softfloat: Inline float128 compare specializations
[qemu/ericb.git] / hw / ppc / ppc4xx_devs.c
blobf1651e04d9afecfab218f8b5fd4ff83aa95852f0
1 /*
2 * QEMU PowerPC 4xx embedded processors shared devices emulation
4 * Copyright (c) 2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "sysemu/reset.h"
28 #include "cpu.h"
29 #include "hw/irq.h"
30 #include "hw/ppc/ppc.h"
31 #include "hw/ppc/ppc4xx.h"
32 #include "hw/boards.h"
33 #include "qemu/log.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/error-report.h"
37 /*#define DEBUG_UIC*/
39 #ifdef DEBUG_UIC
40 # define LOG_UIC(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
41 #else
42 # define LOG_UIC(...) do { } while (0)
43 #endif
45 static void ppc4xx_reset(void *opaque)
47 PowerPCCPU *cpu = opaque;
49 cpu_reset(CPU(cpu));
52 /*****************************************************************************/
53 /* Generic PowerPC 4xx processor instantiation */
54 PowerPCCPU *ppc4xx_init(const char *cpu_type,
55 clk_setup_t *cpu_clk, clk_setup_t *tb_clk,
56 uint32_t sysclk)
58 PowerPCCPU *cpu;
59 CPUPPCState *env;
61 /* init CPUs */
62 cpu = POWERPC_CPU(cpu_create(cpu_type));
63 env = &cpu->env;
65 cpu_clk->cb = NULL; /* We don't care about CPU clock frequency changes */
66 cpu_clk->opaque = env;
67 /* Set time-base frequency to sysclk */
68 tb_clk->cb = ppc_40x_timers_init(env, sysclk, PPC_INTERRUPT_PIT);
69 tb_clk->opaque = env;
70 ppc_dcr_init(env, NULL, NULL);
71 /* Register qemu callbacks */
72 qemu_register_reset(ppc4xx_reset, cpu);
74 return cpu;
77 /*****************************************************************************/
78 /* "Universal" Interrupt controller */
79 enum {
80 DCR_UICSR = 0x000,
81 DCR_UICSRS = 0x001,
82 DCR_UICER = 0x002,
83 DCR_UICCR = 0x003,
84 DCR_UICPR = 0x004,
85 DCR_UICTR = 0x005,
86 DCR_UICMSR = 0x006,
87 DCR_UICVR = 0x007,
88 DCR_UICVCR = 0x008,
89 DCR_UICMAX = 0x009,
92 #define UIC_MAX_IRQ 32
93 typedef struct ppcuic_t ppcuic_t;
94 struct ppcuic_t {
95 uint32_t dcr_base;
96 int use_vectors;
97 uint32_t level; /* Remembers the state of level-triggered interrupts. */
98 uint32_t uicsr; /* Status register */
99 uint32_t uicer; /* Enable register */
100 uint32_t uiccr; /* Critical register */
101 uint32_t uicpr; /* Polarity register */
102 uint32_t uictr; /* Triggering register */
103 uint32_t uicvcr; /* Vector configuration register */
104 uint32_t uicvr;
105 qemu_irq *irqs;
108 static void ppcuic_trigger_irq (ppcuic_t *uic)
110 uint32_t ir, cr;
111 int start, end, inc, i;
113 /* Trigger interrupt if any is pending */
114 ir = uic->uicsr & uic->uicer & (~uic->uiccr);
115 cr = uic->uicsr & uic->uicer & uic->uiccr;
116 LOG_UIC("%s: uicsr %08" PRIx32 " uicer %08" PRIx32
117 " uiccr %08" PRIx32 "\n"
118 " %08" PRIx32 " ir %08" PRIx32 " cr %08" PRIx32 "\n",
119 __func__, uic->uicsr, uic->uicer, uic->uiccr,
120 uic->uicsr & uic->uicer, ir, cr);
