1 \input texinfo @c -*- texinfo -*-
3 @setfilename qemu-doc.info
7 @documentencoding UTF-8
9 @settitle QEMU version @value{VERSION} User Documentation
16 * QEMU: (qemu-doc). The QEMU Emulator User Documentation.
23 @center @titlefont{QEMU version @value{VERSION}}
25 @center @titlefont{User Documentation}
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
39 * QEMU User space emulator::
40 * System requirements::
41 * Implementation notes::
42 * Deprecated features::
43 * Supported build platforms::
55 * intro_features:: Features
61 QEMU is a FAST! processor emulator using dynamic translation to
62 achieve good emulation speed.
64 @cindex operating modes
65 QEMU has two operating modes:
68 @cindex system emulation
69 @item Full system emulation. In this mode, QEMU emulates a full system (for
70 example a PC), including one or several processors and various
71 peripherals. It can be used to launch different Operating Systems
72 without rebooting the PC or to debug system code.
74 @cindex user mode emulation
75 @item User mode emulation. In this mode, QEMU can launch
76 processes compiled for one CPU on another CPU. It can be used to
77 launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
78 to ease cross-compilation and cross-debugging.
82 QEMU has the following features:
85 @item QEMU can run without a host kernel driver and yet gives acceptable
86 performance. It uses dynamic translation to native code for reasonable speed,
87 with support for self-modifying code and precise exceptions.
89 @item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
90 Windows) and architectures.
92 @item It performs accurate software emulation of the FPU.
95 QEMU user mode emulation has the following features:
97 @item Generic Linux system call converter, including most ioctls.
99 @item clone() emulation using native CPU clone() to use Linux scheduler for threads.
101 @item Accurate signal handling by remapping host signals to target signals.
104 QEMU full system emulation has the following features:
107 QEMU uses a full software MMU for maximum portability.
110 QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
111 execute most of the guest code natively, while
112 continuing to emulate the rest of the machine.
115 Various hardware devices can be emulated and in some cases, host
116 devices (e.g. serial and parallel ports, USB, drives) can be used
117 transparently by the guest Operating System. Host device passthrough
118 can be used for talking to external physical peripherals (e.g. a
119 webcam, modem or tape drive).
122 Symmetric multiprocessing (SMP) support. Currently, an in-kernel
123 accelerator is required to use more than one host CPU for emulation.
128 @node QEMU PC System emulator
129 @chapter QEMU PC System emulator
130 @cindex system emulation (PC)
133 * pcsys_introduction:: Introduction
134 * pcsys_quickstart:: Quick Start
135 * sec_invocation:: Invocation
136 * pcsys_keys:: Keys in the graphical frontends
137 * mux_keys:: Keys in the character backend multiplexer
138 * pcsys_monitor:: QEMU Monitor
139 * cpu_models:: CPU models
140 * disk_images:: Disk Images
141 * pcsys_network:: Network emulation
142 * pcsys_other_devs:: Other Devices
143 * direct_linux_boot:: Direct Linux Boot
144 * pcsys_usb:: USB emulation
145 * vnc_security:: VNC security
146 * network_tls:: TLS setup for network services
147 * gdb_usage:: GDB usage
148 * pcsys_os_specific:: Target OS specific information
151 @node pcsys_introduction
152 @section Introduction
154 @c man begin DESCRIPTION
156 The QEMU PC System emulator simulates the
157 following peripherals:
161 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
163 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
164 extensions (hardware level, including all non standard modes).
166 PS/2 mouse and keyboard
168 2 PCI IDE interfaces with hard disk and CD-ROM support
172 PCI and ISA network adapters
176 IPMI BMC, either and internal or external one
178 Creative SoundBlaster 16 sound card
180 ENSONIQ AudioPCI ES1370 sound card
182 Intel 82801AA AC97 Audio compatible sound card
184 Intel HD Audio Controller and HDA codec
186 Adlib (OPL2) - Yamaha YM3812 compatible chip
188 Gravis Ultrasound GF1 sound card
190 CS4231A compatible sound card
192 PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
195 SMP is supported with up to 255 CPUs.
197 QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
200 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
202 QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
203 by Tibor "TS" Schütz.
205 Note that, by default, GUS shares IRQ(7) with parallel ports and so
206 QEMU must be told to not have parallel ports to have working GUS.
209 qemu-system-i386 dos.img -soundhw gus -parallel none
214 qemu-system-i386 dos.img -device gus,irq=5
217 Or some other unclaimed IRQ.
219 CS4231A is the chip used in Windows Sound System and GUSMAX products
223 @node pcsys_quickstart
227 Download and uncompress the linux image (@file{linux.img}) and type:
230 qemu-system-i386 linux.img
233 Linux should boot and give you a prompt.
239 @c man begin SYNOPSIS
240 @command{qemu-system-i386} [@var{options}] [@var{disk_image}]
245 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
246 targets do not need a disk image.
248 @include qemu-options.texi
252 @subsection Device URL Syntax
253 @c TODO merge this with section Disk Images
257 In addition to using normal file images for the emulated storage devices,
258 QEMU can also use networked resources such as iSCSI devices. These are
259 specified using a special URL syntax.
263 iSCSI support allows QEMU to access iSCSI resources directly and use as
264 images for the guest storage. Both disk and cdrom images are supported.
266 Syntax for specifying iSCSI LUNs is
267 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
269 By default qemu will use the iSCSI initiator-name
270 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
271 line or a configuration file.
273 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
274 stalled requests and force a reestablishment of the session. The timeout
275 is specified in seconds. The default is 0 which means no timeout. Libiscsi
276 1.15.0 or greater is required for this feature.
278 Example (without authentication):
280 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
281 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
282 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
285 Example (CHAP username/password via URL):
287 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
290 Example (CHAP username/password via environment variables):
292 LIBISCSI_CHAP_USERNAME="user" \
293 LIBISCSI_CHAP_PASSWORD="password" \
294 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
298 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
299 as Unix Domain Sockets.
301 Syntax for specifying a NBD device using TCP
302 ``nbd:<server-ip>:<port>[:exportname=<export>]''
304 Syntax for specifying a NBD device using Unix Domain Sockets
305 ``nbd:unix:<domain-socket>[:exportname=<export>]''
309 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
312 Example for Unix Domain Sockets
314 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
318 QEMU supports SSH (Secure Shell) access to remote disks.
322 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
323 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
326 Currently authentication must be done using ssh-agent. Other
327 authentication methods may be supported in future.
330 Sheepdog is a distributed storage system for QEMU.
331 QEMU supports using either local sheepdog devices or remote networked
334 Syntax for specifying a sheepdog device
336 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
341 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
344 See also @url{https://sheepdog.github.io/sheepdog/}.
347 GlusterFS is a user space distributed file system.
348 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
349 TCP, Unix Domain Sockets and RDMA transport protocols.
351 Syntax for specifying a VM disk image on GlusterFS volume is
355 gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
358 'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
359 @ "server":[@{"type":"tcp","host":"...","port":"..."@},
360 @ @{"type":"unix","socket":"..."@}]@}@}'
367 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
368 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log
371 qemu-system-x86_64 'json:@{"driver":"qcow2",
372 @ "file":@{"driver":"gluster",
373 @ "volume":"testvol","path":"a.img",
374 @ "debug":9,"logfile":"/var/log/qemu-gluster.log",
375 @ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
376 @ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
377 qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
378 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
379 @ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
380 @ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
383 See also @url{http://www.gluster.org}.
385 @item HTTP/HTTPS/FTP/FTPS
386 QEMU supports read-only access to files accessed over http(s) and ftp(s).
388 Syntax using a single filename:
390 <protocol>://[<username>[:<password>]@@]<host>/<path>
396 'http', 'https', 'ftp', or 'ftps'.
399 Optional username for authentication to the remote server.
402 Optional password for authentication to the remote server.
405 Address of the remote server.
408 Path on the remote server, including any query string.
411 The following options are also supported:
414 The full URL when passing options to the driver explicitly.
417 The amount of data to read ahead with each range request to the remote server.
418 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
419 does not have a suffix, it will be assumed to be in bytes. The value must be a
420 multiple of 512 bytes. It defaults to 256k.
423 Whether to verify the remote server's certificate when connecting over SSL. It
424 can have the value 'on' or 'off'. It defaults to 'on'.
427 Send this cookie (it can also be a list of cookies separated by ';') with
428 each outgoing request. Only supported when using protocols such as HTTP
429 which support cookies, otherwise ignored.
432 Set the timeout in seconds of the CURL connection. This timeout is the time
433 that CURL waits for a response from the remote server to get the size of the
434 image to be downloaded. If not set, the default timeout of 5 seconds is used.
