crypto: convert xts_tweak_encdec to use xts_uint128 type
[qemu/ericb.git] / qemu-options.hx
blob08f8516a9aae034438cada57c93a8217aa9557e9
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n"
46 " memory-encryption=@var{} memory encryption object to use (default=none)\n",
47 QEMU_ARCH_ALL)
48 STEXI
49 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
50 @findex -machine
51 Select the emulated machine by @var{name}. Use @code{-machine help} to list
52 available machines.
54 For architectures which aim to support live migration compatibility
55 across releases, each release will introduce a new versioned machine
56 type. For example, the 2.8.0 release introduced machine types
57 ``pc-i440fx-2.8'' and ``pc-q35-2.8'' for the x86_64/i686 architectures.
59 To allow live migration of guests from QEMU version 2.8.0, to QEMU
60 version 2.9.0, the 2.9.0 version must support the ``pc-i440fx-2.8''
61 and ``pc-q35-2.8'' machines too. To allow users live migrating VMs
62 to skip multiple intermediate releases when upgrading, new releases
63 of QEMU will support machine types from many previous versions.
65 Supported machine properties are:
66 @table @option
67 @item accel=@var{accels1}[:@var{accels2}[:...]]
68 This is used to enable an accelerator. Depending on the target architecture,
69 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
70 more than one accelerator specified, the next one is used if the previous one
71 fails to initialize.
72 @item kernel_irqchip=on|off
73 Controls in-kernel irqchip support for the chosen accelerator when available.
74 @item gfx_passthru=on|off
75 Enables IGD GFX passthrough support for the chosen machine when available.
76 @item vmport=on|off|auto
77 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
78 value based on accel. For accel=xen the default is off otherwise the default
79 is on.
80 @item kvm_shadow_mem=size
81 Defines the size of the KVM shadow MMU.
82 @item dump-guest-core=on|off
83 Include guest memory in a core dump. The default is on.
84 @item mem-merge=on|off
85 Enables or disables memory merge support. This feature, when supported by
86 the host, de-duplicates identical memory pages among VMs instances
87 (enabled by default).
88 @item aes-key-wrap=on|off
89 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
90 controls whether AES wrapping keys will be created to allow
91 execution of AES cryptographic functions. The default is on.
92 @item dea-key-wrap=on|off
93 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
94 controls whether DEA wrapping keys will be created to allow
95 execution of DEA cryptographic functions. The default is on.
96 @item nvdimm=on|off
97 Enables or disables NVDIMM support. The default is off.
98 @item enforce-config-section=on|off
99 If @option{enforce-config-section} is set to @var{on}, force migration
100 code to send configuration section even if the machine-type sets the
101 @option{migration.send-configuration} property to @var{off}.
102 NOTE: this parameter is deprecated. Please use @option{-global}
103 @option{migration.send-configuration}=@var{on|off} instead.
104 @item memory-encryption=@var{}
105 Memory encryption object to use. The default is none.
106 @end table
107 ETEXI
109 HXCOMM Deprecated by -machine
110 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
112 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
113 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
114 STEXI
115 @item -cpu @var{model}
116 @findex -cpu
117 Select CPU model (@code{-cpu help} for list and additional feature selection)
118 ETEXI
120 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
121 "-accel [accel=]accelerator[,thread=single|multi]\n"
122 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n"
123 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL)
124 STEXI
125 @item -accel @var{name}[,prop=@var{value}[,...]]
126 @findex -accel
127 This is used to enable an accelerator. Depending on the target architecture,
128 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
129 more than one accelerator specified, the next one is used if the previous one
130 fails to initialize.
131 @table @option
132 @item thread=single|multi
133 Controls number of TCG threads. When the TCG is multi-threaded there will be one
134 thread per vCPU therefor taking advantage of additional host cores. The default
135 is to enable multi-threading where both the back-end and front-ends support it and
136 no incompatible TCG features have been enabled (e.g. icount/replay).
137 @end table
138 ETEXI
140 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
141 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
142 " set the number of CPUs to 'n' [default=1]\n"
143 " maxcpus= maximum number of total cpus, including\n"
144 " offline CPUs for hotplug, etc\n"
145 " cores= number of CPU cores on one socket\n"
146 " threads= number of threads on one CPU core\n"
147 " sockets= number of discrete sockets in the system\n",
148 QEMU_ARCH_ALL)
149 STEXI
150 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
151 @findex -smp
152 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
153 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
154 to 4.
155 For the PC target, the number of @var{cores} per socket, the number
156 of @var{threads} per cores and the total number of @var{sockets} can be
157 specified. Missing values will be computed. If any on the three values is
158 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
159 specifies the maximum number of hotpluggable CPUs.
160 ETEXI
162 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
163 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
164 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
165 "-numa dist,src=source,dst=destination,val=distance\n"
166 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n",
167 QEMU_ARCH_ALL)
168 STEXI
169 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
170 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
171 @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
172 @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
173 @findex -numa
174 Define a NUMA node and assign RAM and VCPUs to it.
175 Set the NUMA distance from a source node to a destination node.
177 Legacy VCPU assignment uses @samp{cpus} option where
178 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
179 @samp{cpus} option represent a contiguous range of CPU indexes
180 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
181 set of VCPUs can be represented by providing multiple @samp{cpus}
182 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
183 split between them.
185 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
186 a NUMA node:
187 @example
188 -numa node,cpus=0-2,cpus=5
189 @end example
191 @samp{cpu} option is a new alternative to @samp{cpus} option
192 which uses @samp{socket-id|core-id|thread-id} properties to assign
193 CPU objects to a @var{node} using topology layout properties of CPU.
194 The set of properties is machine specific, and depends on used
195 machine type/@samp{smp} options. It could be queried with
196 @samp{hotpluggable-cpus} monitor command.
197 @samp{node-id} property specifies @var{node} to which CPU object
198 will be assigned, it's required for @var{node} to be declared
199 with @samp{node} option before it's used with @samp{cpu} option.
201 For example:
202 @example
203 -M pc \
204 -smp 1,sockets=2,maxcpus=2 \
205 -numa node,nodeid=0 -numa node,nodeid=1 \
206 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
207 @end example
209 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
210 assigns RAM from a given memory backend device to a node. If
211 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
212 split equally between them.
214 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
215 if one node uses @samp{memdev}, all of them have to use it.
217 @var{source} and @var{destination} are NUMA node IDs.
218 @var{distance} is the NUMA distance from @var{source} to @var{destination}.
219 The distance from a node to itself is always 10. If any pair of nodes is
220 given a distance, then all pairs must be given distances. Although, when
221 distances are only given in one direction for each pair of nodes, then
222 the distances in the opposite directions are assumed to be the same. If,
223 however, an asymmetrical pair of distances is given for even one node
224 pair, then all node pairs must be provided distance values for both
225 directions, even when they are symmetrical. When a node is unreachable
226 from another node, set the pair's distance to 255.
228 Note that the -@option{numa} option doesn't allocate any of the
229 specified resources, it just assigns existing resources to NUMA
230 nodes. This means that one still has to use the @option{-m},
231 @option{-smp} options to allocate RAM and VCPUs respectively.
233 ETEXI
235 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
236 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
237 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
238 STEXI
239 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
240 @findex -add-fd
242 Add a file descriptor to an fd set. Valid options are:
244 @table @option
245 @item fd=@var{fd}
246 This option defines the file descriptor of which a duplicate is added to fd set.
247 The file descriptor cannot be stdin, stdout, or stderr.
248 @item set=@var{set}
249 This option defines the ID of the fd set to add the file descriptor to.
250 @item opaque=@var{opaque}
251 This option defines a free-form string that can be used to describe @var{fd}.
252 @end table
254 You can open an image using pre-opened file descriptors from an fd set:
255 @example
256 qemu-system-i386
257 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
258 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
259 -drive file=/dev/fdset/2,index=0,media=disk
260 @end example
261 ETEXI
263 DEF("set", HAS_ARG, QEMU_OPTION_set,
264 "-set group.id.arg=value\n"
265 " set <arg> parameter for item <id> of type <group>\n"
266 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
267 STEXI
268 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
269 @findex -set
270 Set parameter @var{arg} for item @var{id} of type @var{group}
271 ETEXI
273 DEF("global", HAS_ARG, QEMU_OPTION_global,
274 "-global driver.property=value\n"
275 "-global driver=driver,property=property,value=value\n"
276 " set a global default for a driver property\n",
277 QEMU_ARCH_ALL)
278 STEXI
279 @item -global @var{driver}.@var{prop}=@var{value}
280 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
281 @findex -global
282 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
284 @example
285 qemu-system-i386 -global ide-hd.physical_block_size=4096 disk-image.img
286 @end example
288 In particular, you can use this to set driver properties for devices which are
289 created automatically by the machine model. To create a device which is not
290 created automatically and set properties on it, use -@option{device}.
292 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
293 driver=@var{driver},property=@var{prop},value=@var{value}. The
294 longhand syntax works even when @var{driver} contains a dot.
295 ETEXI
297 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
298 "-boot [order=drives][,once=drives][,menu=on|off]\n"
299 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
300 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
301 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
302 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
303 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
304 QEMU_ARCH_ALL)
305 STEXI
306 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
307 @findex -boot
308 Specify boot order @var{drives} as a string of drive letters. Valid
309 drive letters depend on the target architecture. The x86 PC uses: a, b
310 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
311 from network adapter 1-4), hard disk boot is the default. To apply a
312 particular boot order only on the first startup, specify it via
313 @option{once}. Note that the @option{order} or @option{once} parameter
314 should not be used together with the @option{bootindex} property of
315 devices, since the firmware implementations normally do not support both
316 at the same time.
318 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
319 as firmware/BIOS supports them. The default is non-interactive boot.
321 A splash picture could be passed to bios, enabling user to show it as logo,
322 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
323 supports them. Currently Seabios for X86 system support it.
324 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
325 format(true color). The resolution should be supported by the SVGA mode, so
326 the recommended is 320x240, 640x480, 800x640.
328 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
329 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
330 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
331 system support it.
333 Do strict boot via @option{strict=on} as far as firmware/BIOS
334 supports it. This only effects when boot priority is changed by
335 bootindex options. The default is non-strict boot.
337 @example
338 # try to boot from network first, then from hard disk
339 qemu-system-i386 -boot order=nc
340 # boot from CD-ROM first, switch back to default order after reboot
341 qemu-system-i386 -boot once=d
342 # boot with a splash picture for 5 seconds.
343 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
344 @end example
346 Note: The legacy format '-boot @var{drives}' is still supported but its
347 use is discouraged as it may be removed from future versions.
348 ETEXI
350 DEF("m", HAS_ARG, QEMU_OPTION_m,
351 "-m [size=]megs[,slots=n,maxmem=size]\n"
352 " configure guest RAM\n"
353 " size: initial amount of guest memory\n"
354 " slots: number of hotplug slots (default: none)\n"
355 " maxmem: maximum amount of guest memory (default: none)\n"
356 "NOTE: Some architectures might enforce a specific granularity\n",
357 QEMU_ARCH_ALL)
358 STEXI
359 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
360 @findex -m
361 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
362 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
363 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
364 could be used to set amount of hotpluggable memory slots and maximum amount of
365 memory. Note that @var{maxmem} must be aligned to the page size.
367 For example, the following command-line sets the guest startup RAM size to
368 1GB, creates 3 slots to hotplug additional memory and sets the maximum
369 memory the guest can reach to 4GB:
371 @example
372 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
373 @end example
375 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
376 be enabled and the guest startup RAM will never increase.
377 ETEXI
379 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
380 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
381 STEXI
382 @item -mem-path @var{path}
383 @findex -mem-path
384 Allocate guest RAM from a temporarily created file in @var{path}.
385 ETEXI
387 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
388 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
389 QEMU_ARCH_ALL)
390 STEXI
391 @item -mem-prealloc
392 @findex -mem-prealloc
393 Preallocate memory when using -mem-path.
394 ETEXI
396 DEF("k", HAS_ARG, QEMU_OPTION_k,
397 "-k language use keyboard layout (for example 'fr' for French)\n",
398 QEMU_ARCH_ALL)
399 STEXI
400 @item -k @var{language}
401 @findex -k
402 Use keyboard layout @var{language} (for example @code{fr} for
403 French). This option is only needed where it is not easy to get raw PC
404 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
405 display). You don't normally need to use it on PC/Linux or PC/Windows
406 hosts.
408 The available layouts are:
409 @example
410 ar de-ch es fo fr-ca hu ja mk no pt-br sv
411 da en-gb et fr fr-ch is lt nl pl ru th
412 de en-us fi fr-be hr it lv nl-be pt sl tr
413 @end example
415 The default is @code{en-us}.
416 ETEXI
419 DEF("audio-help", 0, QEMU_OPTION_audio_help,
420 "-audio-help print list of audio drivers and their options\n",
421 QEMU_ARCH_ALL)
422 STEXI
423 @item -audio-help
424 @findex -audio-help
425 Will show the audio subsystem help: list of drivers, tunable
426 parameters.
427 ETEXI
429 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
430 "-soundhw c1,... enable audio support\n"
431 " and only specified sound cards (comma separated list)\n"
432 " use '-soundhw help' to get the list of supported cards\n"
433 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
434 STEXI
435 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
436 @findex -soundhw
437 Enable audio and selected sound hardware. Use 'help' to print all
438 available sound hardware.
440 @example
441 qemu-system-i386 -soundhw sb16,adlib disk.img
442 qemu-system-i386 -soundhw es1370 disk.img
443 qemu-system-i386 -soundhw ac97 disk.img
444 qemu-system-i386 -soundhw hda disk.img
445 qemu-system-i386 -soundhw all disk.img
446 qemu-system-i386 -soundhw help
447 @end example
449 Note that Linux's i810_audio OSS kernel (for AC97) module might
450 require manually specifying clocking.
452 @example
453 modprobe i810_audio clocking=48000
454 @end example
455 ETEXI
457 DEF("device", HAS_ARG, QEMU_OPTION_device,
458 "-device driver[,prop[=value][,...]]\n"
459 " add device (based on driver)\n"
460 " prop=value,... sets driver properties\n"
461 " use '-device help' to print all possible drivers\n"
462 " use '-device driver,help' to print all possible properties\n",
463 QEMU_ARCH_ALL)
464 STEXI
465 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
466 @findex -device
467 Add device @var{driver}. @var{prop}=@var{value} sets driver
468 properties. Valid properties depend on the driver. To get help on
469 possible drivers and properties, use @code{-device help} and
470 @code{-device @var{driver},help}.
472 Some drivers are:
473 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}]
475 Add an IPMI BMC. This is a simulation of a hardware management
476 interface processor that normally sits on a system. It provides
477 a watchdog and the ability to reset and power control the system.
478 You need to connect this to an IPMI interface to make it useful
480 The IPMI slave address to use for the BMC. The default is 0x20.
481 This address is the BMC's address on the I2C network of management
482 controllers. If you don't know what this means, it is safe to ignore
485 @table @option
486 @item bmc=@var{id}
487 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
488 @item slave_addr=@var{val}
489 Define slave address to use for the BMC. The default is 0x20.
490 @item sdrfile=@var{file}
491 file containing raw Sensor Data Records (SDR) data. The default is none.
492 @item fruareasize=@var{val}
493 size of a Field Replaceable Unit (FRU) area. The default is 1024.
494 @item frudatafile=@var{file}
495 file containing raw Field Replaceable Unit (FRU) inventory data. The default is none.
496 @end table
498 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
500 Add a connection to an external IPMI BMC simulator. Instead of
501 locally emulating the BMC like the above item, instead connect
502 to an external entity that provides the IPMI services.
504 A connection is made to an external BMC simulator. If you do this, it
505 is strongly recommended that you use the "reconnect=" chardev option
506 to reconnect to the simulator if the connection is lost. Note that if
507 this is not used carefully, it can be a security issue, as the
508 interface has the ability to send resets, NMIs, and power off the VM.
509 It's best if QEMU makes a connection to an external simulator running
510 on a secure port on localhost, so neither the simulator nor QEMU is
511 exposed to any outside network.
513 See the "lanserv/README.vm" file in the OpenIPMI library for more
514 details on the external interface.
516 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
518 Add a KCS IPMI interafce on the ISA bus. This also adds a
519 corresponding ACPI and SMBIOS entries, if appropriate.
521 @table @option
522 @item bmc=@var{id}
523 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
524 @item ioport=@var{val}
525 Define the I/O address of the interface. The default is 0xca0 for KCS.
526 @item irq=@var{val}
527 Define the interrupt to use. The default is 5. To disable interrupts,
528 set this to 0.
529 @end table
531 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
533 Like the KCS interface, but defines a BT interface. The default port is
534 0xe4 and the default interrupt is 5.
536 ETEXI
538 DEF("name", HAS_ARG, QEMU_OPTION_name,
539 "-name string1[,process=string2][,debug-threads=on|off]\n"
540 " set the name of the guest\n"
541 " string1 sets the window title and string2 the process name (on Linux)\n"
542 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
543 " NOTE: The thread names are for debugging and not a stable API.\n",
544 QEMU_ARCH_ALL)
545 STEXI
546 @item -name @var{name}
547 @findex -name
548 Sets the @var{name} of the guest.
549 This name will be displayed in the SDL window caption.
550 The @var{name} will also be used for the VNC server.
551 Also optionally set the top visible process name in Linux.
552 Naming of individual threads can also be enabled on Linux to aid debugging.
553 ETEXI
555 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
556 "-uuid %08x-%04x-%04x-%04x-%012x\n"
557 " specify machine UUID\n", QEMU_ARCH_ALL)
558 STEXI
559 @item -uuid @var{uuid}
560 @findex -uuid
561 Set system UUID.
562 ETEXI
564 STEXI
565 @end table
566 ETEXI
567 DEFHEADING()
569 DEFHEADING(Block device options:)
570 STEXI
571 @table @option
572 ETEXI
574 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
575 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
576 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
577 STEXI
578 @item -fda @var{file}
579 @itemx -fdb @var{file}
580 @findex -fda
581 @findex -fdb
582 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
583 ETEXI
585 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
586 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
587 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
588 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
589 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
590 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
591 STEXI
592 @item -hda @var{file}
593 @itemx -hdb @var{file}
594 @itemx -hdc @var{file}
595 @itemx -hdd @var{file}
596 @findex -hda
597 @findex -hdb
598 @findex -hdc
599 @findex -hdd
600 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
601 ETEXI
603 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
604 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
605 QEMU_ARCH_ALL)
606 STEXI
607 @item -cdrom @var{file}
608 @findex -cdrom
609 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
610 @option{-cdrom} at the same time). You can use the host CD-ROM by
611 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
612 ETEXI
614 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
615 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
616 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
617 " [,read-only=on|off][,detect-zeroes=on|off|unmap]\n"
618 " [,driver specific parameters...]\n"
619 " configure a block backend\n", QEMU_ARCH_ALL)
620 STEXI
621 @item -blockdev @var{option}[,@var{option}[,@var{option}[,...]]]