121 if (ir != 0x0000000) {
122 LOG_UIC("Raise UIC interrupt\n");
123 qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_INT]);
124 } else {
125 LOG_UIC("Lower UIC interrupt\n");
126 qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_INT]);
128 /* Trigger critical interrupt if any is pending and update vector */
129 if (cr != 0x0000000) {
130 qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_CINT]);
131 if (uic->use_vectors) {
132 /* Compute critical IRQ vector */
133 if (uic->uicvcr & 1) {
134 start = 31;
135 end = 0;
136 inc = -1;
137 } else {
138 start = 0;
139 end = 31;
140 inc = 1;
142 uic->uicvr = uic->uicvcr & 0xFFFFFFFC;
143 for (i = start; i <= end; i += inc) {
144 if (cr & (1 << i)) {
145 uic->uicvr += (i - start) * 512 * inc;
146 break;
150 LOG_UIC("Raise UIC critical interrupt - "
151 "vector %08" PRIx32 "\n", uic->uicvr);
152 } else {
153 LOG_UIC("Lower UIC critical interrupt\n");
154 qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_CINT]);
155 uic->uicvr = 0x00000000;
159 static void ppcuic_set_irq (void *opaque, int irq_num, int level)
161 ppcuic_t *uic;
162 uint32_t mask, sr;
164 uic = opaque;
165 mask = 1U << (31-irq_num);
166 LOG_UIC("%s: irq %d level %d uicsr %08" PRIx32
167 " mask %08" PRIx32 " => %08" PRIx32 " %08" PRIx32 "\n",
168 __func__, irq_num, level,
169 uic->uicsr, mask, uic->uicsr & mask, level << irq_num);
170 if (irq_num < 0 || irq_num > 31)
171 return;
172 sr = uic->uicsr;
174 /* Update status register */
175 if (uic->uictr & mask) {
176 /* Edge sensitive interrupt */
177 if (level == 1)
178 uic->uicsr |= mask;
179 } else {
180 /* Level sensitive interrupt */
181 if (level == 1) {
182 uic->uicsr |= mask;
183 uic->level |= mask;
184 } else {
185 uic->uicsr &= ~mask;
186 uic->level &= ~mask;
189 LOG_UIC("%s: irq %d level %d sr %" PRIx32 " => "
190 "%08" PRIx32 "\n", __func__, irq_num, level, uic->uicsr, sr);
191 if (sr != uic->uicsr)
192 ppcuic_trigger_irq(uic);
195 static uint32_t dcr_read_uic (void *opaque, int dcrn)
197 ppcuic_t *uic;
198 uint32_t ret;
200 uic = opaque;
201 dcrn -= uic->dcr_base;
202 switch (dcrn) {
203 case DCR_UICSR:
204 case DCR_UICSRS:
205 ret = uic->uicsr;
206 break;
207 case DCR_UICER:
208 ret = uic->uicer;
209 break;
210 case DCR_UICCR:
211 ret = uic->uiccr;
212 break;
213 case DCR_UICPR:
214 ret = uic->uicpr;
215 break;
216 case DCR_UICTR:
217 ret = uic->uictr;
218 break;
219 case DCR_UICMSR:
220 ret = uic->uicsr & uic->uicer;
221 break;
222 case DCR_UICVR:
223 if (!uic->use_vectors)
224 goto no_read;
225 ret = uic->uicvr;
226 break;
227 case DCR_UICVCR:
228 if (!uic->use_vectors)
229 goto no_read;
230 ret = uic->uicvcr;
231 break;
232 default:
233 no_read:
234 ret = 0x00000000;
235 break;
238 return ret;
241 static void dcr_write_uic (void *opaque, int dcrn, uint32_t val)
243 ppcuic_t *uic;
245 uic = opaque;
246 dcrn -= uic->dcr_base;
