i386: hvf: fix licensing issues; isolate task handling code (GPL v2-only)
[qemu/ericb.git] / hw / char / serial.c
blobeb72191ee7665469386d82deffc3f3c19d162256
1 /*
2 * QEMU 16550A UART emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 #include "qemu/osdep.h"
27 #include "hw/char/serial.h"
28 #include "chardev/char-serial.h"
29 #include "qapi/error.h"
30 #include "qemu/timer.h"
31 #include "exec/address-spaces.h"
32 #include "qemu/error-report.h"
34 //#define DEBUG_SERIAL
36 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
38 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
39 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
40 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
41 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
43 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
44 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
46 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
47 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
48 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
49 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
50 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
52 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
53 #define UART_IIR_FE 0xC0 /* Fifo enabled */
56 * These are the definitions for the Modem Control Register
58 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
59 #define UART_MCR_OUT2 0x08 /* Out2 complement */
60 #define UART_MCR_OUT1 0x04 /* Out1 complement */
61 #define UART_MCR_RTS 0x02 /* RTS complement */
62 #define UART_MCR_DTR 0x01 /* DTR complement */
65 * These are the definitions for the Modem Status Register
67 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
68 #define UART_MSR_RI 0x40 /* Ring Indicator */
69 #define UART_MSR_DSR 0x20 /* Data Set Ready */
70 #define UART_MSR_CTS 0x10 /* Clear to Send */
71 #define UART_MSR_DDCD 0x08 /* Delta DCD */
72 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
73 #define UART_MSR_DDSR 0x02 /* Delta DSR */
74 #define UART_MSR_DCTS 0x01 /* Delta CTS */
75 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
77 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
78 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
79 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
80 #define UART_LSR_FE 0x08 /* Frame error indicator */
81 #define UART_LSR_PE 0x04 /* Parity error indicator */
82 #define UART_LSR_OE 0x02 /* Overrun error indicator */
83 #define UART_LSR_DR 0x01 /* Receiver data ready */
84 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
86 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
88 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
89 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
90 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
91 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
93 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
94 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
95 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
96 #define UART_FCR_FE 0x01 /* FIFO Enable */
98 #define MAX_XMIT_RETRY 4
100 #ifdef DEBUG_SERIAL
101 #define DPRINTF(fmt, ...) \
102 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
103 #else
104 #define DPRINTF(fmt, ...) \
105 do {} while (0)
106 #endif
108 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
109 static void serial_xmit(SerialState *s);
111 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
113 /* Receive overruns do not overwrite FIFO contents. */
114 if (!fifo8_is_full(&s->recv_fifo)) {
115 fifo8_push(&s->recv_fifo, chr);
116 } else {
117 s->lsr |= UART_LSR_OE;
121 static void serial_update_irq(SerialState *s)
123 uint8_t tmp_iir = UART_IIR_NO_INT;
125 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
126 tmp_iir = UART_IIR_RLSI;
127 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
128 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
129 * this is not in the specification but is observed on existing
130 * hardware. */
131 tmp_iir = UART_IIR_CTI;
132 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
133 (!(s->fcr & UART_FCR_FE) ||
134 s->recv_fifo.num >= s->recv_fifo_itl)) {
135 tmp_iir = UART_IIR_RDI;
136 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
137 tmp_iir = UART_IIR_THRI;
138 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
139 tmp_iir = UART_IIR_MSI;
142 s->iir = tmp_iir | (s->iir & 0xF0);
144 if (tmp_iir != UART_IIR_NO_INT) {
145 qemu_irq_raise(s->irq);
146 } else {
147 qemu_irq_lower(s->irq);
151 static void serial_update_parameters(SerialState *s)
153 int speed, parity, data_bits, stop_bits, frame_size;
154 QEMUSerialSetParams ssp;
156 if (s->divider == 0 || s->divider > s->baudbase) {
157 return;
160 /* Start bit. */
161 frame_size = 1;
162 if (s->lcr & 0x08) {
163 /* Parity bit. */
164 frame_size++;
165 if (s->lcr & 0x10)
166 parity = 'E';
167 else
168 parity = 'O';
169 } else {
170 parity = 'N';
172 if (s->lcr & 0x04)
173 stop_bits = 2;
174 else
175 stop_bits = 1;
177 data_bits = (s->lcr & 0x03) + 5;
178 frame_size += data_bits + stop_bits;
179 speed = s->baudbase / s->divider;
180 ssp.speed = speed;
181 ssp.parity = parity;
182 ssp.data_bits = data_bits;
183 ssp.stop_bits = stop_bits;
184 s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
185 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
187 DPRINTF("speed=%d parity=%c data=%d stop=%d\n",
188 speed, parity, data_bits, stop_bits);
191 static void serial_update_msl(SerialState *s)
193 uint8_t omsr;
194 int flags;
196 timer_del(s->modem_status_poll);
198 if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM,
199 &flags) == -ENOTSUP) {
200 s->poll_msl = -1;
201 return;
204 omsr = s->msr;
206 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
207 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
208 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
209 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
211 if (s->msr != omsr) {
212 /* Set delta bits */
213 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
214 /* UART_MSR_TERI only if change was from 1 -> 0 */
215 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
216 s->msr &= ~UART_MSR_TERI;
217 serial_update_irq(s);
220 /* The real 16550A apparently has a 250ns response latency to line status changes.