437 Note that when passing options to qemu explicitly, @option{driver} is the value
440 Example: boot from a remote Fedora 20 live ISO image
442 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
444 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
447 Example: boot from a remote Fedora 20 cloud image using a local overlay for
448 writes, copy-on-read, and a readahead of 64k
450 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
452 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
455 Example: boot from an image stored on a VMware vSphere server with a self-signed
456 certificate using a local overlay for writes, a readahead of 64k and a timeout
459 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
461 qemu-system-x86_64 -drive file=/tmp/test.qcow2
469 @section Keys in the graphical frontends
473 During the graphical emulation, you can use special key combinations to change
474 modes. The default key mappings are shown below, but if you use @code{-alt-grab}
475 then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
476 @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
493 Restore the screen's un-scaled dimensions
497 Switch to virtual console 'n'. Standard console mappings are:
500 Target system display
509 Toggle mouse and keyboard grab.
515 @kindex Ctrl-PageDown
516 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
517 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
522 @section Keys in the character backend multiplexer
526 During emulation, if you are using a character backend multiplexer
527 (which is the default if you are using @option{-nographic}) then
528 several commands are available via an escape sequence. These
529 key sequences all start with an escape character, which is @key{Ctrl-a}
530 by default, but can be changed with @option{-echr}. The list below assumes
531 you're using the default.
542 Save disk data back to file (if -snapshot)
545 Toggle console timestamps
548 Send break (magic sysrq in Linux)
551 Rotate between the frontends connected to the multiplexer (usually
552 this switches between the monitor and the console)
554 @kindex Ctrl-a Ctrl-a
555 Send the escape character to the frontend
562 The HTML documentation of QEMU for more precise information and Linux
563 user mode emulator invocation.
573 @section QEMU Monitor
576 The QEMU monitor is used to give complex commands to the QEMU
577 emulator. You can use it to:
582 Remove or insert removable media images
583 (such as CD-ROM or floppies).
586 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
589 @item Inspect the VM state without an external debugger.
595 The following commands are available:
597 @include qemu-monitor.texi
599 @include qemu-monitor-info.texi
601 @subsection Integer expressions
603 The monitor understands integers expressions for every integer
604 argument. You can use register names to get the value of specifics
605 CPU registers by prefixing them with @emph{$}.
610 @include docs/qemu-cpu-models.texi
615 QEMU supports many disk image formats, including growable disk images
616 (their size increase as non empty sectors are written), compressed and
617 encrypted disk images.
620 * disk_images_quickstart:: Quick start for disk image creation
621 * disk_images_snapshot_mode:: Snapshot mode
622 * vm_snapshots:: VM snapshots
623 * qemu_img_invocation:: qemu-img Invocation
624 * qemu_nbd_invocation:: qemu-nbd Invocation
625 * disk_images_formats:: Disk image file formats
626 * host_drives:: Using host drives
627 * disk_images_fat_images:: Virtual FAT disk images
628 * disk_images_nbd:: NBD access
629 * disk_images_sheepdog:: Sheepdog disk images
630 * disk_images_iscsi:: iSCSI LUNs
631 * disk_images_gluster:: GlusterFS disk images
632 * disk_images_ssh:: Secure Shell (ssh) disk images
633 * disk_images_nvme:: NVMe userspace driver
634 * disk_image_locking:: Disk image file locking
637 @node disk_images_quickstart
638 @subsection Quick start for disk image creation
640 You can create a disk image with the command:
642 qemu-img create myimage.img mysize
644 where @var{myimage.img} is the disk image filename and @var{mysize} is its
645 size in kilobytes. You can add an @code{M} suffix to give the size in
646 megabytes and a @code{G} suffix for gigabytes.
648 See @ref{qemu_img_invocation} for more information.
650 @node disk_images_snapshot_mode
651 @subsection Snapshot mode
653 If you use the option @option{-snapshot}, all disk images are
654 considered as read only. When sectors in written, they are written in
655 a temporary file created in @file{/tmp}. You can however force the
656 write back to the raw disk images by using the @code{commit} monitor
657 command (or @key{C-a s} in the serial console).
660 @subsection VM snapshots
662 VM snapshots are snapshots of the complete virtual machine including
663 CPU state, RAM, device state and the content of all the writable
664 disks. In order to use VM snapshots, you must have at least one non
665 removable and writable block device using the @code{qcow2} disk image
666 format. Normally this device is the first virtual hard drive.
668 Use the monitor command @code{savevm} to create a new VM snapshot or
669 replace an existing one. A human readable name can be assigned to each
670 snapshot in addition to its numerical ID.
672 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
673 a VM snapshot. @code{info snapshots} lists the available snapshots
674 with their associated information:
677 (qemu) info snapshots
678 Snapshot devices: hda
679 Snapshot list (from hda):
680 ID TAG VM SIZE DATE VM CLOCK
681 1 start 41M 2006-08-06 12:38:02 00:00:14.954
682 2 40M 2006-08-06 12:43:29 00:00:18.633
683 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
686 A VM snapshot is made of a VM state info (its size is shown in
687 @code{info snapshots}) and a snapshot of every writable disk image.
688 The VM state info is stored in the first @code{qcow2} non removable
689 and writable block device. The disk image snapshots are stored in
690 every disk image. The size of a snapshot in a disk image is difficult
691 to evaluate and is not shown by @code{info snapshots} because the
692 associated disk sectors are shared among all the snapshots to save
693 disk space (otherwise each snapshot would need a full copy of all the
696 When using the (unrelated) @code{-snapshot} option
697 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
698 but they are deleted as soon as you exit QEMU.
700 VM snapshots currently have the following known limitations:
703 They cannot cope with removable devices if they are removed or
704 inserted after a snapshot is done.
706 A few device drivers still have incomplete snapshot support so their
707 state is not saved or restored properly (in particular USB).
710 @node qemu_img_invocation
711 @subsection @code{qemu-img} Invocation
713 @include qemu-img.texi
715 @node qemu_nbd_invocation
716 @subsection @code{qemu-nbd} Invocation
718 @include qemu-nbd.texi
720 @include docs/qemu-block-drivers.texi
723 @section Network emulation
725 QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
726 target) and can connect them to a network backend on the host or an emulated
727 hub. The various host network backends can either be used to connect the NIC of
728 the guest to a real network (e.g. by using a TAP devices or the non-privileged
729 user mode network stack), or to other guest instances running in another QEMU
730 process (e.g. by using the socket host network backend).
732 @subsection Using TAP network interfaces
734 This is the standard way to connect QEMU to a real network. QEMU adds
735 a virtual network device on your host (called @code{tapN}), and you
736 can then configure it as if it was a real ethernet card.
738 @subsubsection Linux host
740 As an example, you can download the @file{linux-test-xxx.tar.gz}
741 archive and copy the script @file{qemu-ifup} in @file{/etc} and
742 configure properly @code{sudo} so that the command @code{ifconfig}
743 contained in @file{qemu-ifup} can be executed as root. You must verify
744 that your host kernel supports the TAP network interfaces: the
745 device @file{/dev/net/tun} must be present.
747 See @ref{sec_invocation} to have examples of command lines using the
748 TAP network interfaces.
750 @subsubsection Windows host
752 There is a virtual ethernet driver for Windows 2000/XP systems, called
753 TAP-Win32. But it is not included in standard QEMU for Windows,
754 so you will need to get it separately. It is part of OpenVPN package,
755 so download OpenVPN from : @url{https://openvpn.net/}.
757 @subsection Using the user mode network stack
759 By using the option @option{-net user} (default configuration if no
760 @option{-net} option is specified), QEMU uses a completely user mode
761 network stack (you don't need root privilege to use the virtual
762 network). The virtual network configuration is the following:
766 guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
769 ----> DNS server (10.0.2.3)
771 ----> SMB server (10.0.2.4)
774 The QEMU VM behaves as if it was behind a firewall which blocks all
775 incoming connections. You can use a DHCP client to automatically
776 configure the network in the QEMU VM. The DHCP server assign addresses
777 to the hosts starting from 10.0.2.15.
779 In order to check that the user mode network is working, you can ping
780 the address 10.0.2.2 and verify that you got an address in the range
781 10.0.2.x from the QEMU virtual DHCP server.
783 Note that ICMP traffic in general does not work with user mode networking.
784 @code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
785 however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
786 ping sockets to allow @code{ping} to the Internet. The host admin has to set
787 the ping_group_range in order to grant access to those sockets. To allow ping
788 for GID 100 (usually users group):
791 echo 100 100 > /proc/sys/net/ipv4/ping_group_range
794 When using the built-in TFTP server, the router is also the TFTP
797 When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
798 connections can be redirected from the host to the guest. It allows for
799 example to redirect X11, telnet or SSH connections.
