crypto: enforce that key material doesn't overlap with LUKS header
[qemu/ericb.git] / accel / kvm / kvm-all.c
blobf99b0becd887932e1bb0e80ad4ef29d55452c081
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
20 #include <linux/kvm.h>
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/main-loop.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "qapi/visitor.h"
42 #include "qapi/qapi-types-common.h"
43 #include "qapi/qapi-visit-common.h"
44 #include "sysemu/reset.h"
45 #include "qemu/guest-random.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm-cpus.h"
48 #include "sysemu/dirtylimit.h"
50 #include "hw/boards.h"
51 #include "monitor/stats.h"
53 /* This check must be after config-host.h is included */
54 #ifdef CONFIG_EVENTFD
55 #include <sys/eventfd.h>
56 #endif
58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
59 * need to use the real host PAGE_SIZE, as that's what KVM will use.
61 #ifdef PAGE_SIZE
62 #undef PAGE_SIZE
63 #endif
64 #define PAGE_SIZE qemu_real_host_page_size()
66 #ifndef KVM_GUESTDBG_BLOCKIRQ
67 #define KVM_GUESTDBG_BLOCKIRQ 0
68 #endif
70 //#define DEBUG_KVM
72 #ifdef DEBUG_KVM
73 #define DPRINTF(fmt, ...) \
74 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
75 #else
76 #define DPRINTF(fmt, ...) \
77 do { } while (0)
78 #endif
80 struct KVMParkedVcpu {
81 unsigned long vcpu_id;
82 int kvm_fd;
83 QLIST_ENTRY(KVMParkedVcpu) node;
86 KVMState *kvm_state;
87 bool kvm_kernel_irqchip;
88 bool kvm_split_irqchip;
89 bool kvm_async_interrupts_allowed;
90 bool kvm_halt_in_kernel_allowed;
91 bool kvm_eventfds_allowed;
92 bool kvm_irqfds_allowed;
93 bool kvm_resamplefds_allowed;
94 bool kvm_msi_via_irqfd_allowed;
95 bool kvm_gsi_routing_allowed;
96 bool kvm_gsi_direct_mapping;
97 bool kvm_allowed;
98 bool kvm_readonly_mem_allowed;
99 bool kvm_vm_attributes_allowed;
100 bool kvm_direct_msi_allowed;
101 bool kvm_ioeventfd_any_length_allowed;
102 bool kvm_msi_use_devid;
103 bool kvm_has_guest_debug;
104 static int kvm_sstep_flags;
105 static bool kvm_immediate_exit;
106 static hwaddr kvm_max_slot_size = ~0;
108 static const KVMCapabilityInfo kvm_required_capabilites[] = {
109 KVM_CAP_INFO(USER_MEMORY),
110 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
111 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
112 KVM_CAP_LAST_INFO
115 static NotifierList kvm_irqchip_change_notifiers =
116 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
118 struct KVMResampleFd {
119 int gsi;
120 EventNotifier *resample_event;
121 QLIST_ENTRY(KVMResampleFd) node;
123 typedef struct KVMResampleFd KVMResampleFd;
126 * Only used with split irqchip where we need to do the resample fd
127 * kick for the kernel from userspace.
129 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
130 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
132 static QemuMutex kml_slots_lock;
134 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
135 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
137 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
139 static inline void kvm_resample_fd_remove(int gsi)
141 KVMResampleFd *rfd;
143 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
144 if (rfd->gsi == gsi) {
145 QLIST_REMOVE(rfd, node);
146 g_free(rfd);
147 break;
152 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
154 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
156 rfd->gsi = gsi;
157 rfd->resample_event = event;
159 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
162 void kvm_resample_fd_notify(int gsi)
164 KVMResampleFd *rfd;
166 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
167 if (rfd->gsi == gsi) {
168 event_notifier_set(rfd->resample_event);
169 trace_kvm_resample_fd_notify(gsi);
170 return;
175 int kvm_get_max_memslots(void)
177 KVMState *s = KVM_STATE(current_accel());
179 return s->nr_slots;
182 /* Called with KVMMemoryListener.slots_lock held */
183 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
185 KVMState *s = kvm_state;
186 int i;
188 for (i = 0; i < s->nr_slots; i++) {
189 if (kml->slots[i].memory_size == 0) {
190 return &kml->slots[i];
194 return NULL;
197 bool kvm_has_free_slot(MachineState *ms)
199 KVMState *s = KVM_STATE(ms->accelerator);
200 bool result;
201 KVMMemoryListener *kml = &s->memory_listener;
203 kvm_slots_lock();
204 result = !!kvm_get_free_slot(kml);
205 kvm_slots_unlock();
207 return result;
210 /* Called with KVMMemoryListener.slots_lock held */
211 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
213 KVMSlot *slot = kvm_get_free_slot(kml);
215 if (slot) {
216 return slot;
219 fprintf(stderr, "%s: no free slot available\n", __func__);
220 abort();
223 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
224 hwaddr start_addr,
225 hwaddr size)
227 KVMState *s = kvm_state;
228 int i;
230 for (i = 0; i < s->nr_slots; i++) {
231 KVMSlot *mem = &kml->slots[i];
233 if (start_addr == mem->start_addr && size == mem->memory_size) {
234 return mem;
238 return NULL;
242 * Calculate and align the start address and the size of the section.
243 * Return the size. If the size is 0, the aligned section is empty.
245 static hwaddr kvm_align_section(MemoryRegionSection *section,
246 hwaddr *start)
248 hwaddr size = int128_get64(section->size);
249 hwaddr delta, aligned;
251 /* kvm works in page size chunks, but the function may be called
252 with sub-page size and unaligned start address. Pad the start
253 address to next and truncate size to previous page boundary. */
254 aligned = ROUND_UP(section->offset_within_address_space,
255 qemu_real_host_page_size());
256 delta = aligned - section->offset_within_address_space;
257 *start = aligned;
258 if (delta > size) {
259 return 0;
262 return (size - delta) & qemu_real_host_page_mask();
265 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
266 hwaddr *phys_addr)
268 KVMMemoryListener *kml = &s->memory_listener;
269 int i, ret = 0;
271 kvm_slots_lock();
272 for (i = 0; i < s->nr_slots; i++) {
273 KVMSlot *mem = &kml->slots[i];
275 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
276 *phys_addr = mem->start_addr + (ram - mem->ram);
277 ret = 1;
278 break;
281 kvm_slots_unlock();
283 return ret;
286 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
288 KVMState *s = kvm_state;
289 struct kvm_userspace_memory_region mem;
290 int ret;
292 mem.slot = slot->slot | (kml->as_id << 16);
293 mem.guest_phys_addr = slot->start_addr;
294 mem.userspace_addr = (unsigned long)slot->ram;
295 mem.flags = slot->flags;
297 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
298 /* Set the slot size to 0 before setting the slot to the desired
299 * value. This is needed based on KVM commit 75d61fbc. */
300 mem.memory_size = 0;
301 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
302 if (ret < 0) {
303 goto err;
306 mem.memory_size = slot->memory_size;
307 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
308 slot->old_flags = mem.flags;
309 err:
310 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
311 mem.memory_size, mem.userspace_addr, ret);
312 if (ret < 0) {
313 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
314 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
315 __func__, mem.slot, slot->start_addr,
316 (uint64_t)mem.memory_size, strerror(errno));
318 return ret;
321 static int do_kvm_destroy_vcpu(CPUState *cpu)
323 KVMState *s = kvm_state;
324 long mmap_size;
325 struct KVMParkedVcpu *vcpu = NULL;
326 int ret = 0;
328 DPRINTF("kvm_destroy_vcpu\n");
330 ret = kvm_arch_destroy_vcpu(cpu);
331 if (ret < 0) {
332 goto err;
335 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
336 if (mmap_size < 0) {
337 ret = mmap_size;
338 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
339 goto err;
342 ret = munmap(cpu->kvm_run, mmap_size);
343 if (ret < 0) {
344 goto err;
347 if (cpu->kvm_dirty_gfns) {
348 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
349 if (ret < 0) {
350 goto err;
354 vcpu = g_malloc0(sizeof(*vcpu));
355 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
356 vcpu->kvm_fd = cpu->kvm_fd;
357 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
358 err:
359 return ret;
362 void kvm_destroy_vcpu(CPUState *cpu)
364 if (do_kvm_destroy_vcpu(cpu) < 0) {
365 error_report("kvm_destroy_vcpu failed");
366 exit(EXIT_FAILURE);
370 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
372 struct KVMParkedVcpu *cpu;
374 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
375 if (cpu->vcpu_id == vcpu_id) {
376 int kvm_fd;
378 QLIST_REMOVE(cpu, node);
379 kvm_fd = cpu->kvm_fd;
380 g_free(cpu);
381 return kvm_fd;
385 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
388 int kvm_init_vcpu(CPUState *cpu, Error **errp)
390 KVMState *s = kvm_state;
391 long mmap_size;
392 int ret;
394 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
396 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
397 if (ret < 0) {
398 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
399 kvm_arch_vcpu_id(cpu));
400 goto err;
403 cpu->kvm_fd = ret;
404 cpu->kvm_state = s;
405 cpu->vcpu_dirty = true;
406 cpu->dirty_pages = 0;
407 cpu->throttle_us_per_full = 0;
409 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
410 if (mmap_size < 0) {
411 ret = mmap_size;
412 error_setg_errno(errp, -mmap_size,
413 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
414 goto err;
417 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
418 cpu->kvm_fd, 0);
419 if (cpu->kvm_run == MAP_FAILED) {
420 ret = -errno;
421 error_setg_errno(errp, ret,
422 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
423 kvm_arch_vcpu_id(cpu));
424 goto err;
427 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
428 s->coalesced_mmio_ring =
429 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
432 if (s->kvm_dirty_ring_size) {
433 /* Use MAP_SHARED to share pages with the kernel */
434 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
435 PROT_READ | PROT_WRITE, MAP_SHARED,
436 cpu->kvm_fd,
437 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
438 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
439 ret = -errno;
440 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
441 goto err;
445 ret = kvm_arch_init_vcpu(cpu);
446 if (ret < 0) {
447 error_setg_errno(errp, -ret,
448 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
449 kvm_arch_vcpu_id(cpu));
451 err:
452 return ret;
456 * dirty pages logging control
459 static int kvm_mem_flags(MemoryRegion *mr)
461 bool readonly = mr->readonly || memory_region_is_romd(mr);
462 int flags = 0;
464 if (memory_region_get_dirty_log_mask(mr) != 0) {
465 flags |= KVM_MEM_LOG_DIRTY_PAGES;
467 if (readonly && kvm_readonly_mem_allowed) {
468 flags |= KVM_MEM_READONLY;
470 return flags;
473 /* Called with KVMMemoryListener.slots_lock held */
474 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
475 MemoryRegion *mr)
477 mem->flags = kvm_mem_flags(mr);
479 /* If nothing changed effectively, no need to issue ioctl */
480 if (mem->flags == mem->old_flags) {
481 return 0;
484 kvm_slot_init_dirty_bitmap(mem);
485 return kvm_set_user_memory_region(kml, mem, false);
488 static int kvm_section_update_flags(KVMMemoryListener *kml,
489 MemoryRegionSection *section)
491 hwaddr start_addr, size, slot_size;
492 KVMSlot *mem;
493 int ret = 0;
495 size = kvm_align_section(section, &start_addr);
496 if (!size) {
497 return 0;
500 kvm_slots_lock();
502 while (size && !ret) {
503 slot_size = MIN(kvm_max_slot_size, size);
504 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
505 if (!mem) {
506 /* We don't have a slot if we want to trap every access. */
507 goto out;
510 ret = kvm_slot_update_flags(kml, mem, section->mr);
511 start_addr += slot_size;
512 size -= slot_size;
515 out:
516 kvm_slots_unlock();
517 return ret;
520 static void kvm_log_start(MemoryListener *listener,
521 MemoryRegionSection *section,
522 int old, int new)
524 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
525 int r;
527 if (old != 0) {
528 return;
531 r = kvm_section_update_flags(kml, section);
532 if (r < 0) {
533 abort();
537 static void kvm_log_stop(MemoryListener *listener,
538 MemoryRegionSection *section,
539 int old, int new)
541 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
542 int r;
544 if (new != 0) {
545 return;
548 r = kvm_section_update_flags(kml, section);
549 if (r < 0) {
550 abort();
554 /* get kvm's dirty pages bitmap and update qemu's */
555 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
557 ram_addr_t start = slot->ram_start_offset;
558 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
560 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
563 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
565 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
568 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
570 /* Allocate the dirty bitmap for a slot */
571 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
573 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
574 return;
578 * XXX bad kernel interface alert
579 * For dirty bitmap, kernel allocates array of size aligned to
580 * bits-per-long. But for case when the kernel is 64bits and
581 * the userspace is 32bits, userspace can't align to the same
582 * bits-per-long, since sizeof(long) is different between kernel
583 * and user space. This way, userspace will provide buffer which
584 * may be 4 bytes less than the kernel will use, resulting in
585 * userspace memory corruption (which is not detectable by valgrind
586 * too, in most cases).