221 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
223 if (s->poll_msl) {
224 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
225 NANOSECONDS_PER_SECOND / 100);
229 static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond,
230 void *opaque)
232 SerialState *s = opaque;
233 s->watch_tag = 0;
234 serial_xmit(s);
235 return FALSE;
238 static void serial_xmit(SerialState *s)
240 do {
241 assert(!(s->lsr & UART_LSR_TEMT));
242 if (s->tsr_retry == 0) {
243 assert(!(s->lsr & UART_LSR_THRE));
245 if (s->fcr & UART_FCR_FE) {
246 assert(!fifo8_is_empty(&s->xmit_fifo));
247 s->tsr = fifo8_pop(&s->xmit_fifo);
248 if (!s->xmit_fifo.num) {
249 s->lsr |= UART_LSR_THRE;
251 } else {
252 s->tsr = s->thr;
253 s->lsr |= UART_LSR_THRE;
255 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
256 s->thr_ipending = 1;
257 serial_update_irq(s);
261 if (s->mcr & UART_MCR_LOOP) {
262 /* in loopback mode, say that we just received a char */
263 serial_receive1(s, &s->tsr, 1);
264 } else if (qemu_chr_fe_write(&s->chr, &s->tsr, 1) != 1 &&
265 s->tsr_retry < MAX_XMIT_RETRY) {
266 assert(s->watch_tag == 0);
267 s->watch_tag =
268 qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
269 serial_watch_cb, s);
270 if (s->watch_tag > 0) {
271 s->tsr_retry++;
272 return;
275 s->tsr_retry = 0;
277 /* Transmit another byte if it is already available. It is only
278 possible when FIFO is enabled and not empty. */
279 } while (!(s->lsr & UART_LSR_THRE));
281 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
282 s->lsr |= UART_LSR_TEMT;
285 /* Setter for FCR.
