2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-common.h"
26 #include "block/block_int.h"
27 #include "block/qcow2.h"
28 #include "qemu/range.h"
30 static int64_t alloc_clusters_noref(BlockDriverState
*bs
, uint64_t size
);
31 static int QEMU_WARN_UNUSED_RESULT
update_refcount(BlockDriverState
*bs
,
32 int64_t offset
, int64_t length
, uint64_t addend
,
33 bool decrease
, enum qcow2_discard_type type
);
35 static uint64_t get_refcount_ro0(const void *refcount_array
, uint64_t index
);
36 static uint64_t get_refcount_ro1(const void *refcount_array
, uint64_t index
);
37 static uint64_t get_refcount_ro2(const void *refcount_array
, uint64_t index
);
38 static uint64_t get_refcount_ro3(const void *refcount_array
, uint64_t index
);
39 static uint64_t get_refcount_ro4(const void *refcount_array
, uint64_t index
);
40 static uint64_t get_refcount_ro5(const void *refcount_array
, uint64_t index
);
41 static uint64_t get_refcount_ro6(const void *refcount_array
, uint64_t index
);
43 static void set_refcount_ro0(void *refcount_array
, uint64_t index
,
45 static void set_refcount_ro1(void *refcount_array
, uint64_t index
,
47 static void set_refcount_ro2(void *refcount_array
, uint64_t index
,
49 static void set_refcount_ro3(void *refcount_array
, uint64_t index
,
51 static void set_refcount_ro4(void *refcount_array
, uint64_t index
,
53 static void set_refcount_ro5(void *refcount_array
, uint64_t index
,
55 static void set_refcount_ro6(void *refcount_array
, uint64_t index
,
59 static Qcow2GetRefcountFunc
*const get_refcount_funcs
[] = {
69 static Qcow2SetRefcountFunc
*const set_refcount_funcs
[] = {
80 /*********************************************************/
81 /* refcount handling */
83 int qcow2_refcount_init(BlockDriverState
*bs
)
85 BDRVQcowState
*s
= bs
->opaque
;
86 unsigned int refcount_table_size2
, i
;
89 assert(s
->refcount_order
>= 0 && s
->refcount_order
<= 6);
91 s
->get_refcount
= get_refcount_funcs
[s
->refcount_order
];
92 s
->set_refcount
= set_refcount_funcs
[s
->refcount_order
];
94 assert(s
->refcount_table_size
<= INT_MAX
/ sizeof(uint64_t));
95 refcount_table_size2
= s
->refcount_table_size
* sizeof(uint64_t);
96 s
->refcount_table
= g_try_malloc(refcount_table_size2
);
98 if (s
->refcount_table_size
> 0) {
99 if (s
->refcount_table
== NULL
) {
103 BLKDBG_EVENT(bs
->file
, BLKDBG_REFTABLE_LOAD
);
104 ret
= bdrv_pread(bs
->file
, s
->refcount_table_offset
,
105 s
->refcount_table
, refcount_table_size2
);
109 for(i
= 0; i
< s
->refcount_table_size
; i
++)
110 be64_to_cpus(&s
->refcount_table
[i
]);
117 void qcow2_refcount_close(BlockDriverState
*bs
)
119 BDRVQcowState
*s
= bs
->opaque
;
120 g_free(s
->refcount_table
);
124 static uint64_t get_refcount_ro0(const void *refcount_array
, uint64_t index
)
126 return (((const uint8_t *)refcount_array
)[index
/ 8] >> (index
% 8)) & 0x1;
129 static void set_refcount_ro0(void *refcount_array
, uint64_t index
,
132 assert(!(value
>> 1));
133 ((uint8_t *)refcount_array
)[index
/ 8] &= ~(0x1 << (index
% 8));
134 ((uint8_t *)refcount_array
)[index
/ 8] |= value
<< (index
% 8);
137 static uint64_t get_refcount_ro1(const void *refcount_array
, uint64_t index
)
139 return (((const uint8_t *)refcount_array
)[index
/ 4] >> (2 * (index
% 4)))
143 static void set_refcount_ro1(void *refcount_array
, uint64_t index
,
146 assert(!(value
>> 2));
147 ((uint8_t *)refcount_array
)[index
/ 4] &= ~(0x3 << (2 * (index
% 4)));
148 ((uint8_t *)refcount_array
)[index
/ 4] |= value
<< (2 * (index
% 4));
151 static uint64_t get_refcount_ro2(const void *refcount_array
, uint64_t index
)
153 return (((const uint8_t *)refcount_array
)[index
/ 2] >> (4 * (index
% 2)))
157 static void set_refcount_ro2(void *refcount_array
, uint64_t index
,
160 assert(!(value
>> 4));
161 ((uint8_t *)refcount_array
)[index
/ 2] &= ~(0xf << (4 * (index