587 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
588 * a hope that sizeof(long) won't become >8 any time soon.
590 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
591 * And mem->memory_size is aligned to it (otherwise this mem can't
592 * be registered to KVM).
594 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
595 /*HOST_LONG_BITS*/ 64) / 8;
596 mem->dirty_bmap = g_malloc0(bitmap_size);
597 mem->dirty_bmap_size = bitmap_size;
601 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
602 * succeeded, false otherwise
604 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
606 struct kvm_dirty_log d = {};
607 int ret;
609 d.dirty_bitmap = slot->dirty_bmap;
610 d.slot = slot->slot | (slot->as_id << 16);
611 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
613 if (ret == -ENOENT) {
614 /* kernel does not have dirty bitmap in this slot */
615 ret = 0;
617 if (ret) {
618 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
619 __func__, ret);
621 return ret == 0;
624 /* Should be with all slots_lock held for the address spaces. */
625 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
626 uint32_t slot_id, uint64_t offset)
628 KVMMemoryListener *kml;
629 KVMSlot *mem;
631 if (as_id >= s->nr_as) {
632 return;
635 kml = s->as[as_id].ml;
636 mem = &kml->slots[slot_id];
638 if (!mem->memory_size || offset >=
639 (mem->memory_size / qemu_real_host_page_size())) {
640 return;
643 set_bit(offset, mem->dirty_bmap);
646 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
649 * Read the flags before the value. Pairs with barrier in
650 * KVM's kvm_dirty_ring_push() function.
652 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
655 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
658 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
659 * sees the full content of the ring:
661 * CPU0 CPU1 CPU2
662 * ------------------------------------------------------------------------------
663 * fill gfn0
664 * store-rel flags for gfn0
665 * load-acq flags for gfn0
666 * store-rel RESET for gfn0
667 * ioctl(RESET_RINGS)
668 * load-acq flags for gfn0
669 * check if flags have RESET
671 * The synchronization goes from CPU2 to CPU0 to CPU1.
673 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
677 * Should be with all slots_lock held for the address spaces. It returns the
678 * dirty page we've collected on this dirty ring.
680 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
682 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
683 uint32_t ring_size = s->kvm_dirty_ring_size;
684 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
686 assert(dirty_gfns && ring_size);
687 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
689 while (true) {
690 cur = &dirty_gfns[fetch % ring_size];
691 if (!dirty_gfn_is_dirtied(cur)) {
692 break;
694 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
695 cur->offset);
696 dirty_gfn_set_collected(cur);
697 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
698 fetch++;
699 count++;
701 cpu->kvm_fetch_index = fetch;
702 cpu->dirty_pages += count;
704 return count;
707 /* Must be with slots_lock held */
708 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
710 int ret;
711 uint64_t total = 0;
712 int64_t stamp;
714 stamp = get_clock();
716 if (cpu) {
717 total = kvm_dirty_ring_reap_one(s, cpu);
718 } else {
719 CPU_FOREACH(cpu) {
720 total += kvm_dirty_ring_reap_one(s, cpu);
724 if (total) {
725 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
726 assert(ret == total);
729 stamp = get_clock() - stamp;
731 if (total) {
732 trace_kvm_dirty_ring_reap(total, stamp / 1000);
735 return total;
739 * Currently for simplicity, we must hold BQL before calling this. We can
740 * consider to drop the BQL if we're clear with all the race conditions.
742 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
744 uint64_t total;
747 * We need to lock all kvm slots for all address spaces here,
748 * because:
750 * (1) We need to mark dirty for dirty bitmaps in multiple slots
751 * and for tons of pages, so it's better to take the lock here
752 * once rather than once per page. And more importantly,
754 * (2) We must _NOT_ publish dirty bits to the other threads
755 * (e.g., the migration thread) via the kvm memory slot dirty
756 * bitmaps before correctly re-protect those dirtied pages.
757 * Otherwise we can have potential risk of data corruption if
758 * the page data is read in the other thread before we do
759 * reset below.
761 kvm_slots_lock();
762 total = kvm_dirty_ring_reap_locked(s, cpu);
763 kvm_slots_unlock();
765 return total;
768 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
770 /* No need to do anything */
774 * Kick all vcpus out in a synchronized way. When returned, we
775 * guarantee that every vcpu has been kicked and at least returned to
776 * userspace once.
778 static void kvm_cpu_synchronize_kick_all(void)
780 CPUState *cpu;
782 CPU_FOREACH(cpu) {
783 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
788 * Flush all the existing dirty pages to the KVM slot buffers. When
789 * this call returns, we guarantee that all the touched dirty pages
790 * before calling this function have been put into the per-kvmslot
791 * dirty bitmap.
793 * This function must be called with BQL held.
795 static void kvm_dirty_ring_flush(void)
797 trace_kvm_dirty_ring_flush(0);
799 * The function needs to be serialized. Since this function
800 * should always be with BQL held, serialization is guaranteed.
801 * However, let's be sure of it.
803 assert(qemu_mutex_iothread_locked());
805 * First make sure to flush the hardware buffers by kicking all
806 * vcpus out in a synchronous way.
808 kvm_cpu_synchronize_kick_all();
809 kvm_dirty_ring_reap(kvm_state, NULL);
810 trace_kvm_dirty_ring_flush(1);
814 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
816 * This function will first try to fetch dirty bitmap from the kernel,
817 * and then updates qemu's dirty bitmap.
819 * NOTE: caller must be with kml->slots_lock held.
821 * @kml: the KVM memory listener object
822 * @section: the memory section to sync the dirty bitmap with
824 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
825 MemoryRegionSection *section)
827 KVMState *s = kvm_state;
828 KVMSlot *mem;
829 hwaddr start_addr, size;
830 hwaddr slot_size;
832 size = kvm_align_section(section, &start_addr);
833 while (size) {
834 slot_size = MIN(kvm_max_slot_size, size);
835 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
836 if (!mem) {
837 /* We don't have a slot if we want to trap every access. */
838 return;
840 if (kvm_slot_get_dirty_log(s, mem)) {
841 kvm_slot_sync_dirty_pages(mem);
843 start_addr += slot_size;
844 size -= slot_size;
848 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
849 #define KVM_CLEAR_LOG_SHIFT 6
850 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
851 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
853 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
854 uint64_t size)
856 KVMState *s = kvm_state;
857 uint64_t end, bmap_start, start_delta, bmap_npages;
858 struct kvm_clear_dirty_log d;
859 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
860 int ret;
863 * We need to extend either the start or the size or both to
864 * satisfy the KVM interface requirement. Firstly, do the start
865 * page alignment on 64 host pages
867 bmap_start = start & KVM_CLEAR_LOG_MASK;
868 start_delta = start - bmap_start;
869 bmap_start /= psize;
872 * The kernel interface has restriction on the size too, that either:
874 * (1) the size is 64 host pages aligned (just like the start), or
875 * (2) the size fills up until the end of the KVM memslot.
877 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
878 << KVM_CLEAR_LOG_SHIFT;
879 end = mem->memory_size / psize;
880 if (bmap_npages > end - bmap_start) {
881 bmap_npages = end - bmap_start;
883 start_delta /= psize;
886 * Prepare the bitmap to clear dirty bits. Here we must guarantee
887 * that we won't clear any unknown dirty bits otherwise we might
888 * accidentally clear some set bits which are not yet synced from
889 * the kernel into QEMU's bitmap, then we'll lose track of the
890 * guest modifications upon those pages (which can directly lead
891 * to guest data loss or panic after migration).
893 * Layout of the KVMSlot.dirty_bmap:
895 * |<-------- bmap_npages -----------..>|
896 * [1]
897 * start_delta size
898 * |----------------|-------------|------------------|------------|
899 * ^ ^ ^ ^
900 * | | | |
901 * start bmap_start (start) end
902 * of memslot of memslot
904 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
907 assert(bmap_start % BITS_PER_LONG == 0);
908 /* We should never do log_clear before log_sync */
909 assert(mem->dirty_bmap);
910 if (start_delta || bmap_npages - size / psize) {
911 /* Slow path - we need to manipulate a temp bitmap */
912 bmap_clear = bitmap_new(bmap_npages);
913 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
914 bmap_start, start_delta + size / psize);
916 * We need to fill the holes at start because that was not
917 * specified by the caller and we extended the bitmap only for
918 * 64 pages alignment
920 bitmap_clear(bmap_clear, 0, start_delta);
921 d.dirty_bitmap = bmap_clear;
922 } else {
924 * Fast path - both start and size align well with BITS_PER_LONG
925 * (or the end of memory slot)
927 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
930 d.first_page = bmap_start;
931 /* It should never overflow. If it happens, say something */
932 assert(bmap_npages <= UINT32_MAX);
933 d.num_pages = bmap_npages;
934 d.slot = mem->slot | (as_id << 16);
936 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
937 if (ret < 0 && ret != -ENOENT) {
938 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
939 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
940 __func__, d.slot, (uint64_t)d.first_page,
941 (uint32_t)d.num_pages, ret);
942 } else {
943 ret = 0;
944 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
948 * After we have updated the remote dirty bitmap, we update the
949 * cached bitmap as well for the memslot, then if another user
950 * clears the same region we know we shouldn't clear it again on
951 * the remote otherwise it's data loss as well.
953 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
954 size / psize);
955 /* This handles the NULL case well */
956 g_free(bmap_clear);
957 return ret;
962 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
964 * NOTE: this will be a no-op if we haven't enabled manual dirty log
965 * protection in the host kernel because in that case this operation
966 * will be done within log_sync().