286 is_load flag means, that value is set while loading VM state
287 and interrupt should not be invoked */
288 static void serial_write_fcr(SerialState *s, uint8_t val)
290 /* Set fcr - val only has the bits that are supposed to "stick" */
291 s->fcr = val;
293 if (val & UART_FCR_FE) {
294 s->iir |= UART_IIR_FE;
295 /* Set recv_fifo trigger Level */
296 switch (val & 0xC0) {
297 case UART_FCR_ITL_1:
298 s->recv_fifo_itl = 1;
299 break;
300 case UART_FCR_ITL_2:
301 s->recv_fifo_itl = 4;
302 break;
303 case UART_FCR_ITL_3:
304 s->recv_fifo_itl = 8;
305 break;
306 case UART_FCR_ITL_4:
307 s->recv_fifo_itl = 14;
308 break;
310 } else {
311 s->iir &= ~UART_IIR_FE;
315 static void serial_update_tiocm(SerialState *s)
317 int flags;
319 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
321 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
323 if (s->mcr & UART_MCR_RTS) {
324 flags |= CHR_TIOCM_RTS;
326 if (s->mcr & UART_MCR_DTR) {
327 flags |= CHR_TIOCM_DTR;
330 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
333 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
334 unsigned size)
336 SerialState *s = opaque;
338 addr &= 7;
339 DPRINTF("write addr=0x%" HWADDR_PRIx " val=0x%" PRIx64 "\n", addr, val);
340 switch(addr) {
341 default:
342 case 0:
343 if (s->lcr & UART_LCR_DLAB) {
344 s->divider = (s->divider & 0xff00) | val;
345 serial_update_parameters(s);
346 } else {
347 s->thr = (uint8_t) val;
348 if(s->fcr & UART_FCR_FE) {
349 /* xmit overruns overwrite data, so make space if needed */
350 if (fifo8_is_full(&s->xmit_fifo)) {
351 fifo8_pop(&s->xmit_fifo);
353 fifo8_push(&s->xmit_fifo, s->thr);
355 s->thr_ipending = 0;
356 s->lsr &= ~UART_LSR_THRE;
357 s->lsr &= ~UART_LSR_TEMT;
358 serial_update_irq(s);
359 if (s->tsr_retry == 0) {
360 serial_xmit(s);
363 break;
364 case 1:
365 if (s->lcr & UART_LCR_DLAB) {
366 s->divider = (s->divider & 0x00ff) | (val << 8);
367 serial_update_parameters(s);
368 } else {
369 uint8_t changed = (s->ier ^ val) & 0x0f;
370 s->ier = val & 0x0f;
371 /* If the backend device is a real serial port, turn polling of the modem
372 * status lines on physical port on or off depending on UART_IER_MSI state.
374 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
375 if (s->ier & UART_IER_MSI) {
376 s->poll_msl = 1;
377 serial_update_msl(s);
378 } else {
379 timer_del(s->modem_status_poll);
380 s->poll_msl = 0;
384 /* Turning on the THRE interrupt on IER can trigger the interrupt
385 * if LSR.THRE=1, even if it had been masked before by reading IIR.
386 * This is not in the datasheet, but Windows relies on it. It is
387 * unclear if THRE has to be resampled every time THRI becomes
388 * 1, or only on the rising edge. Bochs does the latter, and Windows
389 * always toggles IER to all zeroes and back to all ones, so do the
390 * same.
392 * If IER.THRI is zero, thr_ipending is not used. Set it to zero
393 * so that the thr_ipending subsection is not migrated.
395 if (changed & UART_IER_THRI) {
396 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
397 s->thr_ipending = 1;
398 } else {
399 s->thr_ipending = 0;
403 if (changed) {
404 serial_update_irq(s);
407 break;
408 case 2:
409 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
410 if ((val ^ s->fcr) & UART_FCR_FE) {
411 val |= UART_FCR_XFR | UART_FCR_RFR;
414 /* FIFO clear */
416 if (val & UART_FCR_RFR) {
417 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
418 timer_del(s->fifo_timeout_timer);
419 s->timeout_ipending = 0;
420 fifo8_reset(&s->recv_fifo);
423 if (val & UART_FCR_XFR) {
424 s->lsr |= UART_LSR_THRE;
425 s->thr_ipending = 1;
426 fifo8_reset(&s->xmit_fifo);
429 serial_write_fcr(s, val & 0xC9);
430 serial_update_irq(s);
431 break;
432 case 3:
434 int break_enable;
435 s->lcr = val;
436 serial_update_parameters(s);
437 break_enable = (val >> 6) & 1;
438 if (break_enable != s->last_break_enable) {
439 s->last_break_enable = break_enable;
440 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
441 &break_enable);
444 break;
445 case 4:
447 int old_mcr = s->mcr;
448 s->mcr = val & 0x1f;
449 if (val & UART_MCR_LOOP)
450 break;
452 if (s->poll_msl >= 0 && old_mcr != s->mcr) {
453 serial_update_tiocm(s);
454 /* Update the modem status after a one-character-send wait-time, since there may be a response
455 from the device/computer at the other end of the serial line */
456 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
459 break;
460 case 5:
461 break;
462 case 6:
463 break;
464 case 7:
465 s->scr = val;
466 break;
470 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
472 SerialState *s = opaque;
473 uint32_t ret;
475 addr &= 7;
476 switch(addr) {
477 default:
478 case 0:
479 if (s->lcr & UART_LCR_DLAB) {
480 ret = s->divider & 0xff;
481 } else {
482 if(s->fcr & UART_FCR_FE) {
483 ret = fifo8_is_empty(&s->recv_fifo) ?