622 @findex -blockdev
624 Define a new block driver node. Some of the options apply to all block drivers,
625 other options are only accepted for a specific block driver. See below for a
626 list of generic options and options for the most common block drivers.
628 Options that expect a reference to another node (e.g. @code{file}) can be
629 given in two ways. Either you specify the node name of an already existing node
630 (file=@var{node-name}), or you define a new node inline, adding options
631 for the referenced node after a dot (file.filename=@var{path},file.aio=native).
633 A block driver node created with @option{-blockdev} can be used for a guest
634 device by specifying its node name for the @code{drive} property in a
635 @option{-device} argument that defines a block device.
637 @table @option
638 @item Valid options for any block driver node:
640 @table @code
641 @item driver
642 Specifies the block driver to use for the given node.
643 @item node-name
644 This defines the name of the block driver node by which it will be referenced
645 later. The name must be unique, i.e. it must not match the name of a different
646 block driver node, or (if you use @option{-drive} as well) the ID of a drive.
648 If no node name is specified, it is automatically generated. The generated node
649 name is not intended to be predictable and changes between QEMU invocations.
650 For the top level, an explicit node name must be specified.
651 @item read-only
652 Open the node read-only. Guest write attempts will fail.
653 @item cache.direct
654 The host page cache can be avoided with @option{cache.direct=on}. This will
655 attempt to do disk IO directly to the guest's memory. QEMU may still perform an
656 internal copy of the data.
657 @item cache.no-flush
658 In case you don't care about data integrity over host failures, you can use
659 @option{cache.no-flush=on}. This option tells QEMU that it never needs to write
660 any data to the disk but can instead keep things in cache. If anything goes
661 wrong, like your host losing power, the disk storage getting disconnected
662 accidentally, etc. your image will most probably be rendered unusable.
663 @item discard=@var{discard}
664 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls
665 whether @code{discard} (also known as @code{trim} or @code{unmap}) requests are
666 ignored or passed to the filesystem. Some machine types may not support
667 discard requests.
668 @item detect-zeroes=@var{detect-zeroes}
669 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
670 conversion of plain zero writes by the OS to driver specific optimized
671 zero write commands. You may even choose "unmap" if @var{discard} is set
672 to "unmap" to allow a zero write to be converted to an @code{unmap} operation.
673 @end table
675 @item Driver-specific options for @code{file}
677 This is the protocol-level block driver for accessing regular files.
679 @table @code
680 @item filename
681 The path to the image file in the local filesystem
682 @item aio
683 Specifies the AIO backend (threads/native, default: threads)
684 @item locking
685 Specifies whether the image file is protected with Linux OFD / POSIX locks. The
686 default is to use the Linux Open File Descriptor API if available, otherwise no
687 lock is applied. (auto/on/off, default: auto)
688 @end table
689 Example:
690 @example
691 -blockdev driver=file,node-name=disk,filename=disk.img
692 @end example
694 @item Driver-specific options for @code{raw}
696 This is the image format block driver for raw images. It is usually
697 stacked on top of a protocol level block driver such as @code{file}.
699 @table @code
700 @item file
701 Reference to or definition of the data source block driver node
702 (e.g. a @code{file} driver node)
703 @end table
704 Example 1:
705 @example
706 -blockdev driver=file,node-name=disk_file,filename=disk.img
707 -blockdev driver=raw,node-name=disk,file=disk_file
708 @end example
709 Example 2:
710 @example
711 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
712 @end example
714 @item Driver-specific options for @code{qcow2}
716 This is the image format block driver for qcow2 images. It is usually
717 stacked on top of a protocol level block driver such as @code{file}.
719 @table @code
720 @item file
721 Reference to or definition of the data source block driver node
722 (e.g. a @code{file} driver node)
724 @item backing
725 Reference to or definition of the backing file block device (default is taken
726 from the image file). It is allowed to pass @code{null} here in order to disable
727 the default backing file.
729 @item lazy-refcounts
730 Whether to enable the lazy refcounts feature (on/off; default is taken from the
731 image file)
733 @item cache-size
734 The maximum total size of the L2 table and refcount block caches in bytes
735 (default: the sum of l2-cache-size and refcount-cache-size)
737 @item l2-cache-size
738 The maximum size of the L2 table cache in bytes
739 (default: if cache-size is not specified - 32M on Linux platforms, and 8M on
740 non-Linux platforms; otherwise, as large as possible within the cache-size,
741 while permitting the requested or the minimal refcount cache size)
743 @item refcount-cache-size
744 The maximum size of the refcount block cache in bytes
745 (default: 4 times the cluster size; or if cache-size is specified, the part of
746 it which is not used for the L2 cache)
748 @item cache-clean-interval
749 Clean unused entries in the L2 and refcount caches. The interval is in seconds.
750 The default value is 600 on supporting platforms, and 0 on other platforms.
751 Setting it to 0 disables this feature.
753 @item pass-discard-request
754 Whether discard requests to the qcow2 device should be forwarded to the data
755 source (on/off; default: on if discard=unmap is specified, off otherwise)
757 @item pass-discard-snapshot
758 Whether discard requests for the data source should be issued when a snapshot
759 operation (e.g. deleting a snapshot) frees clusters in the qcow2 file (on/off;
760 default: on)
762 @item pass-discard-other
763 Whether discard requests for the data source should be issued on other
764 occasions where a cluster gets freed (on/off; default: off)
766 @item overlap-check
767 Which overlap checks to perform for writes to the image
768 (none/constant/cached/all; default: cached). For details or finer
769 granularity control refer to the QAPI documentation of @code{blockdev-add}.
770 @end table
772 Example 1:
773 @example
774 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
775 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
776 @end example
777 Example 2:
778 @example
779 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
780 @end example
782 @item Driver-specific options for other drivers
783 Please refer to the QAPI documentation of the @code{blockdev-add} QMP command.
785 @end table
787 ETEXI
789 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
790 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
791 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
792 " [,snapshot=on|off][,rerror=ignore|stop|report]\n"
793 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
794 " [,readonly=on|off][,copy-on-read=on|off]\n"
795 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
796 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
797 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
798 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
799 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
800 " [[,iops_size=is]]\n"
801 " [[,group=g]]\n"
802 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
803 STEXI
804 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
805 @findex -drive
807 Define a new drive. This includes creating a block driver node (the backend) as
808 well as a guest device, and is mostly a shortcut for defining the corresponding
809 @option{-blockdev} and @option{-device} options.
811 @option{-drive} accepts all options that are accepted by @option{-blockdev}. In
812 addition, it knows the following options:
814 @table @option
815 @item file=@var{file}
816 This option defines which disk image (@pxref{disk_images}) to use with
817 this drive. If the filename contains comma, you must double it
818 (for instance, "file=my,,file" to use file "my,file").
820 Special files such as iSCSI devices can be specified using protocol
821 specific URLs. See the section for "Device URL Syntax" for more information.
822 @item if=@var{interface}
823 This option defines on which type on interface the drive is connected.
824 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.
825 @item bus=@var{bus},unit=@var{unit}
826 These options define where is connected the drive by defining the bus number and
827 the unit id.
828 @item index=@var{index}
829 This option defines where is connected the drive by using an index in the list
830 of available connectors of a given interface type.
831 @item media=@var{media}
832 This option defines the type of the media: disk or cdrom.
833 @item snapshot=@var{snapshot}
834 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
835 (see @option{-snapshot}).
836 @item cache=@var{cache}
837 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough"
838 and controls how the host cache is used to access block data. This is a
839 shortcut that sets the @option{cache.direct} and @option{cache.no-flush}
840 options (as in @option{-blockdev}), and additionally @option{cache.writeback},
841 which provides a default for the @option{write-cache} option of block guest
842 devices (as in @option{-device}). The modes correspond to the following
843 settings:
845 @c Our texi2pod.pl script doesn't support @multitable, so fall back to using
846 @c plain ASCII art (well, UTF-8 art really). This looks okay both in the manpage
847 @c and the HTML output.
848 @example
849 @ │ cache.writeback cache.direct cache.no-flush
850 ─────────────┼─────────────────────────────────────────────────
851 writeback │ on off off
852 none │ on on off
853 writethrough │ off off off
854 directsync │ off on off
855 unsafe │ on off on
856 @end example
858 The default mode is @option{cache=writeback}.
860 @item aio=@var{aio}
861 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
862 @item format=@var{format}
863 Specify which disk @var{format} will be used rather than detecting
864 the format. Can be used to specify format=raw to avoid interpreting
865 an untrusted format header.
866 @item werror=@var{action},rerror=@var{action}
867 Specify which @var{action} to take on write and read errors. Valid actions are:
868 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
869 "report" (report the error to the guest), "enospc" (pause QEMU only if the
870 host disk is full; report the error to the guest otherwise).
871 The default setting is @option{werror=enospc} and @option{rerror=report}.
872 @item copy-on-read=@var{copy-on-read}
873 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
874 file sectors into the image file.
875 @item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w}
876 Specify bandwidth throttling limits in bytes per second, either for all request
877 types or for reads or writes only. Small values can lead to timeouts or hangs
878 inside the guest. A safe minimum for disks is 2 MB/s.
879 @item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm}
880 Specify bursts in bytes per second, either for all request types or for reads
881 or writes only. Bursts allow the guest I/O to spike above the limit
882 temporarily.
883 @item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w}
884 Specify request rate limits in requests per second, either for all request
885 types or for reads or writes only.
886 @item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm}
887 Specify bursts in requests per second, either for all request types or for reads
888 or writes only. Bursts allow the guest I/O to spike above the limit
889 temporarily.
890 @item iops_size=@var{is}
891 Let every @var{is} bytes of a request count as a new request for iops
892 throttling purposes. Use this option to prevent guests from circumventing iops
893 limits by sending fewer but larger requests.
894 @item group=@var{g}
895 Join a throttling quota group with given name @var{g}. All drives that are
896 members of the same group are accounted for together. Use this option to
897 prevent guests from circumventing throttling limits by using many small disks
898 instead of a single larger disk.
899 @end table
901 By default, the @option{cache.writeback=on} mode is used. It will report data
902 writes as completed as soon as the data is present in the host page cache.
903 This is safe as long as your guest OS makes sure to correctly flush disk caches
904 where needed. If your guest OS does not handle volatile disk write caches
905 correctly and your host crashes or loses power, then the guest may experience
906 data corruption.
908 For such guests, you should consider using @option{cache.writeback=off}. This
909 means that the host page cache will be used to read and write data, but write
910 notification will be sent to the guest only after QEMU has made sure to flush
911 each write to the disk. Be aware that this has a major impact on performance.
913 When using the @option{-snapshot} option, unsafe caching is always used.
915 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
916 useful when the backing file is over a slow network. By default copy-on-read
917 is off.
919 Instead of @option{-cdrom} you can use:
920 @example
921 qemu-system-i386 -drive file=file,index=2,media=cdrom
922 @end example
924 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
925 use:
926 @example
927 qemu-system-i386 -drive file=file,index=0,media=disk
928 qemu-system-i386 -drive file=file,index=1,media=disk
929 qemu-system-i386 -drive file=file,index=2,media=disk
930 qemu-system-i386 -drive file=file,index=3,media=disk
931 @end example
933 You can open an image using pre-opened file descriptors from an fd set:
934 @example
935 qemu-system-i386
936 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
937 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
938 -drive file=/dev/fdset/2,index=0,media=disk
939 @end example
941 You can connect a CDROM to the slave of ide0:
942 @example
943 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
944 @end example
946 If you don't specify the "file=" argument, you define an empty drive:
947 @example
948 qemu-system-i386 -drive if=ide,index=1,media=cdrom
949 @end example
951 Instead of @option{-fda}, @option{-fdb}, you can use:
952 @example
953 qemu-system-i386 -drive file=file,index=0,if=floppy
954 qemu-system-i386 -drive file=file,index=1,if=floppy
955 @end example
957 By default, @var{interface} is "ide" and @var{index} is automatically
958 incremented:
959 @example
960 qemu-system-i386 -drive file=a -drive file=b"
961 @end example
962 is interpreted like:
963 @example
964 qemu-system-i386 -hda a -hdb b
965 @end example
966 ETEXI
968 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
969 "-mtdblock file use 'file' as on-board Flash memory image\n",
970 QEMU_ARCH_ALL)
971 STEXI
972 @item -mtdblock @var{file}
973 @findex -mtdblock
974 Use @var{file} as on-board Flash memory image.
975 ETEXI
977 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
978 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
979 STEXI
980 @item -sd @var{file}
981 @findex -sd
982 Use @var{file} as SecureDigital card image.
983 ETEXI
985 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
986 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
987 STEXI
988 @item -pflash @var{file}
989 @findex -pflash
990 Use @var{file} as a parallel flash image.
991 ETEXI
993 DEF("snapshot", 0, QEMU_OPTION_snapshot,
994 "-snapshot write to temporary files instead of disk image files\n",
995 QEMU_ARCH_ALL)
996 STEXI
997 @item -snapshot
998 @findex -snapshot
999 Write to temporary files instead of disk image files. In this case,
1000 the raw disk image you use is not written back. You can however force
1001 the write back by pressing @key{C-a s} (@pxref{disk_images}).
1002 ETEXI
1004 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
1005 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
1006 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n"
1007 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1008 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1009 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1010 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1011 " [[,throttling.iops-size=is]]\n",
1012 QEMU_ARCH_ALL)
1014 STEXI
1016 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}]
1017 @findex -fsdev
1018 Define a new file system device. Valid options are:
1019 @table @option
1020 @item @var{fsdriver}
1021 This option specifies the fs driver backend to use.
1022 Currently "local", "handle" and "proxy" file system drivers are supported.
1023 @item id=@var{id}
1024 Specifies identifier for this device
1025 @item path=@var{path}
1026 Specifies the export path for the file system device. Files under
1027 this path will be available to the 9p client on the guest.
1028 @item security_model=@var{security_model}
1029 Specifies the security model to be used for this export path.
1030 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1031 In "passthrough" security model, files are stored using the same
1032 credentials as they are created on the guest. This requires QEMU
1033 to run as root. In "mapped-xattr" security model, some of the file
1034 attributes like uid, gid, mode bits and link target are stored as
1035 file attributes. For "mapped-file" these attributes are stored in the
1036 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1037 interact with other unix tools. "none" security model is same as
1038 passthrough except the sever won't report failures if it fails to
1039 set file attributes like ownership. Security model is mandatory
1040 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
1041 security model as a parameter.
1042 @item writeout=@var{writeout}
1043 This is an optional argument. The only supported value is "immediate".
1044 This means that host page cache will be used to read and write data but
1045 write notification will be sent to the guest only when the data has been
1046 reported as written by the storage subsystem.
1047 @item readonly
1048 Enables exporting 9p share as a readonly mount for guests. By default
1049 read-write access is given.
1050 @item socket=@var{socket}
1051 Enables proxy filesystem driver to use passed socket file for communicating
1052 with virtfs-proxy-helper
1053 @item sock_fd=@var{sock_fd}
1054 Enables proxy filesystem driver to use passed socket descriptor for
1055 communicating with virtfs-proxy-helper. Usually a helper like libvirt
1056 will create socketpair and pass one of the fds as sock_fd
1057 @item fmode=@var{fmode}
1058 Specifies the default mode for newly created files on the host. Works only
1059 with security models "mapped-xattr" and "mapped-file".
1060 @item dmode=@var{dmode}
1061 Specifies the default mode for newly created directories on the host. Works
1062 only with security models "mapped-xattr" and "mapped-file".
1063 @end table
1065 -fsdev option is used along with -device driver "virtio-9p-pci".
1066 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
1067 Options for virtio-9p-pci driver are:
1068 @table @option
1069 @item fsdev=@var{id}
1070 Specifies the id value specified along with -fsdev option
1071 @item mount_tag=@var{mount_tag}
1072 Specifies the tag name to be used by the guest to mount this export point
1073 @end table
1075 ETEXI
1077 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
1078 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
1079 " [,id=id][,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n",
1080 QEMU_ARCH_ALL)
1082 STEXI
1084 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}]
1085 @findex -virtfs
1087 The general form of a Virtual File system pass-through options are:
1088 @table @option
1089 @item @var{fsdriver}
1090 This option specifies the fs driver backend to use.
1091 Currently "local", "handle" and "proxy" file system drivers are supported.
1092 @item id=@var{id}
1093 Specifies identifier for this device
1094 @item path=@var{path}
1095 Specifies the export path for the file system device. Files under
1096 this path will be available to the 9p client on the guest.
1097 @item security_model=@var{security_model}
1098 Specifies the security model to be used for this export path.
1099 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1100 In "passthrough" security model, files are stored using the same
1101 credentials as they are created on the guest. This requires QEMU
1102 to run as root. In "mapped-xattr" security model, some of the file
1103 attributes like uid, gid, mode bits and link target are stored as
1104 file attributes. For "mapped-file" these attributes are stored in the
1105 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1106 interact with other unix tools. "none" security model is same as
1107 passthrough except the sever won't report failures if it fails to
1108 set file attributes like ownership. Security model is mandatory only
1109 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
1110 model as a parameter.