968 * @kml: the kvm memory listener
969 * @section: the memory range to clear dirty bitmap
971 static int kvm_physical_log_clear(KVMMemoryListener *kml,
972 MemoryRegionSection *section)
974 KVMState *s = kvm_state;
975 uint64_t start, size, offset, count;
976 KVMSlot *mem;
977 int ret = 0, i;
979 if (!s->manual_dirty_log_protect) {
980 /* No need to do explicit clear */
981 return ret;
984 start = section->offset_within_address_space;
985 size = int128_get64(section->size);
987 if (!size) {
988 /* Nothing more we can do... */
989 return ret;
992 kvm_slots_lock();
994 for (i = 0; i < s->nr_slots; i++) {
995 mem = &kml->slots[i];
996 /* Discard slots that are empty or do not overlap the section */
997 if (!mem->memory_size ||
998 mem->start_addr > start + size - 1 ||
999 start > mem->start_addr + mem->memory_size - 1) {
1000 continue;
1003 if (start >= mem->start_addr) {
1004 /* The slot starts before section or is aligned to it. */
1005 offset = start - mem->start_addr;
1006 count = MIN(mem->memory_size - offset, size);
1007 } else {
1008 /* The slot starts after section. */
1009 offset = 0;
1010 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1012 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1013 if (ret < 0) {
1014 break;
1018 kvm_slots_unlock();
1020 return ret;
1023 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1024 MemoryRegionSection *secion,
1025 hwaddr start, hwaddr size)
1027 KVMState *s = kvm_state;
1029 if (s->coalesced_mmio) {
1030 struct kvm_coalesced_mmio_zone zone;
1032 zone.addr = start;
1033 zone.size = size;
1034 zone.pad = 0;
1036 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1040 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1041 MemoryRegionSection *secion,
1042 hwaddr start, hwaddr size)
1044 KVMState *s = kvm_state;
1046 if (s->coalesced_mmio) {
1047 struct kvm_coalesced_mmio_zone zone;
1049 zone.addr = start;
1050 zone.size = size;
1051 zone.pad = 0;
1053 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1057 static void kvm_coalesce_pio_add(MemoryListener *listener,
1058 MemoryRegionSection *section,
1059 hwaddr start, hwaddr size)
1061 KVMState *s = kvm_state;
1063 if (s->coalesced_pio) {
1064 struct kvm_coalesced_mmio_zone zone;
1066 zone.addr = start;
1067 zone.size = size;
1068 zone.pio = 1;
1070 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1074 static void kvm_coalesce_pio_del(MemoryListener *listener,
1075 MemoryRegionSection *section,
1076 hwaddr start, hwaddr size)
1078 KVMState *s = kvm_state;
1080 if (s->coalesced_pio) {
1081 struct kvm_coalesced_mmio_zone zone;
1083 zone.addr = start;
1084 zone.size = size;
1085 zone.pio = 1;
1087 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1091 static MemoryListener kvm_coalesced_pio_listener = {
1092 .name = "kvm-coalesced-pio",
1093 .coalesced_io_add = kvm_coalesce_pio_add,
1094 .coalesced_io_del = kvm_coalesce_pio_del,
1097 int kvm_check_extension(KVMState *s, unsigned int extension)
1099 int ret;
1101 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1102 if (ret < 0) {
1103 ret = 0;
1106 return ret;
1109 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1111 int ret;
1113 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1114 if (ret < 0) {
1115 /* VM wide version not implemented, use global one instead */
1116 ret = kvm_check_extension(s, extension);
1119 return ret;
1122 typedef struct HWPoisonPage {
1123 ram_addr_t ram_addr;
1124 QLIST_ENTRY(HWPoisonPage) list;
1125 } HWPoisonPage;
1127 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1128 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1130 static void kvm_unpoison_all(void *param)
1132 HWPoisonPage *page, *next_page;
1134 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1135 QLIST_REMOVE(page, list);
1136 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1137 g_free(page);
1141 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1143 HWPoisonPage *page;
1145 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1146 if (page->ram_addr == ram_addr) {
1147 return;
1150 page = g_new(HWPoisonPage, 1);
1151 page->ram_addr = ram_addr;
1152 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1155 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1157 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1158 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1159 * endianness, but the memory core hands them in target endianness.
1160 * For example, PPC is always treated as big-endian even if running
1161 * on KVM and on PPC64LE. Correct here.
1163 switch (size) {
1164 case 2:
1165 val = bswap16(val);
1166 break;
1167 case 4:
1168 val = bswap32(val);
1169 break;
1171 #endif
1172 return val;
1175 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1176 bool assign, uint32_t size, bool datamatch)
1178 int ret;
1179 struct kvm_ioeventfd iofd = {
1180 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1181 .addr = addr,
1182 .len = size,
1183 .flags = 0,
1184 .fd = fd,
1187 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1188 datamatch);
1189 if (!kvm_enabled()) {
1190 return -ENOSYS;
1193 if (datamatch) {
1194 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1196 if (!assign) {
1197 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1200 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1202 if (ret < 0) {
1203 return -errno;
1206 return 0;
1209 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1210 bool assign, uint32_t size, bool datamatch)
1212 struct kvm_ioeventfd kick = {
1213 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1214 .addr = addr,
1215 .flags = KVM_IOEVENTFD_FLAG_PIO,
1216 .len = size,
1217 .fd = fd,
1219 int r;
1220 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1221 if (!kvm_enabled()) {
1222 return -ENOSYS;
1224 if (datamatch) {
1225 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1227 if (!assign) {
1228 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1230 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1231 if (r < 0) {
1232 return r;
1234 return 0;
1238 static int kvm_check_many_ioeventfds(void)
1240 /* Userspace can use ioeventfd for io notification. This requires a host
1241 * that supports eventfd(2) and an I/O thread; since eventfd does not
1242 * support SIGIO it cannot interrupt the vcpu.
1244 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1245 * can avoid creating too many ioeventfds.
1247 #if defined(CONFIG_EVENTFD)
1248 int ioeventfds[7];
1249 int i, ret = 0;
1250 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1251 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1252 if (ioeventfds[i] < 0) {
1253 break;
1255 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1256 if (ret < 0) {
1257 close(ioeventfds[i]);
1258 break;
1262 /* Decide whether many devices are supported or not */
1263 ret = i == ARRAY_SIZE(ioeventfds);
1265 while (i-- > 0) {
1266 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1267 close(ioeventfds[i]);
1269 return ret;
1270 #else
1271 return 0;
1272 #endif
1275 static const KVMCapabilityInfo *
1276 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1278 while (list->name) {
1279 if (!kvm_check_extension(s, list->value)) {
1280 return list;
1282 list++;
1284 return NULL;
1287 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1289 g_assert(
1290 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1292 kvm_max_slot_size = max_slot_size;
1295 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1296 MemoryRegionSection *section, bool add)
1298 KVMSlot *mem;
1299 int err;
1300 MemoryRegion *mr = section->mr;
1301 bool writable = !mr->readonly && !mr->rom_device;
1302 hwaddr start_addr, size, slot_size, mr_offset;
1303 ram_addr_t ram_start_offset;
1304 void *ram;
1306 if (!memory_region_is_ram(mr)) {
1307 if (writable || !kvm_readonly_mem_allowed) {
1308 return;
1309 } else if (!mr->romd_mode) {
1310 /* If the memory device is not in romd_mode, then we actually want
1311 * to remove the kvm memory slot so all accesses will trap. */
1312 add = false;
1316 size = kvm_align_section(section, &start_addr);
1317 if (!size) {
1318 return;
1321 /* The offset of the kvmslot within the memory region */
1322 mr_offset = section->offset_within_region + start_addr -
1323 section->offset_within_address_space;
1325 /* use aligned delta to align the ram address and offset */
1326 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1327 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1329 kvm_slots_lock();
1331 if (!add) {
1332 do {
1333 slot_size = MIN(kvm_max_slot_size, size);
1334 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1335 if (!mem) {
1336 goto out;
1338 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1340 * NOTE: We should be aware of the fact that here we're only
1341 * doing a best effort to sync dirty bits. No matter whether
1342 * we're using dirty log or dirty ring, we ignored two facts:
1344 * (1) dirty bits can reside in hardware buffers (PML)
1346 * (2) after we collected dirty bits here, pages can be dirtied
1347 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1348 * remove the slot.
1350 * Not easy. Let's cross the fingers until it's fixed.
1352 if (kvm_state->kvm_dirty_ring_size) {
1353 kvm_dirty_ring_reap_locked(kvm_state, NULL);
1354 } else {
1355 kvm_slot_get_dirty_log(kvm_state, mem);
1357 kvm_slot_sync_dirty_pages(mem);
1360 /* unregister the slot */
1361 g_free(mem->dirty_bmap);
1362 mem->dirty_bmap = NULL;
1363 mem->memory_size = 0;
1364 mem->flags = 0;
1365 err = kvm_set_user_memory_region(kml, mem, false);
1366 if (err) {
1367 fprintf(stderr, "%s: error unregistering slot: %s\n",
1368 __func__, strerror(-err));
1369 abort();
1371 start_addr += slot_size;
1372 size -= slot_size;
1373 } while (size);
1374 goto out;
1377 /* register the new slot */
1378 do {
1379 slot_size = MIN(kvm_max_slot_size, size);
1380 mem = kvm_alloc_slot(kml);
1381 mem->as_id = kml->as_id;
1382 mem->memory_size = slot_size;
1383 mem->start_addr = start_addr;
1384 mem->ram_start_offset = ram_start_offset;
1385 mem->ram = ram;
1386 mem->flags = kvm_mem_flags(mr);
1387 kvm_slot_init_dirty_bitmap(mem);
1388 err = kvm_set_user_memory_region(kml, mem, true);
1389 if (err) {
1390 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1391 strerror(-err));
1392 abort();
1394 start_addr += slot_size;
1395 ram_start_offset += slot_size;
1396 ram += slot_size;
1397 size -= slot_size;
1398 } while (size);
1400 out:
1401 kvm_slots_unlock();
1404 static void *kvm_dirty_ring_reaper_thread(void *data)
1406 KVMState *s = data;
1407 struct KVMDirtyRingReaper *r = &s->reaper;
1409 rcu_register_thread();
1411 trace_kvm_dirty_ring_reaper("init");
1413 while (true) {
1414 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1415 trace_kvm_dirty_ring_reaper("wait");
1417 * TODO: provide a smarter timeout rather than a constant?
1419 sleep(1);
1421 /* keep sleeping so that dirtylimit not be interfered by reaper */
1422 if (dirtylimit_in_service()) {
1423 continue;
1426 trace_kvm_dirty_ring_reaper("wakeup");
1427 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1429 qemu_mutex_lock_iothread();
1430 kvm_dirty_ring_reap(s, NULL);
1431 qemu_mutex_unlock_iothread();
1433 r->reaper_iteration++;
1436 trace_kvm_dirty_ring_reaper("exit");
1438 rcu_unregister_thread();
1440 return NULL;
1443 static int kvm_dirty_ring_reaper_init(KVMState *s)
1445 struct KVMDirtyRingReaper *r = &s->reaper;
1447 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1448 kvm_dirty_ring_reaper_thread,
1449 s, QEMU_THREAD_JOINABLE);
1451 return 0;
1454 static void kvm_region_add(MemoryListener *listener,
1455 MemoryRegionSection *section)
1457 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1459 memory_region_ref(section->mr);
1460 kvm_set_phys_mem(kml, section, true);
1463 static void kvm_region_del(MemoryListener *listener,
1464 MemoryRegionSection *section)
1466 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1468 kvm_set_phys_mem(kml, section, false);
1469 memory_region_unref(section->mr);
1472 static void kvm_log_sync(MemoryListener *listener,
1473 MemoryRegionSection *section)
1475 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1477 kvm_slots_lock();
1478 kvm_physical_sync_dirty_bitmap(kml, section);
1479 kvm_slots_unlock();
1482 static void kvm_log_sync_global(MemoryListener *l)
1484 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1485 KVMState *s = kvm_state;
1486 KVMSlot *mem;
1487 int i;
1489 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1490 kvm_dirty_ring_flush();
1493 * TODO: make this faster when nr_slots is big while there are
1494 * only a few used slots (small VMs).
1496 kvm_slots_lock();
1497 for (i = 0; i < s->nr_slots; i++) {
1498 mem = &kml->slots[i];
1499 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1500 kvm_slot_sync_dirty_pages(mem);
1502 * This is not needed by KVM_GET_DIRTY_LOG because the
1503 * ioctl will unconditionally overwrite the whole region.
1504 * However kvm dirty ring has no such side effect.