803 QEMU can simulate several hubs. A hub can be thought of as a virtual connection
804 between several network devices. These devices can be for example QEMU virtual
805 ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
806 guest NICs or host network backends to such a hub using the @option{-netdev
807 hubport} or @option{-nic hubport} options. The legacy @option{-net} option
808 also connects the given device to the emulated hub with ID 0 (i.e. the default
809 hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
811 @subsection Connecting emulated networks between QEMU instances
813 Using the @option{-netdev socket} (or @option{-nic socket} or
814 @option{-net socket}) option, it is possible to create emulated
815 networks that span several QEMU instances.
816 See the description of the @option{-netdev socket} option in the
817 @ref{sec_invocation,,Invocation chapter} to have a basic example.
819 @node pcsys_other_devs
820 @section Other Devices
822 @subsection Inter-VM Shared Memory device
824 On Linux hosts, a shared memory device is available. The basic syntax
828 qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
831 where @var{hostmem} names a host memory backend. For a POSIX shared
832 memory backend, use something like
835 -object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
838 If desired, interrupts can be sent between guest VMs accessing the same shared
839 memory region. Interrupt support requires using a shared memory server and
840 using a chardev socket to connect to it. The code for the shared memory server
841 is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
845 # First start the ivshmem server once and for all
846 ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
848 # Then start your qemu instances with matching arguments
849 qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
850 -chardev socket,path=@var{path},id=@var{id}
853 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
854 using the same server to communicate via interrupts. Guests can read their
855 VM ID from a device register (see ivshmem-spec.txt).
857 @subsubsection Migration with ivshmem
859 With device property @option{master=on}, the guest will copy the shared
860 memory on migration to the destination host. With @option{master=off},
861 the guest will not be able to migrate with the device attached. In the
862 latter case, the device should be detached and then reattached after
863 migration using the PCI hotplug support.
865 At most one of the devices sharing the same memory can be master. The
866 master must complete migration before you plug back the other devices.
868 @subsubsection ivshmem and hugepages
870 Instead of specifying the <shm size> using POSIX shm, you may specify
871 a memory backend that has hugepage support:
874 qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
875 -device ivshmem-plain,memdev=mb1
878 ivshmem-server also supports hugepages mount points with the
879 @option{-m} memory path argument.
881 @node direct_linux_boot
882 @section Direct Linux Boot
884 This section explains how to launch a Linux kernel inside QEMU without
885 having to make a full bootable image. It is very useful for fast Linux
890 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
893 Use @option{-kernel} to provide the Linux kernel image and
894 @option{-append} to give the kernel command line arguments. The
895 @option{-initrd} option can be used to provide an INITRD image.
897 When using the direct Linux boot, a disk image for the first hard disk
898 @file{hda} is required because its boot sector is used to launch the
901 If you do not need graphical output, you can disable it and redirect
902 the virtual serial port and the QEMU monitor to the console with the
903 @option{-nographic} option. The typical command line is:
905 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
906 -append "root=/dev/hda console=ttyS0" -nographic
909 Use @key{Ctrl-a c} to switch between the serial console and the
910 monitor (@pxref{pcsys_keys}).
913 @section USB emulation
915 QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
916 plug virtual USB devices or real host USB devices (only works with certain
917 host operating systems). QEMU will automatically create and connect virtual
918 USB hubs as necessary to connect multiple USB devices.
925 @subsection Connecting USB devices
927 USB devices can be connected with the @option{-device usb-...} command line
928 option or the @code{device_add} monitor command. Available devices are:
932 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
934 Pointer device that uses absolute coordinates (like a touchscreen).
935 This means QEMU is able to report the mouse position without having
936 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
937 @item usb-storage,drive=@var{drive_id}
938 Mass storage device backed by @var{drive_id} (@pxref{disk_images})
940 USB attached SCSI device, see
941 @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
944 Bulk-only transport storage device, see
945 @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
946 for details here, too
947 @item usb-mtp,rootdir=@var{dir}
948 Media transfer protocol device, using @var{dir} as root of the file tree
949 that is presented to the guest.
950 @item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
951 Pass through the host device identified by @var{bus} and @var{addr}
952 @item usb-host,vendorid=@var{vendor},productid=@var{product}
953 Pass through the host device identified by @var{vendor} and @var{product} ID
954 @item usb-wacom-tablet
955 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
956 above but it can be used with the tslib library because in addition to touch
957 coordinates it reports touch pressure.
959 Standard USB keyboard. Will override the PS/2 keyboard (if present).
960 @item usb-serial,chardev=@var{id}
961 Serial converter. This emulates an FTDI FT232BM chip connected to host character
963 @item usb-braille,chardev=@var{id}
964 Braille device. This will use BrlAPI to display the braille output on a real
965 or fake device referenced by @var{id}.
966 @item usb-net[,netdev=@var{id}]
967 Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
968 specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
969 For instance, user-mode networking can be used with
971 qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
974 Smartcard reader device
978 Bluetooth dongle for the transport layer of HCI. It is connected to HCI
979 scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
980 Note that the syntax for the @code{-device usb-bt-dongle} option is not as
981 useful yet as it was with the legacy @code{-usbdevice} option. So to
982 configure an USB bluetooth device, you might need to use
983 "@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
984 bluetooth dongle whose type is specified in the same format as with
985 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
986 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
987 This USB device implements the USB Transport Layer of HCI. Example
990 @command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
994 @node host_usb_devices
995 @subsection Using host USB devices on a Linux host
997 WARNING: this is an experimental feature. QEMU will slow down when
998 using it. USB devices requiring real time streaming (i.e. USB Video
999 Cameras) are not supported yet.
1002 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1003 is actually using the USB device. A simple way to do that is simply to
1004 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1005 to @file{mydriver.o.disabled}.
1007 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1013 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1015 chown -R myuid /proc/bus/usb
1018 @item Launch QEMU and do in the monitor:
1021 Device 1.2, speed 480 Mb/s
1022 Class 00: USB device 1234:5678, USB DISK
1024 You should see the list of the devices you can use (Never try to use
1025 hubs, it won't work).
1027 @item Add the device in QEMU by using:
1029 device_add usb-host,vendorid=0x1234,productid=0x5678
1032 Normally the guest OS should report that a new USB device is plugged.
1033 You can use the option @option{-device usb-host,...} to do the same.
1035 @item Now you can try to use the host USB device in QEMU.
1039 When relaunching QEMU, you may have to unplug and plug again the USB
1040 device to make it work again (this is a bug).
1043 @section VNC security
1045 The VNC server capability provides access to the graphical console
1046 of the guest VM across the network. This has a number of security
1047 considerations depending on the deployment scenarios.
1051 * vnc_sec_password::
1052 * vnc_sec_certificate::
1053 * vnc_sec_certificate_verify::
1054 * vnc_sec_certificate_pw::
1056 * vnc_sec_certificate_sasl::
1060 @subsection Without passwords
1062 The simplest VNC server setup does not include any form of authentication.
1063 For this setup it is recommended to restrict it to listen on a UNIX domain
1064 socket only. For example
1067 qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1070 This ensures that only users on local box with read/write access to that
1071 path can access the VNC server. To securely access the VNC server from a
1072 remote machine, a combination of netcat+ssh can be used to provide a secure
1075 @node vnc_sec_password
1076 @subsection With passwords
1078 The VNC protocol has limited support for password based authentication. Since
1079 the protocol limits passwords to 8 characters it should not be considered
1080 to provide high security. The password can be fairly easily brute-forced by
1081 a client making repeat connections. For this reason, a VNC server using password
1082 authentication should be restricted to only listen on the loopback interface
1083 or UNIX domain sockets. Password authentication is not supported when operating
1084 in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1085 authentication is requested with the @code{password} option, and then once QEMU
1086 is running the password is set with the monitor. Until the monitor is used to
1087 set the password all clients will be rejected.
1090 qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1091 (qemu) change vnc password
1096 @node vnc_sec_certificate
1097 @subsection With x509 certificates
1099 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1100 TLS for encryption of the session, and x509 certificates for authentication.
1101 The use of x509 certificates is strongly recommended, because TLS on its
1102 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1103 support provides a secure session, but no authentication. This allows any
1104 client to connect, and provides an encrypted session.
1107 qemu-system-i386 [...OPTIONS...] \
1108 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no \
1109 -vnc :1,tls-creds=tls0 -monitor stdio
1112 In the above example @code{/etc/pki/qemu} should contain at least three files,
1113 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1114 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1115 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1116 only be readable by the user owning it.
1118 @node vnc_sec_certificate_verify
1119 @subsection With x509 certificates and client verification
1121 Certificates can also provide a means to authenticate the client connecting.
1122 The server will request that the client provide a certificate, which it will
1123 then validate against the CA certificate. This is a good choice if deploying
1124 in an environment with a private internal certificate authority. It uses the
1125 same syntax as previously, but with @code{verify-peer} set to @code{yes}
1129 qemu-system-i386 [...OPTIONS...] \
1130 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1131 -vnc :1,tls-creds=tls0 -monitor stdio
1135 @node vnc_sec_certificate_pw
1136 @subsection With x509 certificates, client verification and passwords
1138 Finally, the previous method can be combined with VNC password authentication
1139 to provide two layers of authentication for clients.