247 LOG_UIC("%s: dcr %d val 0x%x\n", __func__, dcrn, val);
248 switch (dcrn) {
249 case DCR_UICSR:
250 uic->uicsr &= ~val;
251 uic->uicsr |= uic->level;
252 ppcuic_trigger_irq(uic);
253 break;
254 case DCR_UICSRS:
255 uic->uicsr |= val;
256 ppcuic_trigger_irq(uic);
257 break;
258 case DCR_UICER:
259 uic->uicer = val;
260 ppcuic_trigger_irq(uic);
261 break;
262 case DCR_UICCR:
263 uic->uiccr = val;
264 ppcuic_trigger_irq(uic);
265 break;
266 case DCR_UICPR:
267 uic->uicpr = val;
268 break;
269 case DCR_UICTR:
270 uic->uictr = val;
271 ppcuic_trigger_irq(uic);
272 break;
273 case DCR_UICMSR:
274 break;
275 case DCR_UICVR:
276 break;
277 case DCR_UICVCR:
278 uic->uicvcr = val & 0xFFFFFFFD;
279 ppcuic_trigger_irq(uic);
280 break;
284 static void ppcuic_reset (void *opaque)
286 ppcuic_t *uic;
288 uic = opaque;
289 uic->uiccr = 0x00000000;
290 uic->uicer = 0x00000000;
291 uic->uicpr = 0x00000000;
292 uic->uicsr = 0x00000000;
293 uic->uictr = 0x00000000;
294 if (uic->use_vectors) {
295 uic->uicvcr = 0x00000000;
296 uic->uicvr = 0x0000000;
300 qemu_irq *ppcuic_init (CPUPPCState *env, qemu_irq *irqs,
301 uint32_t dcr_base, int has_ssr, int has_vr)
303 ppcuic_t *uic;
304 int i;
306 uic = g_malloc0(sizeof(ppcuic_t));
307 uic->dcr_base = dcr_base;
308 uic->irqs = irqs;
309 if (has_vr)
310 uic->use_vectors = 1;
311 for (i = 0; i < DCR_UICMAX; i++) {
312 ppc_dcr_register(env, dcr_base + i, uic,
313 &dcr_read_uic, &dcr_write_uic);
315 qemu_register_reset(ppcuic_reset, uic);
317 return qemu_allocate_irqs(&ppcuic_set_irq, uic, UIC_MAX_IRQ);
320 /*****************************************************************************/
321 /* SDRAM controller */
322 typedef struct ppc4xx_sdram_t ppc4xx_sdram_t;
323 struct ppc4xx_sdram_t {
324 uint32_t addr;
325 int nbanks;
326 MemoryRegion containers[4]; /* used for clipping */
327 MemoryRegion *ram_memories;
328 hwaddr ram_bases[4];
329 hwaddr ram_sizes[4];
330 uint32_t besr0;
331 uint32_t besr1;
332 uint32_t bear;
333 uint32_t cfg;
334 uint32_t status;
335 uint32_t rtr;
336 uint32_t pmit;
337 uint32_t bcr[4];
338 uint32_t tr;
339 uint32_t ecccfg;
340 uint32_t eccesr;
341 qemu_irq irq;
344 enum {
345 SDRAM0_CFGADDR = 0x010,
346 SDRAM0_CFGDATA = 0x011,
349 /* XXX: TOFIX: some patches have made this code become inconsistent:
350 * there are type inconsistencies, mixing hwaddr, target_ulong
351 * and uint32_t
353 static uint32_t sdram_bcr (hwaddr ram_base,
354 hwaddr ram_size)
356 uint32_t bcr;
358 switch (ram_size) {
359 case 4 * MiB:
360 bcr = 0x00000000;
361 break;
362 case 8 * MiB:
363 bcr = 0x00020000;
364 break;
365 case 16 * MiB:
366 bcr = 0x00040000;
367 break;
368 case 32 * MiB:
369 bcr = 0x00060000;
370 break;
371 case 64 * MiB:
372 bcr = 0x00080000;
373 break;
374 case 128 * MiB:
375 bcr = 0x000A0000;
376 break;
377 case 256 * MiB:
378 bcr = 0x000C0000;
379 break;
380 default:
381 printf("%s: invalid RAM size " TARGET_FMT_plx "\n", __func__,