1506 kvm_slot_reset_dirty_pages(mem);
1509 kvm_slots_unlock();
1512 static void kvm_log_clear(MemoryListener *listener,
1513 MemoryRegionSection *section)
1515 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1516 int r;
1518 r = kvm_physical_log_clear(kml, section);
1519 if (r < 0) {
1520 error_report_once("%s: kvm log clear failed: mr=%s "
1521 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1522 section->mr->name, section->offset_within_region,
1523 int128_get64(section->size));
1524 abort();
1528 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1529 MemoryRegionSection *section,
1530 bool match_data, uint64_t data,
1531 EventNotifier *e)
1533 int fd = event_notifier_get_fd(e);
1534 int r;
1536 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1537 data, true, int128_get64(section->size),
1538 match_data);
1539 if (r < 0) {
1540 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1541 __func__, strerror(-r), -r);
1542 abort();
1546 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1547 MemoryRegionSection *section,
1548 bool match_data, uint64_t data,
1549 EventNotifier *e)
1551 int fd = event_notifier_get_fd(e);
1552 int r;
1554 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1555 data, false, int128_get64(section->size),
1556 match_data);
1557 if (r < 0) {
1558 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1559 __func__, strerror(-r), -r);
1560 abort();
1564 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1565 MemoryRegionSection *section,
1566 bool match_data, uint64_t data,
1567 EventNotifier *e)
1569 int fd = event_notifier_get_fd(e);
1570 int r;
1572 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1573 data, true, int128_get64(section->size),
1574 match_data);
1575 if (r < 0) {
1576 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1577 __func__, strerror(-r), -r);
1578 abort();
1582 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1583 MemoryRegionSection *section,
1584 bool match_data, uint64_t data,
1585 EventNotifier *e)
1588 int fd = event_notifier_get_fd(e);
1589 int r;
1591 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1592 data, false, int128_get64(section->size),
1593 match_data);
1594 if (r < 0) {
1595 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1596 __func__, strerror(-r), -r);
1597 abort();
1601 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1602 AddressSpace *as, int as_id, const char *name)
1604 int i;
1606 kml->slots = g_new0(KVMSlot, s->nr_slots);
1607 kml->as_id = as_id;
1609 for (i = 0; i < s->nr_slots; i++) {
1610 kml->slots[i].slot = i;
1613 kml->listener.region_add = kvm_region_add;
1614 kml->listener.region_del = kvm_region_del;
1615 kml->listener.log_start = kvm_log_start;
1616 kml->listener.log_stop = kvm_log_stop;
1617 kml->listener.priority = 10;
1618 kml->listener.name = name;
1620 if (s->kvm_dirty_ring_size) {
1621 kml->listener.log_sync_global = kvm_log_sync_global;
1622 } else {
1623 kml->listener.log_sync = kvm_log_sync;
1624 kml->listener.log_clear = kvm_log_clear;
1627 memory_listener_register(&kml->listener, as);
1629 for (i = 0; i < s->nr_as; ++i) {
1630 if (!s->as[i].as) {
1631 s->as[i].as = as;
1632 s->as[i].ml = kml;
1633 break;
1638 static MemoryListener kvm_io_listener = {
1639 .name = "kvm-io",
1640 .eventfd_add = kvm_io_ioeventfd_add,
1641 .eventfd_del = kvm_io_ioeventfd_del,
1642 .priority = 10,
1645 int kvm_set_irq(KVMState *s, int irq, int level)
1647 struct kvm_irq_level event;
1648 int ret;
1650 assert(kvm_async_interrupts_enabled());
1652 event.level = level;
1653 event.irq = irq;
1654 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1655 if (ret < 0) {
1656 perror("kvm_set_irq");
1657 abort();
1660 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1663 #ifdef KVM_CAP_IRQ_ROUTING
1664 typedef struct KVMMSIRoute {
1665 struct kvm_irq_routing_entry kroute;
1666 QTAILQ_ENTRY(KVMMSIRoute) entry;
1667 } KVMMSIRoute;
1669 static void set_gsi(KVMState *s, unsigned int gsi)
1671 set_bit(gsi, s->used_gsi_bitmap);
1674 static void clear_gsi(KVMState *s, unsigned int gsi)
1676 clear_bit(gsi, s->used_gsi_bitmap);
1679 void kvm_init_irq_routing(KVMState *s)
1681 int gsi_count, i;
1683 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1684 if (gsi_count > 0) {
1685 /* Round up so we can search ints using ffs */
1686 s->used_gsi_bitmap = bitmap_new(gsi_count);
1687 s->gsi_count = gsi_count;
1690 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1691 s->nr_allocated_irq_routes = 0;
1693 if (!kvm_direct_msi_allowed) {
1694 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1695 QTAILQ_INIT(&s->msi_hashtab[i]);
1699 kvm_arch_init_irq_routing(s);
1702 void kvm_irqchip_commit_routes(KVMState *s)
1704 int ret;
1706 if (kvm_gsi_direct_mapping()) {
1707 return;
1710 if (!kvm_gsi_routing_enabled()) {
1711 return;
1714 s->irq_routes->flags = 0;
1715 trace_kvm_irqchip_commit_routes();
1716 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1717 assert(ret == 0);
1720 static void kvm_add_routing_entry(KVMState *s,
1721 struct kvm_irq_routing_entry *entry)
1723 struct kvm_irq_routing_entry *new;
1724 int n, size;
1726 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1727 n = s->nr_allocated_irq_routes * 2;
1728 if (n < 64) {
1729 n = 64;
1731 size = sizeof(struct kvm_irq_routing);
1732 size += n * sizeof(*new);
1733 s->irq_routes = g_realloc(s->irq_routes, size);
1734 s->nr_allocated_irq_routes = n;
1736 n = s->irq_routes->nr++;
1737 new = &s->irq_routes->entries[n];
1739 *new = *entry;
1741 set_gsi(s, entry->gsi);
1744 static int kvm_update_routing_entry(KVMState *s,
1745 struct kvm_irq_routing_entry *new_entry)
1747 struct kvm_irq_routing_entry *entry;
1748 int n;
1750 for (n = 0; n < s->irq_routes->nr; n++) {
1751 entry = &s->irq_routes->entries[n];
1752 if (entry->gsi != new_entry->gsi) {
1753 continue;
1756 if(!memcmp(entry, new_entry, sizeof *entry)) {
1757 return 0;
1760 *entry = *new_entry;
1762 return 0;
1765 return -ESRCH;
1768 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1770 struct kvm_irq_routing_entry e = {};
1772 assert(pin < s->gsi_count);
1774 e.gsi = irq;
1775 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1776 e.flags = 0;
1777 e.u.irqchip.irqchip = irqchip;
1778 e.u.irqchip.pin = pin;
1779 kvm_add_routing_entry(s, &e);
1782 void kvm_irqchip_release_virq(KVMState *s, int virq)
1784 struct kvm_irq_routing_entry *e;
1785 int i;
1787 if (kvm_gsi_direct_mapping()) {
1788 return;
1791 for (i = 0; i < s->irq_routes->nr; i++) {
1792 e = &s->irq_routes->entries[i];
1793 if (e->gsi == virq) {
1794 s->irq_routes->nr--;
1795 *e = s->irq_routes->entries[s->irq_routes->nr];
1798 clear_gsi(s, virq);
1799 kvm_arch_release_virq_post(virq);
1800 trace_kvm_irqchip_release_virq(virq);
1803 void kvm_irqchip_add_change_notifier(Notifier *n)
1805 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1808 void kvm_irqchip_remove_change_notifier(Notifier *n)
1810 notifier_remove(n);
1813 void kvm_irqchip_change_notify(void)
1815 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1818 static unsigned int kvm_hash_msi(uint32_t data)
1820 /* This is optimized for IA32 MSI layout. However, no other arch shall
1821 * repeat the mistake of not providing a direct MSI injection API. */
1822 return data & 0xff;
1825 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1827 KVMMSIRoute *route, *next;
1828 unsigned int hash;
1830 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1831 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1832 kvm_irqchip_release_virq(s, route->kroute.gsi);
1833 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1834 g_free(route);
1839 static int kvm_irqchip_get_virq(KVMState *s)
1841 int next_virq;
1844 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1845 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1846 * number can succeed even though a new route entry cannot be added.
1847 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1849 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1850 kvm_flush_dynamic_msi_routes(s);
1853 /* Return the lowest unused GSI in the bitmap */
1854 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1855 if (next_virq >= s->gsi_count) {
1856 return -ENOSPC;
1857 } else {
1858 return next_virq;
1862 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1864 unsigned int hash = kvm_hash_msi(msg.data);
1865 KVMMSIRoute *route;
1867 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1868 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1869 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1870 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1871 return route;
1874 return NULL;
1877 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1879 struct kvm_msi msi;
1880 KVMMSIRoute *route;
1882 if (kvm_direct_msi_allowed) {
1883 msi.address_lo = (uint32_t)msg.address;
1884 msi.address_hi = msg.address >> 32;
1885 msi.data = le32_to_cpu(msg.data);
1886 msi.flags = 0;
1887 memset(msi.pad, 0, sizeof(msi.pad));
1889 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1892 route = kvm_lookup_msi_route(s, msg);
1893 if (!route) {
1894 int virq;
1896 virq = kvm_irqchip_get_virq(s);
1897 if (virq < 0) {
1898 return virq;
1901 route = g_new0(KVMMSIRoute, 1);
1902 route->kroute.gsi = virq;
1903 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1904 route->kroute.flags = 0;
1905 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1906 route->kroute.u.msi.address_hi = msg.address >> 32;
1907 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1909 kvm_add_routing_entry(s, &route->kroute);
1910 kvm_irqchip_commit_routes(s);
1912 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1913 entry);
1916 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1918 return kvm_set_irq(s, route->kroute.gsi, 1);
1921 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1923 struct kvm_irq_routing_entry kroute = {};
1924 int virq;
1925 KVMState *s = c->s;
1926 MSIMessage msg = {0, 0};
1928 if (pci_available && dev) {
1929 msg = pci_get_msi_message(dev, vector);
1932 if (kvm_gsi_direct_mapping()) {
1933 return kvm_arch_msi_data_to_gsi(msg.data);
1936 if (!kvm_gsi_routing_enabled()) {
1937 return -ENOSYS;
1940 virq = kvm_irqchip_get_virq(s);
1941 if (virq < 0) {
1942 return virq;
1945 kroute.gsi = virq;
1946 kroute.type = KVM_IRQ_ROUTING_MSI;
1947 kroute.flags = 0;
1948 kroute.u.msi.address_lo = (uint32_t)msg.address;
1949 kroute.u.msi.address_hi = msg.address >> 32;
1950 kroute.u.msi.data = le32_to_cpu(msg.data);
1951 if (pci_available && kvm_msi_devid_required()) {
1952 kroute.flags = KVM_MSI_VALID_DEVID;
1953 kroute.u.msi.devid = pci_requester_id(dev);
1955 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1956 kvm_irqchip_release_virq(s, virq);
1957 return -EINVAL;
1960 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1961 vector, virq);
1963 kvm_add_routing_entry(s, &kroute);
1964 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1965 c->changes++;
1967 return virq;
1970 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1971 PCIDevice *dev)
1973 struct kvm_irq_routing_entry kroute = {};
1975 if (kvm_gsi_direct_mapping()) {
1976 return 0;
1979 if (!kvm_irqchip_in_kernel()) {
1980 return -ENOSYS;
1983 kroute.gsi = virq;
1984 kroute.type = KVM_IRQ_ROUTING_MSI;
1985 kroute.flags = 0;
1986 kroute.u.msi.address_lo = (uint32_t)msg.address;
1987 kroute.u.msi.address_hi = msg.address >> 32;
1988 kroute.u.msi.data = le32_to_cpu(msg.data);
1989 if (pci_available && kvm_msi_devid_required()) {
1990 kroute.flags = KVM_MSI_VALID_DEVID;
1991 kroute.u.msi.devid = pci_requester_id(dev);
1993 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1994 return -EINVAL;
1997 trace_kvm_irqchip_update_msi_route(virq);
1999 return kvm_update_routing_entry(s, &kroute);
2002 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2003 EventNotifier *resample, int virq,
2004 bool assign)
2006 int fd = event_notifier_get_fd(event);
2007 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2009 struct kvm_irqfd irqfd = {
2010 .fd = fd,
2011 .gsi = virq,
2012 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2015 if (rfd != -1) {
2016 assert(assign);
2017 if (kvm_irqchip_is_split()) {
2019 * When the slow irqchip (e.g. IOAPIC) is in the
2020 * userspace, KVM kernel resamplefd will not work because
2021 * the EOI of the interrupt will be delivered to userspace
2022 * instead, so the KVM kernel resamplefd kick will be
2023 * skipped. The userspace here mimics what the kernel
2024 * provides with resamplefd, remember the resamplefd and
2025 * kick it when we receive EOI of this IRQ.
2027 * This is hackery because IOAPIC is mostly bypassed
2028 * (except EOI broadcasts) when irqfd is used. However
2029 * this can bring much performance back for split irqchip
2030 * with INTx IRQs (for VFIO, this gives 93% perf of the
2031 * full fast path, which is 46% perf boost comparing to
2032 * the INTx slow path).