% 2)));
162 ((uint8_t *)refcount_array
)[index
/ 2] |= value
<< (4 * (index
% 2));
165 static uint64_t get_refcount_ro3(const void *refcount_array
, uint64_t index
)
167 return ((const uint8_t *)refcount_array
)[index
];
170 static void set_refcount_ro3(void *refcount_array
, uint64_t index
,
173 assert(!(value
>> 8));
174 ((uint8_t *)refcount_array
)[index
] = value
;
177 static uint64_t get_refcount_ro4(const void *refcount_array
, uint64_t index
)
179 return be16_to_cpu(((const uint16_t *)refcount_array
)[index
]);
182 static void set_refcount_ro4(void *refcount_array
, uint64_t index
,
185 assert(!(value
>> 16));
186 ((uint16_t *)refcount_array
)[index
] = cpu_to_be16(value
);
189 static uint64_t get_refcount_ro5(const void *refcount_array
, uint64_t index
)
191 return be32_to_cpu(((const uint32_t *)refcount_array
)[index
]);
194 static void set_refcount_ro5(void *refcount_array
, uint64_t index
,
197 assert(!(value
>> 32));
198 ((uint32_t *)refcount_array
)[index
] = cpu_to_be32(value
);
201 static uint64_t get_refcount_ro6(const void *refcount_array
, uint64_t index
)
203 return be64_to_cpu(((const uint64_t *)refcount_array
)[index
]);
206 static void set_refcount_ro6(void *refcount_array
, uint64_t index
,
209 ((uint64_t *)refcount_array
)[index
] = cpu_to_be64(value
);
213 static int load_refcount_block(BlockDriverState
*bs
,
214 int64_t refcount_block_offset
,
215 void **refcount_block
)
217 BDRVQcowState
*s
= bs
->opaque
;
220 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_LOAD
);
221 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refcount_block_offset
,
228 * Retrieves the refcount of the cluster given by its index and stores it in
229 * *refcount. Returns 0 on success and -errno on failure.
231 int qcow2_get_refcount(BlockDriverState
*bs
, int64_t cluster_index
,
234 BDRVQcowState
*s
= bs
->opaque
;
235 uint64_t refcount_table_index
, block_index
;
236 int64_t refcount_block_offset
;
238 void *refcount_block
;
240 refcount_table_index
= cluster_index
>> s
->refcount_block_bits
;
241 if (refcount_table_index
>= s
->refcount_table_size
) {
245 refcount_block_offset
=
246 s
->refcount_table
[refcount_table_index
] & REFT_OFFSET_MASK
;
247 if (!refcount_block_offset
) {
252 if (offset_into_cluster(s
, refcount_block_offset
)) {
253 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock offset %#" PRIx64
254 " unaligned (reftable index: %#" PRIx64
")",
255 refcount_block_offset
, refcount_table_index
);
259 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refcount_block_offset
,
265 block_index
= cluster_index
& (s
->refcount_block_size
- 1);
266 *refcount
= s
->get_refcount(refcount_block
, block_index
);
268 ret
= qcow2_cache_put(bs
, s
->refcount_block_cache
, &refcount_block
);
277 * Rounds the refcount table size up to avoid growing the table for each single
278 * refcount block that is allocated.
280 static unsigned int next_refcount_table_size(BDRVQcowState
*s
,
281 unsigned int min_size
)
283 unsigned int min_clusters
= (min_size
>> (s
->cluster_bits
- 3)) + 1;
284 unsigned int refcount_table_clusters
=
285 MAX(1, s
->refcount_table_size
>> (s
->cluster_bits
- 3));
287 while (min_clusters
> refcount_table_clusters
) {
288 refcount_table_clusters
= (refcount_table_clusters
* 3 + 1) / 2;
291 return refcount_table_clusters
<< (s
->cluster_bits
- 3);
295 /* Checks if two offsets are described by the same refcount block */
296 static int in_same_refcount_block(BDRVQcowState
*s
, uint64_t offset_a
,
299 uint64_t block_a
= offset_a
>> (s
->cluster_bits
+ s
->refcount_block_bits
);
300 uint64_t block_b
= offset_b
>> (s
->cluster_bits
+ s
->refcount_block_bits
);
302 return (block_a
== block_b
);
306 * Loads a refcount block. If it doesn't exist yet, it is allocated first
307 * (including growing the refcount table if needed).
