2832 if (is_write) {
2833 if (!(flags & PAGE_WRITE))
2834 return -1;
2835 /* XXX: this code should not depend on lock_user */
2836 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2837 return -1;
2838 memcpy(p, buf, l);
2839 unlock_user(p, addr, l);
2840 } else {
2841 if (!(flags & PAGE_READ))
2842 return -1;
2843 /* XXX: this code should not depend on lock_user */
2844 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2845 return -1;
2846 memcpy(buf, p, l);
2847 unlock_user(p, addr, 0);
2849 len -= l;
2850 buf += l;
2851 addr += l;
2853 return 0;
2856 #else
2858 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2859 hwaddr length)
2861 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2862 addr += memory_region_get_ram_addr(mr);
2864 /* No early return if dirty_log_mask is or becomes 0, because
2865 * cpu_physical_memory_set_dirty_range will still call
2866 * xen_modified_memory.
2868 if (dirty_log_mask) {
2869 dirty_log_mask =
2870 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2872 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2873 assert(tcg_enabled());
2874 tb_lock();
2875 tb_invalidate_phys_range(addr, addr + length);
2876 tb_unlock();
2877 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2879 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2882 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2884 unsigned access_size_max = mr->ops->valid.max_access_size;
2886 /* Regions are assumed to support 1-4 byte accesses unless
2887 otherwise specified. */
2888 if (access_size_max == 0) {
2889 access_size_max = 4;
2892 /* Bound the maximum access by the alignment of the address. */
2893 if (!mr->ops->impl.unaligned) {
2894 unsigned align_size_max = addr & -addr;
2895 if (align_size_max != 0 && align_size_max < access_size_max) {
2896 access_size_max = align_size_max;
2900 /* Don't attempt accesses larger than the maximum. */
2901 if (l > access_size_max) {
2902 l = access_size_max;
2904 l = pow2floor(l);
2906 return l;
2909 static bool prepare_mmio_access(MemoryRegion *mr)
2911 bool unlocked = !qemu_mutex_iothread_locked();
2912 bool release_lock = false;
2914 if (unlocked && mr->global_locking) {
2915 qemu_mutex_lock_iothread();
2916 unlocked = false;
2917 release_lock = true;
2919 if (mr->flush_coalesced_mmio) {
2920 if (unlocked) {
2921 qemu_mutex_lock_iothread();
2923 qemu_flush_coalesced_mmio_buffer();
2924 if (unlocked) {
2925 qemu_mutex_unlock_iothread();
2929 return release_lock;
2932 /* Called within RCU critical section. */
2933 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2934 MemTxAttrs attrs,
2935 const uint8_t *buf,
2936 int len, hwaddr addr1,
2937 hwaddr l, MemoryRegion *mr)
2939 uint8_t *ptr;
2940 uint64_t val;
2941 MemTxResult result = MEMTX_OK;
2942 bool release_lock = false;
2944 for (;;) {
2945 if (!memory_access_is_direct(mr, true)) {
2946 release_lock |= prepare_mmio_access(mr);
2947 l = memory_access_size(mr, l, addr1);
2948 /* XXX: could force current_cpu to NULL to avoid
2949 potential bugs */
2950 switch (l) {
2951 case 8:
2952 /* 64 bit write access */
2953 val = ldq_p(buf);
2954 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2955 attrs);
2956 break;
2957 case 4:
2958 /* 32 bit write access */
2959 val = (uint32_t)ldl_p(buf);
2960 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2961 attrs);
2962 break;
2963 case 2:
2964 /* 16 bit write access */
2965 val = lduw_p(buf);
2966 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2967 attrs);
2968 break;
2969 case 1:
2970 /* 8 bit write access */
2971 val = ldub_p(buf);
2972 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2973 attrs);
2974 break;
2975 default:
2976 abort();
2978 } else {
2979 /* RAM case */
2980 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2981 memcpy(ptr, buf, l);
2982 invalidate_and_set_dirty(mr, addr1, l);
2985 if (release_lock) {
2986 qemu_mutex_unlock_iothread();
2987 release_lock = false;
2990 len -= l;
2991 buf += l;
2992 addr += l;
2994 if (!len) {
2995 break;
2998 l = len;
2999 mr = flatview_translate(fv, addr, &addr1, &l, true);
3002 return result;
3005 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3006 const uint8_t *buf, int len)
3008 hwaddr l;
3009 hwaddr addr1;
3010 MemoryRegion *mr;
3011 MemTxResult result = MEMTX_OK;
3013 if (len > 0) {
3014 rcu_read_lock();
3015 l = len;