2034 kvm_resample_fd_insert(virq, resample);
2035 } else {
2036 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2037 irqfd.resamplefd = rfd;
2039 } else if (!assign) {
2040 if (kvm_irqchip_is_split()) {
2041 kvm_resample_fd_remove(virq);
2045 if (!kvm_irqfds_enabled()) {
2046 return -ENOSYS;
2049 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2052 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2054 struct kvm_irq_routing_entry kroute = {};
2055 int virq;
2057 if (!kvm_gsi_routing_enabled()) {
2058 return -ENOSYS;
2061 virq = kvm_irqchip_get_virq(s);
2062 if (virq < 0) {
2063 return virq;
2066 kroute.gsi = virq;
2067 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2068 kroute.flags = 0;
2069 kroute.u.adapter.summary_addr = adapter->summary_addr;
2070 kroute.u.adapter.ind_addr = adapter->ind_addr;
2071 kroute.u.adapter.summary_offset = adapter->summary_offset;
2072 kroute.u.adapter.ind_offset = adapter->ind_offset;
2073 kroute.u.adapter.adapter_id = adapter->adapter_id;
2075 kvm_add_routing_entry(s, &kroute);
2077 return virq;
2080 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2082 struct kvm_irq_routing_entry kroute = {};
2083 int virq;
2085 if (!kvm_gsi_routing_enabled()) {
2086 return -ENOSYS;
2088 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2089 return -ENOSYS;
2091 virq = kvm_irqchip_get_virq(s);
2092 if (virq < 0) {
2093 return virq;
2096 kroute.gsi = virq;
2097 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2098 kroute.flags = 0;
2099 kroute.u.hv_sint.vcpu = vcpu;
2100 kroute.u.hv_sint.sint = sint;
2102 kvm_add_routing_entry(s, &kroute);
2103 kvm_irqchip_commit_routes(s);
2105 return virq;
2108 #else /* !KVM_CAP_IRQ_ROUTING */
2110 void kvm_init_irq_routing(KVMState *s)
2114 void kvm_irqchip_release_virq(KVMState *s, int virq)
2118 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2120 abort();
2123 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2125 return -ENOSYS;
2128 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2130 return -ENOSYS;
2133 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2135 return -ENOSYS;
2138 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2139 EventNotifier *resample, int virq,
2140 bool assign)
2142 abort();
2145 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2147 return -ENOSYS;
2149 #endif /* !KVM_CAP_IRQ_ROUTING */
2151 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2152 EventNotifier *rn, int virq)
2154 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2157 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2158 int virq)
2160 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2163 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2164 EventNotifier *rn, qemu_irq irq)
2166 gpointer key, gsi;
2167 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2169 if (!found) {
2170 return -ENXIO;
2172 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2175 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2176 qemu_irq irq)
2178 gpointer key, gsi;
2179 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2181 if (!found) {
2182 return -ENXIO;
2184 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2187 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2189 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2192 static void kvm_irqchip_create(KVMState *s)
2194 int ret;
2196 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2197 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2199 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2200 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2201 if (ret < 0) {
2202 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2203 exit(1);
2205 } else {
2206 return;
2209 /* First probe and see if there's a arch-specific hook to create the
2210 * in-kernel irqchip for us */
2211 ret = kvm_arch_irqchip_create(s);
2212 if (ret == 0) {
2213 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2214 error_report("Split IRQ chip mode not supported.");
2215 exit(1);
2216 } else {
2217 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2220 if (ret < 0) {
2221 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2222 exit(1);
2225 kvm_kernel_irqchip = true;
2226 /* If we have an in-kernel IRQ chip then we must have asynchronous
2227 * interrupt delivery (though the reverse is not necessarily true)
2229 kvm_async_interrupts_allowed = true;
2230 kvm_halt_in_kernel_allowed = true;
2232 kvm_init_irq_routing(s);
2234 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2237 /* Find number of supported CPUs using the recommended
2238 * procedure from the kernel API documentation to cope with
2239 * older kernels that may be missing capabilities.
2241 static int kvm_recommended_vcpus(KVMState *s)
2243 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2244 return (ret) ? ret : 4;
2247 static int kvm_max_vcpus(KVMState *s)
2249 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2250 return (ret) ? ret : kvm_recommended_vcpus(s);
2253 static int kvm_max_vcpu_id(KVMState *s)
2255 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2256 return (ret) ? ret : kvm_max_vcpus(s);
2259 bool kvm_vcpu_id_is_valid(int vcpu_id)
2261 KVMState *s = KVM_STATE(current_accel());
2262 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2265 bool kvm_dirty_ring_enabled(void)
2267 return kvm_state->kvm_dirty_ring_size ? true : false;
2270 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2271 strList *names, strList *targets, Error **errp);
2272 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2274 uint32_t kvm_dirty_ring_size(void)
2276 return kvm_state->kvm_dirty_ring_size;
2279 static int kvm_init(MachineState *ms)
2281 MachineClass *mc = MACHINE_GET_CLASS(ms);
2282 static const char upgrade_note[] =
2283 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2284 "(see http://sourceforge.net/projects/kvm).\n";
2285 struct {
2286 const char *name;
2287 int num;
2288 } num_cpus[] = {
2289 { "SMP", ms->smp.cpus },
2290 { "hotpluggable", ms->smp.max_cpus },
2291 { NULL, }
2292 }, *nc = num_cpus;
2293 int soft_vcpus_limit, hard_vcpus_limit;
2294 KVMState *s;
2295 const KVMCapabilityInfo *missing_cap;
2296 int ret;
2297 int type = 0;
2298 uint64_t dirty_log_manual_caps;
2300 qemu_mutex_init(&kml_slots_lock);
2302 s = KVM_STATE(ms->accelerator);
2305 * On systems where the kernel can support different base page
2306 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2307 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2308 * page size for the system though.
2310 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2312 s->sigmask_len = 8;
2314 #ifdef KVM_CAP_SET_GUEST_DEBUG
2315 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2316 #endif
2317 QLIST_INIT(&s->kvm_parked_vcpus);
2318 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2319 if (s->fd == -1) {
2320 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2321 ret = -errno;
2322 goto err;
2325 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2326 if (ret < KVM_API_VERSION) {
2327 if (ret >= 0) {
2328 ret = -EINVAL;
2330 fprintf(stderr, "kvm version too old\n");
2331 goto err;
2334 if (ret > KVM_API_VERSION) {
2335 ret = -EINVAL;
2336 fprintf(stderr, "kvm version not supported\n");
2337 goto err;
2340 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2341 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2343 /* If unspecified, use the default value */
2344 if (!s->nr_slots) {
2345 s->nr_slots = 32;
2348 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2349 if (s->nr_as <= 1) {
2350 s->nr_as = 1;
2352 s->as = g_new0(struct KVMAs, s->nr_as);
2354 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2355 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2356 "kvm-type",
2357 &error_abort);
2358 type = mc->kvm_type(ms, kvm_type);
2359 } else if (mc->kvm_type) {
2360 type = mc->kvm_type(ms, NULL);
2363 do {
2364 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2365 } while (ret == -EINTR);
2367 if (ret < 0) {
2368 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2369 strerror(-ret));
2371 #ifdef TARGET_S390X
2372 if (ret == -EINVAL) {
2373 fprintf(stderr,
2374 "Host kernel setup problem detected. Please verify:\n");
2375 fprintf(stderr, "- for kernels supporting the switch_amode or"
2376 " user_mode parameters, whether\n");
2377 fprintf(stderr,
2378 " user space is running in primary address space\n");
2379 fprintf(stderr,
2380 "- for kernels supporting the vm.allocate_pgste sysctl, "
2381 "whether it is enabled\n");
2383 #elif defined(TARGET_PPC)
2384 if (ret == -EINVAL) {
2385 fprintf(stderr,
2386 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2387 (type == 2) ? "pr" : "hv");
2389 #endif
2390 goto err;
2393 s->vmfd = ret;
2395 /* check the vcpu limits */
2396 soft_vcpus_limit = kvm_recommended_vcpus(s);
2397 hard_vcpus_limit = kvm_max_vcpus(s);
2399 while (nc->name) {
2400 if (nc->num > soft_vcpus_limit) {
2401 warn_report("Number of %s cpus requested (%d) exceeds "
2402 "the recommended cpus supported by KVM (%d)",
2403 nc->name, nc->num, soft_vcpus_limit);
2405 if (nc->num > hard_vcpus_limit) {
2406 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2407 "the maximum cpus supported by KVM (%d)\n",
2408 nc->name, nc->num, hard_vcpus_limit);
2409 exit(1);
2412 nc++;
2415 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2416 if (!missing_cap) {
2417 missing_cap =
2418 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2420 if (missing_cap) {
2421 ret = -EINVAL;
2422 fprintf(stderr, "kvm does not support %s\n%s",
2423 missing_cap->name, upgrade_note);
2424 goto err;
2427 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2428 s->coalesced_pio = s->coalesced_mmio &&
2429 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2432 * Enable KVM dirty ring if supported, otherwise fall back to
2433 * dirty logging mode
2435 if (s->kvm_dirty_ring_size > 0) {
2436 uint64_t ring_bytes;
2438 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2440 /* Read the max supported pages */
2441 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2442 if (ret > 0) {
2443 if (ring_bytes > ret) {
2444 error_report("KVM dirty ring size %" PRIu32 " too big "
2445 "(maximum is %ld). Please use a smaller value.",
2446 s->kvm_dirty_ring_size,
2447 (long)ret / sizeof(struct kvm_dirty_gfn));
2448 ret = -EINVAL;
2449 goto err;
2452 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2453 if (ret) {
2454 error_report("Enabling of KVM dirty ring failed: %s. "
2455 "Suggested minimum value is 1024.", strerror(-ret));
2456 goto err;
2459 s->kvm_dirty_ring_bytes = ring_bytes;
2460 } else {
2461 warn_report("KVM dirty ring not available, using bitmap method");
2462 s->kvm_dirty_ring_size = 0;
2467 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2468 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2469 * page is wr-protected initially, which is against how kvm dirty ring is
2470 * usage - kvm dirty ring requires all pages are wr-protected at the very
2471 * beginning. Enabling this feature for dirty ring causes data corruption.
2473 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2474 * we may expect a higher stall time when starting the migration. In the
2475 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2476 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2477 * guest pages.
2479 if (!s->kvm_dirty_ring_size) {
2480 dirty_log_manual_caps =
2481 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2482 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2483 KVM_DIRTY_LOG_INITIALLY_SET);
2484 s->manual_dirty_log_protect = dirty_log_manual_caps;
2485 if (dirty_log_manual_caps) {
2486 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2487 dirty_log_manual_caps);
2488 if (ret) {
2489 warn_report("Trying to enable capability %"PRIu64" of "
2490 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2491 "Falling back to the legacy mode. ",
2492 dirty_log_manual_caps);
2493 s->manual_dirty_log_protect = 0;
2498 #ifdef KVM_CAP_VCPU_EVENTS
2499 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2500 #endif
2502 s->robust_singlestep =
2503 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2505 #ifdef KVM_CAP_DEBUGREGS
2506 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2507 #endif
2509 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2511 #ifdef KVM_CAP_IRQ_ROUTING
2512 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2513 #endif
2515 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2517 s->irq_set_ioctl = KVM_IRQ_LINE;
2518 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2519 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2522 kvm_readonly_mem_allowed =
2523 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2525 kvm_eventfds_allowed =
2526 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2528 kvm_irqfds_allowed =
2529 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2531 kvm_resamplefds_allowed =
2532 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2534 kvm_vm_attributes_allowed =
2535 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2537 kvm_ioeventfd_any_length_allowed =
2538 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2540 #ifdef KVM_CAP_SET_GUEST_DEBUG
2541 kvm_has_guest_debug =
2542 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2543 #endif
2545 kvm_sstep_flags = 0;
2546 if (kvm_has_guest_debug) {
2547 kvm_sstep_flags = SSTEP_ENABLE;
2549 #if defined KVM_CAP_SET_GUEST_DEBUG2
2550 int guest_debug_flags =
2551 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2553 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2554 kvm_sstep_flags |= SSTEP_NOIRQ;
2556 #endif
2559 kvm_state = s;
2561 ret = kvm_arch_init(ms, s);
2562 if (ret < 0) {
2563 goto err;
2566 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2567 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2570 qemu_register_reset(kvm_unpoison_all, NULL);
2572 if (s->kernel_irqchip_allowed) {
2573 kvm_irqchip_create(s);
2576 if (kvm_eventfds_allowed) {
2577 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2578 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2580 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2581 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2583 kvm_memory_listener_register(s, &s->memory_listener,
2584 &address_space_memory, 0, "kvm-memory");
2585 if (kvm_eventfds_allowed) {
2586 memory_listener_register(&kvm_io_listener,
2587 &address_space_io);
2589 memory_listener_register(&kvm_coalesced_pio_listener,
2590 &address_space_io);
2592 s->many_ioeventfds = kvm_check_many_ioeventfds();
2594 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2595 if (!s->sync_mmu) {
2596 ret = ram_block_discard_disable(true);
2597 assert(!ret);
2600 if (s->kvm_dirty_ring_size) {
2601 ret = kvm_dirty_ring_reaper_init(s);
2602 if (ret) {
2603 goto err;
2607 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2608 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2609 query_stats_schemas_cb);
2612 return 0;
2614 err:
2615 assert(ret < 0);
2616 if (s->vmfd >= 0) {
2617 close(s->vmfd);
2619 if (s->fd != -1) {
2620 close(s->fd);
2622 g_free(s->memory_listener.slots);
2624 return ret;
2627 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2629 s->sigmask_len = sigmask_len;
2632 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2633 int size, uint32_t count)
2635 int i;
2636 uint8_t *ptr = data;
2638 for (i = 0; i < count; i++) {
2639 address_space_rw(&address_space_io, port, attrs,
2640 ptr, size,
2641 direction == KVM_EXIT_IO_OUT);
2642 ptr += size;
2646 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2648 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2649 run->internal.suberror);
2651 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2652 int i;
2654 for (i = 0; i < run->internal.ndata; ++i) {
2655 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2656 i, (uint64_t)run->internal.data[i]);
2659 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2660 fprintf(stderr, "emulation failure\n");
2661 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2662 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2663 return EXCP_INTERRUPT;
2666 /* FIXME: Should trigger a qmp message to let management know
2667 * something went wrong.