309 * Returns 0 on success or -errno in error case
311 static int alloc_refcount_block(BlockDriverState
*bs
,
312 int64_t cluster_index
, void **refcount_block
)
314 BDRVQcowState
*s
= bs
->opaque
;
315 unsigned int refcount_table_index
;
318 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC
);
320 /* Find the refcount block for the given cluster */
321 refcount_table_index
= cluster_index
>> s
->refcount_block_bits
;
323 if (refcount_table_index
< s
->refcount_table_size
) {
325 uint64_t refcount_block_offset
=
326 s
->refcount_table
[refcount_table_index
] & REFT_OFFSET_MASK
;
328 /* If it's already there, we're done */
329 if (refcount_block_offset
) {
330 if (offset_into_cluster(s
, refcount_block_offset
)) {
331 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock offset %#"
332 PRIx64
" unaligned (reftable index: "
333 "%#x)", refcount_block_offset
,
334 refcount_table_index
);
338 return load_refcount_block(bs
, refcount_block_offset
,
344 * If we came here, we need to allocate something. Something is at least
345 * a cluster for the new refcount block. It may also include a new refcount
346 * table if the old refcount table is too small.
348 * Note that allocating clusters here needs some special care:
350 * - We can't use the normal qcow2_alloc_clusters(), it would try to
351 * increase the refcount and very likely we would end up with an endless
352 * recursion. Instead we must place the refcount blocks in a way that
353 * they can describe them themselves.
355 * - We need to consider that at this point we are inside update_refcounts
356 * and potentially doing an initial refcount increase. This means that
357 * some clusters have already been allocated by the caller, but their
358 * refcount isn't accurate yet. If we allocate clusters for metadata, we
359 * need to return -EAGAIN to signal the caller that it needs to restart
360 * the search for free clusters.
362 * - alloc_clusters_noref and qcow2_free_clusters may load a different
363 * refcount block into the cache
366 *refcount_block
= NULL
;
368 /* We write to the refcount table, so we might depend on L2 tables */
369 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
374 /* Allocate the refcount block itself and mark it as used */
375 int64_t new_block
= alloc_clusters_noref(bs
, s
->cluster_size
);
381 fprintf(stderr
, "qcow2: Allocate refcount block %d for %" PRIx64
383 refcount_table_index
, cluster_index
<< s
->cluster_bits
, new_block
);
386 if (in_same_refcount_block(s
, new_block
, cluster_index
<< s
->cluster_bits
)) {
387 /* Zero the new refcount block before updating it */
388 ret
= qcow2_cache_get_empty(bs
, s
->refcount_block_cache
, new_block
,
394 memset(*refcount_block
, 0, s
->cluster_size
);
396 /* The block describes itself, need to update the cache */
397 int block_index
= (new_block
>> s
->cluster_bits
) &
398 (s
->refcount_block_size
- 1);
399 s
->set_refcount(*refcount_block
, block_index
, 1);
401 /* Described somewhere else. This can recurse at most twice before we
402 * arrive at a block that describes itself. */
403 ret
= update_refcount(bs
, new_block
, s
->cluster_size
, 1, false,
404 QCOW2_DISCARD_NEVER
);
409 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
414 /* Initialize the new refcount block only after updating its refcount,
415 * update_refcount uses the refcount cache itself */
416 ret
= qcow2_cache_get_empty(bs
, s
->refcount_block_cache
, new_block
,
422 memset(*refcount_block
, 0, s
->cluster_size
);
425 /* Now the new refcount block needs to be written to disk */
426 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE
);
427 qcow2_cache_entry_mark_dirty(bs
, s
->refcount_block_cache
, *refcount_block
);
428 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
433 /* If the refcount table is big enough, just hook the block up there */
434 if (refcount_table_index
< s
->refcount_table_size
) {
435 uint64_t data64
= cpu_to_be64(new_block
);
436 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_HOOKUP
);
437 ret
= bdrv_pwrite_sync(bs
->file
,
438 s
->refcount_table_offset
+ refcount_table_index
* sizeof(uint64_t),
439 &data64
, sizeof(data64
));
444 s
->refcount_table
[refcount_table_index
] = new_block
;
446 /* The new refcount block may be where the caller intended to put its
447 * data, so let it restart the search. */
451 ret
= qcow2_cache_put(bs
, s
->refcount_block_cache
, refcount_block
);
457 * If we come here, we need to grow the refcount table. Again, a new
458 * refcount table needs some space and we can't simply allocate to avoid
461 * Therefore let's grab new refcount blocks at the end of the image, which
462 * will describe themselves and the new refcount table. This way we can
463 * reference them only in the new table and do the switch to the new
464 * refcount table at once without producing an inconsistent state in
467 BLKDBG_EVENT(bs
->file
, BLKDBG_REFTABLE_GROW
);
469 /* Calculate the number of refcount blocks needed so far; this will be the
470 * basis for calculating the index of the first cluster used for the
471 * self-describing refcount structures which we are about to create.