382 ram_size);
383 return 0x00000000;
385 bcr |= ram_base & 0xFF800000;
386 bcr |= 1;
388 return bcr;
391 static inline hwaddr sdram_base(uint32_t bcr)
393 return bcr & 0xFF800000;
396 static target_ulong sdram_size (uint32_t bcr)
398 target_ulong size;
399 int sh;
401 sh = (bcr >> 17) & 0x7;
402 if (sh == 7)
403 size = -1;
404 else
405 size = (4 * MiB) << sh;
407 return size;
410 static void sdram_set_bcr(ppc4xx_sdram_t *sdram, int i,
411 uint32_t bcr, int enabled)
413 if (sdram->bcr[i] & 0x00000001) {
414 /* Unmap RAM */
415 #ifdef DEBUG_SDRAM
416 printf("%s: unmap RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n",
417 __func__, sdram_base(sdram->bcr[i]), sdram_size(sdram->bcr[i]));
418 #endif
419 memory_region_del_subregion(get_system_memory(),
420 &sdram->containers[i]);
421 memory_region_del_subregion(&sdram->containers[i],
422 &sdram->ram_memories[i]);
423 object_unparent(OBJECT(&sdram->containers[i]));
425 sdram->bcr[i] = bcr & 0xFFDEE001;
426 if (enabled && (bcr & 0x00000001)) {
427 #ifdef DEBUG_SDRAM
428 printf("%s: Map RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n",
429 __func__, sdram_base(bcr), sdram_size(bcr));
430 #endif
431 memory_region_init(&sdram->containers[i], NULL, "sdram-containers",
432 sdram_size(bcr));
433 memory_region_add_subregion(&sdram->containers[i], 0,
434 &sdram->ram_memories[i]);
435 memory_region_add_subregion(get_system_memory(),
436 sdram_base(bcr),
437 &sdram->containers[i]);
441 static void sdram_map_bcr (ppc4xx_sdram_t *sdram)
443 int i;
445 for (i = 0; i < sdram->nbanks; i++) {
446 if (sdram->ram_sizes[i] != 0) {
447 sdram_set_bcr(sdram, i, sdram_bcr(sdram->ram_bases[i],
448 sdram->ram_sizes[i]), 1);
449 } else {
450 sdram_set_bcr(sdram, i, 0x00000000, 0);
455 static void sdram_unmap_bcr (ppc4xx_sdram_t *sdram)
457 int i;
459 for (i = 0; i < sdram->nbanks; i++) {
460 #ifdef DEBUG_SDRAM
461 printf("%s: Unmap RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n",
462 __func__, sdram_base(sdram->bcr[i]), sdram_size(sdram->bcr[i]));
463 #endif
464 memory_region_del_subregion(get_system_memory(),
465 &sdram->ram_memories[i]);
469 static uint32_t dcr_read_sdram (void *opaque, int dcrn)
471 ppc4xx_sdram_t *sdram;
472 uint32_t ret;
474 sdram = opaque;
475 switch (dcrn) {
476 case SDRAM0_CFGADDR:
477 ret = sdram->addr;
478 break;
479 case SDRAM0_CFGDATA:
480 switch (sdram->addr) {
481 case 0x00: /* SDRAM_BESR0 */
482 ret = sdram->besr0;
483 break;
484 case 0x08: /* SDRAM_BESR1 */
485 ret = sdram->besr1;
486 break;
487 case 0x10: /* SDRAM_BEAR */
488 ret = sdram->bear;
489 break;
490 case 0x20: /* SDRAM_CFG */
491 ret = sdram->cfg;
492 break;
493 case 0x24: /* SDRAM_STATUS */
494 ret = sdram->status;
495 break;
496 case 0x30: /* SDRAM_RTR */
497 ret = sdram->rtr;
498 break;
499 case 0x34: /* SDRAM_PMIT */
500 ret = sdram->pmit;
501 break;