2669 return -1;
2672 void kvm_flush_coalesced_mmio_buffer(void)
2674 KVMState *s = kvm_state;
2676 if (s->coalesced_flush_in_progress) {
2677 return;
2680 s->coalesced_flush_in_progress = true;
2682 if (s->coalesced_mmio_ring) {
2683 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2684 while (ring->first != ring->last) {
2685 struct kvm_coalesced_mmio *ent;
2687 ent = &ring->coalesced_mmio[ring->first];
2689 if (ent->pio == 1) {
2690 address_space_write(&address_space_io, ent->phys_addr,
2691 MEMTXATTRS_UNSPECIFIED, ent->data,
2692 ent->len);
2693 } else {
2694 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2696 smp_wmb();
2697 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2701 s->coalesced_flush_in_progress = false;
2704 bool kvm_cpu_check_are_resettable(void)
2706 return kvm_arch_cpu_check_are_resettable();
2709 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2711 if (!cpu->vcpu_dirty) {
2712 kvm_arch_get_registers(cpu);
2713 cpu->vcpu_dirty = true;
2717 void kvm_cpu_synchronize_state(CPUState *cpu)
2719 if (!cpu->vcpu_dirty) {
2720 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2724 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2726 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2727 cpu->vcpu_dirty = false;
2730 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2732 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2735 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2737 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2738 cpu->vcpu_dirty = false;
2741 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2743 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2746 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2748 cpu->vcpu_dirty = true;
2751 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2753 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2756 #ifdef KVM_HAVE_MCE_INJECTION
2757 static __thread void *pending_sigbus_addr;
2758 static __thread int pending_sigbus_code;
2759 static __thread bool have_sigbus_pending;
2760 #endif
2762 static void kvm_cpu_kick(CPUState *cpu)
2764 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2767 static void kvm_cpu_kick_self(void)
2769 if (kvm_immediate_exit) {
2770 kvm_cpu_kick(current_cpu);
2771 } else {
2772 qemu_cpu_kick_self();
2776 static void kvm_eat_signals(CPUState *cpu)
2778 struct timespec ts = { 0, 0 };
2779 siginfo_t siginfo;
2780 sigset_t waitset;
2781 sigset_t chkset;
2782 int r;
2784 if (kvm_immediate_exit) {
2785 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2786 /* Write kvm_run->immediate_exit before the cpu->exit_request
2787 * write in kvm_cpu_exec.
2789 smp_wmb();
2790 return;
2793 sigemptyset(&waitset);
2794 sigaddset(&waitset, SIG_IPI);
2796 do {
2797 r = sigtimedwait(&waitset, &siginfo, &ts);
2798 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2799 perror("sigtimedwait");
2800 exit(1);
2803 r = sigpending(&chkset);
2804 if (r == -1) {
2805 perror("sigpending");
2806 exit(1);
2808 } while (sigismember(&chkset, SIG_IPI));
2811 int kvm_cpu_exec(CPUState *cpu)
2813 struct kvm_run *run = cpu->kvm_run;
2814 int ret, run_ret;
2816 DPRINTF("kvm_cpu_exec()\n");
2818 if (kvm_arch_process_async_events(cpu)) {
2819 qatomic_set(&cpu->exit_request, 0);
2820 return EXCP_HLT;
2823 qemu_mutex_unlock_iothread();
2824 cpu_exec_start(cpu);
2826 do {
2827 MemTxAttrs attrs;
2829 if (cpu->vcpu_dirty) {
2830 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2831 cpu->vcpu_dirty = false;
2834 kvm_arch_pre_run(cpu, run);
2835 if (qatomic_read(&cpu->exit_request)) {
2836 DPRINTF("interrupt exit requested\n");
2838 * KVM requires us to reenter the kernel after IO exits to complete
2839 * instruction emulation. This self-signal will ensure that we
2840 * leave ASAP again.
2842 kvm_cpu_kick_self();
2845 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2846 * Matching barrier in kvm_eat_signals.
2848 smp_rmb();
2850 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2852 attrs = kvm_arch_post_run(cpu, run);
2854 #ifdef KVM_HAVE_MCE_INJECTION
2855 if (unlikely(have_sigbus_pending)) {
2856 qemu_mutex_lock_iothread();
2857 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2858 pending_sigbus_addr);
2859 have_sigbus_pending = false;
2860 qemu_mutex_unlock_iothread();
2862 #endif
2864 if (run_ret < 0) {
2865 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2866 DPRINTF("io window exit\n");
2867 kvm_eat_signals(cpu);
2868 ret = EXCP_INTERRUPT;
2869 break;
2871 fprintf(stderr, "error: kvm run failed %s\n",
2872 strerror(-run_ret));
2873 #ifdef TARGET_PPC
2874 if (run_ret == -EBUSY) {
2875 fprintf(stderr,
2876 "This is probably because your SMT is enabled.\n"
2877 "VCPU can only run on primary threads with all "
2878 "secondary threads offline.\n");
2880 #endif
2881 ret = -1;
2882 break;
2885 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2886 switch (run->exit_reason) {
2887 case KVM_EXIT_IO:
2888 DPRINTF("handle_io\n");
2889 /* Called outside BQL */
2890 kvm_handle_io(run->io.port, attrs,
2891 (uint8_t *)run + run->io.data_offset,
2892 run->io.direction,
2893 run->io.size,
2894 run->io.count);
2895 ret = 0;
2896 break;
2897 case KVM_EXIT_MMIO:
2898 DPRINTF("handle_mmio\n");
2899 /* Called outside BQL */
2900 address_space_rw(&address_space_memory,
2901 run->mmio.phys_addr, attrs,
2902 run->mmio.data,
2903 run->mmio.len,
2904 run->mmio.is_write);
2905 ret = 0;
2906 break;
2907 case KVM_EXIT_IRQ_WINDOW_OPEN:
2908 DPRINTF("irq_window_open\n");
2909 ret = EXCP_INTERRUPT;
2910 break;
2911 case KVM_EXIT_SHUTDOWN:
2912 DPRINTF("shutdown\n");
2913 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2914 ret = EXCP_INTERRUPT;
2915 break;
2916 case KVM_EXIT_UNKNOWN:
2917 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2918 (uint64_t)run->hw.hardware_exit_reason);
2919 ret = -1;
2920 break;
2921 case KVM_EXIT_INTERNAL_ERROR:
2922 ret = kvm_handle_internal_error(cpu, run);
2923 break;
2924 case KVM_EXIT_DIRTY_RING_FULL:
2926 * We shouldn't continue if the dirty ring of this vcpu is
2927 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
2929 trace_kvm_dirty_ring_full(cpu->cpu_index);
2930 qemu_mutex_lock_iothread();
2932 * We throttle vCPU by making it sleep once it exit from kernel
2933 * due to dirty ring full. In the dirtylimit scenario, reaping
2934 * all vCPUs after a single vCPU dirty ring get full result in
2935 * the miss of sleep, so just reap the ring-fulled vCPU.
2937 if (dirtylimit_in_service()) {
2938 kvm_dirty_ring_reap(kvm_state, cpu);
2939 } else {
2940 kvm_dirty_ring_reap(kvm_state, NULL);
2942 qemu_mutex_unlock_iothread();
2943 dirtylimit_vcpu_execute(cpu);
2944 ret = 0;
2945 break;
2946 case KVM_EXIT_SYSTEM_EVENT:
2947 switch (run->system_event.type) {
2948 case KVM_SYSTEM_EVENT_SHUTDOWN:
2949 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2950 ret = EXCP_INTERRUPT;
2951 break;
2952 case KVM_SYSTEM_EVENT_RESET:
2953 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2954 ret = EXCP_INTERRUPT;
2955 break;
2956 case KVM_SYSTEM_EVENT_CRASH:
2957 kvm_cpu_synchronize_state(cpu);
2958 qemu_mutex_lock_iothread();
2959 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2960 qemu_mutex_unlock_iothread();
2961 ret = 0;
2962 break;
2963 default:
2964 DPRINTF("kvm_arch_handle_exit\n");
2965 ret = kvm_arch_handle_exit(cpu, run);
2966 break;
2968 break;
2969 default:
2970 DPRINTF("kvm_arch_handle_exit\n");
2971 ret = kvm_arch_handle_exit(cpu, run);
2972 break;
2974 } while (ret == 0);
2976 cpu_exec_end(cpu);
2977 qemu_mutex_lock_iothread();
2979 if (ret < 0) {
2980 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2981 vm_stop(RUN_STATE_INTERNAL_ERROR);
2984 qatomic_set(&cpu->exit_request, 0);
2985 return ret;
2988 int kvm_ioctl(KVMState *s, int type, ...)
2990 int ret;
2991 void *arg;
2992 va_list ap;
2994 va_start(ap, type);
2995 arg = va_arg(ap, void *);
2996 va_end(ap);
2998 trace_kvm_ioctl(type, arg);
2999 ret = ioctl(s->fd, type, arg);
3000 if (ret == -1) {
3001 ret = -errno;
3003 return ret;
3006 int kvm_vm_ioctl(KVMState *s, int type, ...)
3008 int ret;
3009 void *arg;
3010 va_list ap;
3012 va_start(ap, type);
3013 arg = va_arg(ap, void *);
3014 va_end(ap);
3016 trace_kvm_vm_ioctl(type, arg);
3017 ret = ioctl(s->vmfd, type, arg);
3018 if (ret == -1) {
3019 ret = -errno;
3021 return ret;
3024 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3026 int ret;
3027 void *arg;
3028 va_list ap;
3030 va_start(ap, type);
3031 arg = va_arg(ap, void *);
3032 va_end(ap);
3034 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3035 ret = ioctl(cpu->kvm_fd, type, arg);
3036 if (ret == -1) {
3037 ret = -errno;
3039 return ret;
3042 int kvm_device_ioctl(int fd, int type, ...)