3016 mr = flatview_translate(fv, addr, &addr1, &l, true);
3017 result = flatview_write_continue(fv, addr, attrs, buf, len,
3018 addr1, l, mr);
3019 rcu_read_unlock();
3022 return result;
3025 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3026 MemTxAttrs attrs,
3027 const uint8_t *buf, int len)
3029 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
3032 /* Called within RCU critical section. */
3033 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3034 MemTxAttrs attrs, uint8_t *buf,
3035 int len, hwaddr addr1, hwaddr l,
3036 MemoryRegion *mr)
3038 uint8_t *ptr;
3039 uint64_t val;
3040 MemTxResult result = MEMTX_OK;
3041 bool release_lock = false;
3043 for (;;) {
3044 if (!memory_access_is_direct(mr, false)) {
3045 /* I/O case */
3046 release_lock |= prepare_mmio_access(mr);
3047 l = memory_access_size(mr, l, addr1);
3048 switch (l) {
3049 case 8:
3050 /* 64 bit read access */
3051 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3052 attrs);
3053 stq_p(buf, val);
3054 break;
3055 case 4:
3056 /* 32 bit read access */
3057 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3058 attrs);
3059 stl_p(buf, val);
3060 break;
3061 case 2:
3062 /* 16 bit read access */
3063 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3064 attrs);
3065 stw_p(buf, val);
3066 break;
3067 case 1:
3068 /* 8 bit read access */
3069 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3070 attrs);
3071 stb_p(buf, val);
3072 break;
3073 default:
3074 abort();
3076 } else {
3077 /* RAM case */
3078 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3079 memcpy(buf, ptr, l);
3082 if (release_lock) {
3083 qemu_mutex_unlock_iothread();
3084 release_lock = false;
3087 len -= l;
3088 buf += l;
3089 addr += l;
3091 if (!len) {
3092 break;
3095 l = len;
3096 mr = flatview_translate(fv, addr, &addr1, &l, false);
3099 return result;
3102 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3103 MemTxAttrs attrs, uint8_t *buf, int len)
3105 hwaddr l;
3106 hwaddr addr1;
3107 MemoryRegion *mr;
3108 MemTxResult result = MEMTX_OK;
3110 if (len > 0) {
3111 rcu_read_lock();
3112 l = len;
3113 mr = flatview_translate(fv, addr, &addr1, &l, false);
3114 result = flatview_read_continue(fv, addr, attrs, buf, len,
3115 addr1, l, mr);
3116 rcu_read_unlock();
3119 return result;
3122 static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3123 uint8_t *buf, int len, bool is_write)
3125 if (is_write) {
3126 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3127 } else {
3128 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3132 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3133 MemTxAttrs attrs, uint8_t *buf,
3134 int len, bool is_write)
3136 return flatview_rw(address_space_to_flatview(as),
3137 addr, attrs, buf, len, is_write);
3140 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3141 int len, int is_write)
3143 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3144 buf, len, is_write);
3147 enum write_rom_type {
3148 WRITE_DATA,
3149 FLUSH_CACHE,
3152 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3153 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3155 hwaddr l;
3156 uint8_t *ptr;
3157 hwaddr addr1;
3158 MemoryRegion *mr;
3160 rcu_read_lock();
3161 while (len > 0) {
3162 l = len;
3163 mr = address_space_translate(as, addr, &addr1, &l, true);
3165 if (!(memory_region_is_ram(mr) ||
3166 memory_region_is_romd(mr))) {
3167 l = memory_access_size(mr, l, addr1);
3168 } else {
3169 /* ROM/RAM case */
3170 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3171 switch (type) {
3172 case WRITE_DATA:
3173 memcpy(ptr, buf, l);
3174 invalidate_and_set_dirty(mr, addr1, l);
3175 break;
3176 case FLUSH_CACHE:
3177 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3178 break;
3181 len -= l;
3182 buf += l;
3183 addr += l;
3185 rcu_read_unlock();
3188 /* used for ROM loading : can write in RAM and ROM */
3189 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3190 const uint8_t *buf, int len)
3192 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3195 void cpu_flush_icache_range(hwaddr start, int len)
3198 * This function should do the same thing as an icache flush that was
3199 * triggered from within the guest. For TCG we are always cache coherent,
3200 * so there is no need to flush anything. For KVM / Xen we need to flush
3201 * the host's instruction cache at least.