1111 @item writeout=@var{writeout}
1112 This is an optional argument. The only supported value is "immediate".
1113 This means that host page cache will be used to read and write data but
1114 write notification will be sent to the guest only when the data has been
1115 reported as written by the storage subsystem.
1116 @item readonly
1117 Enables exporting 9p share as a readonly mount for guests. By default
1118 read-write access is given.
1119 @item socket=@var{socket}
1120 Enables proxy filesystem driver to use passed socket file for
1121 communicating with virtfs-proxy-helper. Usually a helper like libvirt
1122 will create socketpair and pass one of the fds as sock_fd
1123 @item sock_fd
1124 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
1125 descriptor for interfacing with virtfs-proxy-helper
1126 @item fmode=@var{fmode}
1127 Specifies the default mode for newly created files on the host. Works only
1128 with security models "mapped-xattr" and "mapped-file".
1129 @item dmode=@var{dmode}
1130 Specifies the default mode for newly created directories on the host. Works
1131 only with security models "mapped-xattr" and "mapped-file".
1132 @end table
1133 ETEXI
1135 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
1136 "-virtfs_synth Create synthetic file system image\n",
1137 QEMU_ARCH_ALL)
1138 STEXI
1139 @item -virtfs_synth
1140 @findex -virtfs_synth
1141 Create synthetic file system image
1142 ETEXI
1144 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
1145 "-iscsi [user=user][,password=password]\n"
1146 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1147 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1148 " [,timeout=timeout]\n"
1149 " iSCSI session parameters\n", QEMU_ARCH_ALL)
1151 STEXI
1152 @item -iscsi
1153 @findex -iscsi
1154 Configure iSCSI session parameters.
1155 ETEXI
1157 STEXI
1158 @end table
1159 ETEXI
1160 DEFHEADING()
1162 DEFHEADING(USB options:)
1163 STEXI
1164 @table @option
1165 ETEXI
1167 DEF("usb", 0, QEMU_OPTION_usb,
1168 "-usb enable the USB driver (if it is not used by default yet)\n",
1169 QEMU_ARCH_ALL)
1170 STEXI
1171 @item -usb
1172 @findex -usb
1173 Enable the USB driver (if it is not used by default yet).
1174 ETEXI
1176 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
1177 "-usbdevice name add the host or guest USB device 'name'\n",
1178 QEMU_ARCH_ALL)
1179 STEXI
1181 @item -usbdevice @var{devname}
1182 @findex -usbdevice
1183 Add the USB device @var{devname}. Note that this option is deprecated,
1184 please use @code{-device usb-...} instead. @xref{usb_devices}.
1186 @table @option
1188 @item mouse
1189 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1191 @item tablet
1192 Pointer device that uses absolute coordinates (like a touchscreen). This
1193 means QEMU is able to report the mouse position without having to grab the
1194 mouse. Also overrides the PS/2 mouse emulation when activated.
1196 @item braille
1197 Braille device. This will use BrlAPI to display the braille output on a real
1198 or fake device.
1200 @end table
1201 ETEXI
1203 STEXI
1204 @end table
1205 ETEXI
1206 DEFHEADING()
1208 DEFHEADING(Display options:)
1209 STEXI
1210 @table @option
1211 ETEXI
1213 DEF("display", HAS_ARG, QEMU_OPTION_display,
1214 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
1215 " [,window_close=on|off][,gl=on|core|es|off]\n"
1216 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1217 "-display vnc=<display>[,<optargs>]\n"
1218 "-display curses\n"
1219 "-display none"
1220 " select display type\n"
1221 "The default display is equivalent to\n"
1222 #if defined(CONFIG_GTK)
1223 "\t\"-display gtk\"\n"
1224 #elif defined(CONFIG_SDL)
1225 "\t\"-display sdl\"\n"
1226 #elif defined(CONFIG_COCOA)
1227 "\t\"-display cocoa\"\n"
1228 #elif defined(CONFIG_VNC)
1229 "\t\"-vnc localhost:0,to=99,id=default\"\n"
1230 #else
1231 "\t\"-display none\"\n"
1232 #endif
1233 , QEMU_ARCH_ALL)
1234 STEXI
1235 @item -display @var{type}
1236 @findex -display
1237 Select type of display to use. This option is a replacement for the
1238 old style -sdl/-curses/... options. Valid values for @var{type} are
1239 @table @option
1240 @item sdl
1241 Display video output via SDL (usually in a separate graphics
1242 window; see the SDL documentation for other possibilities).
1243 @item curses
1244 Display video output via curses. For graphics device models which
1245 support a text mode, QEMU can display this output using a
1246 curses/ncurses interface. Nothing is displayed when the graphics
1247 device is in graphical mode or if the graphics device does not support
1248 a text mode. Generally only the VGA device models support text mode.
1249 @item none
1250 Do not display video output. The guest will still see an emulated
1251 graphics card, but its output will not be displayed to the QEMU
1252 user. This option differs from the -nographic option in that it
1253 only affects what is done with video output; -nographic also changes
1254 the destination of the serial and parallel port data.
1255 @item gtk
1256 Display video output in a GTK window. This interface provides drop-down
1257 menus and other UI elements to configure and control the VM during
1258 runtime.
1259 @item vnc
1260 Start a VNC server on display <arg>
1261 @end table
1262 ETEXI
1264 DEF("nographic", 0, QEMU_OPTION_nographic,
1265 "-nographic disable graphical output and redirect serial I/Os to console\n",
1266 QEMU_ARCH_ALL)
1267 STEXI
1268 @item -nographic
1269 @findex -nographic
1270 Normally, if QEMU is compiled with graphical window support, it displays
1271 output such as guest graphics, guest console, and the QEMU monitor in a
1272 window. With this option, you can totally disable graphical output so
1273 that QEMU is a simple command line application. The emulated serial port
1274 is redirected on the console and muxed with the monitor (unless
1275 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1276 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1277 switching between the console and monitor.
1278 ETEXI
1280 DEF("curses", 0, QEMU_OPTION_curses,
1281 "-curses shorthand for -display curses\n",
1282 QEMU_ARCH_ALL)
1283 STEXI
1284 @item -curses
1285 @findex -curses
1286 Normally, if QEMU is compiled with graphical window support, it displays
1287 output such as guest graphics, guest console, and the QEMU monitor in a
1288 window. With this option, QEMU can display the VGA output when in text
1289 mode using a curses/ncurses interface. Nothing is displayed in graphical
1290 mode.
1291 ETEXI
1293 DEF("no-frame", 0, QEMU_OPTION_no_frame,
1294 "-no-frame open SDL window without a frame and window decorations\n",
1295 QEMU_ARCH_ALL)
1296 STEXI
1297 @item -no-frame
1298 @findex -no-frame
1299 Do not use decorations for SDL windows and start them using the whole
1300 available screen space. This makes the using QEMU in a dedicated desktop
1301 workspace more convenient.
1302 ETEXI
1304 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1305 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1306 QEMU_ARCH_ALL)
1307 STEXI
1308 @item -alt-grab
1309 @findex -alt-grab
1310 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1311 affects the special keys (for fullscreen, monitor-mode switching, etc).
1312 ETEXI
1314 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1315 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1316 QEMU_ARCH_ALL)
1317 STEXI
1318 @item -ctrl-grab
1319 @findex -ctrl-grab
1320 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1321 affects the special keys (for fullscreen, monitor-mode switching, etc).
1322 ETEXI
1324 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1325 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1326 STEXI
1327 @item -no-quit
1328 @findex -no-quit
1329 Disable SDL window close capability.
1330 ETEXI
1332 DEF("sdl", 0, QEMU_OPTION_sdl,
1333 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1334 STEXI
1335 @item -sdl
1336 @findex -sdl
1337 Enable SDL.
1338 ETEXI
1340 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1341 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1342 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1343 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1344 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1345 " [,tls-ciphers=<list>]\n"
1346 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1347 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1348 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1349 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1350 " [,jpeg-wan-compression=[auto|never|always]]\n"
1351 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1352 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1353 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1354 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1355 " [,gl=[on|off]][,rendernode=<file>]\n"
1356 " enable spice\n"
1357 " at least one of {port, tls-port} is mandatory\n",
1358 QEMU_ARCH_ALL)
1359 STEXI
1360 @item -spice @var{option}[,@var{option}[,...]]
1361 @findex -spice
1362 Enable the spice remote desktop protocol. Valid options are
1364 @table @option
1366 @item port=<nr>
1367 Set the TCP port spice is listening on for plaintext channels.
1369 @item addr=<addr>
1370 Set the IP address spice is listening on. Default is any address.
1372 @item ipv4
1373 @itemx ipv6
1374 @itemx unix
1375 Force using the specified IP version.
1377 @item password=<secret>
1378 Set the password you need to authenticate.
1380 @item sasl
1381 Require that the client use SASL to authenticate with the spice.
1382 The exact choice of authentication method used is controlled from the
1383 system / user's SASL configuration file for the 'qemu' service. This
1384 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1385 unprivileged user, an environment variable SASL_CONF_PATH can be used
1386 to make it search alternate locations for the service config.
1387 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1388 it is recommended that SASL always be combined with the 'tls' and
1389 'x509' settings to enable use of SSL and server certificates. This
1390 ensures a data encryption preventing compromise of authentication
1391 credentials.
1393 @item disable-ticketing
1394 Allow client connects without authentication.
1396 @item disable-copy-paste
1397 Disable copy paste between the client and the guest.
1399 @item disable-agent-file-xfer
1400 Disable spice-vdagent based file-xfer between the client and the guest.
1402 @item tls-port=<nr>
1403 Set the TCP port spice is listening on for encrypted channels.
1405 @item x509-dir=<dir>
1406 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1408 @item x509-key-file=<file>
1409 @itemx x509-key-password=<file>
1410 @itemx x509-cert-file=<file>
1411 @itemx x509-cacert-file=<file>
1412 @itemx x509-dh-key-file=<file>
1413 The x509 file names can also be configured individually.
1415 @item tls-ciphers=<list>
1416 Specify which ciphers to use.
1418 @item tls-channel=[main|display|cursor|inputs|record|playback]
1419 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1420 Force specific channel to be used with or without TLS encryption. The
1421 options can be specified multiple times to configure multiple
1422 channels. The special name "default" can be used to set the default
1423 mode. For channels which are not explicitly forced into one mode the
1424 spice client is allowed to pick tls/plaintext as he pleases.
1426 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1427 Configure image compression (lossless).
1428 Default is auto_glz.
1430 @item jpeg-wan-compression=[auto|never|always]
1431 @itemx zlib-glz-wan-compression=[auto|never|always]
1432 Configure wan image compression (lossy for slow links).
1433 Default is auto.
1435 @item streaming-video=[off|all|filter]
1436 Configure video stream detection. Default is off.
1438 @item agent-mouse=[on|off]
1439 Enable/disable passing mouse events via vdagent. Default is on.
1441 @item playback-compression=[on|off]
1442 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1444 @item seamless-migration=[on|off]
1445 Enable/disable spice seamless migration. Default is off.
1447 @item gl=[on|off]
1448 Enable/disable OpenGL context. Default is off.
1450 @item rendernode=<file>
1451 DRM render node for OpenGL rendering. If not specified, it will pick
1452 the first available. (Since 2.9)
1454 @end table
1455 ETEXI
1457 DEF("portrait", 0, QEMU_OPTION_portrait,
1458 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1459 QEMU_ARCH_ALL)
1460 STEXI
1461 @item -portrait
1462 @findex -portrait
1463 Rotate graphical output 90 deg left (only PXA LCD).
1464 ETEXI
1466 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1467 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1468 QEMU_ARCH_ALL)
1469 STEXI
1470 @item -rotate @var{deg}
1471 @findex -rotate
1472 Rotate graphical output some deg left (only PXA LCD).
1473 ETEXI
1475 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1476 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1477 " select video card type\n", QEMU_ARCH_ALL)
1478 STEXI
1479 @item -vga @var{type}
1480 @findex -vga
1481 Select type of VGA card to emulate. Valid values for @var{type} are
1482 @table @option
1483 @item cirrus
1484 Cirrus Logic GD5446 Video card. All Windows versions starting from
1485 Windows 95 should recognize and use this graphic card. For optimal
1486 performances, use 16 bit color depth in the guest and the host OS.
1487 (This card was the default before QEMU 2.2)
1488 @item std
1489 Standard VGA card with Bochs VBE extensions. If your guest OS
1490 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1491 to use high resolution modes (>= 1280x1024x16) then you should use
1492 this option. (This card is the default since QEMU 2.2)
1493 @item vmware
1494 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1495 recent XFree86/XOrg server or Windows guest with a driver for this
1496 card.
1497 @item qxl
1498 QXL paravirtual graphic card. It is VGA compatible (including VESA
1499 2.0 VBE support). Works best with qxl guest drivers installed though.
1500 Recommended choice when using the spice protocol.
1501 @item tcx
1502 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1503 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1504 fixed resolution of 1024x768.
1505 @item cg3
1506 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1507 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1508 resolutions aimed at people wishing to run older Solaris versions.
1509 @item virtio
1510 Virtio VGA card.
1511 @item none
1512 Disable VGA card.
1513 @end table
1514 ETEXI
1516 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1517 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1518 STEXI
1519 @item -full-screen
1520 @findex -full-screen
1521 Start in full screen.
1522 ETEXI
1524 DEF("g", 1, QEMU_OPTION_g ,
1525 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1526 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1527 STEXI
1528 @item -g @var{width}x@var{height}[x@var{depth}]
1529 @findex -g
1530 Set the initial graphical resolution and depth (PPC, SPARC only).
1531 ETEXI
1533 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1534 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1535 STEXI
1536 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1537 @findex -vnc
1538 Normally, if QEMU is compiled with graphical window support, it displays
1539 output such as guest graphics, guest console, and the QEMU monitor in a
1540 window. With this option, you can have QEMU listen on VNC display
1541 @var{display} and redirect the VGA display over the VNC session. It is
1542 very useful to enable the usb tablet device when using this option
1543 (option @option{-device usb-tablet}). When using the VNC display, you
1544 must use the @option{-k} parameter to set the keyboard layout if you are
1545 not using en-us. Valid syntax for the @var{display} is
1547 @table @option
1549 @item to=@var{L}
1551 With this option, QEMU will try next available VNC @var{display}s, until the
1552 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1553 available, e.g. port 5900+@var{display} is already used by another
1554 application. By default, to=0.
1556 @item @var{host}:@var{d}
1558 TCP connections will only be allowed from @var{host} on display @var{d}.
1559 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1560 be omitted in which case the server will accept connections from any host.
1562 @item unix:@var{path}
1564 Connections will be allowed over UNIX domain sockets where @var{path} is the
1565 location of a unix socket to listen for connections on.
1567 @item none
1569 VNC is initialized but not started. The monitor @code{change} command
1570 can be used to later start the VNC server.
1572 @end table
1574 Following the @var{display} value there may be one or more @var{option} flags
1575 separated by commas. Valid options are
1577 @table @option
1579 @item reverse
1581 Connect to a listening VNC client via a ``reverse'' connection. The
1582 client is specified by the @var{display}. For reverse network
1583 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1584 is a TCP port number, not a display number.
1586 @item websocket
1588 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1589 If a bare @var{websocket} option is given, the Websocket port is
1590 5700+@var{display}. An alternative port can be specified with the
1591 syntax @code{websocket}=@var{port}.
1593 If @var{host} is specified connections will only be allowed from this host.
1594 It is possible to control the websocket listen address independently, using
1595 the syntax @code{websocket}=@var{host}:@var{port}.
1597 If no TLS credentials are provided, the websocket connection runs in
1598 unencrypted mode. If TLS credentials are provided, the websocket connection
1599 requires encrypted client connections.
1601 @item password
1603 Require that password based authentication is used for client connections.
1605 The password must be set separately using the @code{set_password} command in
1606 the @ref{pcsys_monitor}. The syntax to change your password is:
1607 @code{set_password <protocol> <password>} where <protocol> could be either
1608 "vnc" or "spice".
1610 If you would like to change <protocol> password expiration, you should use
1611 @code{expire_password <protocol> <expiration-time>} where expiration time could
1612 be one of the following options: now, never, +seconds or UNIX time of
1613 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1614 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1615 date and time).
1617 You can also use keywords "now" or "never" for the expiration time to
1618 allow <protocol> password to expire immediately or never expire.
1620 @item tls-creds=@var{ID}
1622 Provides the ID of a set of TLS credentials to use to secure the
1623 VNC server. They will apply to both the normal VNC server socket
1624 and the websocket socket (if enabled). Setting TLS credentials
1625 will cause the VNC server socket to enable the VeNCrypt auth
1626 mechanism. The credentials should have been previously created
1627 using the @option{-object tls-creds} argument.
1629 @item sasl
1631 Require that the client use SASL to authenticate with the VNC server.
1632 The exact choice of authentication method used is controlled from the
1633 system / user's SASL configuration file for the 'qemu' service. This
1634 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1635 unprivileged user, an environment variable SASL_CONF_PATH can be used
1636 to make it search alternate locations for the service config.
1637 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1638 it is recommended that SASL always be combined with the 'tls' and
1639 'x509' settings to enable use of SSL and server certificates. This
1640 ensures a data encryption preventing compromise of authentication
1641 credentials. See the @ref{vnc_security} section for details on using
1642 SASL authentication.
1644 @item acl
1646 Turn on access control lists for checking of the x509 client certificate
1647 and SASL party. For x509 certs, the ACL check is made against the
1648 certificate's distinguished name. This is something that looks like
1649 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1650 made against the username, which depending on the SASL plugin, may
1651 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1652 When the @option{acl} flag is set, the initial access list will be
1653 empty, with a @code{deny} policy. Thus no one will be allowed to
1654 use the VNC server until the ACLs have been loaded. This can be
1655 achieved using the @code{acl} monitor command.
1657 @item lossy
1659 Enable lossy compression methods (gradient, JPEG, ...). If this
1660 option is set, VNC client may receive lossy framebuffer updates
1661 depending on its encoding settings. Enabling this option can save
1662 a lot of bandwidth at the expense of quality.