3044 int ret;
3045 void *arg;
3046 va_list ap;
3048 va_start(ap, type);
3049 arg = va_arg(ap, void *);
3050 va_end(ap);
3052 trace_kvm_device_ioctl(fd, type, arg);
3053 ret = ioctl(fd, type, arg);
3054 if (ret == -1) {
3055 ret = -errno;
3057 return ret;
3060 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3062 int ret;
3063 struct kvm_device_attr attribute = {
3064 .group = group,
3065 .attr = attr,
3068 if (!kvm_vm_attributes_allowed) {
3069 return 0;
3072 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3073 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3074 return ret ? 0 : 1;
3077 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3079 struct kvm_device_attr attribute = {
3080 .group = group,
3081 .attr = attr,
3082 .flags = 0,
3085 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3088 int kvm_device_access(int fd, int group, uint64_t attr,
3089 void *val, bool write, Error **errp)
3091 struct kvm_device_attr kvmattr;
3092 int err;
3094 kvmattr.flags = 0;
3095 kvmattr.group = group;
3096 kvmattr.attr = attr;
3097 kvmattr.addr = (uintptr_t)val;
3099 err = kvm_device_ioctl(fd,
3100 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3101 &kvmattr);
3102 if (err < 0) {
3103 error_setg_errno(errp, -err,
3104 "KVM_%s_DEVICE_ATTR failed: Group %d "
3105 "attr 0x%016" PRIx64,
3106 write ? "SET" : "GET", group, attr);
3108 return err;
3111 bool kvm_has_sync_mmu(void)
3113 return kvm_state->sync_mmu;
3116 int kvm_has_vcpu_events(void)
3118 return kvm_state->vcpu_events;
3121 int kvm_has_robust_singlestep(void)
3123 return kvm_state->robust_singlestep;
3126 int kvm_has_debugregs(void)
3128 return kvm_state->debugregs;
3131 int kvm_max_nested_state_length(void)
3133 return kvm_state->max_nested_state_len;
3136 int kvm_has_many_ioeventfds(void)
3138 if (!kvm_enabled()) {
3139 return 0;
3141 return kvm_state->many_ioeventfds;
3144 int kvm_has_gsi_routing(void)
3146 #ifdef KVM_CAP_IRQ_ROUTING
3147 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3148 #else
3149 return false;
3150 #endif
3153 int kvm_has_intx_set_mask(void)
3155 return kvm_state->intx_set_mask;
3158 bool kvm_arm_supports_user_irq(void)
3160 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3163 #ifdef KVM_CAP_SET_GUEST_DEBUG
3164 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3165 target_ulong pc)
3167 struct kvm_sw_breakpoint *bp;
3169 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3170 if (bp->pc == pc) {
3171 return bp;
3174 return NULL;
3177 int kvm_sw_breakpoints_active(CPUState *cpu)
3179 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3182 struct kvm_set_guest_debug_data {
3183 struct kvm_guest_debug dbg;
3184 int err;
3187 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3189 struct kvm_set_guest_debug_data *dbg_data =
3190 (struct kvm_set_guest_debug_data *) data.host_ptr;
3192 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3193 &dbg_data->dbg);
3196 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3198 struct kvm_set_guest_debug_data data;
3200 data.dbg.control = reinject_trap;
3202 if (cpu->singlestep_enabled) {
3203 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3205 if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3206 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3209 kvm_arch_update_guest_debug(cpu, &data.dbg);
3211 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3212 RUN_ON_CPU_HOST_PTR(&data));
3213 return data.err;
3216 bool kvm_supports_guest_debug(void)
3218 /* probed during kvm_init() */
3219 return kvm_has_guest_debug;
3222 int kvm_insert_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len)
3224 struct kvm_sw_breakpoint *bp;
3225 int err;
3227 if (type == GDB_BREAKPOINT_SW) {
3228 bp = kvm_find_sw_breakpoint(cpu, addr);
3229 if (bp) {
3230 bp->use_count++;
3231 return 0;
3234 bp = g_new(struct kvm_sw_breakpoint, 1);
3235 bp->pc = addr;
3236 bp->use_count = 1;
3237 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3238 if (err) {
3239 g_free(bp);
3240 return err;
3243 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3244 } else {
3245 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3246 if (err) {
3247 return err;
3251 CPU_FOREACH(cpu) {
3252 err = kvm_update_guest_debug(cpu, 0);
3253 if (err) {
3254 return err;
3257 return 0;
3260 int kvm_remove_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len)
3262 struct kvm_sw_breakpoint *bp;
3263 int err;
3265 if (type == GDB_BREAKPOINT_SW) {
3266 bp = kvm_find_sw_breakpoint(cpu, addr);
3267 if (!bp) {
3268 return -ENOENT;
3271 if (bp->use_count > 1) {
3272 bp->use_count--;
3273 return 0;
3276 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3277 if (err) {
3278 return err;
3281 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3282 g_free(bp);
3283 } else {
3284 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3285 if (err) {
3286 return err;
3290 CPU_FOREACH(cpu) {
3291 err = kvm_update_guest_debug(cpu, 0);
3292 if (err) {
3293 return err;
3296 return 0;
3299 void kvm_remove_all_breakpoints(CPUState *cpu)
3301 struct kvm_sw_breakpoint *bp, *next;
3302 KVMState *s = cpu->kvm_state;
3303 CPUState *tmpcpu;
3305 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3306 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3307 /* Try harder to find a CPU that currently sees the breakpoint. */
3308 CPU_FOREACH(tmpcpu) {
3309 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3310 break;
3314 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3315 g_free(bp);
3317 kvm_arch_remove_all_hw_breakpoints();
3319 CPU_FOREACH(cpu) {
3320 kvm_update_guest_debug(cpu, 0);
3324 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3326 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3328 KVMState *s = kvm_state;
3329 struct kvm_signal_mask *sigmask;
3330 int r;
3332 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3334 sigmask->len = s->sigmask_len;
3335 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3336 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3337 g_free(sigmask);
3339 return r;
3342 static void kvm_ipi_signal(int sig)
3344 if (current_cpu) {
3345 assert(kvm_immediate_exit);
3346 kvm_cpu_kick(current_cpu);
3350 void kvm_init_cpu_signals(CPUState *cpu)
3352 int r;
3353 sigset_t set;
3354 struct sigaction sigact;
3356 memset(&sigact, 0, sizeof(sigact));
3357 sigact.sa_handler = kvm_ipi_signal;
3358 sigaction(SIG_IPI, &sigact, NULL);
3360 pthread_sigmask(SIG_BLOCK, NULL, &set);
3361 #if defined KVM_HAVE_MCE_INJECTION
3362 sigdelset(&set, SIGBUS);
3363 pthread_sigmask(SIG_SETMASK, &set, NULL);
3364 #endif
3365 sigdelset(&set, SIG_IPI);
3366 if (kvm_immediate_exit) {
3367 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3368 } else {
3369 r = kvm_set_signal_mask(cpu, &set);
3371 if (r) {
3372 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3373 exit(1);
3377 /* Called asynchronously in VCPU thread. */
3378 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3380 #ifdef KVM_HAVE_MCE_INJECTION
3381 if (have_sigbus_pending) {
3382 return 1;
3384 have_sigbus_pending = true;
3385 pending_sigbus_addr = addr;
3386 pending_sigbus_code = code;
3387 qatomic_set(&cpu->exit_request, 1);
3388 return 0;
3389 #else
3390 return 1;
3391 #endif
3394 /* Called synchronously (via signalfd) in main thread. */
3395 int kvm_on_sigbus(int code, void *addr)
3397 #ifdef KVM_HAVE_MCE_INJECTION
3398 /* Action required MCE kills the process if SIGBUS is blocked. Because
3399 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3400 * we can only get action optional here.
3402 assert(code != BUS_MCEERR_AR);
3403 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3404 return 0;
3405 #else
3406 return 1;
3407 #endif
3410 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3412 int ret;
3413 struct kvm_create_device create_dev;
3415 create_dev.type = type;
3416 create_dev.fd = -1;
3417 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3419 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3420 return -ENOTSUP;
3423 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3424 if (ret) {
3425 return ret;
3428 return test ? 0 : create_dev.fd;
3431 bool kvm_device_supported(int vmfd, uint64_t type)
3433 struct kvm_create_device create_dev = {
3434 .type = type,
3435 .fd = -1,
3436 .flags = KVM_CREATE_DEVICE_TEST,
3439 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3440 return false;
3443 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3446 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3448 struct kvm_one_reg reg;
3449 int r;
3451 reg.id = id;
3452 reg.addr = (uintptr_t) source;
3453 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3454 if (r) {
3455 trace_kvm_failed_reg_set(id, strerror(-r));
3457 return r;
3460 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3462 struct kvm_one_reg reg;
3463 int r;
3465 reg.id = id;
3466 reg.addr = (uintptr_t) target;
3467 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3468 if (r) {
3469 trace_kvm_failed_reg_get(id, strerror(-r));
3471 return r;
3474 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3475 hwaddr start_addr, hwaddr size)
3477 KVMState *kvm = KVM_STATE(ms->accelerator);
3478 int i;
3480 for (i = 0; i < kvm->nr_as; ++i) {
3481 if (kvm->as[i].as == as && kvm->as[i].ml) {
3482 size = MIN(kvm_max_slot_size, size);
3483 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3484 start_addr, size);
3488 return false;
3491 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3492 const char *name, void *opaque,
3493 Error **errp)
3495 KVMState *s = KVM_STATE(obj);
3496 int64_t value = s->kvm_shadow_mem;
3498 visit_type_int(v, name, &value, errp);
3501 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3502 const char *name, void *opaque,
3503 Error **errp)
3505 KVMState *s = KVM_STATE(obj);
3506 int64_t value;
3508 if (s->fd != -1) {
3509 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3510 return;
3513 if (!visit_type_int(v, name, &value, errp)) {
3514 return;
3517 s->kvm_shadow_mem = value;
3520 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3521 const char *name, void *opaque,
3522 Error **errp)
3524 KVMState *s = KVM_STATE(obj);
3525 OnOffSplit mode;
3527 if (s->fd != -1) {
3528 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3529 return;
3532 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3533 return;
3535 switch (mode) {
3536 case ON_OFF_SPLIT_ON:
3537 s->kernel_irqchip_allowed = true;
3538 s->kernel_irqchip_required = true;
3539 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3540 break;
3541 case ON_OFF_SPLIT_OFF:
3542 s->kernel_irqchip_allowed = false;
3543 s->kernel_irqchip_required = false;
3544 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3545 break;
3546 case ON_OFF_SPLIT_SPLIT:
3547 s->kernel_irqchip_allowed = true;
3548 s->kernel_irqchip_required = true;
3549 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3550 break;
3551 default:
3552 /* The value was checked in visit_type_OnOffSplit() above. If
3553 * we get here, then something is wrong in QEMU.