484 0 : fifo8_pop(&s->recv_fifo);
485 if (s->recv_fifo.num == 0) {
486 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
487 } else {
488 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
490 s->timeout_ipending = 0;
491 } else {
492 ret = s->rbr;
493 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
495 serial_update_irq(s);
496 if (!(s->mcr & UART_MCR_LOOP)) {
497 /* in loopback mode, don't receive any data */
498 qemu_chr_fe_accept_input(&s->chr);
501 break;
502 case 1:
503 if (s->lcr & UART_LCR_DLAB) {
504 ret = (s->divider >> 8) & 0xff;
505 } else {
506 ret = s->ier;
508 break;
509 case 2:
510 ret = s->iir;
511 if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
512 s->thr_ipending = 0;
513 serial_update_irq(s);
515 break;
516 case 3:
517 ret = s->lcr;
518 break;
519 case 4:
520 ret = s->mcr;
521 break;
522 case 5:
523 ret = s->lsr;
524 /* Clear break and overrun interrupts */
525 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
526 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
527 serial_update_irq(s);
529 break;
530 case 6:
531 if (s->mcr & UART_MCR_LOOP) {
532 /* in loopback, the modem output pins are connected to the
533 inputs */
534 ret = (s->mcr & 0x0c) << 4;
535 ret |= (s->mcr & 0x02) << 3;
536 ret |= (s->mcr & 0x01) << 5;
537 } else {
538 if (s->poll_msl >= 0)
539 serial_update_msl(s);
540 ret = s->msr;
541 /* Clear delta bits & msr int after read, if they were set */
542 if (s->msr & UART_MSR_ANY_DELTA) {
543 s->msr &= 0xF0;
544 serial_update_irq(s);
547 break;
548 case 7:
549 ret = s->scr;
550 break;
552 DPRINTF("read addr=0x%" HWADDR_PRIx " val=0x%02x\n", addr, ret);
553 return ret;
556 static int serial_can_receive(SerialState *s)
558 if(s->fcr & UART_FCR_FE) {
559 if (s->recv_fifo.num < UART_FIFO_LENGTH) {
561 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
562 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
563 * effect will be to almost always fill the fifo completely before
564 * the guest has a chance to respond, effectively overriding the ITL
565 * that the guest has set.
567 return (s->recv_fifo.num <= s->recv_fifo_itl) ?
568 s->recv_fifo_itl - s->recv_fifo.num : 1;
569 } else {
570 return 0;
572 } else {
573 return !(s->lsr & UART_LSR_DR);
577 static void serial_receive_break(SerialState *s)
579 s->rbr = 0;
580 /* When the LSR_DR is set a null byte is pushed into the fifo */
581 recv_fifo_put(s, '\0');
582 s->lsr |= UART_LSR_BI | UART_LSR_DR;
583 serial_update_irq(s);
586 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
587 static void fifo_timeout_int (void *opaque) {
588 SerialState *s = opaque;
589 if (s->recv_fifo.num) {
590 s->timeout_ipending = 1;
591 serial_update_irq(s);
595 static int serial_can_receive1(void *opaque)
597 SerialState *s = opaque;
598 return serial_can_receive(s);
601 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
603 SerialState *s = opaque;
605 if (s->wakeup) {
606 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER);
608 if(s->fcr & UART_FCR_FE) {
609 int i;
610 for (i = 0; i < size; i++) {
611 recv_fifo_put(s, buf[i]);
613 s->lsr |= UART_LSR_DR;
614 /* call the timeout receive callback in 4 char transmit time */
615 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
616 } else {
617 if (s->lsr & UART_LSR_DR)
618 s->lsr |= UART_LSR_OE;
619 s->rbr = buf[0];
620 s->lsr |= UART_LSR_DR;
622 serial_update_irq(s);
625 static void serial_event(void *opaque, int event)
627 SerialState *s = opaque;
628 DPRINTF("event %x\n", event);
629 if (event == CHR_EVENT_BREAK)
630 serial_receive_break(s);
633 static int serial_pre_save(void *opaque)