1664 @item non-adaptive
1666 Disable adaptive encodings. Adaptive encodings are enabled by default.
1667 An adaptive encoding will try to detect frequently updated screen regions,
1668 and send updates in these regions using a lossy encoding (like JPEG).
1669 This can be really helpful to save bandwidth when playing videos. Disabling
1670 adaptive encodings restores the original static behavior of encodings
1671 like Tight.
1673 @item share=[allow-exclusive|force-shared|ignore]
1675 Set display sharing policy. 'allow-exclusive' allows clients to ask
1676 for exclusive access. As suggested by the rfb spec this is
1677 implemented by dropping other connections. Connecting multiple
1678 clients in parallel requires all clients asking for a shared session
1679 (vncviewer: -shared switch). This is the default. 'force-shared'
1680 disables exclusive client access. Useful for shared desktop sessions,
1681 where you don't want someone forgetting specify -shared disconnect
1682 everybody else. 'ignore' completely ignores the shared flag and
1683 allows everybody connect unconditionally. Doesn't conform to the rfb
1684 spec but is traditional QEMU behavior.
1686 @item key-delay-ms
1688 Set keyboard delay, for key down and key up events, in milliseconds.
1689 Default is 10. Keyboards are low-bandwidth devices, so this slowdown
1690 can help the device and guest to keep up and not lose events in case
1691 events are arriving in bulk. Possible causes for the latter are flaky
1692 network connections, or scripts for automated testing.
1694 @end table
1695 ETEXI
1697 STEXI
1698 @end table
1699 ETEXI
1700 ARCHHEADING(, QEMU_ARCH_I386)
1702 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
1703 STEXI
1704 @table @option
1705 ETEXI
1707 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1708 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1709 QEMU_ARCH_I386)
1710 STEXI
1711 @item -win2k-hack
1712 @findex -win2k-hack
1713 Use it when installing Windows 2000 to avoid a disk full bug. After
1714 Windows 2000 is installed, you no longer need this option (this option
1715 slows down the IDE transfers).
1716 ETEXI
1718 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1719 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1720 QEMU_ARCH_I386)
1721 STEXI
1722 @item -no-fd-bootchk
1723 @findex -no-fd-bootchk
1724 Disable boot signature checking for floppy disks in BIOS. May
1725 be needed to boot from old floppy disks.
1726 ETEXI
1728 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1729 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1730 STEXI
1731 @item -no-acpi
1732 @findex -no-acpi
1733 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1734 it if your guest OS complains about ACPI problems (PC target machine
1735 only).
1736 ETEXI
1738 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1739 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1740 STEXI
1741 @item -no-hpet
1742 @findex -no-hpet
1743 Disable HPET support.
1744 ETEXI
1746 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1747 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1748 " ACPI table description\n", QEMU_ARCH_I386)
1749 STEXI
1750 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1751 @findex -acpitable
1752 Add ACPI table with specified header fields and context from specified files.
1753 For file=, take whole ACPI table from the specified files, including all
1754 ACPI headers (possible overridden by other options).
1755 For data=, only data
1756 portion of the table is used, all header information is specified in the
1757 command line.
1758 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1759 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1760 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1761 spec.
1762 ETEXI
1764 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1765 "-smbios file=binary\n"
1766 " load SMBIOS entry from binary file\n"
1767 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1768 " [,uefi=on|off]\n"
1769 " specify SMBIOS type 0 fields\n"
1770 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1771 " [,uuid=uuid][,sku=str][,family=str]\n"
1772 " specify SMBIOS type 1 fields\n"
1773 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1774 " [,asset=str][,location=str]\n"
1775 " specify SMBIOS type 2 fields\n"
1776 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1777 " [,sku=str]\n"
1778 " specify SMBIOS type 3 fields\n"
1779 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1780 " [,asset=str][,part=str]\n"
1781 " specify SMBIOS type 4 fields\n"
1782 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1783 " [,asset=str][,part=str][,speed=%d]\n"
1784 " specify SMBIOS type 17 fields\n",
1785 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1786 STEXI
1787 @item -smbios file=@var{binary}
1788 @findex -smbios
1789 Load SMBIOS entry from binary file.
1791 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1792 Specify SMBIOS type 0 fields
1794 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1795 Specify SMBIOS type 1 fields
1797 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1798 Specify SMBIOS type 2 fields
1800 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1801 Specify SMBIOS type 3 fields
1803 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1804 Specify SMBIOS type 4 fields
1806 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1807 Specify SMBIOS type 17 fields
1808 ETEXI
1810 STEXI
1811 @end table
1812 ETEXI
1813 DEFHEADING()
1815 DEFHEADING(Network options:)
1816 STEXI
1817 @table @option
1818 ETEXI
1820 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1821 #ifdef CONFIG_SLIRP
1822 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1823 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1824 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1825 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
1826 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1827 #ifndef _WIN32
1828 "[,smb=dir[,smbserver=addr]]\n"
1829 #endif
1830 " configure a user mode network backend with ID 'str',\n"
1831 " its DHCP server and optional services\n"
1832 #endif
1833 #ifdef _WIN32
1834 "-netdev tap,id=str,ifname=name\n"
1835 " configure a host TAP network backend with ID 'str'\n"
1836 #else
1837 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1838 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1839 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1840 " [,poll-us=n]\n"
1841 " configure a host TAP network backend with ID 'str'\n"
1842 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1843 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1844 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1845 " to deconfigure it\n"
1846 " use '[down]script=no' to disable script execution\n"
1847 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1848 " configure it\n"
1849 " use 'fd=h' to connect to an already opened TAP interface\n"
1850 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1851 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1852 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1853 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1854 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1855 " use vhost=on to enable experimental in kernel accelerator\n"
1856 " (only has effect for virtio guests which use MSIX)\n"
1857 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1858 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1859 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1860 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1861 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1862 " spent on busy polling for vhost net\n"
1863 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1864 " configure a host TAP network backend with ID 'str' that is\n"
1865 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1866 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1867 #endif
1868 #ifdef __linux__
1869 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1870 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1871 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1872 " [,rxcookie=rxcookie][,offset=offset]\n"
1873 " configure a network backend with ID 'str' connected to\n"
1874 " an Ethernet over L2TPv3 pseudowire.\n"
1875 " Linux kernel 3.3+ as well as most routers can talk\n"
1876 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1877 " VM to a router and even VM to Host. It is a nearly-universal\n"
1878 " standard (RFC3391). Note - this implementation uses static\n"
1879 " pre-configured tunnels (same as the Linux kernel).\n"
1880 " use 'src=' to specify source address\n"
1881 " use 'dst=' to specify destination address\n"
1882 " use 'udp=on' to specify udp encapsulation\n"
1883 " use 'srcport=' to specify source udp port\n"
1884 " use 'dstport=' to specify destination udp port\n"
1885 " use 'ipv6=on' to force v6\n"
1886 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1887 " well as a weak security measure\n"
1888 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1889 " use 'txcookie=0x012345678' to specify a txcookie\n"
1890 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1891 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1892 " use 'pincounter=on' to work around broken counter handling in peer\n"
1893 " use 'offset=X' to add an extra offset between header and data\n"
1894 #endif
1895 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1896 " configure a network backend to connect to another network\n"
1897 " using a socket connection\n"
1898 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1899 " configure a network backend to connect to a multicast maddr and port\n"
1900 " use 'localaddr=addr' to specify the host address to send packets from\n"
1901 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1902 " configure a network backend to connect to another network\n"
1903 " using an UDP tunnel\n"
1904 #ifdef CONFIG_VDE
1905 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1906 " configure a network backend to connect to port 'n' of a vde switch\n"
1907 " running on host and listening for incoming connections on 'socketpath'.\n"
1908 " Use group 'groupname' and mode 'octalmode' to change default\n"
1909 " ownership and permissions for communication port.\n"
1910 #endif
1911 #ifdef CONFIG_NETMAP
1912 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1913 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1914 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1915 " netmap device, defaults to '/dev/netmap')\n"
1916 #endif
1917 #ifdef CONFIG_POSIX
1918 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1919 " configure a vhost-user network, backed by a chardev 'dev'\n"
1920 #endif
1921 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
1922 " configure a hub port on the hub with ID 'n'\n", QEMU_ARCH_ALL)
1923 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
1924 "-nic [tap|bridge|"
1925 #ifdef CONFIG_SLIRP
1926 "user|"
1927 #endif
1928 #ifdef __linux__
1929 "l2tpv3|"
1930 #endif
1931 #ifdef CONFIG_VDE
1932 "vde|"
1933 #endif
1934 #ifdef CONFIG_NETMAP
1935 "netmap|"
1936 #endif
1937 #ifdef CONFIG_POSIX
1938 "vhost-user|"
1939 #endif
1940 "socket][,option][,...][mac=macaddr]\n"
1941 " initialize an on-board / default host NIC (using MAC address\n"
1942 " macaddr) and connect it to the given host network backend\n"
1943 "-nic none use it alone to have zero network devices (the default is to\n"
1944 " provided a 'user' network connection)\n",
1945 QEMU_ARCH_ALL)
1946 DEF("net", HAS_ARG, QEMU_OPTION_net,
1947 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1948 " configure or create an on-board (or machine default) NIC and\n"
1949 " connect it to hub 0 (please use -nic unless you need a hub)\n"
1950 "-net ["
1951 #ifdef CONFIG_SLIRP
1952 "user|"
1953 #endif
1954 "tap|"
1955 "bridge|"
1956 #ifdef CONFIG_VDE
1957 "vde|"
1958 #endif
1959 #ifdef CONFIG_NETMAP
1960 "netmap|"
1961 #endif
1962 "socket][,option][,option][,...]\n"
1963 " old way to initialize a host network interface\n"
1964 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1965 STEXI
1966 @item -nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]
1967 @findex -nic
1968 This option is a shortcut for configuring both the on-board (default) guest
1969 NIC hardware and the host network backend in one go. The host backend options
1970 are the same as with the corresponding @option{-netdev} options below.
1971 The guest NIC model can be set with @option{model=@var{modelname}}.
1972 Use @option{model=help} to list the available device types.
1973 The hardware MAC address can be set with @option{mac=@var{macaddr}}.
1975 The following two example do exactly the same, to show how @option{-nic} can
1976 be used to shorten the command line length (note that the e1000 is the default
1977 on i386, so the @option{model=e1000} parameter could even be omitted here, too):
1978 @example
1979 qemu-system-i386 -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
1980 qemu-system-i386 -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
1981 @end example
1983 @item -nic none
1984 Indicate that no network devices should be configured. It is used to override
1985 the default configuration (default NIC with ``user'' host network backend)
1986 which is activated if no other networking options are provided.
1988 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1989 @findex -netdev
1990 Configure user mode host network backend which requires no administrator
1991 privilege to run. Valid options are:
1993 @table @option
1994 @item id=@var{id}
1995 Assign symbolic name for use in monitor commands.
1997 @item ipv4=on|off and ipv6=on|off
1998 Specify that either IPv4 or IPv6 must be enabled. If neither is specified
1999 both protocols are enabled.
2001 @item net=@var{addr}[/@var{mask}]
2002 Set IP network address the guest will see. Optionally specify the netmask,
2003 either in the form a.b.c.d or as number of valid top-most bits. Default is
2004 10.0.2.0/24.
2006 @item host=@var{addr}
2007 Specify the guest-visible address of the host. Default is the 2nd IP in the
2008 guest network, i.e. x.x.x.2.
2010 @item ipv6-net=@var{addr}[/@var{int}]
2011 Set IPv6 network address the guest will see (default is fec0::/64). The
2012 network prefix is given in the usual hexadecimal IPv6 address
2013 notation. The prefix size is optional, and is given as the number of
2014 valid top-most bits (default is 64).
2016 @item ipv6-host=@var{addr}
2017 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
2018 the guest network, i.e. xxxx::2.
2020 @item restrict=on|off
2021 If this option is enabled, the guest will be isolated, i.e. it will not be
2022 able to contact the host and no guest IP packets will be routed over the host
2023 to the outside. This option does not affect any explicitly set forwarding rules.
2025 @item hostname=@var{name}
2026 Specifies the client hostname reported by the built-in DHCP server.
2028 @item dhcpstart=@var{addr}
2029 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
2030 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
2032 @item dns=@var{addr}
2033 Specify the guest-visible address of the virtual nameserver. The address must
2034 be different from the host address. Default is the 3rd IP in the guest network,
2035 i.e. x.x.x.3.
2037 @item ipv6-dns=@var{addr}
2038 Specify the guest-visible address of the IPv6 virtual nameserver. The address
2039 must be different from the host address. Default is the 3rd IP in the guest
2040 network, i.e. xxxx::3.
2042 @item dnssearch=@var{domain}
2043 Provides an entry for the domain-search list sent by the built-in
2044 DHCP server. More than one domain suffix can be transmitted by specifying
2045 this option multiple times. If supported, this will cause the guest to
2046 automatically try to append the given domain suffix(es) in case a domain name
2047 can not be resolved.
2049 Example:
2050 @example
2051 qemu-system-i386 -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2052 @end example
2054 @item domainname=@var{domain}
2055 Specifies the client domain name reported by the built-in DHCP server.
2057 @item tftp=@var{dir}
2058 When using the user mode network stack, activate a built-in TFTP
2059 server. The files in @var{dir} will be exposed as the root of a TFTP server.
2060 The TFTP client on the guest must be configured in binary mode (use the command
2061 @code{bin} of the Unix TFTP client).
2063 @item tftp-server-name=@var{name}
2064 In BOOTP reply, broadcast @var{name} as the "TFTP server name" (RFC2132 option
2065 66). This can be used to advise the guest to load boot files or configurations
2066 from a different server than the host address.
2068 @item bootfile=@var{file}
2069 When using the user mode network stack, broadcast @var{file} as the BOOTP
2070 filename. In conjunction with @option{tftp}, this can be used to network boot
2071 a guest from a local directory.
2073 Example (using pxelinux):
2074 @example
2075 qemu-system-i386 -hda linux.img -boot n -device e1000,netdev=n1 \
2076 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2077 @end example
2079 @item smb=@var{dir}[,smbserver=@var{addr}]
2080 When using the user mode network stack, activate a built-in SMB
2081 server so that Windows OSes can access to the host files in @file{@var{dir}}
2082 transparently. The IP address of the SMB server can be set to @var{addr}. By
2083 default the 4th IP in the guest network is used, i.e. x.x.x.4.
2085 In the guest Windows OS, the line:
2086 @example
2087 10.0.2.4 smbserver
2088 @end example
2089 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
2090 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
2092 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2094 Note that a SAMBA server must be installed on the host OS.
2096 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
2097 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
2098 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
2099 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
2100 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
2101 be bound to a specific host interface. If no connection type is set, TCP is
2102 used. This option can be given multiple times.
2104 For example, to redirect host X11 connection from screen 1 to guest
2105 screen 0, use the following:
2107 @example
2108 # on the host
2109 qemu-system-i386 -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2110 # this host xterm should open in the guest X11 server
2111 xterm -display :1
2112 @end example
2114 To redirect telnet connections from host port 5555 to telnet port on
2115 the guest, use the following:
2117 @example
2118 # on the host
2119 qemu-system-i386 -nic user,hostfwd=tcp::5555-:23
2120 telnet localhost 5555
2121 @end example
2123 Then when you use on the host @code{telnet localhost 5555}, you
2124 connect to the guest telnet server.
2126 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
2127 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
2128 Forward guest TCP connections to the IP address @var{server} on port @var{port}
2129 to the character device @var{dev} or to a program executed by @var{cmd:command}
2130 which gets spawned for each connection. This option can be given multiple times.
2132 You can either use a chardev directly and have that one used throughout QEMU's
2133 lifetime, like in the following example:
2135 @example
2136 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
2137 # the guest accesses it
2138 qemu-system-i386 -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
2139 @end example
2141 Or you can execute a command on every TCP connection established by the guest,
2142 so that QEMU behaves similar to an inetd process for that virtual server:
2144 @example
2145 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
2146 # and connect the TCP stream to its stdin/stdout
2147 qemu-system-i386 -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2148 @end example
2150 @end table
2152 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2153 Configure a host TAP network backend with ID @var{id}.
2155 Use the network script @var{file} to configure it and the network script
2156 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
2157 automatically provides one. The default network configure script is
2158 @file{/etc/qemu-ifup} and the default network deconfigure script is
2159 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
2160 to disable script execution.
2162 If running QEMU as an unprivileged user, use the network helper
2163 @var{helper} to configure the TAP interface and attach it to the bridge.
2164 The default network helper executable is @file{/path/to/qemu-bridge-helper}
2165 and the default bridge device is @file{br0}.
2167 @option{fd}=@var{h} can be used to specify the handle of an already
2168 opened host TAP interface.
2170 Examples:
2172 @example
2173 #launch a QEMU instance with the default network script
2174 qemu-system-i386 linux.img -nic tap
2175 @end example
2177 @example
2178 #launch a QEMU instance with two NICs, each one connected
2179 #to a TAP device
2180 qemu-system-i386 linux.img \
2181 -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \
2182 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1
2183 @end example
2185 @example
2186 #launch a QEMU instance with the default network helper to
2187 #connect a TAP device to bridge br0
2188 qemu-system-i386 linux.img -device virtio-net-pci,netdev=n1 \
2189 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"
2190 @end example
2192 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
2193 Connect a host TAP network interface to a host bridge device.
2195 Use the network helper @var{helper} to configure the TAP interface and
2196 attach it to the bridge. The default network helper executable is
2197 @file{/path/to/qemu-bridge-helper} and the default bridge
2198 device is @file{br0}.
2200 Examples:
2202 @example
2203 #launch a QEMU instance with the default network helper to
2204 #connect a TAP device to bridge br0
2205 qemu-system-i386 linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1
2206 @end example
2208 @example
2209 #launch a QEMU instance with the default network helper to
2210 #connect a TAP device to bridge qemubr0
2211 qemu-system-i386 linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1
2212 @end example
2214 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2216 This host network backend can be used to connect the guest's network to
2217 another QEMU virtual machine using a TCP socket connection. If @option{listen}
2218 is specified, QEMU waits for incoming connections on @var{port}
2219 (@var{host} is optional). @option{connect} is used to connect to
2220 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2221 specifies an already opened TCP socket.