3555 abort();
3559 bool kvm_kernel_irqchip_allowed(void)
3561 return kvm_state->kernel_irqchip_allowed;
3564 bool kvm_kernel_irqchip_required(void)
3566 return kvm_state->kernel_irqchip_required;
3569 bool kvm_kernel_irqchip_split(void)
3571 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3574 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3575 const char *name, void *opaque,
3576 Error **errp)
3578 KVMState *s = KVM_STATE(obj);
3579 uint32_t value = s->kvm_dirty_ring_size;
3581 visit_type_uint32(v, name, &value, errp);
3584 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3585 const char *name, void *opaque,
3586 Error **errp)
3588 KVMState *s = KVM_STATE(obj);
3589 Error *error = NULL;
3590 uint32_t value;
3592 if (s->fd != -1) {
3593 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3594 return;
3597 visit_type_uint32(v, name, &value, &error);
3598 if (error) {
3599 error_propagate(errp, error);
3600 return;
3602 if (value & (value - 1)) {
3603 error_setg(errp, "dirty-ring-size must be a power of two.");
3604 return;
3607 s->kvm_dirty_ring_size = value;
3610 static void kvm_accel_instance_init(Object *obj)
3612 KVMState *s = KVM_STATE(obj);
3614 s->fd = -1;
3615 s->vmfd = -1;
3616 s->kvm_shadow_mem = -1;
3617 s->kernel_irqchip_allowed = true;
3618 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3619 /* KVM dirty ring is by default off */
3620 s->kvm_dirty_ring_size = 0;
3621 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3622 s->notify_window = 0;
3626 * kvm_gdbstub_sstep_flags():
3628 * Returns: SSTEP_* flags that KVM supports for guest debug. The
3629 * support is probed during kvm_init()
3631 static int kvm_gdbstub_sstep_flags(void)
3633 return kvm_sstep_flags;
3636 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3638 AccelClass *ac = ACCEL_CLASS(oc);
3639 ac->name = "KVM";
3640 ac->init_machine = kvm_init;
3641 ac->has_memory = kvm_accel_has_memory;
3642 ac->allowed = &kvm_allowed;
3643 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3645 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3646 NULL, kvm_set_kernel_irqchip,
3647 NULL, NULL);
3648 object_class_property_set_description(oc, "kernel-irqchip",
3649 "Configure KVM in-kernel irqchip");
3651 object_class_property_add(oc, "kvm-shadow-mem", "int",
3652 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3653 NULL, NULL);
3654 object_class_property_set_description(oc, "kvm-shadow-mem",
3655 "KVM shadow MMU size");
3657 object_class_property_add(oc, "dirty-ring-size", "uint32",
3658 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3659 NULL, NULL);
3660 object_class_property_set_description(oc, "dirty-ring-size",
3661 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3663 kvm_arch_accel_class_init(oc);
3666 static const TypeInfo kvm_accel_type = {
3667 .name = TYPE_KVM_ACCEL,
3668 .parent = TYPE_ACCEL,
3669 .instance_init = kvm_accel_instance_init,
3670 .class_init = kvm_accel_class_init,
3671 .instance_size = sizeof(KVMState),
3674 static void kvm_type_init(void)
3676 type_register_static(&kvm_accel_type);
3679 type_init(kvm_type_init);
3681 typedef struct StatsArgs {
3682 union StatsResultsType {
3683 StatsResultList **stats;
3684 StatsSchemaList **schema;
3685 } result;
3686 strList *names;
3687 Error **errp;
3688 } StatsArgs;
3690 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3691 uint64_t *stats_data,
3692 StatsList *stats_list,
3693 Error **errp)
3696 Stats *stats;
3697 uint64List *val_list = NULL;
3699 /* Only add stats that we understand. */
3700 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3701 case KVM_STATS_TYPE_CUMULATIVE:
3702 case KVM_STATS_TYPE_INSTANT:
3703 case KVM_STATS_TYPE_PEAK:
3704 case KVM_STATS_TYPE_LINEAR_HIST:
3705 case KVM_STATS_TYPE_LOG_HIST:
3706 break;
3707 default:
3708 return stats_list;
3711 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3712 case KVM_STATS_UNIT_NONE:
3713 case KVM_STATS_UNIT_BYTES:
3714 case KVM_STATS_UNIT_CYCLES:
3715 case KVM_STATS_UNIT_SECONDS:
3716 case KVM_STATS_UNIT_BOOLEAN:
3717 break;
3718 default:
3719 return stats_list;
3722 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3723 case KVM_STATS_BASE_POW10:
3724 case KVM_STATS_BASE_POW2:
3725 break;
3726 default:
3727 return stats_list;
3730 /* Alloc and populate data list */
3731 stats = g_new0(Stats, 1);
3732 stats->name = g_strdup(pdesc->name);
3733 stats->value = g_new0(StatsValue, 1);;
3735 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3736 stats->value->u.boolean = *stats_data;
3737 stats->value->type = QTYPE_QBOOL;
3738 } else if (pdesc->size == 1) {
3739 stats->value->u.scalar = *stats_data;
3740 stats->value->type = QTYPE_QNUM;
3741 } else {
3742 int i;
3743 for (i = 0; i < pdesc->size; i++) {
3744 QAPI_LIST_PREPEND(val_list, stats_data[i]);
3746 stats->value->u.list = val_list;
3747 stats->value->type = QTYPE_QLIST;
3750 QAPI_LIST_PREPEND(stats_list, stats);
3751 return stats_list;
3754 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3755 StatsSchemaValueList *list,
3756 Error **errp)
3758 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3759 schema_entry->value = g_new0(StatsSchemaValue, 1);
3761 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3762 case KVM_STATS_TYPE_CUMULATIVE:
3763 schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3764 break;
3765 case KVM_STATS_TYPE_INSTANT:
3766 schema_entry->value->type = STATS_TYPE_INSTANT;
3767 break;
3768 case KVM_STATS_TYPE_PEAK:
3769 schema_entry->value->type = STATS_TYPE_PEAK;
3770 break;
3771 case KVM_STATS_TYPE_LINEAR_HIST:
3772 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3773 schema_entry->value->bucket_size = pdesc->bucket_size;
3774 schema_entry->value->has_bucket_size = true;
3775 break;
3776 case KVM_STATS_TYPE_LOG_HIST:
3777 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3778 break;
3779 default:
3780 goto exit;
3783 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3784 case KVM_STATS_UNIT_NONE:
3785 break;
3786 case KVM_STATS_UNIT_BOOLEAN:
3787 schema_entry->value->has_unit = true;
3788 schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3789 break;
3790 case KVM_STATS_UNIT_BYTES:
3791 schema_entry->value->has_unit = true;
3792 schema_entry->value->unit = STATS_UNIT_BYTES;
3793 break;
3794 case KVM_STATS_UNIT_CYCLES:
3795 schema_entry->value->has_unit = true;
3796 schema_entry->value->unit = STATS_UNIT_CYCLES;
3797 break;
3798 case KVM_STATS_UNIT_SECONDS:
3799 schema_entry->value->has_unit = true;
3800 schema_entry->value->unit = STATS_UNIT_SECONDS;
3801 break;
3802 default:
3803 goto exit;
3806 schema_entry->value->exponent = pdesc->exponent;
3807 if (pdesc->exponent) {
3808 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3809 case KVM_STATS_BASE_POW10:
3810 schema_entry->value->has_base = true;
3811 schema_entry->value->base = 10;
3812 break;
3813 case KVM_STATS_BASE_POW2:
3814 schema_entry->value->has_base = true;
3815 schema_entry->value->base = 2;
3816 break;
3817 default:
3818 goto exit;
3822 schema_entry->value->name = g_strdup(pdesc->name);
3823 schema_entry->next = list;
3824 return schema_entry;
3825 exit:
3826 g_free(schema_entry->value);
3827 g_free(schema_entry);
3828 return list;
3831 /* Cached stats descriptors */
3832 typedef struct StatsDescriptors {
3833 const char *ident; /* cache key, currently the StatsTarget */
3834 struct kvm_stats_desc *kvm_stats_desc;
3835 struct kvm_stats_header kvm_stats_header;
3836 QTAILQ_ENTRY(StatsDescriptors) next;
3837 } StatsDescriptors;
3839 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3840 QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3843 * Return the descriptors for 'target', that either have already been read
3844 * or are retrieved from 'stats_fd'.
3846 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3847 Error **errp)
3849 StatsDescriptors *descriptors;
3850 const char *ident;
3851 struct kvm_stats_desc *kvm_stats_desc;
3852 struct kvm_stats_header *kvm_stats_header;
3853 size_t size_desc;
3854 ssize_t ret;
3856 ident = StatsTarget_str(target);
3857 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3858 if (g_str_equal(descriptors->ident, ident)) {
3859 return descriptors;
3863 descriptors = g_new0(StatsDescriptors, 1);
3865 /* Read stats header */
3866 kvm_stats_header = &descriptors->kvm_stats_header;
3867 ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header));
3868 if (ret != sizeof(*kvm_stats_header)) {
3869 error_setg(errp, "KVM stats: failed to read stats header: "
3870 "expected %zu actual %zu",
3871 sizeof(*kvm_stats_header), ret);
3872 g_free(descriptors);
3873 return NULL;
3875 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3877 /* Read stats descriptors */
3878 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3879 ret = pread(stats_fd, kvm_stats_desc,
3880 size_desc * kvm_stats_header->num_desc,
3881 kvm_stats_header->desc_offset);
3883 if (ret != size_desc * kvm_stats_header->num_desc) {
3884 error_setg(errp, "KVM stats: failed to read stats descriptors: "
3885 "expected %zu actual %zu",
3886 size_desc * kvm_stats_header->num_desc, ret);
3887 g_free(descriptors);
3888 g_free(kvm_stats_desc);
3889 return NULL;
3891 descriptors->kvm_stats_desc = kvm_stats_desc;
3892 descriptors->ident = ident;
3893 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3894 return descriptors;
3897 static void query_stats(StatsResultList **result, StatsTarget target,
3898 strList *names, int stats_fd, Error **errp)
3900 struct kvm_stats_desc *kvm_stats_desc;
3901 struct kvm_stats_header *kvm_stats_header;
3902 StatsDescriptors *descriptors;
3903 g_autofree uint64_t *stats_data = NULL;
3904 struct kvm_stats_desc *pdesc;
3905 StatsList *stats_list = NULL;
3906 size_t size_desc, size_data = 0;
3907 ssize_t ret;
3908 int i;
3910 descriptors = find_stats_descriptors(target, stats_fd, errp);
3911 if (!descriptors) {
3912 return;
3915 kvm_stats_header = &descriptors->kvm_stats_header;
3916 kvm_stats_desc = descriptors->kvm_stats_desc;
3917 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3919 /* Tally the total data size; read schema data */
3920 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3921 pdesc = (void *)kvm_stats_desc + i * size_desc;
3922 size_data += pdesc->size * sizeof(*stats_data);
3925 stats_data = g_malloc0(size_data);
3926 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
3928 if (ret != size_data) {
3929 error_setg(errp, "KVM stats: failed to read data: "
3930 "expected %zu actual %zu", size_data, ret);
3931 return;
3934 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3935 uint64_t *stats;
3936 pdesc = (void *)kvm_stats_desc + i * size_desc;
3938 /* Add entry to the list */
3939 stats = (void *)stats_data + pdesc->offset;
3940 if (!apply_str_list_filter(pdesc->name, names)) {
3941 continue;
3943 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
3946 if (!stats_list) {
3947 return;
3950 switch (target) {
3951 case STATS_TARGET_VM:
3952 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
3953 break;
3954 case STATS_TARGET_VCPU:
3955 add_stats_entry(result, STATS_PROVIDER_KVM,
3956 current_cpu->parent_obj.canonical_path,
3957 stats_list);
3958 break;
3959 default:
3960 g_assert_not_reached();
3964 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
3965 int stats_fd, Error **errp)
3967 struct kvm_stats_desc *kvm_stats_desc;
3968 struct kvm_stats_header *kvm_stats_header;
3969 StatsDescriptors *descriptors;
3970 struct kvm_stats_desc *pdesc;
3971 StatsSchemaValueList *stats_list = NULL;
3972 size_t size_desc;
3973 int i;
3975 descriptors = find_stats_descriptors(target, stats_fd, errp);
3976 if (!descriptors) {
3977 return;
3980 kvm_stats_header = &descriptors->kvm_stats_header;
3981 kvm_stats_desc = descriptors->kvm_stats_desc;
3982 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3984 /* Tally the total data size; read schema data */
3985 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3986 pdesc = (void *)kvm_stats_desc + i * size_desc;
3987 stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
3990 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
3993 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data)
3995 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
3996 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
3997 Error *local_err = NULL;
3999 if (stats_fd == -1) {
4000 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4001 error_propagate(kvm_stats_args->errp, local_err);
4002 return;
4004 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4005 kvm_stats_args->names, stats_fd, kvm_stats_args->errp);
4006 close(stats_fd);
4009 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data)
4011 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4012 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4013 Error *local_err = NULL;
4015 if (stats_fd == -1) {
4016 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4017 error_propagate(kvm_stats_args->errp, local_err);
4018 return;
4020 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4021 kvm_stats_args->errp);
4022 close(stats_fd);
4025 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4026 strList *names, strList *targets, Error **errp)
4028 KVMState *s = kvm_state;
4029 CPUState *cpu;
4030 int stats_fd;
4032 switch (target) {
4033 case STATS_TARGET_VM:
4035 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4036 if (stats_fd == -1) {
4037 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4038 return;
4040 query_stats(result, target, names, stats_fd, errp);
4041 close(stats_fd);
4042 break;
4044 case STATS_TARGET_VCPU:
4046 StatsArgs stats_args;
4047 stats_args.result.stats = result;
4048 stats_args.names = names;
4049 stats_args.errp = errp;
4050 CPU_FOREACH(cpu) {
4051 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4052 continue;
4054 run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
4056 break;
4058 default:
4059 break;
4063 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4065 StatsArgs stats_args;
4066 KVMState *s = kvm_state;
4067 int stats_fd;
4069 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4070 if (stats_fd == -1) {
4071 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4072 return;
4074 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4075 close(stats_fd);
4077 if (first_cpu) {
4078 stats_args.result.schema = result;
4079 stats_args.errp = errp;
4080 run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));