502 case 0x40: /* SDRAM_B0CR */
503 ret = sdram->bcr[0];
504 break;
505 case 0x44: /* SDRAM_B1CR */
506 ret = sdram->bcr[1];
507 break;
508 case 0x48: /* SDRAM_B2CR */
509 ret = sdram->bcr[2];
510 break;
511 case 0x4C: /* SDRAM_B3CR */
512 ret = sdram->bcr[3];
513 break;
514 case 0x80: /* SDRAM_TR */
515 ret = -1; /* ? */
516 break;
517 case 0x94: /* SDRAM_ECCCFG */
518 ret = sdram->ecccfg;
519 break;
520 case 0x98: /* SDRAM_ECCESR */
521 ret = sdram->eccesr;
522 break;
523 default: /* Error */
524 ret = -1;
525 break;
527 break;
528 default:
529 /* Avoid gcc warning */
530 ret = 0x00000000;
531 break;
534 return ret;
537 static void dcr_write_sdram (void *opaque, int dcrn, uint32_t val)
539 ppc4xx_sdram_t *sdram;
541 sdram = opaque;
542 switch (dcrn) {
543 case SDRAM0_CFGADDR:
544 sdram->addr = val;
545 break;
546 case SDRAM0_CFGDATA:
547 switch (sdram->addr) {
548 case 0x00: /* SDRAM_BESR0 */
549 sdram->besr0 &= ~val;
550 break;
551 case 0x08: /* SDRAM_BESR1 */
552 sdram->besr1 &= ~val;
553 break;
554 case 0x10: /* SDRAM_BEAR */
555 sdram->bear = val;
556 break;
557 case 0x20: /* SDRAM_CFG */
558 val &= 0xFFE00000;
559 if (!(sdram->cfg & 0x80000000) && (val & 0x80000000)) {
560 #ifdef DEBUG_SDRAM
561 printf("%s: enable SDRAM controller\n", __func__);
562 #endif
563 /* validate all RAM mappings */
564 sdram_map_bcr(sdram);
565 sdram->status &= ~0x80000000;
566 } else if ((sdram->cfg & 0x80000000) && !(val & 0x80000000)) {
567 #ifdef DEBUG_SDRAM
568 printf("%s: disable SDRAM controller\n", __func__);
569 #endif
570 /* invalidate all RAM mappings */
571 sdram_unmap_bcr(sdram);
572 sdram->status |= 0x80000000;
574 if (!(sdram->cfg & 0x40000000) && (val & 0x40000000))
575 sdram->status |= 0x40000000;
576 else if ((sdram->cfg & 0x40000000) && !(val & 0x40000000))
577 sdram->status &= ~0x40000000;
578 sdram->cfg = val;
579 break;
580 case 0x24: /* SDRAM_STATUS */
581 /* Read-only register */
582 break;
583 case 0x30: /* SDRAM_RTR */
584 sdram->rtr = val & 0x3FF80000;
585 break;
586 case 0x34: /* SDRAM_PMIT */
587 sdram->pmit = (val & 0xF8000000) | 0x07C00000;
588 break;
589 case 0x40: /* SDRAM_B0CR */
590 sdram_set_bcr(sdram, 0, val, sdram->cfg & 0x80000000);
591 break;
592 case 0x44: /* SDRAM_B1CR */
593 sdram_set_bcr(sdram, 1, val, sdram->cfg & 0x80000000);
594 break;
595 case 0x48: /* SDRAM_B2CR */
596 sdram_set_bcr(sdram, 2, val, sdram->cfg & 0x80000000);
597 break;
598 case 0x4C: /* SDRAM_B3CR */
599 sdram_set_bcr(sdram, 3, val, sdram->cfg & 0x80000000);
600 break;
601 case 0x80: /* SDRAM_TR */
602 sdram->tr = val & 0x018FC01F;
603 break;
604 case 0x94: /* SDRAM_ECCCFG */
605 sdram->ecccfg = val & 0x00F00000;
606 break;
607 case 0x98: /* SDRAM_ECCESR */
608 val &= 0xFFF0F000;
609 if (sdram->eccesr == 0 && val != 0)
610 qemu_irq_raise(sdram->irq);
611 else if (sdram->eccesr != 0 && val == 0)
612 qemu_irq_lower(sdram->irq);
613 sdram->eccesr = val;