3203 if (tcg_enabled()) {
3204 return;
3207 cpu_physical_memory_write_rom_internal(&address_space_memory,
3208 start, NULL, len, FLUSH_CACHE);
3211 typedef struct {
3212 MemoryRegion *mr;
3213 void *buffer;
3214 hwaddr addr;
3215 hwaddr len;
3216 bool in_use;
3217 } BounceBuffer;
3219 static BounceBuffer bounce;
3221 typedef struct MapClient {
3222 QEMUBH *bh;
3223 QLIST_ENTRY(MapClient) link;
3224 } MapClient;
3226 QemuMutex map_client_list_lock;
3227 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3228 = QLIST_HEAD_INITIALIZER(map_client_list);
3230 static void cpu_unregister_map_client_do(MapClient *client)
3232 QLIST_REMOVE(client, link);
3233 g_free(client);
3236 static void cpu_notify_map_clients_locked(void)
3238 MapClient *client;
3240 while (!QLIST_EMPTY(&map_client_list)) {
3241 client = QLIST_FIRST(&map_client_list);
3242 qemu_bh_schedule(client->bh);
3243 cpu_unregister_map_client_do(client);
3247 void cpu_register_map_client(QEMUBH *bh)
3249 MapClient *client = g_malloc(sizeof(*client));
3251 qemu_mutex_lock(&map_client_list_lock);
3252 client->bh = bh;
3253 QLIST_INSERT_HEAD(&map_client_list, client, link);
3254 if (!atomic_read(&bounce.in_use)) {
3255 cpu_notify_map_clients_locked();
3257 qemu_mutex_unlock(&map_client_list_lock);
3260 void cpu_exec_init_all(void)
3262 qemu_mutex_init(&ram_list.mutex);
3263 /* The data structures we set up here depend on knowing the page size,
3264 * so no more changes can be made after this point.
3265 * In an ideal world, nothing we did before we had finished the
3266 * machine setup would care about the target page size, and we could
3267 * do this much later, rather than requiring board models to state
3268 * up front what their requirements are.
3270 finalize_target_page_bits();
3271 io_mem_init();
3272 memory_map_init();
3273 qemu_mutex_init(&map_client_list_lock);
3276 void cpu_unregister_map_client(QEMUBH *bh)
3278 MapClient *client;
3280 qemu_mutex_lock(&map_client_list_lock);
3281 QLIST_FOREACH(client, &map_client_list, link) {
3282 if (client->bh == bh) {
3283 cpu_unregister_map_client_do(client);
3284 break;
3287 qemu_mutex_unlock(&map_client_list_lock);
3290 static void cpu_notify_map_clients(void)
3292 qemu_mutex_lock(&map_client_list_lock);
3293 cpu_notify_map_clients_locked();
3294 qemu_mutex_unlock(&map_client_list_lock);
3297 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3298 bool is_write)
3300 MemoryRegion *mr;
3301 hwaddr l, xlat;
3303 rcu_read_lock();
3304 while (len > 0) {
3305 l = len;
3306 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3307 if (!memory_access_is_direct(mr, is_write)) {
3308 l = memory_access_size(mr, l, addr);
3309 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3310 rcu_read_unlock();
3311 return false;
3315 len -= l;
3316 addr += l;
3318 rcu_read_unlock();
3319 return true;
3322 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3323 int len, bool is_write)
3325 return flatview_access_valid(address_space_to_flatview(as),
3326 addr, len, is_write);
3329 static hwaddr
3330 flatview_extend_translation(FlatView *fv, hwaddr addr,
3331 hwaddr target_len,
3332 MemoryRegion *mr, hwaddr base, hwaddr len,
3333 bool is_write)
3335 hwaddr done = 0;
3336 hwaddr xlat;
3337 MemoryRegion *this_mr;
3339 for (;;) {
3340 target_len -= len;
3341 addr += len;
3342 done += len;
3343 if (target_len == 0) {
3344 return done;
3347 len = target_len;
3348 this_mr = flatview_translate(fv, addr, &xlat,
3349 &len, is_write);
3350 if (this_mr != mr || xlat != base + done) {
3351 return done;
3356 /* Map a physical memory region into a host virtual address.