2223 Example:
2224 @example
2225 # launch a first QEMU instance
2226 qemu-system-i386 linux.img \
2227 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2228 -netdev socket,id=n1,listen=:1234
2229 # connect the network of this instance to the network of the first instance
2230 qemu-system-i386 linux.img \
2231 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2232 -netdev socket,id=n2,connect=127.0.0.1:1234
2233 @end example
2235 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2237 Configure a socket host network backend to share the guest's network traffic
2238 with another QEMU virtual machines using a UDP multicast socket, effectively
2239 making a bus for every QEMU with same multicast address @var{maddr} and @var{port}.
2240 NOTES:
2241 @enumerate
2242 @item
2243 Several QEMU can be running on different hosts and share same bus (assuming
2244 correct multicast setup for these hosts).
2245 @item
2246 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2247 @url{http://user-mode-linux.sf.net}.
2248 @item
2249 Use @option{fd=h} to specify an already opened UDP multicast socket.
2250 @end enumerate
2252 Example:
2253 @example
2254 # launch one QEMU instance
2255 qemu-system-i386 linux.img \
2256 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2257 -netdev socket,id=n1,mcast=230.0.0.1:1234
2258 # launch another QEMU instance on same "bus"
2259 qemu-system-i386 linux.img \
2260 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2261 -netdev socket,id=n2,mcast=230.0.0.1:1234
2262 # launch yet another QEMU instance on same "bus"
2263 qemu-system-i386 linux.img \
2264 -device e1000,netdev=n3,mac=52:54:00:12:34:58 \
2265 -netdev socket,id=n3,mcast=230.0.0.1:1234
2266 @end example
2268 Example (User Mode Linux compat.):
2269 @example
2270 # launch QEMU instance (note mcast address selected is UML's default)
2271 qemu-system-i386 linux.img \
2272 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2273 -netdev socket,id=n1,mcast=239.192.168.1:1102
2274 # launch UML
2275 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2276 @end example
2278 Example (send packets from host's 1.2.3.4):
2279 @example
2280 qemu-system-i386 linux.img \
2281 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2282 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2283 @end example
2285 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2286 Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a
2287 popular protocol to transport Ethernet (and other Layer 2) data frames between
2288 two systems. It is present in routers, firewalls and the Linux kernel
2289 (from version 3.3 onwards).
2291 This transport allows a VM to communicate to another VM, router or firewall directly.
2293 @table @option
2294 @item src=@var{srcaddr}
2295 source address (mandatory)
2296 @item dst=@var{dstaddr}
2297 destination address (mandatory)
2298 @item udp
2299 select udp encapsulation (default is ip).
2300 @item srcport=@var{srcport}
2301 source udp port.
2302 @item dstport=@var{dstport}
2303 destination udp port.
2304 @item ipv6
2305 force v6, otherwise defaults to v4.
2306 @item rxcookie=@var{rxcookie}
2307 @itemx txcookie=@var{txcookie}
2308 Cookies are a weak form of security in the l2tpv3 specification.
2309 Their function is mostly to prevent misconfiguration. By default they are 32
2310 bit.
2311 @item cookie64
2312 Set cookie size to 64 bit instead of the default 32
2313 @item counter=off
2314 Force a 'cut-down' L2TPv3 with no counter as in
2315 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2316 @item pincounter=on
2317 Work around broken counter handling in peer. This may also help on
2318 networks which have packet reorder.
2319 @item offset=@var{offset}
2320 Add an extra offset between header and data
2321 @end table
2323 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2324 on the remote Linux host 1.2.3.4:
2325 @example
2326 # Setup tunnel on linux host using raw ip as encapsulation
2327 # on 1.2.3.4
2328 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2329 encap udp udp_sport 16384 udp_dport 16384
2330 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2331 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2332 ifconfig vmtunnel0 mtu 1500
2333 ifconfig vmtunnel0 up
2334 brctl addif br-lan vmtunnel0
2337 # on 4.3.2.1
2338 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2340 qemu-system-i386 linux.img -device e1000,netdev=n1 \
2341 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2343 @end example
2345 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2346 Configure VDE backend to connect to PORT @var{n} of a vde switch running on host and
2347 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2348 and MODE @var{octalmode} to change default ownership and permissions for
2349 communication port. This option is only available if QEMU has been compiled
2350 with vde support enabled.
2352 Example:
2353 @example
2354 # launch vde switch
2355 vde_switch -F -sock /tmp/myswitch
2356 # launch QEMU instance
2357 qemu-system-i386 linux.img -nic vde,sock=/tmp/myswitch
2358 @end example
2360 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2362 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2363 be a unix domain socket backed one. The vhost-user uses a specifically defined
2364 protocol to pass vhost ioctl replacement messages to an application on the other
2365 end of the socket. On non-MSIX guests, the feature can be forced with
2366 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2367 be created for multiqueue vhost-user.
2369 Example:
2370 @example
2371 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2372 -numa node,memdev=mem \
2373 -chardev socket,id=chr0,path=/path/to/socket \
2374 -netdev type=vhost-user,id=net0,chardev=chr0 \
2375 -device virtio-net-pci,netdev=net0
2376 @end example
2378 @item -netdev hubport,id=@var{id},hubid=@var{hubid}[,netdev=@var{nd}]
2380 Create a hub port on the emulated hub with ID @var{hubid}.
2382 The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a
2383 single netdev. Alternatively, you can also connect the hubport to another
2384 netdev with ID @var{nd} by using the @option{netdev=@var{nd}} option.
2386 @item -net nic[,netdev=@var{nd}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
2387 @findex -net
2388 Legacy option to configure or create an on-board (or machine default) Network
2389 Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e.
2390 the default hub), or to the netdev @var{nd}.
2391 The NIC is an e1000 by default on the PC target. Optionally, the MAC address
2392 can be changed to @var{mac}, the device address set to @var{addr} (PCI cards
2393 only), and a @var{name} can be assigned for use in monitor commands.
2394 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
2395 that the card should have; this option currently only affects virtio cards; set
2396 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
2397 NIC is created. QEMU can emulate several different models of network card.
2398 Use @code{-net nic,model=help} for a list of available devices for your target.
2400 @item -net user|tap|bridge|socket|l2tpv3|vde[,...][,name=@var{name}]
2401 Configure a host network backend (with the options corresponding to the same
2402 @option{-netdev} option) and connect it to the emulated hub 0 (the default
2403 hub). Use @var{name} to specify the name of the hub port.
2404 ETEXI
2406 STEXI
2407 @end table
2408 ETEXI
2409 DEFHEADING()
2411 DEFHEADING(Character device options:)
2413 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2414 "-chardev help\n"
2415 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2416 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2417 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2418 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2419 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2420 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2421 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2422 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2423 " [,logfile=PATH][,logappend=on|off]\n"
2424 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2425 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2426 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2427 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2428 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2429 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2430 #ifdef _WIN32
2431 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2432 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2433 #else
2434 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2435 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2436 #endif
2437 #ifdef CONFIG_BRLAPI
2438 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2439 #endif
2440 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2441 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2442 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2443 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2444 #endif
2445 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2446 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2447 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2448 #endif
2449 #if defined(CONFIG_SPICE)
2450 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2451 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2452 #endif
2453 , QEMU_ARCH_ALL
2456 STEXI
2458 The general form of a character device option is:
2459 @table @option
2460 @item -chardev @var{backend},id=@var{id}[,mux=on|off][,@var{options}]
2461 @findex -chardev
2462 Backend is one of:
2463 @option{null},
2464 @option{socket},
2465 @option{udp},
2466 @option{msmouse},
2467 @option{vc},
2468 @option{ringbuf},
2469 @option{file},
2470 @option{pipe},
2471 @option{console},
2472 @option{serial},
2473 @option{pty},
2474 @option{stdio},
2475 @option{braille},
2476 @option{tty},
2477 @option{parallel},
2478 @option{parport},
2479 @option{spicevmc},
2480 @option{spiceport}.
2481 The specific backend will determine the applicable options.
2483 Use @code{-chardev help} to print all available chardev backend types.
2485 All devices must have an id, which can be any string up to 127 characters long.
2486 It is used to uniquely identify this device in other command line directives.
2488 A character device may be used in multiplexing mode by multiple front-ends.
2489 Specify @option{mux=on} to enable this mode.
2490 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2491 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2492 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2493 create a multiplexer with your specified ID, and you can then configure multiple
2494 front ends to use that chardev ID for their input/output. Up to four different
2495 front ends can be connected to a single multiplexed chardev. (Without
2496 multiplexing enabled, a chardev can only be used by a single front end.)
2497 For instance you could use this to allow a single stdio chardev to be used by
2498 two serial ports and the QEMU monitor:
2500 @example
2501 -chardev stdio,mux=on,id=char0 \
2502 -mon chardev=char0,mode=readline \
2503 -serial chardev:char0 \
2504 -serial chardev:char0
2505 @end example
2507 You can have more than one multiplexer in a system configuration; for instance
2508 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2509 multiplexed between the QEMU monitor and a parallel port:
2511 @example
2512 -chardev stdio,mux=on,id=char0 \
2513 -mon chardev=char0,mode=readline \
2514 -parallel chardev:char0 \
2515 -chardev tcp,...,mux=on,id=char1 \
2516 -serial chardev:char1 \
2517 -serial chardev:char1
2518 @end example
2520 When you're using a multiplexed character device, some escape sequences are
2521 interpreted in the input. @xref{mux_keys, Keys in the character backend
2522 multiplexer}.
2524 Note that some other command line options may implicitly create multiplexed
2525 character backends; for instance @option{-serial mon:stdio} creates a
2526 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2527 and @option{-nographic} also multiplexes the console and the monitor to
2528 stdio.
2530 There is currently no support for multiplexing in the other direction
2531 (where a single QEMU front end takes input and output from multiple chardevs).
2533 Every backend supports the @option{logfile} option, which supplies the path
2534 to a file to record all data transmitted via the backend. The @option{logappend}
2535 option controls whether the log file will be truncated or appended to when
2536 opened.
2538 @end table
2540 The available backends are:
2542 @table @option
2543 @item -chardev null,id=@var{id}
2544 A void device. This device will not emit any data, and will drop any data it
2545 receives. The null backend does not take any options.
2547 @item -chardev socket,id=@var{id}[,@var{TCP options} or @var{unix options}][,server][,nowait][,telnet][,reconnect=@var{seconds}][,tls-creds=@var{id}]
2549 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2550 unix socket will be created if @option{path} is specified. Behaviour is
2551 undefined if TCP options are specified for a unix socket.
2553 @option{server} specifies that the socket shall be a listening socket.
2555 @option{nowait} specifies that QEMU should not block waiting for a client to
2556 connect to a listening socket.
2558 @option{telnet} specifies that traffic on the socket should interpret telnet
2559 escape sequences.
2561 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2562 the remote end goes away. qemu will delay this many seconds and then attempt
2563 to reconnect. Zero disables reconnecting, and is the default.
2565 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2566 and specifies the id of the TLS credentials to use for the handshake. The
2567 credentials must be previously created with the @option{-object tls-creds}
2568 argument.
2570 TCP and unix socket options are given below:
2572 @table @option
2574 @item TCP options: port=@var{port}[,host=@var{host}][,to=@var{to}][,ipv4][,ipv6][,nodelay]
2576 @option{host} for a listening socket specifies the local address to be bound.
2577 For a connecting socket species the remote host to connect to. @option{host} is
2578 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2580 @option{port} for a listening socket specifies the local port to be bound. For a
2581 connecting socket specifies the port on the remote host to connect to.
2582 @option{port} can be given as either a port number or a service name.
2583 @option{port} is required.
2585 @option{to} is only relevant to listening sockets. If it is specified, and
2586 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2587 to and including @option{to} until it succeeds. @option{to} must be specified
2588 as a port number.
2590 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2591 If neither is specified the socket may use either protocol.
2593 @option{nodelay} disables the Nagle algorithm.
2595 @item unix options: path=@var{path}
2597 @option{path} specifies the local path of the unix socket. @option{path} is
2598 required.
2600 @end table
2602 @item -chardev udp,id=@var{id}[,host=@var{host}],port=@var{port}[,localaddr=@var{localaddr}][,localport=@var{localport}][,ipv4][,ipv6]
2604 Sends all traffic from the guest to a remote host over UDP.
2606 @option{host} specifies the remote host to connect to. If not specified it
2607 defaults to @code{localhost}.
2609 @option{port} specifies the port on the remote host to connect to. @option{port}
2610 is required.
2612 @option{localaddr} specifies the local address to bind to. If not specified it
2613 defaults to @code{0.0.0.0}.
2615 @option{localport} specifies the local port to bind to. If not specified any
2616 available local port will be used.
2618 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2619 If neither is specified the device may use either protocol.
2621 @item -chardev msmouse,id=@var{id}
2623 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2624 take any options.
2626 @item -chardev vc,id=@var{id}[[,width=@var{width}][,height=@var{height}]][[,cols=@var{cols}][,rows=@var{rows}]]
2628 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2629 size.
2631 @option{width} and @option{height} specify the width and height respectively of
2632 the console, in pixels.
2634 @option{cols} and @option{rows} specify that the console be sized to fit a text
2635 console with the given dimensions.
2637 @item -chardev ringbuf,id=@var{id}[,size=@var{size}]
2639 Create a ring buffer with fixed size @option{size}.
2640 @var{size} must be a power of two and defaults to @code{64K}.
2642 @item -chardev file,id=@var{id},path=@var{path}
2644 Log all traffic received from the guest to a file.
2646 @option{path} specifies the path of the file to be opened. This file will be
2647 created if it does not already exist, and overwritten if it does. @option{path}
2648 is required.
2650 @item -chardev pipe,id=@var{id},path=@var{path}
2652 Create a two-way connection to the guest. The behaviour differs slightly between
2653 Windows hosts and other hosts:
2655 On Windows, a single duplex pipe will be created at
2656 @file{\\.pipe\@option{path}}.
2658 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2659 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2660 received by the guest. Data written by the guest can be read from
2661 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2662 be present.
2664 @option{path} forms part of the pipe path as described above. @option{path} is
2665 required.
2667 @item -chardev console,id=@var{id}
2669 Send traffic from the guest to QEMU's standard output. @option{console} does not
2670 take any options.
2672 @option{console} is only available on Windows hosts.
2674 @item -chardev serial,id=@var{id},path=@option{path}
2676 Send traffic from the guest to a serial device on the host.
2678 On Unix hosts serial will actually accept any tty device,
2679 not only serial lines.
2681 @option{path} specifies the name of the serial device to open.
2683 @item -chardev pty,id=@var{id}
2685 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2686 not take any options.
2688 @option{pty} is not available on Windows hosts.
2690 @item -chardev stdio,id=@var{id}[,signal=on|off]
2691 Connect to standard input and standard output of the QEMU process.
2693 @option{signal} controls if signals are enabled on the terminal, that includes
2694 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2695 default, use @option{signal=off} to disable it.
2697 @item -chardev braille,id=@var{id}
2699 Connect to a local BrlAPI server. @option{braille} does not take any options.
2701 @item -chardev tty,id=@var{id},path=@var{path}
2703 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2704 DragonFlyBSD hosts. It is an alias for @option{serial}.
2706 @option{path} specifies the path to the tty. @option{path} is required.
2708 @item -chardev parallel,id=@var{id},path=@var{path}
2709 @itemx -chardev parport,id=@var{id},path=@var{path}
2711 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2713 Connect to a local parallel port.
2715 @option{path} specifies the path to the parallel port device. @option{path} is
2716 required.
2718 @item -chardev spicevmc,id=@var{id},debug=@var{debug},name=@var{name}
2720 @option{spicevmc} is only available when spice support is built in.
2722 @option{debug} debug level for spicevmc
2724 @option{name} name of spice channel to connect to
2726 Connect to a spice virtual machine channel, such as vdiport.
2728 @item -chardev spiceport,id=@var{id},debug=@var{debug},name=@var{name}
2730 @option{spiceport} is only available when spice support is built in.
2732 @option{debug} debug level for spicevmc
2734 @option{name} name of spice port to connect to
2736 Connect to a spice port, allowing a Spice client to handle the traffic
2737 identified by a name (preferably a fqdn).
2738 ETEXI
2740 STEXI
2741 @end table
2742 ETEXI
2743 DEFHEADING()
2745 DEFHEADING(Bluetooth(R) options:)
2746 STEXI
2747 @table @option
2748 ETEXI
2750 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2751 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2752 "-bt hci,host[:id]\n" \
2753 " use host's HCI with the given name\n" \
2754 "-bt hci[,vlan=n]\n" \
2755 " emulate a standard HCI in virtual scatternet 'n'\n" \
2756 "-bt vhci[,vlan=n]\n" \
2757 " add host computer to virtual scatternet 'n' using VHCI\n" \
2758 "-bt device:dev[,vlan=n]\n" \
2759 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2760 QEMU_ARCH_ALL)
2761 STEXI
2762 @item -bt hci[...]
2763 @findex -bt
2764 Defines the function of the corresponding Bluetooth HCI. -bt options
2765 are matched with the HCIs present in the chosen machine type. For
2766 example when emulating a machine with only one HCI built into it, only
2767 the first @code{-bt hci[...]} option is valid and defines the HCI's
2768 logic. The Transport Layer is decided by the machine type. Currently
2769 the machines @code{n800} and @code{n810} have one HCI and all other
2770 machines have none.
2772 @anchor{bt-hcis}
2773 The following three types are recognized:
2775 @table @option
2776 @item -bt hci,null
2777 (default) The corresponding Bluetooth HCI assumes no internal logic
2778 and will not respond to any HCI commands or emit events.
2780 @item -bt hci,host[:@var{id}]
2781 (@code{bluez} only) The corresponding HCI passes commands / events
2782 to / from the physical HCI identified by the name @var{id} (default:
2783 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2784 capable systems like Linux.