1142 qemu-system-i386 [...OPTIONS...] \
1143 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1144 -vnc :1,tls-creds=tls0,password -monitor stdio
1145 (qemu) change vnc password
1152 @subsection With SASL authentication
1154 The SASL authentication method is a VNC extension, that provides an
1155 easily extendable, pluggable authentication method. This allows for
1156 integration with a wide range of authentication mechanisms, such as
1157 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1158 The strength of the authentication depends on the exact mechanism
1159 configured. If the chosen mechanism also provides a SSF layer, then
1160 it will encrypt the datastream as well.
1162 Refer to the later docs on how to choose the exact SASL mechanism
1163 used for authentication, but assuming use of one supporting SSF,
1164 then QEMU can be launched with:
1167 qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1170 @node vnc_sec_certificate_sasl
1171 @subsection With x509 certificates and SASL authentication
1173 If the desired SASL authentication mechanism does not supported
1174 SSF layers, then it is strongly advised to run it in combination
1175 with TLS and x509 certificates. This provides securely encrypted
1176 data stream, avoiding risk of compromising of the security
1177 credentials. This can be enabled, by combining the 'sasl' option
1178 with the aforementioned TLS + x509 options:
1181 qemu-system-i386 [...OPTIONS...] \
1182 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1183 -vnc :1,tls-creds=tls0,sasl -monitor stdio
1186 @node vnc_setup_sasl
1188 @subsection Configuring SASL mechanisms
1190 The following documentation assumes use of the Cyrus SASL implementation on a
1191 Linux host, but the principles should apply to any other SASL implementation
1192 or host. When SASL is enabled, the mechanism configuration will be loaded from
1193 system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1194 unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1195 it search alternate locations for the service config file.
1197 If the TLS option is enabled for VNC, then it will provide session encryption,
1198 otherwise the SASL mechanism will have to provide encryption. In the latter
1199 case the list of possible plugins that can be used is drastically reduced. In
1200 fact only the GSSAPI SASL mechanism provides an acceptable level of security
1201 by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1202 mechanism, however, it has multiple serious flaws described in detail in
1203 RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1204 provides a simple username/password auth facility similar to DIGEST-MD5, but
1205 does not support session encryption, so can only be used in combination with
1208 When not using TLS the recommended configuration is
1212 keytab: /etc/qemu/krb5.tab
1215 This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1216 the server principal stored in /etc/qemu/krb5.tab. For this to work the
1217 administrator of your KDC must generate a Kerberos principal for the server,
1218 with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1219 'somehost.example.com' with the fully qualified host name of the machine
1220 running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1222 When using TLS, if username+password authentication is desired, then a
1223 reasonable configuration is
1226 mech_list: scram-sha-1
1227 sasldb_path: /etc/qemu/passwd.db
1230 The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1233 Other SASL configurations will be left as an exercise for the reader. Note that
1234 all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1235 secure data channel.
1239 @section TLS setup for network services
1241 Almost all network services in QEMU have the ability to use TLS for
1242 session data encryption, along with x509 certificates for simple
1243 client authentication. What follows is a description of how to
1244 generate certificates suitable for usage with QEMU, and applies to
1245 the VNC server, character devices with the TCP backend, NBD server
1246 and client, and migration server and client.
1248 At a high level, QEMU requires certificates and private keys to be
1249 provided in PEM format. Aside from the core fields, the certificates
1250 should include various extension data sets, including v3 basic
1251 constraints data, key purpose, key usage and subject alt name.
1253 The GnuTLS package includes a command called @code{certtool} which can
1254 be used to easily generate certificates and keys in the required format
1255 with expected data present. Alternatively a certificate management
1256 service may be used.
1258 At a minimum it is necessary to setup a certificate authority, and
1259 issue certificates to each server. If using x509 certificates for
1260 authentication, then each client will also need to be issued a
1263 Assuming that the QEMU network services will only ever be exposed to
1264 clients on a private intranet, there is no need to use a commercial
1265 certificate authority to create certificates. A self-signed CA is
1266 sufficient, and in fact likely to be more secure since it removes
1267 the ability of malicious 3rd parties to trick the CA into mis-issuing
1268 certs for impersonating your services. The only likely exception
1269 where a commercial CA might be desirable is if enabling the VNC
1270 websockets server and exposing it directly to remote browser clients.
1271 In such a case it might be useful to use a commercial CA to avoid
1272 needing to install custom CA certs in the web browsers.
1274 The recommendation is for the server to keep its certificates in either
1275 @code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
1279 * tls_generate_server::
1280 * tls_generate_client::
1284 @node tls_generate_ca
1285 @subsection Setup the Certificate Authority
1287 This step only needs to be performed once per organization / organizational
1288 unit. First the CA needs a private key. This key must be kept VERY secret
1289 and secure. If this key is compromised the entire trust chain of the certificates
1290 issued with it is lost.
1293 # certtool --generate-privkey > ca-key.pem
1296 To generate a self-signed certificate requires one core piece of information,
1297 the name of the organization. A template file @code{ca.info} should be
1298 populated with the desired data to avoid having to deal with interactive
1299 prompts from certtool:
1301 # cat > ca.info <<EOF
1302 cn = Name of your organization
1306 # certtool --generate-self-signed \
1307 --load-privkey ca-key.pem
1308 --template ca.info \
1309 --outfile ca-cert.pem
1312 The @code{ca} keyword in the template sets the v3 basic constraints extension
1313 to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1314 the key usage extension to indicate this will be used for signing other keys.
1315 The generated @code{ca-cert.pem} file should be copied to all servers and
1316 clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1317 must not be disclosed/copied anywhere except the host responsible for issuing
1320 @node tls_generate_server
1321 @subsection Issuing server certificates
1323 Each server (or host) needs to be issued with a key and certificate. When connecting
1324 the certificate is sent to the client which validates it against the CA certificate.
1325 The core pieces of information for a server certificate are the hostnames and/or IP
1326 addresses that will be used by clients when connecting. The hostname / IP address
1327 that the client specifies when connecting will be validated against the hostname(s)
1328 and IP address(es) recorded in the server certificate, and if no match is found
1329 the client will close the connection.
1331 Thus it is recommended that the server certificate include both the fully qualified
1332 and unqualified hostnames. If the server will have permanently assigned IP address(es),
1333 and clients are likely to use them when connecting, they may also be included in the
1334 certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1335 only included 1 hostname in the @code{CN} field, however, usage of this field for
1336 validation is now deprecated. Instead modern TLS clients will validate against the
1337 Subject Alt Name extension data, which allows for multiple entries. In the future
1338 usage of the @code{CN} field may be discontinued entirely, so providing SAN
1339 extension data is strongly recommended.
1341 On the host holding the CA, create template files containing the information
1342 for each server, and use it to issue server certificates.
1345 # cat > server-hostNNN.info <<EOF
1346 organization = Name of your organization
1347 cn = hostNNN.foo.example.com
1349 dns_name = hostNNN.foo.example.com
1350 ip_address = 10.0.1.87
1351 ip_address = 192.8.0.92
1352 ip_address = 2620:0:cafe::87
1353 ip_address = 2001:24::92
1358 # certtool --generate-privkey > server-hostNNN-key.pem
1359 # certtool --generate-certificate \
1360 --load-ca-certificate ca-cert.pem \
1361 --load-ca-privkey ca-key.pem \
1362 --load-privkey server-hostNNN-key.pem \
1363 --template server-hostNNN.info \
1364 --outfile server-hostNNN-cert.pem
1367 The @code{dns_name} and @code{ip_address} fields in the template are setting
1368 the subject alt name extension data. The @code{tls_www_server} keyword is the
1369 key purpose extension to indicate this certificate is intended for usage in
1370 a web server. Although QEMU network services are not in fact HTTP servers
1371 (except for VNC websockets), setting this key purpose is still recommended.
1372 The @code{encryption_key} and @code{signing_key} keyword is the key usage
1373 extension to indicate this certificate is intended for usage in the data
1376 The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1377 should now be securely copied to the server for which they were generated,
1378 and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1379 to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1380 file is security sensitive and should be kept protected with file mode 0600
1381 to prevent disclosure.
1383 @node tls_generate_client
1384 @subsection Issuing client certificates
1386 The QEMU x509 TLS credential setup defaults to enabling client verification
1387 using certificates, providing a simple authentication mechanism. If this
1388 default is used, each client also needs to be issued a certificate. The client
1389 certificate contains enough metadata to uniquely identify the client with the
1390 scope of the certificate authority. The client certificate would typically
1391 include fields for organization, state, city, building, etc.