473 * Because we reached this point, there cannot be any refcount entries for
474 * cluster_index or higher indices yet. However, because new_block has been
475 * allocated to describe that cluster (and it will assume this role later
476 * on), we cannot use that index; also, new_block may actually have a higher
477 * cluster index than cluster_index, so it needs to be taken into account
478 * here (and 1 needs to be added to its value because that cluster is used).
480 uint64_t blocks_used
= DIV_ROUND_UP(MAX(cluster_index
+ 1,
481 (new_block
>> s
->cluster_bits
) + 1),
482 s
->refcount_block_size
);
484 if (blocks_used
> QCOW_MAX_REFTABLE_SIZE
/ sizeof(uint64_t)) {
488 /* And now we need at least one block more for the new metadata */
489 uint64_t table_size
= next_refcount_table_size(s
, blocks_used
+ 1);
490 uint64_t last_table_size
;
491 uint64_t blocks_clusters
;
493 uint64_t table_clusters
=
494 size_to_clusters(s
, table_size
* sizeof(uint64_t));
495 blocks_clusters
= 1 +
496 ((table_clusters
+ s
->refcount_block_size
- 1)
497 / s
->refcount_block_size
);
498 uint64_t meta_clusters
= table_clusters
+ blocks_clusters
;
500 last_table_size
= table_size
;
501 table_size
= next_refcount_table_size(s
, blocks_used
+
502 ((meta_clusters
+ s
->refcount_block_size
- 1)
503 / s
->refcount_block_size
));
505 } while (last_table_size
!= table_size
);
508 fprintf(stderr
, "qcow2: Grow refcount table %" PRId32
" => %" PRId64
"\n",
509 s
->refcount_table_size
, table_size
);
512 /* Create the new refcount table and blocks */
513 uint64_t meta_offset
= (blocks_used
* s
->refcount_block_size
) *
515 uint64_t table_offset
= meta_offset
+ blocks_clusters
* s
->cluster_size
;
516 uint64_t *new_table
= g_try_new0(uint64_t, table_size
);
517 void *new_blocks
= g_try_malloc0(blocks_clusters
* s
->cluster_size
);
519 assert(table_size
> 0 && blocks_clusters
> 0);
520 if (new_table
== NULL
|| new_blocks
== NULL
) {
525 /* Fill the new refcount table */
526 memcpy(new_table
, s
->refcount_table
,
527 s
->refcount_table_size
* sizeof(uint64_t));
528 new_table
[refcount_table_index
] = new_block
;
531 for (i
= 0; i
< blocks_clusters
; i
++) {
532 new_table
[blocks_used
+ i
] = meta_offset
+ (i
* s
->cluster_size
);
535 /* Fill the refcount blocks */
536 uint64_t table_clusters
= size_to_clusters(s
, table_size
* sizeof(uint64_t));
538 for (i
= 0; i
< table_clusters
+ blocks_clusters
; i
++) {
539 s
->set_refcount(new_blocks
, block
++, 1);
542 /* Write refcount blocks to disk */
543 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS
);
544 ret
= bdrv_pwrite_sync(bs
->file
, meta_offset
, new_blocks
,
545 blocks_clusters
* s
->cluster_size
);
552 /* Write refcount table to disk */
553 for(i
= 0; i
< table_size
; i
++) {
554 cpu_to_be64s(&new_table
[i
]);
557 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE
);
558 ret
= bdrv_pwrite_sync(bs
->file
, table_offset
, new_table
,
559 table_size
* sizeof(uint64_t));
564 for(i
= 0; i
< table_size
; i
++) {
565 be64_to_cpus(&new_table
[i
]);
568 /* Hook up the new refcount table in the qcow2 header */
570 cpu_to_be64w((uint64_t*)data
, table_offset
);
571 cpu_to_be32w((uint32_t*)(data
+ 8), table_clusters
);
572 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE
);
573 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, refcount_table_offset
),
579 /* And switch it in memory */
580 uint64_t old_table_offset
= s
->refcount_table_offset
;
581 uint64_t old_table_size
= s
->refcount_table_size
;
583 g_free(s
->refcount_table
);
584 s
->refcount_table