614 break;
615 default: /* Error */
616 break;
618 break;
622 static void sdram_reset (void *opaque)
624 ppc4xx_sdram_t *sdram;
626 sdram = opaque;
627 sdram->addr = 0x00000000;
628 sdram->bear = 0x00000000;
629 sdram->besr0 = 0x00000000; /* No error */
630 sdram->besr1 = 0x00000000; /* No error */
631 sdram->cfg = 0x00000000;
632 sdram->ecccfg = 0x00000000; /* No ECC */
633 sdram->eccesr = 0x00000000; /* No error */
634 sdram->pmit = 0x07C00000;
635 sdram->rtr = 0x05F00000;
636 sdram->tr = 0x00854009;
637 /* We pre-initialize RAM banks */
638 sdram->status = 0x00000000;
639 sdram->cfg = 0x00800000;
642 void ppc4xx_sdram_init (CPUPPCState *env, qemu_irq irq, int nbanks,
643 MemoryRegion *ram_memories,
644 hwaddr *ram_bases,
645 hwaddr *ram_sizes,
646 int do_init)
648 ppc4xx_sdram_t *sdram;
650 sdram = g_malloc0(sizeof(ppc4xx_sdram_t));
651 sdram->irq = irq;
652 sdram->nbanks = nbanks;
653 sdram->ram_memories = ram_memories;
654 memset(sdram->ram_bases, 0, 4 * sizeof(hwaddr));
655 memcpy(sdram->ram_bases, ram_bases,
656 nbanks * sizeof(hwaddr));
657 memset(sdram->ram_sizes, 0, 4 * sizeof(hwaddr));
658 memcpy(sdram->ram_sizes, ram_sizes,
659 nbanks * sizeof(hwaddr));
660 qemu_register_reset(&sdram_reset, sdram);
661 ppc_dcr_register(env, SDRAM0_CFGADDR,
662 sdram, &dcr_read_sdram, &dcr_write_sdram);
663 ppc_dcr_register(env, SDRAM0_CFGDATA,
664 sdram, &dcr_read_sdram, &dcr_write_sdram);
665 if (do_init)
666 sdram_map_bcr(sdram);
670 * Split RAM between SDRAM banks.
672 * sdram_bank_sizes[] must be in descending order, that is sizes[i] > sizes[i+1]
673 * and must be 0-terminated.
675 * The 4xx SDRAM controller supports a small number of banks, and each bank
676 * must be one of a small set of sizes. The number of banks and the supported
677 * sizes varies by SoC.
679 void ppc4xx_sdram_banks(MemoryRegion *ram, int nr_banks,
680 MemoryRegion ram_memories[],
681 hwaddr ram_bases[], hwaddr ram_sizes[],
682 const ram_addr_t sdram_bank_sizes[])
684 ram_addr_t size_left = memory_region_size(ram);
685 ram_addr_t base = 0;
686 ram_addr_t bank_size;
687 int i;
688 int j;
690 for (i = 0; i < nr_banks; i++) {
691 for (j = 0; sdram_bank_sizes[j] != 0; j++) {
692 bank_size = sdram_bank_sizes[j];
693 if (bank_size <= size_left) {
694 char name[32];
696 ram_bases[i] = base;
697 ram_sizes[i] = bank_size;
698 base += bank_size;
699 size_left -= bank_size;
700 snprintf(name, sizeof(name), "ppc4xx.sdram%d", i);
701 memory_region_init_alias(&ram_memories[i], NULL, name, ram,
702 ram_bases[i], ram_sizes[i]);
703 break;
706 if (!size_left) {
707 /* No need to use the remaining banks. */
708 break;
712 if (size_left) {
713 ram_addr_t used_size = memory_region_size(ram) - size_left;
714 GString *s = g_string_new(NULL);
716 for (i = 0; sdram_bank_sizes[i]; i++) {
717 g_string_append_printf(s, "%" PRIi64 "%s",
718 sdram_bank_sizes[i] / MiB,