1393 Once again on the host holding the CA, create template files containing the
1394 information for each client, and use it to issue client certificates.
1398 # cat > client-hostNNN.info <<EOF
1401 locality = City Of London
1402 organization = Name of your organization
1403 cn = hostNNN.foo.example.com
1408 # certtool --generate-privkey > client-hostNNN-key.pem
1409 # certtool --generate-certificate \
1410 --load-ca-certificate ca-cert.pem \
1411 --load-ca-privkey ca-key.pem \
1412 --load-privkey client-hostNNN-key.pem \
1413 --template client-hostNNN.info \
1414 --outfile client-hostNNN-cert.pem
1417 The subject alt name extension data is not required for clients, so the
1418 the @code{dns_name} and @code{ip_address} fields are not included.
1419 The @code{tls_www_client} keyword is the key purpose extension to indicate
1420 this certificate is intended for usage in a web client. Although QEMU
1421 network clients are not in fact HTTP clients, setting this key purpose is
1422 still recommended. The @code{encryption_key} and @code{signing_key} keyword
1423 is the key usage extension to indicate this certificate is intended for
1424 usage in the data session.
1426 The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1427 should now be securely copied to the client for which they were generated,
1428 and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1429 to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1430 file is security sensitive and should be kept protected with file mode 0600
1431 to prevent disclosure.
1433 If a single host is going to be using TLS in both a client and server
1434 role, it is possible to create a single certificate to cover both roles.
1435 This would be quite common for the migration and NBD services, where a
1436 QEMU process will be started by accepting a TLS protected incoming migration,
1437 and later itself be migrated out to another host. To generate a single
1438 certificate, simply include the template data from both the client and server
1439 instructions in one.
1442 # cat > both-hostNNN.info <<EOF
1445 locality = City Of London
1446 organization = Name of your organization
1447 cn = hostNNN.foo.example.com
1449 dns_name = hostNNN.foo.example.com
1450 ip_address = 10.0.1.87
1451 ip_address = 192.8.0.92
1452 ip_address = 2620:0:cafe::87
1453 ip_address = 2001:24::92
1459 # certtool --generate-privkey > both-hostNNN-key.pem
1460 # certtool --generate-certificate \
1461 --load-ca-certificate ca-cert.pem \
1462 --load-ca-privkey ca-key.pem \
1463 --load-privkey both-hostNNN-key.pem \
1464 --template both-hostNNN.info \
1465 --outfile both-hostNNN-cert.pem
1468 When copying the PEM files to the target host, save them twice,
1469 once as @code{server-cert.pem} and @code{server-key.pem}, and
1470 again as @code{client-cert.pem} and @code{client-key.pem}.
1472 @node tls_creds_setup
1473 @subsection TLS x509 credential configuration
1475 QEMU has a standard mechanism for loading x509 credentials that will be
1476 used for network services and clients. It requires specifying the
1477 @code{tls-creds-x509} class name to the @code{--object} command line
1478 argument for the system emulators. Each set of credentials loaded should
1479 be given a unique string identifier via the @code{id} parameter. A single
1480 set of TLS credentials can be used for multiple network backends, so VNC,
1481 migration, NBD, character devices can all share the same credentials. Note,
1482 however, that credentials for use in a client endpoint must be loaded
1483 separately from those used in a server endpoint.
1485 When specifying the object, the @code{dir} parameters specifies which
1486 directory contains the credential files. This directory is expected to
1487 contain files with the names mentioned previously, @code{ca-cert.pem},
1488 @code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1489 and @code{client-cert.pem} as appropriate. It is also possible to
1490 include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1491 @code{dh-params.pem}, which can be created using the
1492 @code{certtool --generate-dh-params} command. If omitted, QEMU will
1493 dynamically generate DH parameters when loading the credentials.
1495 The @code{endpoint} parameter indicates whether the credentials will
1496 be used for a network client or server, and determines which PEM
1499 The @code{verify} parameter determines whether x509 certificate
1500 validation should be performed. This defaults to enabled, meaning
1501 clients will always validate the server hostname against the
1502 certificate subject alt name fields and/or CN field. It also
1503 means that servers will request that clients provide a certificate
1504 and validate them. Verification should never be turned off for
1505 client endpoints, however, it may be turned off for server endpoints
1506 if an alternative mechanism is used to authenticate clients. For
1507 example, the VNC server can use SASL to authenticate clients
1510 To load server credentials with client certificate validation
1514 $QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
1517 while to load client credentials use
1520 $QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
1523 Network services which support TLS will all have a @code{tls-creds}
1524 parameter which expects the ID of the TLS credentials object. For
1528 $QEMU -vnc 0.0.0.0:0,tls-creds=tls0
1532 @subsection TLS Pre-Shared Keys (PSK)
1534 Instead of using certificates, you may also use TLS Pre-Shared Keys
1535 (TLS-PSK). This can be simpler to set up than certificates but is
1538 Use the GnuTLS @code{psktool} program to generate a @code{keys.psk}
1539 file containing one or more usernames and random keys:
1542 mkdir -m 0700 /tmp/keys
1543 psktool -u rich -p /tmp/keys/keys.psk
1546 TLS-enabled servers such as qemu-nbd can use this directory like so:
1551 --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
1556 When connecting from a qemu-based client you must specify the
1557 directory containing @code{keys.psk} and an optional @var{username}
1558 (defaults to ``qemu''):
1562 --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
1564 file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/
1570 QEMU has a primitive support to work with gdb, so that you can do
1571 'Ctrl-C' while the virtual machine is running and inspect its state.
1573 In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1576 qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1577 -append "root=/dev/hda"
1578 Connected to host network interface: tun0
1579 Waiting gdb connection on port 1234
1582 Then launch gdb on the 'vmlinux' executable:
1587 In gdb, connect to QEMU:
1589 (gdb) target remote localhost:1234
1592 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1597 Here are some useful tips in order to use gdb on system code:
1601 Use @code{info reg} to display all the CPU registers.
1603 Use @code{x/10i $eip} to display the code at the PC position.
1605 Use @code{set architecture i8086} to dump 16 bit code. Then use
1606 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1609 Advanced debugging options:
1611 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1613 @item maintenance packet qqemu.sstepbits
1615 This will display the MASK bits used to control the single stepping IE:
1617 (gdb) maintenance packet qqemu.sstepbits
1618 sending: "qqemu.sstepbits"
1619 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1621 @item maintenance packet qqemu.sstep
1623 This will display the current value of the mask used when single stepping IE:
1625 (gdb) maintenance packet qqemu.sstep
1626 sending: "qqemu.sstep"
1629 @item maintenance packet Qqemu.sstep=HEX_VALUE
1631 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1633 (gdb) maintenance packet Qqemu.sstep=0x5
1634 sending: "qemu.sstep=0x5"
1639 @node pcsys_os_specific
1640 @section Target OS specific information
1644 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1645 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1646 color depth in the guest and the host OS.
1648 When using a 2.6 guest Linux kernel, you should add the option
1649 @code{clock=pit} on the kernel command line because the 2.6 Linux
1650 kernels make very strict real time clock checks by default that QEMU
1651 cannot simulate exactly.
1653 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1654 not activated because QEMU is slower with this patch. The QEMU
1655 Accelerator Module is also much slower in this case. Earlier Fedora
1656 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1657 patch by default. Newer kernels don't have it.
1661 If you have a slow host, using Windows 95 is better as it gives the
1662 best speed. Windows 2000 is also a good choice.
1664 @subsubsection SVGA graphic modes support
1666 QEMU emulates a Cirrus Logic GD5446 Video
1667 card. All Windows versions starting from Windows 95 should recognize
1668 and use this graphic card. For optimal performances, use 16 bit color
1669 depth in the guest and the host OS.
1671 If you are using Windows XP as guest OS and if you want to use high
1672 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1673 1280x1024x16), then you should use the VESA VBE virtual graphic card
1674 (option @option{-std-vga}).
1676 @subsubsection CPU usage reduction
1678 Windows 9x does not correctly use the CPU HLT
1679 instruction. The result is that it takes host CPU cycles even when
1680 idle. You can install the utility from
1681 @url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
1682 to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1684 @subsubsection Windows 2000 disk full problem
1686 Windows 2000 has a bug which gives a disk full problem during its
1687 installation. When installing it, use the @option{-win2k-hack} QEMU
1688 option to enable a specific workaround. After Windows 2000 is
1689 installed, you no longer need this option (this option slows down the
1692 @subsubsection Windows 2000 shutdown
1694 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1695 can. It comes from the fact that Windows 2000 does not automatically
1696 use the APM driver provided by the BIOS.