635 SerialState *s = opaque;
636 s->fcr_vmstate = s->fcr;
638 return 0;
641 static int serial_pre_load(void *opaque)
643 SerialState *s = opaque;
644 s->thr_ipending = -1;
645 s->poll_msl = -1;
646 return 0;
649 static int serial_post_load(void *opaque, int version_id)
651 SerialState *s = opaque;
653 if (version_id < 3) {
654 s->fcr_vmstate = 0;
656 if (s->thr_ipending == -1) {
657 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
660 if (s->tsr_retry > 0) {
661 /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */
662 if (s->lsr & UART_LSR_TEMT) {
663 error_report("inconsistent state in serial device "
664 "(tsr empty, tsr_retry=%d", s->tsr_retry);
665 return -1;
668 if (s->tsr_retry > MAX_XMIT_RETRY) {
669 s->tsr_retry = MAX_XMIT_RETRY;
672 assert(s->watch_tag == 0);
673 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
674 serial_watch_cb, s);
675 } else {
676 /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */
677 if (!(s->lsr & UART_LSR_TEMT)) {
678 error_report("inconsistent state in serial device "
679 "(tsr not empty, tsr_retry=0");
680 return -1;
684 s->last_break_enable = (s->lcr >> 6) & 1;
685 /* Initialize fcr via setter to perform essential side-effects */
686 serial_write_fcr(s, s->fcr_vmstate);
687 serial_update_parameters(s);
688 return 0;
691 static bool serial_thr_ipending_needed(void *opaque)
693 SerialState *s = opaque;
695 if (s->ier & UART_IER_THRI) {
696 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
697 return s->thr_ipending != expected_value;
698 } else {
699 /* LSR.THRE will be sampled again when the interrupt is
700 * enabled. thr_ipending is not used in this case, do
701 * not migrate it.
703 return false;
707 static const VMStateDescription vmstate_serial_thr_ipending = {
708 .name = "serial/thr_ipending",
709 .version_id = 1,
710 .minimum_version_id = 1,
711 .needed = serial_thr_ipending_needed,
712 .fields = (VMStateField[]) {
713 VMSTATE_INT32(thr_ipending, SerialState),
714 VMSTATE_END_OF_LIST()
718 static bool serial_tsr_needed(void *opaque)
720 SerialState *s = (SerialState *)opaque;
721 return s->tsr_retry != 0;
724 static const VMStateDescription vmstate_serial_tsr = {
725 .name = "serial/tsr",
726 .version_id = 1,
727 .minimum_version_id = 1,
728 .needed = serial_tsr_needed,
729 .fields = (VMStateField[]) {
730 VMSTATE_UINT32(tsr_retry, SerialState),
731 VMSTATE_UINT8(thr, SerialState),
732 VMSTATE_UINT8(tsr, SerialState),
733 VMSTATE_END_OF_LIST()
737 static bool serial_recv_fifo_needed(void *opaque)
739 SerialState *s = (SerialState *)opaque;
740 return !fifo8_is_empty(&s->recv_fifo);
744 static const VMStateDescription vmstate_serial_recv_fifo = {
745 .name = "serial/recv_fifo",
746 .version_id = 1,
747 .minimum_version_id = 1,
748 .needed = serial_recv_fifo_needed,
749 .fields = (VMStateField[]) {
750 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
751 VMSTATE_END_OF_LIST()
755 static bool serial_xmit_fifo_needed(void *opaque)
757 SerialState *s = (SerialState *)opaque;
758 return !fifo8_is_empty(&s->xmit_fifo);
761 static const VMStateDescription vmstate_serial_xmit_fifo = {
762 .name = "serial/xmit_fifo",
763 .version_id = 1,
764 .minimum_version_id = 1,
765 .needed = serial_xmit_fifo_needed,
766 .fields = (VMStateField[]) {
767 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
768 VMSTATE_END_OF_LIST()
772 static bool serial_fifo_timeout_timer_needed(void *opaque)
774 SerialState *s = (SerialState *)opaque;
775 return timer_pending(s->fifo_timeout_timer);
778 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
779 .name = "serial/fifo_timeout_timer",