2786 @item -bt hci[,vlan=@var{n}]
2787 Add a virtual, standard HCI that will participate in the Bluetooth
2788 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2789 VLANs, devices inside a bluetooth network @var{n} can only communicate
2790 with other devices in the same network (scatternet).
2791 @end table
2793 @item -bt vhci[,vlan=@var{n}]
2794 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2795 to the host bluetooth stack instead of to the emulated target. This
2796 allows the host and target machines to participate in a common scatternet
2797 and communicate. Requires the Linux @code{vhci} driver installed. Can
2798 be used as following:
2800 @example
2801 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2802 @end example
2804 @item -bt device:@var{dev}[,vlan=@var{n}]
2805 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2806 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2807 currently:
2809 @table @option
2810 @item keyboard
2811 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2812 @end table
2813 ETEXI
2815 STEXI
2816 @end table
2817 ETEXI
2818 DEFHEADING()
2820 #ifdef CONFIG_TPM
2821 DEFHEADING(TPM device options:)
2823 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2824 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2825 " use path to provide path to a character device; default is /dev/tpm0\n"
2826 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2827 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
2828 "-tpmdev emulator,id=id,chardev=dev\n"
2829 " configure the TPM device using chardev backend\n",
2830 QEMU_ARCH_ALL)
2831 STEXI
2833 The general form of a TPM device option is:
2834 @table @option
2836 @item -tpmdev @var{backend},id=@var{id}[,@var{options}]
2837 @findex -tpmdev
2839 The specific backend type will determine the applicable options.
2840 The @code{-tpmdev} option creates the TPM backend and requires a
2841 @code{-device} option that specifies the TPM frontend interface model.
2843 Use @code{-tpmdev help} to print all available TPM backend types.
2845 @end table
2847 The available backends are:
2849 @table @option
2851 @item -tpmdev passthrough,id=@var{id},path=@var{path},cancel-path=@var{cancel-path}
2853 (Linux-host only) Enable access to the host's TPM using the passthrough
2854 driver.
2856 @option{path} specifies the path to the host's TPM device, i.e., on
2857 a Linux host this would be @code{/dev/tpm0}.
2858 @option{path} is optional and by default @code{/dev/tpm0} is used.
2860 @option{cancel-path} specifies the path to the host TPM device's sysfs
2861 entry allowing for cancellation of an ongoing TPM command.
2862 @option{cancel-path} is optional and by default QEMU will search for the
2863 sysfs entry to use.
2865 Some notes about using the host's TPM with the passthrough driver:
2867 The TPM device accessed by the passthrough driver must not be
2868 used by any other application on the host.
2870 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2871 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2872 TPM again and may therefore not show a TPM-specific menu that would
2873 otherwise allow the user to configure the TPM, e.g., allow the user to
2874 enable/disable or activate/deactivate the TPM.
2875 Further, if TPM ownership is released from within a VM then the host's TPM
2876 will get disabled and deactivated. To enable and activate the
2877 TPM again afterwards, the host has to be rebooted and the user is
2878 required to enter the firmware's menu to enable and activate the TPM.
2879 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2881 To create a passthrough TPM use the following two options:
2882 @example
2883 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2884 @end example
2885 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2886 @code{tpmdev=tpm0} in the device option.
2888 @item -tpmdev emulator,id=@var{id},chardev=@var{dev}
2890 (Linux-host only) Enable access to a TPM emulator using Unix domain socket based
2891 chardev backend.
2893 @option{chardev} specifies the unique ID of a character device backend that provides connection to the software TPM server.
2895 To create a TPM emulator backend device with chardev socket backend:
2896 @example
2898 -chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0
2900 @end example
2902 ETEXI
2904 STEXI
2905 @end table
2906 ETEXI
2907 DEFHEADING()
2909 #endif
2911 DEFHEADING(Linux/Multiboot boot specific:)
2912 STEXI
2914 When using these options, you can use a given Linux or Multiboot
2915 kernel without installing it in the disk image. It can be useful
2916 for easier testing of various kernels.
2918 @table @option
2919 ETEXI
2921 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2922 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2923 STEXI
2924 @item -kernel @var{bzImage}
2925 @findex -kernel
2926 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2927 or in multiboot format.
2928 ETEXI
2930 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2931 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2932 STEXI
2933 @item -append @var{cmdline}
2934 @findex -append
2935 Use @var{cmdline} as kernel command line
2936 ETEXI
2938 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2939 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2940 STEXI
2941 @item -initrd @var{file}
2942 @findex -initrd
2943 Use @var{file} as initial ram disk.
2945 @item -initrd "@var{file1} arg=foo,@var{file2}"
2947 This syntax is only available with multiboot.
2949 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2950 first module.
2951 ETEXI
2953 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2954 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2955 STEXI
2956 @item -dtb @var{file}
2957 @findex -dtb
2958 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2959 on boot.
2960 ETEXI
2962 STEXI
2963 @end table
2964 ETEXI
2965 DEFHEADING()
2967 DEFHEADING(Debug/Expert options:)
2968 STEXI
2969 @table @option
2970 ETEXI
2972 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
2973 "-fw_cfg [name=]<name>,file=<file>\n"
2974 " add named fw_cfg entry with contents from file\n"
2975 "-fw_cfg [name=]<name>,string=<str>\n"
2976 " add named fw_cfg entry with contents from string\n",
2977 QEMU_ARCH_ALL)
2978 STEXI
2980 @item -fw_cfg [name=]@var{name},file=@var{file}
2981 @findex -fw_cfg
2982 Add named fw_cfg entry with contents from file @var{file}.
2984 @item -fw_cfg [name=]@var{name},string=@var{str}
2985 Add named fw_cfg entry with contents from string @var{str}.
2987 The terminating NUL character of the contents of @var{str} will not be
2988 included as part of the fw_cfg item data. To insert contents with
2989 embedded NUL characters, you have to use the @var{file} parameter.
2991 The fw_cfg entries are passed by QEMU through to the guest.
2993 Example:
2994 @example
2995 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
2996 @end example
2997 creates an fw_cfg entry named opt/com.mycompany/blob with contents
2998 from ./my_blob.bin.
3000 ETEXI
3002 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
3003 "-serial dev redirect the serial port to char device 'dev'\n",
3004 QEMU_ARCH_ALL)
3005 STEXI
3006 @item -serial @var{dev}
3007 @findex -serial
3008 Redirect the virtual serial port to host character device
3009 @var{dev}. The default device is @code{vc} in graphical mode and
3010 @code{stdio} in non graphical mode.
3012 This option can be used several times to simulate up to 4 serial
3013 ports.
3015 Use @code{-serial none} to disable all serial ports.
3017 Available character devices are:
3018 @table @option
3019 @item vc[:@var{W}x@var{H}]
3020 Virtual console. Optionally, a width and height can be given in pixel with
3021 @example
3022 vc:800x600
3023 @end example
3024 It is also possible to specify width or height in characters:
3025 @example
3026 vc:80Cx24C
3027 @end example
3028 @item pty
3029 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3030 @item none
3031 No device is allocated.
3032 @item null
3033 void device
3034 @item chardev:@var{id}
3035 Use a named character device defined with the @code{-chardev} option.
3036 @item /dev/XXX
3037 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3038 parameters are set according to the emulated ones.
3039 @item /dev/parport@var{N}
3040 [Linux only, parallel port only] Use host parallel port
3041 @var{N}. Currently SPP and EPP parallel port features can be used.
3042 @item file:@var{filename}
3043 Write output to @var{filename}. No character can be read.
3044 @item stdio
3045 [Unix only] standard input/output
3046 @item pipe:@var{filename}
3047 name pipe @var{filename}
3048 @item COM@var{n}
3049 [Windows only] Use host serial port @var{n}
3050 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3051 This implements UDP Net Console.
3052 When @var{remote_host} or @var{src_ip} are not specified
3053 they default to @code{0.0.0.0}.
3054 When not using a specified @var{src_port} a random port is automatically chosen.
3056 If you just want a simple readonly console you can use @code{netcat} or
3057 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3058 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3059 will appear in the netconsole session.
3061 If you plan to send characters back via netconsole or you want to stop
3062 and start QEMU a lot of times, you should have QEMU use the same
3063 source port each time by using something like @code{-serial
3064 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3065 version of netcat which can listen to a TCP port and send and receive
3066 characters via udp. If you have a patched version of netcat which
3067 activates telnet remote echo and single char transfer, then you can
3068 use the following options to set up a netcat redirector to allow
3069 telnet on port 5555 to access the QEMU port.
3070 @table @code
3071 @item QEMU Options:
3072 -serial udp::4555@@:4556
3073 @item netcat options:
3074 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3075 @item telnet options:
3076 localhost 5555
3077 @end table
3079 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3080 The TCP Net Console has two modes of operation. It can send the serial
3081 I/O to a location or wait for a connection from a location. By default
3082 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3083 the @var{server} option QEMU will wait for a client socket application
3084 to connect to the port before continuing, unless the @code{nowait}
3085 option was specified. The @code{nodelay} option disables the Nagle buffering
3086 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3087 set, if the connection goes down it will attempt to reconnect at the
3088 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3089 one TCP connection at a time is accepted. You can use @code{telnet} to
3090 connect to the corresponding character device.
3091 @table @code
3092 @item Example to send tcp console to 192.168.0.2 port 4444
3093 -serial tcp:192.168.0.2:4444
3094 @item Example to listen and wait on port 4444 for connection
3095 -serial tcp::4444,server
3096 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3097 -serial tcp:192.168.0.100:4444,server,nowait
3098 @end table
3100 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3101 The telnet protocol is used instead of raw tcp sockets. The options
3102 work the same as if you had specified @code{-serial tcp}. The
3103 difference is that the port acts like a telnet server or client using
3104 telnet option negotiation. This will also allow you to send the
3105 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3106 sequence. Typically in unix telnet you do it with Control-] and then
3107 type "send break" followed by pressing the enter key.
3109 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3110 A unix domain socket is used instead of a tcp socket. The option works the
3111 same as if you had specified @code{-serial tcp} except the unix domain socket
3112 @var{path} is used for connections.
3114 @item mon:@var{dev_string}
3115 This is a special option to allow the monitor to be multiplexed onto
3116 another serial port. The monitor is accessed with key sequence of
3117 @key{Control-a} and then pressing @key{c}.
3118 @var{dev_string} should be any one of the serial devices specified
3119 above. An example to multiplex the monitor onto a telnet server
3120 listening on port 4444 would be:
3121 @table @code
3122 @item -serial mon:telnet::4444,server,nowait
3123 @end table
3124 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3125 QEMU any more but will be passed to the guest instead.
3127 @item braille
3128 Braille device. This will use BrlAPI to display the braille output on a real
3129 or fake device.
3131 @item msmouse
3132 Three button serial mouse. Configure the guest to use Microsoft protocol.
3133 @end table
3134 ETEXI
3136 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3137 "-parallel dev redirect the parallel port to char device 'dev'\n",
3138 QEMU_ARCH_ALL)
3139 STEXI
3140 @item -parallel @var{dev}
3141 @findex -parallel
3142 Redirect the virtual parallel port to host device @var{dev} (same
3143 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3144 be used to use hardware devices connected on the corresponding host
3145 parallel port.
3147 This option can be used several times to simulate up to 3 parallel
3148 ports.
3150 Use @code{-parallel none} to disable all parallel ports.
3151 ETEXI
3153 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3154 "-monitor dev redirect the monitor to char device 'dev'\n",
3155 QEMU_ARCH_ALL)
3156 STEXI
3157 @item -monitor @var{dev}
3158 @findex -monitor
3159 Redirect the monitor to host device @var{dev} (same devices as the
3160 serial port).
3161 The default device is @code{vc} in graphical mode and @code{stdio} in
3162 non graphical mode.
3163 Use @code{-monitor none} to disable the default monitor.
3164 ETEXI
3165 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3166 "-qmp dev like -monitor but opens in 'control' mode\n",
3167 QEMU_ARCH_ALL)
3168 STEXI
3169 @item -qmp @var{dev}
3170 @findex -qmp
3171 Like -monitor but opens in 'control' mode.
3172 ETEXI
3173 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3174 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3175 QEMU_ARCH_ALL)
3176 STEXI
3177 @item -qmp-pretty @var{dev}
3178 @findex -qmp-pretty
3179 Like -qmp but uses pretty JSON formatting.
3180 ETEXI
3182 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3183 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL)
3184 STEXI
3185 @item -mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]
3186 @findex -mon
3187 Setup monitor on chardev @var{name}. @code{pretty} turns on JSON pretty printing
3188 easing human reading and debugging.
3189 ETEXI
3191 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3192 "-debugcon dev redirect the debug console to char device 'dev'\n",
3193 QEMU_ARCH_ALL)
3194 STEXI
3195 @item -debugcon @var{dev}
3196 @findex -debugcon
3197 Redirect the debug console to host device @var{dev} (same devices as the
3198 serial port). The debug console is an I/O port which is typically port
3199 0xe9; writing to that I/O port sends output to this device.
3200 The default device is @code{vc} in graphical mode and @code{stdio} in
3201 non graphical mode.
3202 ETEXI
3204 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3205 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3206 STEXI
3207 @item -pidfile @var{file}
3208 @findex -pidfile
3209 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3210 from a script.
3211 ETEXI
3213 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3214 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3215 STEXI
3216 @item -singlestep
3217 @findex -singlestep
3218 Run the emulation in single step mode.
3219 ETEXI
3221 DEF("preconfig", 0, QEMU_OPTION_preconfig, \
3222 "--preconfig pause QEMU before machine is initialized (experimental)\n",
3223 QEMU_ARCH_ALL)
3224 STEXI
3225 @item --preconfig
3226 @findex --preconfig
3227 Pause QEMU for interactive configuration before the machine is created,
3228 which allows querying and configuring properties that will affect
3229 machine initialization. Use QMP command 'x-exit-preconfig' to exit
3230 the preconfig state and move to the next state (i.e. run guest if -S
3231 isn't used or pause the second time if -S is used). This option is
3232 experimental.
3233 ETEXI
3235 DEF("S", 0, QEMU_OPTION_S, \
3236 "-S freeze CPU at startup (use 'c' to start execution)\n",
3237 QEMU_ARCH_ALL)
3238 STEXI
3239 @item -S
3240 @findex -S
3241 Do not start CPU at startup (you must type 'c' in the monitor).
3242 ETEXI
3244 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3245 "-realtime [mlock=on|off]\n"
3246 " run qemu with realtime features\n"
3247 " mlock=on|off controls mlock support (default: on)\n",
3248 QEMU_ARCH_ALL)
3249 STEXI
3250 @item -realtime mlock=on|off
3251 @findex -realtime
3252 Run qemu with realtime features.
3253 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3254 (enabled by default).
3255 ETEXI
3257 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3258 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3259 " run qemu with overcommit hints\n"
3260 " mem-lock=on|off controls memory lock support (default: off)\n"
3261 " cpu-pm=on|off controls cpu power management (default: off)\n",
3262 QEMU_ARCH_ALL)
3263 STEXI
3264 @item -overcommit mem-lock=on|off
3265 @item -overcommit cpu-pm=on|off
3266 @findex -overcommit
3267 Run qemu with hints about host resource overcommit. The default is
3268 to assume that host overcommits all resources.
3270 Locking qemu and guest memory can be enabled via @option{mem-lock=on} (disabled
3271 by default). This works when host memory is not overcommitted and reduces the
3272 worst-case latency for guest. This is equivalent to @option{realtime}.
3274 Guest ability to manage power state of host cpus (increasing latency for other
3275 processes on the same host cpu, but decreasing latency for guest) can be
3276 enabled via @option{cpu-pm=on} (disabled by default). This works best when
3277 host CPU is not overcommitted. When used, host estimates of CPU cycle and power
3278 utilization will be incorrect, not taking into account guest idle time.
3279 ETEXI
3281 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3282 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3283 STEXI
3284 @item -gdb @var{dev}
3285 @findex -gdb
3286 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3287 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3288 stdio are reasonable use case. The latter is allowing to start QEMU from
3289 within gdb and establish the connection via a pipe:
3290 @example
3291 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3292 @end example
3293 ETEXI
3295 DEF("s", 0, QEMU_OPTION_s, \
3296 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3297 QEMU_ARCH_ALL)
3298 STEXI
3299 @item -s
3300 @findex -s
3301 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3302 (@pxref{gdb_usage}).
3303 ETEXI
3305 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3306 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3307 QEMU_ARCH_ALL)
3308 STEXI
3309 @item -d @var{item1}[,...]
3310 @findex -d
3311 Enable logging of specified items. Use '-d help' for a list of log items.
3312 ETEXI
3314 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3315 "-D logfile output log to logfile (default stderr)\n",
3316 QEMU_ARCH_ALL)
3317 STEXI
3318 @item -D @var{logfile}
3319 @findex -D
3320 Output log in @var{logfile} instead of to stderr
3321 ETEXI
3323 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3324 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3325 QEMU_ARCH_ALL)
3326 STEXI
3327 @item -dfilter @var{range1}[,...]
3328 @findex -dfilter
3329 Filter debug output to that relevant to a range of target addresses. The filter
3330 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3331 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3332 addresses and sizes required. For example:
3333 @example
3334 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3335 @end example
3336 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3337 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3338 block starting at 0xffffffc00005f000.
3339 ETEXI
3341 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3342 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3343 QEMU_ARCH_ALL)
3344 STEXI
3345 @item -L @var{path}
3346 @findex -L
3347 Set the directory for the BIOS, VGA BIOS and keymaps.
3349 To list all the data directories, use @code{-L help}.
3350 ETEXI
3352 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3353 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3354 STEXI
3355 @item -bios @var{file}
3356 @findex -bios
3357 Set the filename for the BIOS.
3358 ETEXI
3360 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3361 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3362 STEXI
3363 @item -enable-kvm
3364 @findex -enable-kvm
3365 Enable KVM full virtualization support. This option is only available
3366 if KVM support is enabled when compiling.