1698 In order to correct that, do the following (thanks to Struan
1699 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1700 Add/Troubleshoot a device => Add a new device & Next => No, select the
1701 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1702 (again) a few times. Now the driver is installed and Windows 2000 now
1703 correctly instructs QEMU to shutdown at the appropriate moment.
1705 @subsubsection Share a directory between Unix and Windows
1707 See @ref{sec_invocation} about the help of the option
1708 @option{'-netdev user,smb=...'}.
1710 @subsubsection Windows XP security problem
1712 Some releases of Windows XP install correctly but give a security
1715 A problem is preventing Windows from accurately checking the
1716 license for this computer. Error code: 0x800703e6.
1719 The workaround is to install a service pack for XP after a boot in safe
1720 mode. Then reboot, and the problem should go away. Since there is no
1721 network while in safe mode, its recommended to download the full
1722 installation of SP1 or SP2 and transfer that via an ISO or using the
1723 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1725 @subsection MS-DOS and FreeDOS
1727 @subsubsection CPU usage reduction
1729 DOS does not correctly use the CPU HLT instruction. The result is that
1730 it takes host CPU cycles even when idle. You can install the utility from
1731 @url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
1732 to solve this problem.
1734 @node QEMU System emulator for non PC targets
1735 @chapter QEMU System emulator for non PC targets
1737 QEMU is a generic emulator and it emulates many non PC
1738 machines. Most of the options are similar to the PC emulator. The
1739 differences are mentioned in the following sections.
1742 * PowerPC System emulator::
1743 * Sparc32 System emulator::
1744 * Sparc64 System emulator::
1745 * MIPS System emulator::
1746 * ARM System emulator::
1747 * ColdFire System emulator::
1748 * Cris System emulator::
1749 * Microblaze System emulator::
1750 * SH4 System emulator::
1751 * Xtensa System emulator::
1754 @node PowerPC System emulator
1755 @section PowerPC System emulator
1756 @cindex system emulation (PowerPC)
1758 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1759 or PowerMac PowerPC system.
1761 QEMU emulates the following PowerMac peripherals:
1765 UniNorth or Grackle PCI Bridge
1767 PCI VGA compatible card with VESA Bochs Extensions
1769 2 PMAC IDE interfaces with hard disk and CD-ROM support
1775 VIA-CUDA with ADB keyboard and mouse.
1778 QEMU emulates the following PREP peripherals:
1784 PCI VGA compatible card with VESA Bochs Extensions
1786 2 IDE interfaces with hard disk and CD-ROM support
1790 NE2000 network adapters
1794 PREP Non Volatile RAM
1796 PC compatible keyboard and mouse.
1799 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1800 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1802 Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
1803 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1804 v2) portable firmware implementation. The goal is to implement a 100%
1805 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1807 @c man begin OPTIONS
1809 The following options are specific to the PowerPC emulation:
1813 @item -g @var{W}x@var{H}[x@var{DEPTH}]
1815 Set the initial VGA graphic mode. The default is 800x600x32.
1817 @item -prom-env @var{string}
1819 Set OpenBIOS variables in NVRAM, for example:
1822 qemu-system-ppc -prom-env 'auto-boot?=false' \
1823 -prom-env 'boot-device=hd:2,\yaboot' \
1824 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1827 These variables are not used by Open Hack'Ware.
1834 More information is available at
1835 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1837 @node Sparc32 System emulator
1838 @section Sparc32 System emulator
1839 @cindex system emulation (Sparc32)
1841 Use the executable @file{qemu-system-sparc} to simulate the following
1842 Sun4m architecture machines:
1857 SPARCstation Voyager
1864 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1865 but Linux limits the number of usable CPUs to 4.
1867 QEMU emulates the following sun4m peripherals:
1873 TCX or cgthree Frame buffer
1875 Lance (Am7990) Ethernet
1877 Non Volatile RAM M48T02/M48T08
1879 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1880 and power/reset logic
1882 ESP SCSI controller with hard disk and CD-ROM support
1884 Floppy drive (not on SS-600MP)
1886 CS4231 sound device (only on SS-5, not working yet)
1889 The number of peripherals is fixed in the architecture. Maximum
1890 memory size depends on the machine type, for SS-5 it is 256MB and for
1893 Since version 0.8.2, QEMU uses OpenBIOS
1894 @url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1895 firmware implementation. The goal is to implement a 100% IEEE
1896 1275-1994 (referred to as Open Firmware) compliant firmware.
1898 A sample Linux 2.6 series kernel and ram disk image are available on
1899 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1900 most kernel versions work. Please note that currently older Solaris kernels
1901 don't work probably due to interface issues between OpenBIOS and
1904 @c man begin OPTIONS
1906 The following options are specific to the Sparc32 emulation:
1910 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
1912 Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1913 option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1914 of 1152x900x8 for people who wish to use OBP.
1916 @item -prom-env @var{string}
1918 Set OpenBIOS variables in NVRAM, for example:
1921 qemu-system-sparc -prom-env 'auto-boot?=false' \
1922 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1925 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
1927 Set the emulated machine type. Default is SS-5.
1933 @node Sparc64 System emulator
1934 @section Sparc64 System emulator
1935 @cindex system emulation (Sparc64)
1937 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1938 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1939 Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1940 able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
1941 Sun4v emulator is still a work in progress.
1943 The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1944 of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1945 and is able to boot the disk.s10hw2 Solaris image.
1947 qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1949 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1953 QEMU emulates the following peripherals:
1957 UltraSparc IIi APB PCI Bridge
1959 PCI VGA compatible card with VESA Bochs Extensions
1961 PS/2 mouse and keyboard
1963 Non Volatile RAM M48T59
1965 PC-compatible serial ports
1967 2 PCI IDE interfaces with hard disk and CD-ROM support
1972 @c man begin OPTIONS
1974 The following options are specific to the Sparc64 emulation:
1978 @item -prom-env @var{string}
1980 Set OpenBIOS variables in NVRAM, for example:
1983 qemu-system-sparc64 -prom-env 'auto-boot?=false'
1986 @item -M [sun4u|sun4v|niagara]
1988 Set the emulated machine type. The default is sun4u.
1994 @node MIPS System emulator
1995 @section MIPS System emulator
1996 @cindex system emulation (MIPS)
1999 * nanoMIPS System emulator ::
2002 Four executables cover simulation of 32 and 64-bit MIPS systems in
2003 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2004 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2005 Five different machine types are emulated:
2009 A generic ISA PC-like machine "mips"
2011 The MIPS Malta prototype board "malta"
2013 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2015 MIPS emulator pseudo board "mipssim"
2017 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2020 The generic emulation is supported by Debian 'Etch' and is able to
2021 install Debian into a virtual disk image. The following devices are
2026 A range of MIPS CPUs, default is the 24Kf
2028 PC style serial port
2035 The Malta emulation supports the following devices:
2039 Core board with MIPS 24Kf CPU and Galileo system controller
2041 PIIX4 PCI/USB/SMbus controller
2043 The Multi-I/O chip's serial device
2045 PCI network cards (PCnet32 and others)
2047 Malta FPGA serial device
2049 Cirrus (default) or any other PCI VGA graphics card
2052 The ACER Pica emulation supports:
2058 PC-style IRQ and DMA controllers
2065 The mipssim pseudo board emulation provides an environment similar
2066 to what the proprietary MIPS emulator uses for running Linux.
2071 A range of MIPS CPUs, default is the 24Kf
2073 PC style serial port
2075 MIPSnet network emulation
2078 The MIPS Magnum R4000 emulation supports:
2084 PC-style IRQ controller
2093 @node nanoMIPS System emulator
2094 @subsection nanoMIPS System emulator
2095 @cindex system emulation (nanoMIPS)
2097 Executable @file{qemu-system-mipsel} also covers simulation of
2098 32-bit nanoMIPS system in little endian mode:
2105 Example of @file{qemu-system-mipsel} usage for nanoMIPS is shown below:
2107 Download @code{<disk_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/buildroot/index.html}.
2109 Download @code{<kernel_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/kernels/v4.15.18-432-gb2eb9a8b07a1-20180627102142/index.html}.