780 .version_id = 1,
781 .minimum_version_id = 1,
782 .needed = serial_fifo_timeout_timer_needed,
783 .fields = (VMStateField[]) {
784 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
785 VMSTATE_END_OF_LIST()
789 static bool serial_timeout_ipending_needed(void *opaque)
791 SerialState *s = (SerialState *)opaque;
792 return s->timeout_ipending != 0;
795 static const VMStateDescription vmstate_serial_timeout_ipending = {
796 .name = "serial/timeout_ipending",
797 .version_id = 1,
798 .minimum_version_id = 1,
799 .needed = serial_timeout_ipending_needed,
800 .fields = (VMStateField[]) {
801 VMSTATE_INT32(timeout_ipending, SerialState),
802 VMSTATE_END_OF_LIST()
806 static bool serial_poll_needed(void *opaque)
808 SerialState *s = (SerialState *)opaque;
809 return s->poll_msl >= 0;
812 static const VMStateDescription vmstate_serial_poll = {
813 .name = "serial/poll",
814 .version_id = 1,
815 .needed = serial_poll_needed,
816 .minimum_version_id = 1,
817 .fields = (VMStateField[]) {
818 VMSTATE_INT32(poll_msl, SerialState),
819 VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
820 VMSTATE_END_OF_LIST()
824 const VMStateDescription vmstate_serial = {
825 .name = "serial",
826 .version_id = 3,
827 .minimum_version_id = 2,
828 .pre_save = serial_pre_save,
829 .pre_load = serial_pre_load,
830 .post_load = serial_post_load,
831 .fields = (VMStateField[]) {
832 VMSTATE_UINT16_V(divider, SerialState, 2),
833 VMSTATE_UINT8(rbr, SerialState),
834 VMSTATE_UINT8(ier, SerialState),
835 VMSTATE_UINT8(iir, SerialState),
836 VMSTATE_UINT8(lcr, SerialState),
837 VMSTATE_UINT8(mcr, SerialState),
838 VMSTATE_UINT8(lsr, SerialState),
839 VMSTATE_UINT8(msr, SerialState),
840 VMSTATE_UINT8(scr, SerialState),
841 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
842 VMSTATE_END_OF_LIST()
844 .subsections = (const VMStateDescription*[]) {
845 &vmstate_serial_thr_ipending,
846 &vmstate_serial_tsr,
847 &vmstate_serial_recv_fifo,
848 &vmstate_serial_xmit_fifo,
849 &vmstate_serial_fifo_timeout_timer,
850 &vmstate_serial_timeout_ipending,
851 &vmstate_serial_poll,
852 NULL
856 static void serial_reset(void *opaque)
858 SerialState *s = opaque;
860 if (s->watch_tag > 0) {
861 g_source_remove(s->watch_tag);
862 s->watch_tag = 0;
865 s->rbr = 0;
866 s->ier = 0;
867 s->iir = UART_IIR_NO_INT;
868 s->lcr = 0;
869 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
870 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
871 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
872 s->divider = 0x0C;
873 s->mcr = UART_MCR_OUT2;
874 s->scr = 0;
875 s->tsr_retry = 0;
876 s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
877 s->poll_msl = 0;
879 s->timeout_ipending = 0;
880 timer_del(s->fifo_timeout_timer);
881 timer_del(s->modem_status_poll);
883 fifo8_reset(&s->recv_fifo);
884 fifo8_reset(&s->xmit_fifo);
886 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
888 s->thr_ipending = 0;
889 s->last_break_enable = 0;
890 qemu_irq_lower(s->irq);
892 serial_update_msl(s);
893 s->msr &= ~UART_MSR_ANY_DELTA;
896 static int serial_be_change(void *opaque)
898 SerialState *s = opaque;
900 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
901 serial_event, serial_be_change, s, NULL, true);
903 serial_update_parameters(s);
905 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
906 &s->last_break_enable);
908 s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0;
909 serial_update_msl(s);
911 if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) {
912 serial_update_tiocm(s);
915 if (s->watch_tag > 0) {
916 g_source_remove(s->watch_tag);