= new_table
;
585 s
->refcount_table_size
= table_size
;
586 s
->refcount_table_offset
= table_offset
;
588 /* Free old table. */
589 qcow2_free_clusters(bs
, old_table_offset
, old_table_size
* sizeof(uint64_t),
590 QCOW2_DISCARD_OTHER
);
592 ret
= load_refcount_block(bs
, new_block
, refcount_block
);
597 /* If we were trying to do the initial refcount update for some cluster
598 * allocation, we might have used the same clusters to store newly
599 * allocated metadata. Make the caller search some new space. */
606 if (*refcount_block
!= NULL
) {
607 qcow2_cache_put(bs
, s
->refcount_block_cache
, refcount_block
);
612 void qcow2_process_discards(BlockDriverState
*bs
, int ret
)
614 BDRVQcowState
*s
= bs
->opaque
;
615 Qcow2DiscardRegion
*d
, *next
;
617 QTAILQ_FOREACH_SAFE(d
, &s
->discards
, next
, next
) {
618 QTAILQ_REMOVE(&s
->discards
, d
, next
);
620 /* Discard is optional, ignore the return value */
622 bdrv_discard(bs
->file
,
623 d
->offset
>> BDRV_SECTOR_BITS
,
624 d
->bytes
>> BDRV_SECTOR_BITS
);
631 static void update_refcount_discard(BlockDriverState
*bs
,
632 uint64_t offset
, uint64_t length
)
634 BDRVQcowState
*s
= bs
->opaque
;
635 Qcow2DiscardRegion
*d
, *p
, *next
;
637 QTAILQ_FOREACH(d
, &s
->discards
, next
) {
638 uint64_t new_start
= MIN(offset
, d
->offset
);
639 uint64_t new_end
= MAX(offset
+ length
, d
->offset
+ d
->bytes
);
641 if (new_end
- new_start
<= length
+ d
->bytes
) {
642 /* There can't be any overlap, areas ending up here have no
643 * references any more and therefore shouldn't get freed another
645 assert(d
->bytes
+ length
== new_end
- new_start
);
646 d
->offset
= new_start
;
647 d
->bytes
= new_end
- new_start
;
652 d
= g_malloc(sizeof(*d
));
653 *d
= (Qcow2DiscardRegion
) {
658 QTAILQ_INSERT_TAIL(&s
->discards
, d
, next
);
661 /* Merge discard requests if they are adjacent now */
662 QTAILQ_FOREACH_SAFE(p
, &s
->discards
, next
, next
) {
664 || p
->offset
> d
->offset
+ d
->bytes
665 || d
->offset
> p
->offset
+ p
->bytes
)
670 /* Still no overlap possible */
671 assert(p
->offset
== d
->offset
+ d
->bytes
672 || d
->offset
== p
->offset
+ p
->bytes
);
674 QTAILQ_REMOVE(&s
->discards
, p
, next
);
675 d
->offset
= MIN(d
->offset
, p
->offset
);
676 d
->bytes
+= p
->bytes
;
681 /* XXX: cache several refcount block clusters ? */
682 /* @addend is the absolute value of the addend; if @decrease is set, @addend
683 * will be subtracted from the current refcount, otherwise it will be added */
684 static int QEMU_WARN_UNUSED_RESULT
update_refcount(BlockDriverState
*bs
,
689 enum qcow2_discard_type type
)
691 BDRVQcowState
*s
= bs
->opaque
;
692 int64_t start
, last
, cluster_offset
;
693 void *refcount_block
= NULL
;
694 int64_t old_table_index
= -1;
698 fprintf(stderr
, "update_refcount: offset=%" PRId64
" size=%" PRId64
699 " addend=%s%" PRIu64
"\n", offset
, length
, decrease
? "-" : "",
704 } else if (length
== 0) {
709 qcow2_cache_set_dependency(bs
, s
->refcount_block_cache
,
713 start
= start_of_cluster(s
, offset
);
714 last
= start_of_cluster(s
, offset
+ length
- 1);
715 for(cluster_offset
= start
; cluster_offset
<= last
;
716 cluster_offset
+= s
->cluster_size
)
720 int64_t cluster_index
= cluster_offset
>> s
->cluster_bits
;
721 int64_t table_index
= cluster_index
>> s
->refcount_block_bits
;
723 /* Load the refcount block and allocate it if needed */
724 if (table_index
!= old_table_index
) {
725 if (refcount_block
) {
726 ret
= qcow2_cache_put(bs
, s
->refcount_block_cache
,
733 ret
= alloc_refcount_block(bs