719 sdram_bank_sizes[i + 1] ? ", " : "");
721 error_report("at most %d bank%s of %s MiB each supported",
722 nr_banks, nr_banks == 1 ? "" : "s", s->str);
723 error_printf("Possible valid RAM size: %" PRIi64 " MiB \n",
724 used_size ? used_size / MiB : sdram_bank_sizes[i - 1] / MiB);
726 g_string_free(s, true);
727 exit(EXIT_FAILURE);
731 /*****************************************************************************/
732 /* MAL */
734 enum {
735 MAL0_CFG = 0x180,
736 MAL0_ESR = 0x181,
737 MAL0_IER = 0x182,
738 MAL0_TXCASR = 0x184,
739 MAL0_TXCARR = 0x185,
740 MAL0_TXEOBISR = 0x186,
741 MAL0_TXDEIR = 0x187,
742 MAL0_RXCASR = 0x190,
743 MAL0_RXCARR = 0x191,
744 MAL0_RXEOBISR = 0x192,
745 MAL0_RXDEIR = 0x193,
746 MAL0_TXCTP0R = 0x1A0,
747 MAL0_RXCTP0R = 0x1C0,
748 MAL0_RCBS0 = 0x1E0,
749 MAL0_RCBS1 = 0x1E1,
752 typedef struct ppc4xx_mal_t ppc4xx_mal_t;
753 struct ppc4xx_mal_t {
754 qemu_irq irqs[4];
755 uint32_t cfg;
756 uint32_t esr;
757 uint32_t ier;
758 uint32_t txcasr;
759 uint32_t txcarr;
760 uint32_t txeobisr;
761 uint32_t txdeir;
762 uint32_t rxcasr;
763 uint32_t rxcarr;
764 uint32_t rxeobisr;
765 uint32_t rxdeir;
766 uint32_t *txctpr;
767 uint32_t *rxctpr;
768 uint32_t *rcbs;
769 uint8_t txcnum;
770 uint8_t rxcnum;
773 static void ppc4xx_mal_reset(void *opaque)
775 ppc4xx_mal_t *mal;
777 mal = opaque;
778 mal->cfg = 0x0007C000;
779 mal->esr = 0x00000000;
780 mal->ier = 0x00000000;
781 mal->rxcasr = 0x00000000;
782 mal->rxdeir = 0x00000000;
783 mal->rxeobisr = 0x00000000;
784 mal->txcasr = 0x00000000;
785 mal->txdeir = 0x00000000;
786 mal->txeobisr = 0x00000000;
789 static uint32_t dcr_read_mal(void *opaque, int dcrn)
791 ppc4xx_mal_t *mal;
792 uint32_t ret;
794 mal = opaque;
795 switch (dcrn) {
796 case MAL0_CFG:
797 ret = mal->cfg;
798 break;
799 case MAL0_ESR:
800 ret = mal->esr;
801 break;
802 case MAL0_IER:
803 ret = mal->ier;
804 break;
805 case MAL0_TXCASR:
806 ret = mal->txcasr;
807 break;
808 case MAL0_TXCARR:
809 ret = mal->txcarr;
810 break;
811 case MAL0_TXEOBISR:
812 ret = mal->txeobisr;
813 break;
814 case MAL0_TXDEIR:
815 ret = mal->txdeir;
816 break;
817 case MAL0_RXCASR:
818 ret = mal->rxcasr;
819 break;
820 case MAL0_RXCARR:
821 ret = mal->rxcarr;
822 break;
823 case MAL0_RXEOBISR:
824 ret = mal->rxeobisr;
825 break;
826 case MAL0_RXDEIR:
827 ret = mal->rxdeir;
828 break;
829 default:
830 ret = 0;
831 break;
833 if (dcrn >= MAL0_TXCTP0R && dcrn < MAL0_TXCTP0R + mal->txcnum) {
834 ret = mal->txctpr[dcrn - MAL0_TXCTP0R];
836 if (dcrn >= MAL0_RXCTP0R && dcrn < MAL0_RXCTP0R + mal->rxcnum) {
837 ret = mal->rxctpr[dcrn - MAL0_RXCTP0R];
839 if (dcrn >= MAL0_RCBS0 && dcrn < MAL0_RCBS0 + mal->rxcnum) {
840 ret = mal->rcbs[dcrn - MAL0_RCBS0];
843 return ret;
846 static void dcr_write_mal(void *opaque, int dcrn, uint32_t val)
848 ppc4xx_mal_t *mal;
850 mal = opaque;
851 switch (dcrn) {
852 case MAL0_CFG:
853 if (val & 0x80000000) {