3357 * May map a subset of the requested range, given by and returned in *plen.
3358 * May return NULL if resources needed to perform the mapping are exhausted.
3359 * Use only for reads OR writes - not for read-modify-write operations.
3360 * Use cpu_register_map_client() to know when retrying the map operation is
3361 * likely to succeed.
3363 void *address_space_map(AddressSpace *as,
3364 hwaddr addr,
3365 hwaddr *plen,
3366 bool is_write)
3368 hwaddr len = *plen;
3369 hwaddr l, xlat;
3370 MemoryRegion *mr;
3371 void *ptr;
3372 FlatView *fv = address_space_to_flatview(as);
3374 if (len == 0) {
3375 return NULL;
3378 l = len;
3379 rcu_read_lock();
3380 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3382 if (!memory_access_is_direct(mr, is_write)) {
3383 if (atomic_xchg(&bounce.in_use, true)) {
3384 rcu_read_unlock();
3385 return NULL;
3387 /* Avoid unbounded allocations */
3388 l = MIN(l, TARGET_PAGE_SIZE);
3389 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3390 bounce.addr = addr;
3391 bounce.len = l;
3393 memory_region_ref(mr);
3394 bounce.mr = mr;
3395 if (!is_write) {
3396 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3397 bounce.buffer, l);
3400 rcu_read_unlock();
3401 *plen = l;
3402 return bounce.buffer;
3406 memory_region_ref(mr);
3407 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3408 l, is_write);
3409 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3410 rcu_read_unlock();
3412 return ptr;
3415 /* Unmaps a memory region previously mapped by address_space_map().
3416 * Will also mark the memory as dirty if is_write == 1. access_len gives
3417 * the amount of memory that was actually read or written by the caller.
3419 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3420 int is_write, hwaddr access_len)
3422 if (buffer != bounce.buffer) {
3423 MemoryRegion *mr;
3424 ram_addr_t addr1;
3426 mr = memory_region_from_host(buffer, &addr1);
3427 assert(mr != NULL);
3428 if (is_write) {
3429 invalidate_and_set_dirty(mr, addr1, access_len);
3431 if (xen_enabled()) {
3432 xen_invalidate_map_cache_entry(buffer);
3434 memory_region_unref(mr);
3435 return;
3437 if (is_write) {
3438 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3439 bounce.buffer, access_len);
3441 qemu_vfree(bounce.buffer);
3442 bounce.buffer = NULL;
3443 memory_region_unref(bounce.mr);
3444 atomic_mb_set(&bounce.in_use, false);
3445 cpu_notify_map_clients();
3448 void *cpu_physical_memory_map(hwaddr addr,
3449 hwaddr *plen,
3450 int is_write)
3452 return address_space_map(&address_space_memory, addr, plen, is_write);
3455 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3456 int is_write, hwaddr access_len)
3458 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3461 #define ARG1_DECL AddressSpace *as
3462 #define ARG1 as
3463 #define SUFFIX
3464 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3465 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3466 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3467 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3468 #define RCU_READ_LOCK(...) rcu_read_lock()
3469 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3470 #include "memory_ldst.inc.c"
3472 int64_t address_space_cache_init(MemoryRegionCache *cache,
3473 AddressSpace *as,
3474 hwaddr addr,
3475 hwaddr len,
3476 bool is_write)