, cluster_index
, &refcount_block
);
738 old_table_index
= table_index
;
740 qcow2_cache_entry_mark_dirty(bs
, s
->refcount_block_cache
,
743 /* we can update the count and save it */
744 block_index
= cluster_index
& (s
->refcount_block_size
- 1);
746 refcount
= s
->get_refcount(refcount_block
, block_index
);
747 if (decrease
? (refcount
- addend
> refcount
)
748 : (refcount
+ addend
< refcount
||
749 refcount
+ addend
> s
->refcount_max
))
759 if (refcount
== 0 && cluster_index
< s
->free_cluster_index
) {
760 s
->free_cluster_index
= cluster_index
;
762 s
->set_refcount(refcount_block
, block_index
, refcount
);
764 if (refcount
== 0 && s
->discard_passthrough
[type
]) {
765 update_refcount_discard(bs
, cluster_offset
, s
->cluster_size
);
771 if (!s
->cache_discards
) {
772 qcow2_process_discards(bs
, ret
);
775 /* Write last changed block to disk */
776 if (refcount_block
) {
778 wret
= qcow2_cache_put(bs
, s
->refcount_block_cache
, &refcount_block
);
780 return ret
< 0 ? ret
: wret
;
785 * Try do undo any updates if an error is returned (This may succeed in
786 * some cases like ENOSPC for allocating a new refcount block)
790 dummy
= update_refcount(bs
, offset
, cluster_offset
- offset
, addend
,
791 !decrease
, QCOW2_DISCARD_NEVER
);
799 * Increases or decreases the refcount of a given cluster.
801 * @addend is the absolute value of the addend; if @decrease is set, @addend
802 * will be subtracted from the current refcount, otherwise it will be added.
804 * On success 0 is returned; on failure -errno is returned.
806 int qcow2_update_cluster_refcount(BlockDriverState
*bs
,
807 int64_t cluster_index
,
808 uint64_t addend
, bool decrease
,
809 enum qcow2_discard_type type
)
811 BDRVQcowState
*s
= bs
->opaque
;
814 ret
= update_refcount(bs
, cluster_index
<< s
->cluster_bits
, 1, addend
,
825 /*********************************************************/
826 /* cluster allocation functions */
830 /* return < 0 if error */
831 static int64_t alloc_clusters_noref(BlockDriverState
*bs
, uint64_t size
)
833 BDRVQcowState
*s
= bs
->opaque
;
834 uint64_t i
, nb_clusters
, refcount
;
837 /* We can't allocate clusters if they may still be queued for discard. */
838 if (s
->cache_discards
) {
839 qcow2_process_discards(bs
, 0);
842 nb_clusters
= size_to_clusters(s
, size
);
844 for(i
= 0; i
< nb_clusters
; i
++) {
845 uint64_t next_cluster_index
= s
->free_cluster_index
++;
846 ret
= qcow2_get_refcount(bs
, next_cluster_index
, &refcount
);
850 } else if (refcount
!= 0) {
855 /* Make sure that all offsets in the "allocated" range are representable
857 if (s
->free_cluster_index
> 0 &&
858 s
->free_cluster_index
- 1 > (INT64_MAX
>> s
->cluster_bits
))
864 fprintf(stderr
, "alloc_clusters: size=%" PRId64
" -> %" PRId64
"\n",
866 (s
->free_cluster_index
- nb_clusters
) << s
->cluster_bits
);
868 return (s
->free_cluster_index
- nb_clusters
) << s
->cluster_bits
;
871 int64_t qcow2_alloc_clusters(BlockDriverState
*bs
, uint64_t size
)
876 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_ALLOC
);
878 offset
= alloc_clusters_noref(bs
, size
);
883 ret
= update_refcount(bs
, offset
, size
, 1, false, QCOW2_DISCARD_NEVER
);
884 } while (ret
== -EAGAIN
);
893 int qcow2_alloc_clusters_at(BlockDriverState
*bs
, uint64_t offset
,
896 BDRVQcowState
*s
= bs
->opaque
;
897 uint64_t cluster_index
, refcount
;
901 assert(nb_clusters
>= 0);
902 if (nb_clusters
== 0) {
907 /* Check how many clusters there are free */
908 cluster_index
= offset
>> s
->cluster_bits
;
909 for(i
= 0; i
< nb_clusters
; i