2111 Start system emulation of Malta board with nanoMIPS I7200 CPU:
2113 qemu-system-mipsel -cpu I7200 -kernel @code{<kernel_image_file>} \
2114 -M malta -serial stdio -m @code{<memory_size>} -hda @code{<disk_image_file>} \
2115 -append "mem=256m@@0x0 rw console=ttyS0 vga=cirrus vesa=0x111 root=/dev/sda"
2119 @node ARM System emulator
2120 @section ARM System emulator
2121 @cindex system emulation (ARM)
2123 Use the executable @file{qemu-system-arm} to simulate a ARM
2124 machine. The ARM Integrator/CP board is emulated with the following
2129 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2133 SMC 91c111 Ethernet adapter
2135 PL110 LCD controller
2137 PL050 KMI with PS/2 keyboard and mouse.
2139 PL181 MultiMedia Card Interface with SD card.
2142 The ARM Versatile baseboard is emulated with the following devices:
2146 ARM926E, ARM1136 or Cortex-A8 CPU
2148 PL190 Vectored Interrupt Controller
2152 SMC 91c111 Ethernet adapter
2154 PL110 LCD controller
2156 PL050 KMI with PS/2 keyboard and mouse.
2158 PCI host bridge. Note the emulated PCI bridge only provides access to
2159 PCI memory space. It does not provide access to PCI IO space.
2160 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2161 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2162 mapped control registers.
2164 PCI OHCI USB controller.
2166 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2168 PL181 MultiMedia Card Interface with SD card.
2171 Several variants of the ARM RealView baseboard are emulated,
2172 including the EB, PB-A8 and PBX-A9. Due to interactions with the
2173 bootloader, only certain Linux kernel configurations work out
2174 of the box on these boards.
2176 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2177 enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2178 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2179 disabled and expect 1024M RAM.
2181 The following devices are emulated:
2185 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2187 ARM AMBA Generic/Distributed Interrupt Controller
2191 SMC 91c111 or SMSC LAN9118 Ethernet adapter
2193 PL110 LCD controller
2195 PL050 KMI with PS/2 keyboard and mouse
2199 PCI OHCI USB controller
2201 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2203 PL181 MultiMedia Card Interface with SD card.
2206 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2207 and "Terrier") emulation includes the following peripherals:
2211 Intel PXA270 System-on-chip (ARM V5TE core)
2215 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2217 On-chip OHCI USB controller
2219 On-chip LCD controller
2221 On-chip Real Time Clock
2223 TI ADS7846 touchscreen controller on SSP bus
2225 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2227 GPIO-connected keyboard controller and LEDs
2229 Secure Digital card connected to PXA MMC/SD host
2233 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2236 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2241 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2243 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2245 On-chip LCD controller
2247 On-chip Real Time Clock
2249 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2250 CODEC, connected through MicroWire and I@math{^2}S busses
2252 GPIO-connected matrix keypad
2254 Secure Digital card connected to OMAP MMC/SD host
2259 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2260 emulation supports the following elements:
2264 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2266 RAM and non-volatile OneNAND Flash memories
2268 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2269 display controller and a LS041y3 MIPI DBI-C controller
2271 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2272 driven through SPI bus
2274 National Semiconductor LM8323-controlled qwerty keyboard driven
2275 through I@math{^2}C bus
2277 Secure Digital card connected to OMAP MMC/SD host
2279 Three OMAP on-chip UARTs and on-chip STI debugging console
2281 A Bluetooth(R) transceiver and HCI connected to an UART
2283 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2284 TUSB6010 chip - only USB host mode is supported
2286 TI TMP105 temperature sensor driven through I@math{^2}C bus
2288 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2290 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2294 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2301 64k Flash and 8k SRAM.
2303 Timers, UARTs, ADC and I@math{^2}C interface.
2305 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2308 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2315 256k Flash and 64k SRAM.
2317 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2319 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2322 The Freecom MusicPal internet radio emulation includes the following
2327 Marvell MV88W8618 ARM core.
2329 32 MB RAM, 256 KB SRAM, 8 MB flash.
2333 MV88W8xx8 Ethernet controller
2335 MV88W8618 audio controller, WM8750 CODEC and mixer
2337 128×64 display with brightness control
2339 2 buttons, 2 navigation wheels with button function
2342 The Siemens SX1 models v1 and v2 (default) basic emulation.
2343 The emulation includes the following elements:
2347 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2349 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2351 1 Flash of 16MB and 1 Flash of 8MB
2355 On-chip LCD controller
2357 On-chip Real Time Clock
2359 Secure Digital card connected to OMAP MMC/SD host
2364 A Linux 2.6 test image is available on the QEMU web site. More
2365 information is available in the QEMU mailing-list archive.
2367 @c man begin OPTIONS
2369 The following options are specific to the ARM emulation:
2374 Enable semihosting syscall emulation.
2376 On ARM this implements the "Angel" interface.
2378 Note that this allows guest direct access to the host filesystem,
2379 so should only be used with trusted guest OS.
2385 @node ColdFire System emulator
2386 @section ColdFire System emulator
2387 @cindex system emulation (ColdFire)
2388 @cindex system emulation (M68K)
2390 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2391 The emulator is able to boot a uClinux kernel.
2393 The M5208EVB emulation includes the following devices:
2397 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2399 Three Two on-chip UARTs.
2401 Fast Ethernet Controller (FEC)
2404 The AN5206 emulation includes the following devices:
2408 MCF5206 ColdFire V2 Microprocessor.
2413 @c man begin OPTIONS
2415 The following options are specific to the ColdFire emulation:
2420 Enable semihosting syscall emulation.
2422 On M68K this implements the "ColdFire GDB" interface used by libgloss.
2424 Note that this allows guest direct access to the host filesystem,
2425 so should only be used with trusted guest OS.
2431 @node Cris System emulator
2432 @section Cris System emulator
2433 @cindex system emulation (Cris)
2437 @node Microblaze System emulator
2438 @section Microblaze System emulator
2439 @cindex system emulation (Microblaze)
2443 @node SH4 System emulator
2444 @section SH4 System emulator
2445 @cindex system emulation (SH4)
2449 @node Xtensa System emulator
2450 @section Xtensa System emulator
2451 @cindex system emulation (Xtensa)
2453 Two executables cover simulation of both Xtensa endian options,
2454 @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2455 Two different machine types are emulated:
2459 Xtensa emulator pseudo board "sim"
2461 Avnet LX60/LX110/LX200 board
2464 The sim pseudo board emulation provides an environment similar
2465 to one provided by the proprietary Tensilica ISS.
2470 A range of Xtensa CPUs, default is the DC232B
2472 Console and filesystem access via semihosting calls
2475 The Avnet LX60/LX110/LX200 emulation supports:
2479 A range of Xtensa CPUs, default is the DC232B
2483 OpenCores 10/100 Mbps Ethernet MAC
2486 @c man begin OPTIONS
2488 The following options are specific to the Xtensa emulation:
2493 Enable semihosting syscall emulation.
2495 Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2496 Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2498 Note that this allows guest direct access to the host filesystem,
2499 so should only be used with trusted guest OS.
2505 @node QEMU Guest Agent
2506 @chapter QEMU Guest Agent invocation
2508 @include qemu-ga.texi
2510 @node QEMU User space emulator
2511 @chapter QEMU User space emulator
2514 * Supported Operating Systems ::
2516 * Linux User space emulator::
2517 * BSD User space emulator ::
2520 @node Supported Operating Systems
2521 @section Supported Operating Systems
2523 The following OS are supported in user space emulation:
2527 Linux (referred as qemu-linux-user)
2529 BSD (referred as qemu-bsd-user)
2535 QEMU user space emulation has the following notable features:
2538 @item System call translation:
2539 QEMU includes a generic system call translator. This means that
2540 the parameters of the system calls can be converted to fix
2541 endianness and 32/64-bit mismatches between hosts and targets.
2542 IOCTLs can be converted too.
2544 @item POSIX signal handling:
2545 QEMU can redirect to the running program all signals coming from
2546 the host (such as @code{SIGALRM}), as well as synthesize signals from
2547 virtual CPU exceptions (for example @code{SIGFPE} when the program
2548 executes a division by zero).
2550 QEMU relies on the host kernel to emulate most signal system
2551 calls, for example to emulate the signal mask. On Linux, QEMU
2552 supports both normal and real-time signals.
2555 On Linux, QEMU can emulate the @code{clone} syscall and create a real
2556 host thread (with a separate virtual CPU) for each emulated thread.
2557 Note that not all targets currently emulate atomic operations correctly.
2558 x86 and ARM use a global lock in order to preserve their semantics.
2561 QEMU was conceived so that ultimately it can emulate itself. Although
2562 it is not very useful, it is an important test to show the power of the
2565 @node Linux User space emulator
2566 @section Linux User space emulator
2571 * Command line options::
2576 @subsection Quick Start
2578 In order to launch a Linux process, QEMU needs the process executable
2579 itself and all the target (x86) dynamic libraries used by it.