917 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
918 serial_watch_cb, s);
921 return 0;
924 void serial_realize_core(SerialState *s, Error **errp)
926 if (!qemu_chr_fe_backend_connected(&s->chr)) {
927 error_setg(errp, "Can't create serial device, empty char device");
928 return;
931 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
933 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
934 qemu_register_reset(serial_reset, s);
936 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
937 serial_event, serial_be_change, s, NULL, true);
938 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
939 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
940 serial_reset(s);
943 void serial_exit_core(SerialState *s)
945 qemu_chr_fe_deinit(&s->chr, false);
947 timer_del(s->modem_status_poll);
948 timer_free(s->modem_status_poll);
950 timer_del(s->fifo_timeout_timer);
951 timer_free(s->fifo_timeout_timer);
953 fifo8_destroy(&s->recv_fifo);
954 fifo8_destroy(&s->xmit_fifo);
956 qemu_unregister_reset(serial_reset, s);
959 /* Change the main reference oscillator frequency. */
960 void serial_set_frequency(SerialState *s, uint32_t frequency)
962 s->baudbase = frequency;
963 serial_update_parameters(s);
966 const MemoryRegionOps serial_io_ops = {
967 .read = serial_ioport_read,
968 .write = serial_ioport_write,
969 .impl = {
970 .min_access_size = 1,
971 .max_access_size = 1,
973 .endianness = DEVICE_LITTLE_ENDIAN,
976 SerialState *serial_init(int base, qemu_irq irq, int baudbase,
977 Chardev *chr, MemoryRegion *system_io)
979 SerialState *s;
981 s = g_malloc0(sizeof(SerialState));
983 s->irq = irq;
984 s->baudbase = baudbase;
985 qemu_chr_fe_init(&s->chr, chr, &error_abort);
986 serial_realize_core(s, &error_fatal);
988 vmstate_register(NULL, base, &vmstate_serial, s);
990 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8);
991 memory_region_add_subregion(system_io, base, &s->io);
993 return s;
996 /* Memory mapped interface */
997 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
998 unsigned size)
1000 SerialState *s = opaque;
1001 return serial_ioport_read(s, addr >> s->it_shift, 1);
1004 static void serial_mm_write(void *opaque, hwaddr addr,
1005 uint64_t value, unsigned size)
1007 SerialState *s = opaque;
1008 value &= 255;
1009 serial_ioport_write(s, addr >> s->it_shift, value, 1);
1012 static const MemoryRegionOps serial_mm_ops[3] = {
1013 [DEVICE_NATIVE_ENDIAN] = {
1014 .read = serial_mm_read,
1015 .write = serial_mm_write,
1016 .endianness = DEVICE_NATIVE_ENDIAN,
1017 .valid.max_access_size = 8,
1018 .impl.max_access_size = 8,
1020 [DEVICE_LITTLE_ENDIAN] = {
1021 .read = serial_mm_read,
1022 .write = serial_mm_write,
1023 .endianness = DEVICE_LITTLE_ENDIAN,
1024 .valid.max_access_size = 8,
1025 .impl.max_access_size = 8,
1027 [DEVICE_BIG_ENDIAN] = {
1028 .read = serial_mm_read,
1029 .write = serial_mm_write,
1030 .endianness = DEVICE_BIG_ENDIAN,
1031 .valid.max_access_size = 8,
1032 .impl.max_access_size = 8,
1036 SerialState *serial_mm_init(MemoryRegion *address_space,
1037 hwaddr base, int it_shift,
1038 qemu_irq irq, int baudbase,
1039 Chardev *chr, enum device_endian end)
1041 SerialState *s;
1043 s = g_malloc0(sizeof(SerialState));
1045 s->it_shift = it_shift;
1046 s->irq = irq;
1047 s->baudbase = baudbase;
1048 qemu_chr_fe_init(&s->chr, chr, &error_abort);
1050 serial_realize_core(s, &error_fatal);
1051 vmstate_register(NULL, base, &vmstate_serial, s);
1053 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s,
1054 "serial", 8 << it_shift);
1055 memory_region_add_subregion(address_space, base, &s->io);
1056 return s;