++) {
910 ret
= qcow2_get_refcount(bs
, cluster_index
++, &refcount
);
913 } else if (refcount
!= 0) {
918 /* And then allocate them */
919 ret
= update_refcount(bs
, offset
, i
<< s
->cluster_bits
, 1, false,
920 QCOW2_DISCARD_NEVER
);
921 } while (ret
== -EAGAIN
);
930 /* only used to allocate compressed sectors. We try to allocate
931 contiguous sectors. size must be <= cluster_size */
932 int64_t qcow2_alloc_bytes(BlockDriverState
*bs
, int size
)
934 BDRVQcowState
*s
= bs
->opaque
;
936 size_t free_in_cluster
;
939 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_ALLOC_BYTES
);
940 assert(size
> 0 && size
<= s
->cluster_size
);
941 assert(!s
->free_byte_offset
|| offset_into_cluster(s
, s
->free_byte_offset
));
943 offset
= s
->free_byte_offset
;
947 ret
= qcow2_get_refcount(bs
, offset
>> s
->cluster_bits
, &refcount
);
952 if (refcount
== s
->refcount_max
) {
957 free_in_cluster
= s
->cluster_size
- offset_into_cluster(s
, offset
);
958 if (!offset
|| free_in_cluster
< size
) {
959 int64_t new_cluster
= alloc_clusters_noref(bs
, s
->cluster_size
);
960 if (new_cluster
< 0) {
964 if (!offset
|| ROUND_UP(offset
, s
->cluster_size
) != new_cluster
) {
965 offset
= new_cluster
;
970 ret
= update_refcount(bs
, offset
, size
, 1, false, QCOW2_DISCARD_NEVER
);
975 /* The cluster refcount was incremented; refcount blocks must be flushed
976 * before the caller's L2 table updates. */
977 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
, s
->refcount_block_cache
);
979 s
->free_byte_offset
= offset
+ size
;
980 if (!offset_into_cluster(s
, s
->free_byte_offset
)) {
981 s
->free_byte_offset
= 0;
987 void qcow2_free_clusters(BlockDriverState
*bs
,
988 int64_t offset
, int64_t size
,
989 enum qcow2_discard_type type
)
993 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_FREE
);
994 ret
= update_refcount(bs
, offset
, size
, 1, true, type
);
996 fprintf(stderr
, "qcow2_free_clusters failed: %s\n", strerror(-ret
));
997 /* TODO Remember the clusters to free them later and avoid leaking */
1002 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1003 * normal cluster, compressed cluster, etc.)
1005 void qcow2_free_any_clusters(BlockDriverState
*bs
, uint64_t l2_entry
,
1006 int nb_clusters
, enum qcow2_discard_type type
)
1008 BDRVQcowState
*s
= bs
->opaque
;
1010 switch (qcow2_get_cluster_type(l2_entry
)) {
1011 case QCOW2_CLUSTER_COMPRESSED
:
1014 nb_csectors
= ((l2_entry
>> s
->csize_shift
) &
1016 qcow2_free_clusters(bs
,
1017 (l2_entry
& s
->cluster_offset_mask
) & ~511,
1018 nb_csectors
* 512, type
);
1021 case QCOW2_CLUSTER_NORMAL
:
1022 case QCOW2_CLUSTER_ZERO
:
1023 if (l2_entry
& L2E_OFFSET_MASK
) {
1024 if (offset_into_cluster(s
, l2_entry
& L2E_OFFSET_MASK
)) {
1025 qcow2_signal_corruption(bs
, false, -1, -1,
1026 "Cannot free unaligned cluster %#llx",
1027 l2_entry
& L2E_OFFSET_MASK
);
1029 qcow2_free_clusters(bs
, l2_entry
& L2E_OFFSET_MASK
,
1030 nb_clusters
<< s
->cluster_bits
, type
);
1034 case QCOW2_CLUSTER_UNALLOCATED
:
1043 /*********************************************************/
1044 /* snapshots and image creation */
1048 /* update the refcounts of snapshots and the copied flag */
1049 int qcow2_update_snapshot_refcount(BlockDriverState
*bs
,
1050 int64_t l1_table_offset
, int l1_size
, int addend
)
1052 BDRVQcowState
*s
= bs
->opaque
;
1053 uint64_t *l1_table
, *l2_table
, l2_offset
, offset
, l1_size2
, refcount
;
1054 bool l1_allocated
= false;
1055 int64_t old_offset
, old_l2_offset
;
1056 int i
, j
, l1_modified
= 0, nb_csectors
;