3367 ETEXI
3369 DEF("enable-hax", 0, QEMU_OPTION_enable_hax, \
3370 "-enable-hax enable HAX virtualization support\n", QEMU_ARCH_I386)
3371 STEXI
3372 @item -enable-hax
3373 @findex -enable-hax
3374 Enable HAX (Hardware-based Acceleration eXecution) support. This option
3375 is only available if HAX support is enabled when compiling. HAX is only
3376 applicable to MAC and Windows platform, and thus does not conflict with
3377 KVM. This option is deprecated, use @option{-accel hax} instead.
3378 ETEXI
3380 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3381 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3382 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3383 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3384 " warning: should not be used when xend is in use\n",
3385 QEMU_ARCH_ALL)
3386 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3387 "-xen-attach attach to existing xen domain\n"
3388 " xend will use this when starting QEMU\n",
3389 QEMU_ARCH_ALL)
3390 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3391 "-xen-domid-restrict restrict set of available xen operations\n"
3392 " to specified domain id. (Does not affect\n"
3393 " xenpv machine type).\n",
3394 QEMU_ARCH_ALL)
3395 STEXI
3396 @item -xen-domid @var{id}
3397 @findex -xen-domid
3398 Specify xen guest domain @var{id} (XEN only).
3399 @item -xen-create
3400 @findex -xen-create
3401 Create domain using xen hypercalls, bypassing xend.
3402 Warning: should not be used when xend is in use (XEN only).
3403 @item -xen-attach
3404 @findex -xen-attach
3405 Attach to existing xen domain.
3406 xend will use this when starting QEMU (XEN only).
3407 @findex -xen-domid-restrict
3408 Restrict set of available xen operations to specified domain id (XEN only).
3409 ETEXI
3411 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3412 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3413 STEXI
3414 @item -no-reboot
3415 @findex -no-reboot
3416 Exit instead of rebooting.
3417 ETEXI
3419 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3420 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3421 STEXI
3422 @item -no-shutdown
3423 @findex -no-shutdown
3424 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3425 This allows for instance switching to monitor to commit changes to the
3426 disk image.
3427 ETEXI
3429 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3430 "-loadvm [tag|id]\n" \
3431 " start right away with a saved state (loadvm in monitor)\n",
3432 QEMU_ARCH_ALL)
3433 STEXI
3434 @item -loadvm @var{file}
3435 @findex -loadvm
3436 Start right away with a saved state (@code{loadvm} in monitor)
3437 ETEXI
3439 #ifndef _WIN32
3440 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3441 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3442 #endif
3443 STEXI
3444 @item -daemonize
3445 @findex -daemonize
3446 Daemonize the QEMU process after initialization. QEMU will not detach from
3447 standard IO until it is ready to receive connections on any of its devices.
3448 This option is a useful way for external programs to launch QEMU without having
3449 to cope with initialization race conditions.
3450 ETEXI
3452 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3453 "-option-rom rom load a file, rom, into the option ROM space\n",
3454 QEMU_ARCH_ALL)
3455 STEXI
3456 @item -option-rom @var{file}
3457 @findex -option-rom
3458 Load the contents of @var{file} as an option ROM.
3459 This option is useful to load things like EtherBoot.
3460 ETEXI
3462 HXCOMM Silently ignored for compatibility
3463 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3465 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3466 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3467 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3468 QEMU_ARCH_ALL)
3470 STEXI
3472 @item -rtc [base=utc|localtime|@var{datetime}][,clock=host|rt|vm][,driftfix=none|slew]
3473 @findex -rtc
3474 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3475 UTC or local time, respectively. @code{localtime} is required for correct date in
3476 MS-DOS or Windows. To start at a specific point in time, provide @var{datetime} in the
3477 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3479 By default the RTC is driven by the host system time. This allows using of the
3480 RTC as accurate reference clock inside the guest, specifically if the host
3481 time is smoothly following an accurate external reference clock, e.g. via NTP.
3482 If you want to isolate the guest time from the host, you can set @option{clock}
3483 to @code{rt} instead, which provides a host monotonic clock if host support it.
3484 To even prevent the RTC from progressing during suspension, you can set @option{clock}
3485 to @code{vm} (virtual clock). @samp{clock=vm} is recommended especially in
3486 icount mode in order to preserve determinism; however, note that in icount mode
3487 the speed of the virtual clock is variable and can in general differ from the
3488 host clock.
3490 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3491 specifically with Windows' ACPI HAL. This option will try to figure out how
3492 many timer interrupts were not processed by the Windows guest and will
3493 re-inject them.
3494 ETEXI
3496 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3497 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3498 " enable virtual instruction counter with 2^N clock ticks per\n" \
3499 " instruction, enable aligning the host and virtual clocks\n" \
3500 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3501 STEXI
3502 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3503 @findex -icount
3504 Enable virtual instruction counter. The virtual cpu will execute one
3505 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3506 then the virtual cpu speed will be automatically adjusted to keep virtual
3507 time within a few seconds of real time.
3509 When the virtual cpu is sleeping, the virtual time will advance at default
3510 speed unless @option{sleep=on|off} is specified.
3511 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3512 instantly whenever the virtual cpu goes to sleep mode and will not advance
3513 if no timer is enabled. This behavior give deterministic execution times from
3514 the guest point of view.
3516 Note that while this option can give deterministic behavior, it does not
3517 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3518 order cores with complex cache hierarchies. The number of instructions
3519 executed often has little or no correlation with actual performance.
3521 @option{align=on} will activate the delay algorithm which will try
3522 to synchronise the host clock and the virtual clock. The goal is to
3523 have a guest running at the real frequency imposed by the shift option.
3524 Whenever the guest clock is behind the host clock and if
3525 @option{align=on} is specified then we print a message to the user
3526 to inform about the delay.
3527 Currently this option does not work when @option{shift} is @code{auto}.
3528 Note: The sync algorithm will work for those shift values for which
3529 the guest clock runs ahead of the host clock. Typically this happens
3530 when the shift value is high (how high depends on the host machine).
3532 When @option{rr} option is specified deterministic record/replay is enabled.
3533 Replay log is written into @var{filename} file in record mode and
3534 read from this file in replay mode.
3536 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3537 at the start of execution recording. In replay mode this option is used
3538 to load the initial VM state.
3539 ETEXI
3541 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3542 "-watchdog model\n" \
3543 " enable virtual hardware watchdog [default=none]\n",
3544 QEMU_ARCH_ALL)
3545 STEXI
3546 @item -watchdog @var{model}
3547 @findex -watchdog
3548 Create a virtual hardware watchdog device. Once enabled (by a guest
3549 action), the watchdog must be periodically polled by an agent inside
3550 the guest or else the guest will be restarted. Choose a model for
3551 which your guest has drivers.
3553 The @var{model} is the model of hardware watchdog to emulate. Use
3554 @code{-watchdog help} to list available hardware models. Only one
3555 watchdog can be enabled for a guest.
3557 The following models may be available:
3558 @table @option
3559 @item ib700
3560 iBASE 700 is a very simple ISA watchdog with a single timer.
3561 @item i6300esb
3562 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3563 dual-timer watchdog.
3564 @item diag288
3565 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3566 (currently KVM only).
3567 @end table
3568 ETEXI
3570 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3571 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
3572 " action when watchdog fires [default=reset]\n",
3573 QEMU_ARCH_ALL)
3574 STEXI
3575 @item -watchdog-action @var{action}
3576 @findex -watchdog-action
3578 The @var{action} controls what QEMU will do when the watchdog timer
3579 expires.
3580 The default is
3581 @code{reset} (forcefully reset the guest).
3582 Other possible actions are:
3583 @code{shutdown} (attempt to gracefully shutdown the guest),
3584 @code{poweroff} (forcefully poweroff the guest),
3585 @code{inject-nmi} (inject a NMI into the guest),
3586 @code{pause} (pause the guest),
3587 @code{debug} (print a debug message and continue), or
3588 @code{none} (do nothing).
3590 Note that the @code{shutdown} action requires that the guest responds
3591 to ACPI signals, which it may not be able to do in the sort of
3592 situations where the watchdog would have expired, and thus
3593 @code{-watchdog-action shutdown} is not recommended for production use.
3595 Examples:
3597 @table @code
3598 @item -watchdog i6300esb -watchdog-action pause
3599 @itemx -watchdog ib700
3600 @end table
3601 ETEXI
3603 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3604 "-echr chr set terminal escape character instead of ctrl-a\n",
3605 QEMU_ARCH_ALL)
3606 STEXI
3608 @item -echr @var{numeric_ascii_value}
3609 @findex -echr
3610 Change the escape character used for switching to the monitor when using
3611 monitor and serial sharing. The default is @code{0x01} when using the
3612 @code{-nographic} option. @code{0x01} is equal to pressing
3613 @code{Control-a}. You can select a different character from the ascii
3614 control keys where 1 through 26 map to Control-a through Control-z. For
3615 instance you could use the either of the following to change the escape
3616 character to Control-t.
3617 @table @code
3618 @item -echr 0x14
3619 @itemx -echr 20
3620 @end table
3621 ETEXI
3623 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3624 "-virtioconsole c\n" \
3625 " set virtio console\n", QEMU_ARCH_ALL)
3626 STEXI
3627 @item -virtioconsole @var{c}
3628 @findex -virtioconsole
3629 Set virtio console.
3630 This option is deprecated, please use @option{-device virtconsole} instead.
3631 ETEXI
3633 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3634 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3635 STEXI
3636 @item -show-cursor
3637 @findex -show-cursor
3638 Show cursor.
3639 ETEXI
3641 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3642 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3643 STEXI
3644 @item -tb-size @var{n}
3645 @findex -tb-size
3646 Set TB size.
3647 ETEXI
3649 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3650 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3651 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3652 "-incoming unix:socketpath\n" \
3653 " prepare for incoming migration, listen on\n" \
3654 " specified protocol and socket address\n" \
3655 "-incoming fd:fd\n" \
3656 "-incoming exec:cmdline\n" \
3657 " accept incoming migration on given file descriptor\n" \
3658 " or from given external command\n" \
3659 "-incoming defer\n" \
3660 " wait for the URI to be specified via migrate_incoming\n",
3661 QEMU_ARCH_ALL)
3662 STEXI
3663 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3664 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3665 @findex -incoming
3666 Prepare for incoming migration, listen on a given tcp port.
3668 @item -incoming unix:@var{socketpath}
3669 Prepare for incoming migration, listen on a given unix socket.
3671 @item -incoming fd:@var{fd}
3672 Accept incoming migration from a given filedescriptor.
3674 @item -incoming exec:@var{cmdline}
3675 Accept incoming migration as an output from specified external command.
3677 @item -incoming defer
3678 Wait for the URI to be specified via migrate_incoming. The monitor can
3679 be used to change settings (such as migration parameters) prior to issuing
3680 the migrate_incoming to allow the migration to begin.
3681 ETEXI
3683 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
3684 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
3685 STEXI
3686 @item -only-migratable
3687 @findex -only-migratable
3688 Only allow migratable devices. Devices will not be allowed to enter an
3689 unmigratable state.
3690 ETEXI
3692 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3693 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3694 STEXI
3695 @item -nodefaults
3696 @findex -nodefaults
3697 Don't create default devices. Normally, QEMU sets the default devices like serial
3698 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3699 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3700 default devices.
3701 ETEXI
3703 #ifndef _WIN32
3704 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3705 "-chroot dir chroot to dir just before starting the VM\n",
3706 QEMU_ARCH_ALL)
3707 #endif
3708 STEXI
3709 @item -chroot @var{dir}
3710 @findex -chroot
3711 Immediately before starting guest execution, chroot to the specified
3712 directory. Especially useful in combination with -runas.
3713 ETEXI
3715 #ifndef _WIN32
3716 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3717 "-runas user change to user id user just before starting the VM\n" \
3718 " user can be numeric uid:gid instead\n",
3719 QEMU_ARCH_ALL)
3720 #endif
3721 STEXI
3722 @item -runas @var{user}
3723 @findex -runas
3724 Immediately before starting guest execution, drop root privileges, switching
3725 to the specified user.
3726 ETEXI
3728 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3729 "-prom-env variable=value\n"
3730 " set OpenBIOS nvram variables\n",
3731 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3732 STEXI
3733 @item -prom-env @var{variable}=@var{value}
3734 @findex -prom-env
3735 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3736 ETEXI
3737 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3738 "-semihosting semihosting mode\n",
3739 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3740 QEMU_ARCH_MIPS)
3741 STEXI
3742 @item -semihosting
3743 @findex -semihosting
3744 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3745 ETEXI
3746 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3747 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3748 " semihosting configuration\n",
3749 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3750 QEMU_ARCH_MIPS)
3751 STEXI
3752 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3753 @findex -semihosting-config
3754 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3755 @table @option
3756 @item target=@code{native|gdb|auto}
3757 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3758 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3759 during debug sessions and @code{native} otherwise.
3760 @item arg=@var{str1},arg=@var{str2},...
3761 Allows the user to pass input arguments, and can be used multiple times to build
3762 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3763 command line is still supported for backward compatibility. If both the
3764 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3765 specified, the former is passed to semihosting as it always takes precedence.
3766 @end table
3767 ETEXI
3768 DEF("old-param", 0, QEMU_OPTION_old_param,
3769 "-old-param old param mode\n", QEMU_ARCH_ARM)
3770 STEXI
3771 @item -old-param
3772 @findex -old-param (ARM)
3773 Old param mode (ARM only).
3774 ETEXI
3776 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3777 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
3778 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
3779 " Enable seccomp mode 2 system call filter (default 'off').\n" \
3780 " use 'obsolete' to allow obsolete system calls that are provided\n" \
3781 " by the kernel, but typically no longer used by modern\n" \
3782 " C library implementations.\n" \
3783 " use 'elevateprivileges' to allow or deny QEMU process to elevate\n" \
3784 " its privileges by blacklisting all set*uid|gid system calls.\n" \
3785 " The value 'children' will deny set*uid|gid system calls for\n" \
3786 " main QEMU process but will allow forks and execves to run unprivileged\n" \
3787 " use 'spawn' to avoid QEMU to spawn new threads or processes by\n" \
3788 " blacklisting *fork and execve\n" \
3789 " use 'resourcecontrol' to disable process affinity and schedular priority\n",
3790 QEMU_ARCH_ALL)
3791 STEXI
3792 @item -sandbox @var{arg}[,obsolete=@var{string}][,elevateprivileges=@var{string}][,spawn=@var{string}][,resourcecontrol=@var{string}]
3793 @findex -sandbox
3794 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3795 disable it. The default is 'off'.
3796 @table @option
3797 @item obsolete=@var{string}
3798 Enable Obsolete system calls
3799 @item elevateprivileges=@var{string}
3800 Disable set*uid|gid system calls
3801 @item spawn=@var{string}
3802 Disable *fork and execve
3803 @item resourcecontrol=@var{string}
3804 Disable process affinity and schedular priority
3805 @end table
3806 ETEXI
3808 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3809 "-readconfig <file>\n", QEMU_ARCH_ALL)
3810 STEXI
3811 @item -readconfig @var{file}
3812 @findex -readconfig
3813 Read device configuration from @var{file}. This approach is useful when you want to spawn
3814 QEMU process with many command line options but you don't want to exceed the command line
3815 character limit.
3816 ETEXI
3817 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3818 "-writeconfig <file>\n"
3819 " read/write config file\n", QEMU_ARCH_ALL)
3820 STEXI
3821 @item -writeconfig @var{file}
3822 @findex -writeconfig
3823 Write device configuration to @var{file}. The @var{file} can be either filename to save
3824 command line and device configuration into file or dash @code{-}) character to print the
3825 output to stdout. This can be later used as input file for @code{-readconfig} option.
3826 ETEXI
3828 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3829 "-no-user-config\n"
3830 " do not load default user-provided config files at startup\n",
3831 QEMU_ARCH_ALL)
3832 STEXI
3833 @item -no-user-config
3834 @findex -no-user-config
3835 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3836 config files on @var{sysconfdir}.
3837 ETEXI
3839 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3840 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3841 " specify tracing options\n",
3842 QEMU_ARCH_ALL)
3843 STEXI
3844 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3845 HXCOMM HX does not support conditional compilation of text.
3846 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3847 @findex -trace
3848 @include qemu-option-trace.texi
3849 ETEXI
3851 HXCOMM Internal use
3852 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3853 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3855 #ifdef __linux__
3856 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3857 "-enable-fips enable FIPS 140-2 compliance\n",
3858 QEMU_ARCH_ALL)
3859 #endif
3860 STEXI
3861 @item -enable-fips
3862 @findex -enable-fips
3863 Enable FIPS 140-2 compliance mode.
3864 ETEXI
3866 HXCOMM Deprecated by -machine accel=tcg property
3867 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3869 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3870 "-msg timestamp[=on|off]\n"
3871 " change the format of messages\n"
3872 " on|off controls leading timestamps (default:on)\n",
3873 QEMU_ARCH_ALL)
3874 STEXI
3875 @item -msg timestamp[=on|off]
3876 @findex -msg
3877 prepend a timestamp to each log message.(default:on)
3878 ETEXI
3880 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3881 "-dump-vmstate <file>\n"
3882 " Output vmstate information in JSON format to file.\n"
3883 " Use the scripts/vmstate-static-checker.py file to\n"
3884 " check for possible regressions in migration code\n"
3885 " by comparing two such vmstate dumps.\n",
3886 QEMU_ARCH_ALL)
3887 STEXI
3888 @item -dump-vmstate @var{file}
3889 @findex -dump-vmstate
3890 Dump json-encoded vmstate information for current machine type to file
3891 in @var{file}
3892 ETEXI
3894 DEF("enable-sync-profile", 0, QEMU_OPTION_enable_sync_profile,
3895 "-enable-sync-profile\n"
3896 " enable synchronization profiling\n",
3897 QEMU_ARCH_ALL)
3898 STEXI
3899 @item -enable-sync-profile
3900 @findex -enable-sync-profile
3901 Enable synchronization profiling.
3902 ETEXI
3904 STEXI
3905 @end table
3906 ETEXI
3907 DEFHEADING()
3909 DEFHEADING(Generic object creation:)
3910 STEXI
3911 @table @option
3912 ETEXI
3914 DEF("object", HAS_ARG, QEMU_OPTION_object,
3915 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3916 " create a new object of type TYPENAME setting properties\n"
3917 " in the order they are specified. Note that the 'id'\n"
3918 " property must be set. These objects are placed in the\n"
3919 " '/objects' path.\n",
3920 QEMU_ARCH_ALL)
3921 STEXI
3922 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3923 @findex -object
3924 Create a new object of type @var{typename} setting properties
3925 in the order they are specified. Note that the 'id'
3926 property must be set. These objects are placed in the
3927 '/objects' path.