3478 cache->len = len;
3479 cache->as = as;
3480 cache->xlat = addr;
3481 return len;
3484 void address_space_cache_invalidate(MemoryRegionCache *cache,
3485 hwaddr addr,
3486 hwaddr access_len)
3490 void address_space_cache_destroy(MemoryRegionCache *cache)
3492 cache->as = NULL;
3495 #define ARG1_DECL MemoryRegionCache *cache
3496 #define ARG1 cache
3497 #define SUFFIX _cached
3498 #define TRANSLATE(addr, ...) \
3499 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3500 #define IS_DIRECT(mr, is_write) true
3501 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3502 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3503 #define RCU_READ_LOCK() rcu_read_lock()
3504 #define RCU_READ_UNLOCK() rcu_read_unlock()
3505 #include "memory_ldst.inc.c"
3507 /* virtual memory access for debug (includes writing to ROM) */
3508 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3509 uint8_t *buf, int len, int is_write)
3511 int l;
3512 hwaddr phys_addr;
3513 target_ulong page;
3515 cpu_synchronize_state(cpu);
3516 while (len > 0) {
3517 int asidx;
3518 MemTxAttrs attrs;
3520 page = addr & TARGET_PAGE_MASK;
3521 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3522 asidx = cpu_asidx_from_attrs(cpu, attrs);
3523 /* if no physical page mapped, return an error */
3524 if (phys_addr == -1)
3525 return -1;
3526 l = (page + TARGET_PAGE_SIZE) - addr;
3527 if (l > len)
3528 l = len;
3529 phys_addr += (addr & ~TARGET_PAGE_MASK);
3530 if (is_write) {
3531 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3532 phys_addr, buf, l);
3533 } else {
3534 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3535 MEMTXATTRS_UNSPECIFIED,
3536 buf, l, 0);
3538 len -= l;
3539 buf += l;
3540 addr += l;
3542 return 0;
3546 * Allows code that needs to deal with migration bitmaps etc to still be built
3547 * target independent.
3549 size_t qemu_target_page_size(void)
3551 return TARGET_PAGE_SIZE;
3554 int qemu_target_page_bits(void)
3556 return TARGET_PAGE_BITS;
3559 int qemu_target_page_bits_min(void)
3561 return TARGET_PAGE_BITS_MIN;
3563 #endif
3566 * A helper function for the _utterly broken_ virtio device model to find out if
3567 * it's running on a big endian machine. Don't do this at home kids!
3569 bool target_words_bigendian(void);
3570 bool target_words_bigendian(void)
3572 #if defined(TARGET_WORDS_BIGENDIAN)
3573 return true;
3574 #else
3575 return false;
3576 #endif
3579 #ifndef CONFIG_USER_ONLY
3580 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3582 MemoryRegion*mr;
3583 hwaddr l = 1;
3584 bool res;
3586 rcu_read_lock();
3587 mr = address_space_translate(&address_space_memory,
3588 phys_addr, &phys_addr, &l, false);
3590 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3591 rcu_read_unlock();
3592 return res;
3595 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3597 RAMBlock *block;
3598 int ret = 0;
3600 rcu_read_lock();
3601 RAMBLOCK_FOREACH(block) {
3602 ret = func(block->idstr, block->host, block->offset,
3603 block->used_length, opaque);
3604 if (ret) {
3605 break;
3608 rcu_read_unlock();
3609 return ret;
3613 * Unmap pages of memory from start to start+length such that
3614 * they a) read as 0, b) Trigger whatever fault mechanism
3615 * the OS provides for postcopy.
3616 * The pages must be unmapped by the end of the function.