854 ppc4xx_mal_reset(mal);
856 mal->cfg = val & 0x00FFC087;
857 break;
858 case MAL0_ESR:
859 /* Read/clear */
860 mal->esr &= ~val;
861 break;
862 case MAL0_IER:
863 mal->ier = val & 0x0000001F;
864 break;
865 case MAL0_TXCASR:
866 mal->txcasr = val & 0xF0000000;
867 break;
868 case MAL0_TXCARR:
869 mal->txcarr = val & 0xF0000000;
870 break;
871 case MAL0_TXEOBISR:
872 /* Read/clear */
873 mal->txeobisr &= ~val;
874 break;
875 case MAL0_TXDEIR:
876 /* Read/clear */
877 mal->txdeir &= ~val;
878 break;
879 case MAL0_RXCASR:
880 mal->rxcasr = val & 0xC0000000;
881 break;
882 case MAL0_RXCARR:
883 mal->rxcarr = val & 0xC0000000;
884 break;
885 case MAL0_RXEOBISR:
886 /* Read/clear */
887 mal->rxeobisr &= ~val;
888 break;
889 case MAL0_RXDEIR:
890 /* Read/clear */
891 mal->rxdeir &= ~val;
892 break;
894 if (dcrn >= MAL0_TXCTP0R && dcrn < MAL0_TXCTP0R + mal->txcnum) {
895 mal->txctpr[dcrn - MAL0_TXCTP0R] = val;
897 if (dcrn >= MAL0_RXCTP0R && dcrn < MAL0_RXCTP0R + mal->rxcnum) {
898 mal->rxctpr[dcrn - MAL0_RXCTP0R] = val;
900 if (dcrn >= MAL0_RCBS0 && dcrn < MAL0_RCBS0 + mal->rxcnum) {
901 mal->rcbs[dcrn - MAL0_RCBS0] = val & 0x000000FF;
905 void ppc4xx_mal_init(CPUPPCState *env, uint8_t txcnum, uint8_t rxcnum,
906 qemu_irq irqs[4])
908 ppc4xx_mal_t *mal;
909 int i;
911 assert(txcnum <= 32 && rxcnum <= 32);
912 mal = g_malloc0(sizeof(*mal));
913 mal->txcnum = txcnum;
914 mal->rxcnum = rxcnum;
915 mal->txctpr = g_new0(uint32_t, txcnum);
916 mal->rxctpr = g_new0(uint32_t, rxcnum);
917 mal->rcbs = g_new0(uint32_t, rxcnum);
918 for (i = 0; i < 4; i++) {
919 mal->irqs[i] = irqs[i];
921 qemu_register_reset(&ppc4xx_mal_reset, mal);
922 ppc_dcr_register(env, MAL0_CFG,
923 mal, &dcr_read_mal, &dcr_write_mal);
924 ppc_dcr_register(env, MAL0_ESR,
925 mal, &dcr_read_mal, &dcr_write_mal);
926 ppc_dcr_register(env, MAL0_IER,
927 mal, &dcr_read_mal, &dcr_write_mal);
928 ppc_dcr_register(env, MAL0_TXCASR,
929 mal, &dcr_read_mal, &dcr_write_mal);
930 ppc_dcr_register(env, MAL0_TXCARR,
931 mal, &dcr_read_mal, &dcr_write_mal);
932 ppc_dcr_register(env, MAL0_TXEOBISR,
933 mal, &dcr_read_mal, &dcr_write_mal);
934 ppc_dcr_register(env, MAL0_TXDEIR,
935 mal, &dcr_read_mal, &dcr_write_mal);
936 ppc_dcr_register(env, MAL0_RXCASR,
937 mal, &dcr_read_mal, &dcr_write_mal);
938 ppc_dcr_register(env, MAL0_RXCARR,
939 mal, &dcr_read_mal, &dcr_write_mal);
940 ppc_dcr_register(env, MAL0_RXEOBISR,
941 mal, &dcr_read_mal, &dcr_write_mal);
942 ppc_dcr_register(env, MAL0_RXDEIR,
943 mal, &dcr_read_mal, &dcr_write_mal);
944 for (i = 0; i < txcnum; i++) {
945 ppc_dcr_register(env, MAL0_TXCTP0R + i,
946 mal, &dcr_read_mal, &dcr_write_mal);
948 for (i = 0; i < rxcnum; i++) {
949 ppc_dcr_register(env, MAL0_RXCTP0R + i,
950 mal, &dcr_read_mal, &dcr_write_mal);
952 for (i = 0; i < rxcnum; i++) {
953 ppc_dcr_register(env, MAL0_RCBS0 + i,
954 mal, &dcr_read_mal, &dcr_write_mal);