3929 @table @option
3931 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off},discard-data=@var{on|off},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},align=@var{align}
3933 Creates a memory file backend object, which can be used to back
3934 the guest RAM with huge pages.
3936 The @option{id} parameter is a unique ID that will be used to reference this
3937 memory region when configuring the @option{-numa} argument.
3939 The @option{size} option provides the size of the memory region, and accepts
3940 common suffixes, eg @option{500M}.
3942 The @option{mem-path} provides the path to either a shared memory or huge page
3943 filesystem mount.
3945 The @option{share} boolean option determines whether the memory
3946 region is marked as private to QEMU, or shared. The latter allows
3947 a co-operating external process to access the QEMU memory region.
3949 The @option{share} is also required for pvrdma devices due to
3950 limitations in the RDMA API provided by Linux.
3952 Setting share=on might affect the ability to configure NUMA
3953 bindings for the memory backend under some circumstances, see
3954 Documentation/vm/numa_memory_policy.txt on the Linux kernel
3955 source tree for additional details.
3957 Setting the @option{discard-data} boolean option to @var{on}
3958 indicates that file contents can be destroyed when QEMU exits,
3959 to avoid unnecessarily flushing data to the backing file. Note
3960 that @option{discard-data} is only an optimization, and QEMU
3961 might not discard file contents if it aborts unexpectedly or is
3962 terminated using SIGKILL.
3964 The @option{merge} boolean option enables memory merge, also known as
3965 MADV_MERGEABLE, so that Kernel Samepage Merging will consider the pages for
3966 memory deduplication.
3968 Setting the @option{dump} boolean option to @var{off} excludes the memory from
3969 core dumps. This feature is also known as MADV_DONTDUMP.
3971 The @option{prealloc} boolean option enables memory preallocation.
3973 The @option{host-nodes} option binds the memory range to a list of NUMA host
3974 nodes.
3976 The @option{policy} option sets the NUMA policy to one of the following values:
3978 @table @option
3979 @item @var{default}
3980 default host policy
3982 @item @var{preferred}
3983 prefer the given host node list for allocation
3985 @item @var{bind}
3986 restrict memory allocation to the given host node list
3988 @item @var{interleave}
3989 interleave memory allocations across the given host node list
3990 @end table
3992 The @option{align} option specifies the base address alignment when
3993 QEMU mmap(2) @option{mem-path}, and accepts common suffixes, eg
3994 @option{2M}. Some backend store specified by @option{mem-path}
3995 requires an alignment different than the default one used by QEMU, eg
3996 the device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
3997 such cases, users can specify the required alignment via this option.
3999 The @option{pmem} option specifies whether the backing file specified
4000 by @option{mem-path} is in host persistent memory that can be accessed
4001 using the SNIA NVM programming model (e.g. Intel NVDIMM).
4002 If @option{pmem} is set to 'on', QEMU will take necessary operations to
4003 guarantee the persistence of its own writes to @option{mem-path}
4004 (e.g. in vNVDIMM label emulation and live migration).
4006 @item -object memory-backend-ram,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave}
4008 Creates a memory backend object, which can be used to back the guest RAM.
4009 Memory backend objects offer more control than the @option{-m} option that is
4010 traditionally used to define guest RAM. Please refer to
4011 @option{memory-backend-file} for a description of the options.
4013 @item -object memory-backend-memfd,id=@var{id},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},seal=@var{on|off},hugetlb=@var{on|off},hugetlbsize=@var{size}
4015 Creates an anonymous memory file backend object, which allows QEMU to
4016 share the memory with an external process (e.g. when using
4017 vhost-user). The memory is allocated with memfd and optional
4018 sealing. (Linux only)
4020 The @option{seal} option creates a sealed-file, that will block
4021 further resizing the memory ('on' by default).
4023 The @option{hugetlb} option specify the file to be created resides in
4024 the hugetlbfs filesystem (since Linux 4.14). Used in conjunction with
4025 the @option{hugetlb} option, the @option{hugetlbsize} option specify
4026 the hugetlb page size on systems that support multiple hugetlb page
4027 sizes (it must be a power of 2 value supported by the system).
4029 In some versions of Linux, the @option{hugetlb} option is incompatible
4030 with the @option{seal} option (requires at least Linux 4.16).
4032 Please refer to @option{memory-backend-file} for a description of the
4033 other options.
4035 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
4037 Creates a random number generator backend which obtains entropy from
4038 a device on the host. The @option{id} parameter is a unique ID that
4039 will be used to reference this entropy backend from the @option{virtio-rng}
4040 device. The @option{filename} parameter specifies which file to obtain
4041 entropy from and if omitted defaults to @option{/dev/random}.
4043 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
4045 Creates a random number generator backend which obtains entropy from
4046 an external daemon running on the host. The @option{id} parameter is
4047 a unique ID that will be used to reference this entropy backend from
4048 the @option{virtio-rng} device. The @option{chardev} parameter is
4049 the unique ID of a character device backend that provides the connection
4050 to the RNG daemon.
4052 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
4054 Creates a TLS anonymous credentials object, which can be used to provide
4055 TLS support on network backends. The @option{id} parameter is a unique
4056 ID which network backends will use to access the credentials. The
4057 @option{endpoint} is either @option{server} or @option{client} depending
4058 on whether the QEMU network backend that uses the credentials will be
4059 acting as a client or as a server. If @option{verify-peer} is enabled
4060 (the default) then once the handshake is completed, the peer credentials
4061 will be verified, though this is a no-op for anonymous credentials.
4063 The @var{dir} parameter tells QEMU where to find the credential
4064 files. For server endpoints, this directory may contain a file
4065 @var{dh-params.pem} providing diffie-hellman parameters to use
4066 for the TLS server. If the file is missing, QEMU will generate
4067 a set of DH parameters at startup. This is a computationally
4068 expensive operation that consumes random pool entropy, so it is
4069 recommended that a persistent set of parameters be generated
4070 upfront and saved.
4072 @item -object tls-creds-psk,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/keys/dir}[,username=@var{username}]
4074 Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used to provide
4075 TLS support on network backends. The @option{id} parameter is a unique
4076 ID which network backends will use to access the credentials. The
4077 @option{endpoint} is either @option{server} or @option{client} depending
4078 on whether the QEMU network backend that uses the credentials will be
4079 acting as a client or as a server. For clients only, @option{username}
4080 is the username which will be sent to the server. If omitted
4081 it defaults to ``qemu''.
4083 The @var{dir} parameter tells QEMU where to find the keys file.
4084 It is called ``@var{dir}/keys.psk'' and contains ``username:key''
4085 pairs. This file can most easily be created using the GnuTLS
4086 @code{psktool} program.
4088 For server endpoints, @var{dir} may also contain a file
4089 @var{dh-params.pem} providing diffie-hellman parameters to use
4090 for the TLS server. If the file is missing, QEMU will generate
4091 a set of DH parameters at startup. This is a computationally
4092 expensive operation that consumes random pool entropy, so it is
4093 recommended that a persistent set of parameters be generated
4094 up front and saved.
4096 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},priority=@var{priority},verify-peer=@var{on|off},passwordid=@var{id}
4098 Creates a TLS anonymous credentials object, which can be used to provide
4099 TLS support on network backends. The @option{id} parameter is a unique
4100 ID which network backends will use to access the credentials. The
4101 @option{endpoint} is either @option{server} or @option{client} depending
4102 on whether the QEMU network backend that uses the credentials will be
4103 acting as a client or as a server. If @option{verify-peer} is enabled
4104 (the default) then once the handshake is completed, the peer credentials
4105 will be verified. With x509 certificates, this implies that the clients
4106 must be provided with valid client certificates too.
4108 The @var{dir} parameter tells QEMU where to find the credential
4109 files. For server endpoints, this directory may contain a file
4110 @var{dh-params.pem} providing diffie-hellman parameters to use
4111 for the TLS server. If the file is missing, QEMU will generate
4112 a set of DH parameters at startup. This is a computationally
4113 expensive operation that consumes random pool entropy, so it is
4114 recommended that a persistent set of parameters be generated
4115 upfront and saved.
4117 For x509 certificate credentials the directory will contain further files
4118 providing the x509 certificates. The certificates must be stored
4119 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
4120 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
4121 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
4123 For the @var{server-key.pem} and @var{client-key.pem} files which
4124 contain sensitive private keys, it is possible to use an encrypted
4125 version by providing the @var{passwordid} parameter. This provides
4126 the ID of a previously created @code{secret} object containing the
4127 password for decryption.
4129 The @var{priority} parameter allows to override the global default
4130 priority used by gnutls. This can be useful if the system administrator
4131 needs to use a weaker set of crypto priorities for QEMU without
4132 potentially forcing the weakness onto all applications. Or conversely
4133 if one wants wants a stronger default for QEMU than for all other
4134 applications, they can do this through this parameter. Its format is
4135 a gnutls priority string as described at
4136 @url{https://gnutls.org/manual/html_node/Priority-Strings.html}.
4138 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
4140 Interval @var{t} can't be 0, this filter batches the packet delivery: all
4141 packets arriving in a given interval on netdev @var{netdevid} are delayed
4142 until the end of the interval. Interval is in microseconds.
4143 @option{status} is optional that indicate whether the netfilter is
4144 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
4146 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
4148 @option{all}: the filter is attached both to the receive and the transmit
4149 queue of the netdev (default).
4151 @option{rx}: the filter is attached to the receive queue of the netdev,
4152 where it will receive packets sent to the netdev.
4154 @option{tx}: the filter is attached to the transmit queue of the netdev,
4155 where it will receive packets sent by the netdev.
4157 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4159 filter-mirror on netdev @var{netdevid},mirror net packet to chardev@var{chardevid}, if it has the vnet_hdr_support flag, filter-mirror will mirror packet with vnet_hdr_len.
4161 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4163 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
4164 @var{chardevid},and redirect indev's packet to filter.if it has the vnet_hdr_support flag,
4165 filter-redirector will redirect packet with vnet_hdr_len.
4166 Create a filter-redirector we need to differ outdev id from indev id, id can not
4167 be the same. we can just use indev or outdev, but at least one of indev or outdev
4168 need to be specified.
4170 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},queue=@var{all|rx|tx},[vnet_hdr_support]
4172 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
4173 secondary from primary to keep secondary tcp connection,and rewrite
4174 tcp packet to primary from secondary make tcp packet can be handled by
4175 client.if it has the vnet_hdr_support flag, we can parse packet with vnet header.
4177 usage:
4178 colo secondary:
4179 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4180 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4181 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
4183 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4185 Dump the network traffic on netdev @var{dev} to the file specified by
4186 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4187 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4188 or Wireshark.
4190 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},outdev=@var{chardevid}[,vnet_hdr_support]
4192 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4193 secondary packet. If the packets are same, we will output primary
4194 packet to outdev@var{chardevid}, else we will notify colo-frame
4195 do checkpoint and send primary packet to outdev@var{chardevid}.
4196 if it has the vnet_hdr_support flag, colo compare will send/recv packet with vnet_hdr_len.
4198 we must use it with the help of filter-mirror and filter-redirector.
4200 @example
4202 primary:
4203 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4204 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4205 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4206 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4207 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4208 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4209 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4210 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4211 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4212 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4213 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4214 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0
4216 secondary:
4217 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4218 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4219 -chardev socket,id=red0,host=3.3.3.3,port=9003
4220 -chardev socket,id=red1,host=3.3.3.3,port=9004
4221 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4222 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4224 @end example
4226 If you want to know the detail of above command line, you can read
4227 the colo-compare git log.
4229 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4231 Creates a cryptodev backend which executes crypto opreation from
4232 the QEMU cipher APIS. The @var{id} parameter is
4233 a unique ID that will be used to reference this cryptodev backend from
4234 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4235 which specify the queue number of cryptodev backend, the default of
4236 @var{queues} is 1.
4238 @example
4240 # qemu-system-x86_64 \
4241 [...] \
4242 -object cryptodev-backend-builtin,id=cryptodev0 \
4243 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4244 [...]
4245 @end example
4247 @item -object cryptodev-vhost-user,id=@var{id},chardev=@var{chardevid}[,queues=@var{queues}]
4249 Creates a vhost-user cryptodev backend, backed by a chardev @var{chardevid}.
4250 The @var{id} parameter is a unique ID that will be used to reference this
4251 cryptodev backend from the @option{virtio-crypto} device.
4252 The chardev should be a unix domain socket backed one. The vhost-user uses
4253 a specifically defined protocol to pass vhost ioctl replacement messages
4254 to an application on the other end of the socket.
4255 The @var{queues} parameter is optional, which specify the queue number
4256 of cryptodev backend for multiqueue vhost-user, the default of @var{queues} is 1.
4258 @example
4260 # qemu-system-x86_64 \
4261 [...] \
4262 -chardev socket,id=chardev0,path=/path/to/socket \
4263 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \
4264 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4265 [...]
4266 @end example
4268 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4269 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4271 Defines a secret to store a password, encryption key, or some other sensitive
4272 data. The sensitive data can either be passed directly via the @var{data}
4273 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4274 parameter is insecure unless the sensitive data is encrypted.
4276 The sensitive data can be provided in raw format (the default), or base64.
4277 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4278 so base64 is recommended for sending binary data. QEMU will convert from
4279 which ever format is provided to the format it needs internally. eg, an
4280 RBD password can be provided in raw format, even though it will be base64
4281 encoded when passed onto the RBD sever.
4283 For added protection, it is possible to encrypt the data associated with
4284 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4285 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4286 parameter provides the ID of a previously defined secret that contains
4287 the AES-256 decryption key. This key should be 32-bytes long and be
4288 base64 encoded. The @var{iv} parameter provides the random initialization
4289 vector used for encryption of this particular secret and should be a
4290 base64 encrypted string of the 16-byte IV.
4292 The simplest (insecure) usage is to provide the secret inline
4294 @example
4296 # $QEMU -object secret,id=sec0,data=letmein,format=raw
4298 @end example
4300 The simplest secure usage is to provide the secret via a file
4302 # printf "letmein" > mypasswd.txt
4303 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4305 For greater security, AES-256-CBC should be used. To illustrate usage,
4306 consider the openssl command line tool which can encrypt the data. Note
4307 that when encrypting, the plaintext must be padded to the cipher block
4308 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4310 First a master key needs to be created in base64 encoding:
4312 @example
4313 # openssl rand -base64 32 > key.b64
4314 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4315 @end example
4317 Each secret to be encrypted needs to have a random initialization vector
4318 generated. These do not need to be kept secret
4320 @example
4321 # openssl rand -base64 16 > iv.b64
4322 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4323 @end example
4325 The secret to be defined can now be encrypted, in this case we're
4326 telling openssl to base64 encode the result, but it could be left
4327 as raw bytes if desired.
4329 @example
4330 # SECRET=$(printf "letmein" |
4331 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4332 @end example
4334 When launching QEMU, create a master secret pointing to @code{key.b64}
4335 and specify that to be used to decrypt the user password. Pass the
4336 contents of @code{iv.b64} to the second secret
4338 @example
4339 # $QEMU \
4340 -object secret,id=secmaster0,format=base64,file=key.b64 \
4341 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4342 data=$SECRET,iv=$(<iv.b64)
4343 @end example
4345 @item -object sev-guest,id=@var{id},cbitpos=@var{cbitpos},reduced-phys-bits=@var{val},[sev-device=@var{string},policy=@var{policy},handle=@var{handle},dh-cert-file=@var{file},session-file=@var{file}]
4347 Create a Secure Encrypted Virtualization (SEV) guest object, which can be used
4348 to provide the guest memory encryption support on AMD processors.
4350 When memory encryption is enabled, one of the physical address bit (aka the
4351 C-bit) is utilized to mark if a memory page is protected. The @option{cbitpos}
4352 is used to provide the C-bit position. The C-bit position is Host family dependent
4353 hence user must provide this value. On EPYC, the value should be 47.
4355 When memory encryption is enabled, we loose certain bits in physical address space.
4356 The @option{reduced-phys-bits} is used to provide the number of bits we loose in
4357 physical address space. Similar to C-bit, the value is Host family dependent.
4358 On EPYC, the value should be 5.
4360 The @option{sev-device} provides the device file to use for communicating with
4361 the SEV firmware running inside AMD Secure Processor. The default device is
4362 '/dev/sev'. If hardware supports memory encryption then /dev/sev devices are
4363 created by CCP driver.
4365 The @option{policy} provides the guest policy to be enforced by the SEV firmware
4366 and restrict what configuration and operational commands can be performed on this
4367 guest by the hypervisor. The policy should be provided by the guest owner and is
4368 bound to the guest and cannot be changed throughout the lifetime of the guest.
4369 The default is 0.
4371 If guest @option{policy} allows sharing the key with another SEV guest then
4372 @option{handle} can be use to provide handle of the guest from which to share
4373 the key.
4375 The @option{dh-cert-file} and @option{session-file} provides the guest owner's
4376 Public Diffie-Hillman key defined in SEV spec. The PDH and session parameters
4377 are used for establishing a cryptographic session with the guest owner to
4378 negotiate keys used for attestation. The file must be encoded in base64.
4380 e.g to launch a SEV guest
4381 @example
4382 # $QEMU \
4383 ......
4384 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \
4385 -machine ...,memory-encryption=sev0
4386 .....
4388 @end example
4389 @end table
4391 ETEXI
4394 HXCOMM This is the last statement. Insert new options before this line!
4395 STEXI
4396 @end table
4397 ETEXI