3617 * Returns: 0 on success, none-0 on failure
3620 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3622 int ret = -1;
3624 uint8_t *host_startaddr = rb->host + start;
3626 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3627 error_report("ram_block_discard_range: Unaligned start address: %p",
3628 host_startaddr);
3629 goto err;
3632 if ((start + length) <= rb->used_length) {
3633 uint8_t *host_endaddr = host_startaddr + length;
3634 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3635 error_report("ram_block_discard_range: Unaligned end address: %p",
3636 host_endaddr);
3637 goto err;
3640 errno = ENOTSUP; /* If we are missing MADVISE etc */
3642 if (rb->page_size == qemu_host_page_size) {
3643 #if defined(CONFIG_MADVISE)
3644 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3645 * freeing the page.
3647 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3648 #endif
3649 } else {
3650 /* Huge page case - unfortunately it can't do DONTNEED, but
3651 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3652 * huge page file.
3654 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3655 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3656 start, length);
3657 #endif
3659 if (ret) {
3660 ret = -errno;
3661 error_report("ram_block_discard_range: Failed to discard range "
3662 "%s:%" PRIx64 " +%zx (%d)",
3663 rb->idstr, start, length, ret);
3665 } else {
3666 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3667 "/%zx/" RAM_ADDR_FMT")",
3668 rb->idstr, start, length, rb->used_length);
3671 err:
3672 return ret;
3675 #endif
3677 void page_size_init(void)
3679 /* NOTE: we can always suppose that qemu_host_page_size >=
3680 TARGET_PAGE_SIZE */
3681 if (qemu_host_page_size == 0) {
3682 qemu_host_page_size = qemu_real_host_page_size;
3684 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3685 qemu_host_page_size = TARGET_PAGE_SIZE;
3687 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3690 #if !defined(CONFIG_USER_ONLY)
3692 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3693 int start, int end, int skip, int ptr)
3695 if (start == end - 1) {
3696 mon(f, "\t%3d ", start);
3697 } else {
3698 mon(f, "\t%3d..%-3d ", start, end - 1);
3700 mon(f, " skip=%d ", skip);
3701 if (ptr == PHYS_MAP_NODE_NIL) {
3702 mon(f, " ptr=NIL");
3703 } else if (!skip) {
3704 mon(f, " ptr=#%d", ptr);
3705 } else {
3706 mon(f, " ptr=[%d]", ptr);
3708 mon(f, "\n");
3711 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3712 int128_sub((size), int128_one())) : 0)
3714 void mtree_print_dispatch(fprintf_function mon, void *f,
3715 AddressSpaceDispatch *d, MemoryRegion *root)
3717 int i;
3719 mon(f, " Dispatch\n");
3720 mon(f, " Physical sections\n");
3722 for (i = 0; i < d->map.sections_nb; ++i) {
3723 MemoryRegionSection *s = d->map.sections + i;
3724 const char *names[] = { " [unassigned]", " [not dirty]",
3725 " [ROM]", " [watch]" };
3727 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3729 s->offset_within_address_space,
3730 s->offset_within_address_space + MR_SIZE(s->mr->size),
3731 s->mr->name ? s->mr->name : "(noname)",
3732 i < ARRAY_SIZE(names) ? names[i] : "",
3733 s->mr == root ? " [ROOT]" : "",
3734 s == d->mru_section ? " [MRU]" : "",
3735 s->mr->is_iommu ? " [iommu]" : "");
3737 if (s->mr->alias) {
3738 mon(f, " alias=%s", s->mr->alias->name ?
3739 s->mr->alias->name : "noname");
3741 mon(f, "\n");
3744 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3745 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3746 for (i = 0; i < d->map.nodes_nb; ++i) {
3747 int j, jprev;
3748 PhysPageEntry prev;
3749 Node *n = d->map.nodes + i;
3751 mon(f, " [%d]\n", i);
3753 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3754 PhysPageEntry *pe = *n + j;
3756 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3757 continue;
3760 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3762 jprev = j;
3763 prev = *pe;
3766 if (jprev != ARRAY_SIZE(*n)) {
3767 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3772 #endif