2583 @item On x86, you can just try to launch any process by using the native
2587 qemu-i386 -L / /bin/ls
2590 @code{-L /} tells that the x86 dynamic linker must be searched with a
2593 @item Since QEMU is also a linux process, you can launch QEMU with
2594 QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2597 qemu-i386 -L / qemu-i386 -L / /bin/ls
2600 @item On non x86 CPUs, you need first to download at least an x86 glibc
2601 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2602 @code{LD_LIBRARY_PATH} is not set:
2605 unset LD_LIBRARY_PATH
2608 Then you can launch the precompiled @file{ls} x86 executable:
2611 qemu-i386 tests/i386/ls
2613 You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2614 QEMU is automatically launched by the Linux kernel when you try to
2615 launch x86 executables. It requires the @code{binfmt_misc} module in the
2618 @item The x86 version of QEMU is also included. You can try weird things such as:
2620 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2621 /usr/local/qemu-i386/bin/ls-i386
2627 @subsection Wine launch
2631 @item Ensure that you have a working QEMU with the x86 glibc
2632 distribution (see previous section). In order to verify it, you must be
2636 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2639 @item Download the binary x86 Wine install
2640 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2642 @item Configure Wine on your account. Look at the provided script
2643 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2644 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2646 @item Then you can try the example @file{putty.exe}:
2649 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2650 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2655 @node Command line options
2656 @subsection Command line options
2659 @command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2666 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2668 Set the x86 stack size in bytes (default=524288)
2670 Select CPU model (-cpu help for list and additional feature selection)
2671 @item -E @var{var}=@var{value}
2672 Set environment @var{var} to @var{value}.
2674 Remove @var{var} from the environment.
2676 Offset guest address by the specified number of bytes. This is useful when
2677 the address region required by guest applications is reserved on the host.
2678 This option is currently only supported on some hosts.
2680 Pre-allocate a guest virtual address space of the given size (in bytes).
2681 "G", "M", and "k" suffixes may be used when specifying the size.
2688 Activate logging of the specified items (use '-d help' for a list of log items)
2690 Act as if the host page size was 'pagesize' bytes
2692 Wait gdb connection to port
2694 Run the emulation in single step mode.
2697 Environment variables:
2701 Print system calls and arguments similar to the 'strace' program
2702 (NOTE: the actual 'strace' program will not work because the user
2703 space emulator hasn't implemented ptrace). At the moment this is
2704 incomplete. All system calls that don't have a specific argument
2705 format are printed with information for six arguments. Many
2706 flag-style arguments don't have decoders and will show up as numbers.
2709 @node Other binaries
2710 @subsection Other binaries
2712 @cindex user mode (Alpha)
2713 @command{qemu-alpha} TODO.
2715 @cindex user mode (ARM)
2716 @command{qemu-armeb} TODO.
2718 @cindex user mode (ARM)
2719 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2720 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2721 configurations), and arm-uclinux bFLT format binaries.
2723 @cindex user mode (ColdFire)
2724 @cindex user mode (M68K)
2725 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2726 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2727 coldfire uClinux bFLT format binaries.
2729 The binary format is detected automatically.
2731 @cindex user mode (Cris)
2732 @command{qemu-cris} TODO.
2734 @cindex user mode (i386)
2735 @command{qemu-i386} TODO.
2736 @command{qemu-x86_64} TODO.
2738 @cindex user mode (Microblaze)
2739 @command{qemu-microblaze} TODO.
2741 @cindex user mode (MIPS)
2742 @command{qemu-mips} executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
2744 @command{qemu-mipsel} executes 32-bit little endian MIPS binaries (MIPS O32 ABI).
2746 @command{qemu-mips64} executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
2748 @command{qemu-mips64el} executes 64-bit little endian MIPS binaries (MIPS N64 ABI).
2750 @command{qemu-mipsn32} executes 32-bit big endian MIPS binaries (MIPS N32 ABI).
2752 @command{qemu-mipsn32el} executes 32-bit little endian MIPS binaries (MIPS N32 ABI).
2754 @cindex user mode (NiosII)
2755 @command{qemu-nios2} TODO.
2757 @cindex user mode (PowerPC)
2758 @command{qemu-ppc64abi32} TODO.
2759 @command{qemu-ppc64} TODO.
2760 @command{qemu-ppc} TODO.
2762 @cindex user mode (SH4)
2763 @command{qemu-sh4eb} TODO.
2764 @command{qemu-sh4} TODO.
2766 @cindex user mode (SPARC)
2767 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2769 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2770 (Sparc64 CPU, 32 bit ABI).
2772 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2773 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2775 @node BSD User space emulator
2776 @section BSD User space emulator
2781 * BSD Command line options::
2785 @subsection BSD Status
2789 target Sparc64 on Sparc64: Some trivial programs work.
2792 @node BSD Quick Start
2793 @subsection Quick Start
2795 In order to launch a BSD process, QEMU needs the process executable
2796 itself and all the target dynamic libraries used by it.
2800 @item On Sparc64, you can just try to launch any process by using the native
2804 qemu-sparc64 /bin/ls
2809 @node BSD Command line options
2810 @subsection Command line options
2813 @command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2820 Set the library root path (default=/)
2822 Set the stack size in bytes (default=524288)
2823 @item -ignore-environment
2824 Start with an empty environment. Without this option,
2825 the initial environment is a copy of the caller's environment.
2826 @item -E @var{var}=@var{value}
2827 Set environment @var{var} to @var{value}.
2829 Remove @var{var} from the environment.
2831 Set the type of the emulated BSD Operating system. Valid values are
2832 FreeBSD, NetBSD and OpenBSD (default).
2839 Activate logging of the specified items (use '-d help' for a list of log items)
2841 Act as if the host page size was 'pagesize' bytes
2843 Run the emulation in single step mode.
2846 @node System requirements
2847 @chapter System requirements
2849 @section KVM kernel module
2851 On x86_64 hosts, the default set of CPU features enabled by the KVM accelerator
2852 require the host to be running Linux v4.5 or newer.
2854 The OpteronG[345] CPU models require KVM support for RDTSCP, which was
2855 added with Linux 4.5 which is supported by the major distros. And even
2856 if RHEL7 has kernel 3.10, KVM there has the required functionality there
2857 to make it close to a 4.5 or newer kernel.
2859 @include qemu-tech.texi
2861 @include qemu-deprecated.texi
2863 @node Supported build platforms
2864 @appendix Supported build platforms
2866 QEMU aims to support building and executing on multiple host OS platforms.
2867 This appendix outlines which platforms are the major build targets. These
2868 platforms are used as the basis for deciding upon the minimum required
2869 versions of 3rd party software QEMU depends on. The supported platforms
2870 are the targets for automated testing performed by the project when patches
2871 are submitted for review, and tested before and after merge.
2873 If a platform is not listed here, it does not imply that QEMU won't work.
2874 If an unlisted platform has comparable software versions to a listed platform,
2875 there is every expectation that it will work. Bug reports are welcome for
2876 problems encountered on unlisted platforms unless they are clearly older
2877 vintage than what is described here.
2879 Note that when considering software versions shipped in distros as support
2880 targets, QEMU considers only the version number, and assumes the features in
2881 that distro match the upstream release with the same version. In other words,
2882 if a distro backports extra features to the software in their distro, QEMU
2883 upstream code will not add explicit support for those backports, unless the
2884 feature is auto-detectable in a manner that works for the upstream releases
2887 The Repology site @url{https://repology.org} is a useful resource to identify
2888 currently shipped versions of software in various operating systems, though
2889 it does not cover all distros listed below.
2893 For distributions with frequent, short-lifetime releases, the project will
2894 aim to support all versions that are not end of life by their respective
2895 vendors. For the purposes of identifying supported software versions, the
2896 project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
2897 lifetime distros will be assumed to ship similar software versions.
2899 For distributions with long-lifetime releases, the project will aim to support
2900 the most recent major version at all times. Support for the previous major
2901 version will be dropped 2 years after the new major version is released. For
2902 the purposes of identifying supported software versions, the project will look
2903 at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
2904 be assumed to ship similar software versions.
2908 The project supports building with current versions of the MinGW toolchain,
2913 The project supports building with the two most recent versions of macOS, with
2914 the current homebrew package set available.
2918 The project aims to support the all the versions which are not end of life.
2922 The project aims to support the most recent major version at all times. Support
2923 for the previous major version will be dropped 2 years after the new major
2924 version is released.
2928 The project aims to support the all the versions which are not end of life.
2933 QEMU is a trademark of Fabrice Bellard.
2935 QEMU is released under the
2936 @url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2937 version 2. Parts of QEMU have specific licenses, see file
2938 @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
2952 @section Concept Index
2953 This is the main index. Should we combine all keywords in one index? TODO
2956 @node Function Index
2957 @section Function Index
2958 This index could be used for command line options and monitor functions.
2961 @node Keystroke Index
2962 @section Keystroke Index
2964 This is a list of all keystrokes which have a special function
2965 in system emulation.
2970 @section Program Index
2973 @node Data Type Index
2974 @section Data Type Index
2976 This index could be used for qdev device names and options.
2980 @node Variable Index
2981 @section Variable Index