1059 assert(addend
>= -1 && addend
<= 1);
1063 l1_size2
= l1_size
* sizeof(uint64_t);
1065 s
->cache_discards
= true;
1067 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1068 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1069 * when changing this! */
1070 if (l1_table_offset
!= s
->l1_table_offset
) {
1071 l1_table
= g_try_malloc0(align_offset(l1_size2
, 512));
1072 if (l1_size2
&& l1_table
== NULL
) {
1076 l1_allocated
= true;
1078 ret
= bdrv_pread(bs
->file
, l1_table_offset
, l1_table
, l1_size2
);
1083 for(i
= 0;i
< l1_size
; i
++)
1084 be64_to_cpus(&l1_table
[i
]);
1086 assert(l1_size
== s
->l1_size
);
1087 l1_table
= s
->l1_table
;
1088 l1_allocated
= false;
1091 for(i
= 0; i
< l1_size
; i
++) {
1092 l2_offset
= l1_table
[i
];
1094 old_l2_offset
= l2_offset
;
1095 l2_offset
&= L1E_OFFSET_MASK
;
1097 if (offset_into_cluster(s
, l2_offset
)) {
1098 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
1099 PRIx64
" unaligned (L1 index: %#x)",
1105 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
1106 (void**) &l2_table
);
1111 for(j
= 0; j
< s
->l2_size
; j
++) {
1112 uint64_t cluster_index
;
1114 offset
= be64_to_cpu(l2_table
[j
]);
1115 old_offset
= offset
;
1116 offset
&= ~QCOW_OFLAG_COPIED
;
1118 switch (qcow2_get_cluster_type(offset
)) {
1119 case QCOW2_CLUSTER_COMPRESSED
:
1120 nb_csectors
= ((offset
>> s
->csize_shift
) &
1123 ret
= update_refcount(bs
,
1124 (offset
& s
->cluster_offset_mask
) & ~511,
1125 nb_csectors
* 512, abs(addend
), addend
< 0,
1126 QCOW2_DISCARD_SNAPSHOT
);
1131 /* compressed clusters are never modified */
1135 case QCOW2_CLUSTER_NORMAL
:
1136 case QCOW2_CLUSTER_ZERO
:
1137 if (offset_into_cluster(s
, offset
& L2E_OFFSET_MASK
)) {
1138 qcow2_signal_corruption(bs
, true, -1, -1, "Data "
1139 "cluster offset %#llx "
1140 "unaligned (L2 offset: %#"
1141 PRIx64
", L2 index: %#x)",
1142 offset
& L2E_OFFSET_MASK
,
1148 cluster_index
= (offset
& L2E_OFFSET_MASK
) >> s
->cluster_bits
;
1149 if (!cluster_index
) {
1155 ret
= qcow2_update_cluster_refcount(bs
,
1156 cluster_index
, abs(addend
), addend
< 0,
1157 QCOW2_DISCARD_SNAPSHOT
);
1163 ret
= qcow2_get_refcount(bs
, cluster_index
, &refcount
);
1169 case QCOW2_CLUSTER_UNALLOCATED
:
1177 if (refcount
== 1) {
1178 offset
|= QCOW_OFLAG_COPIED
;
1180 if (offset
!= old_offset
) {
1182 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
1183 s
->refcount_block_cache
);
1185 l2_table
[j
] = cpu_to_be64(offset
);
1186 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
,
1191 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1198 ret
= qcow2_update_cluster_refcount(bs
, l2_offset
>>
1200 abs(addend
), addend
< 0,
1201 QCOW2_DISCARD_SNAPSHOT
);
1206 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1210 } else if (refcount
== 1) {
1211 l2_offset
|= QCOW_OFLAG_COPIED
;
1213 if (l2_offset
!= old_l2_offset
) {
1214 l1_table
[i
] = l2_offset
;
1220 ret
= bdrv_flush(bs
);
1223 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1226 s
->cache_discards
= false;
1227 qcow2_process_discards(bs
, ret
);
1229 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1230 if (ret
== 0 && addend
>= 0 && l1_modified
) {
1231 for (i
= 0; i
< l1_size
; i
++) {
1232 cpu_to_be64s(&l1_table
[i
]);
1235 ret
= bdrv_pwrite_sync(bs
->file
, l1_table_offset
, l1_table
, l1_size2
);
1237 for (i
= 0; i
< l1_size
; i
++) {
1238 be64_to_cpus(&l1_table
[i
]);
1249 /*********************************************************/
1250 /* refcount checking functions */
1253 static size_t refcount_array_byte_size(BDRVQcowState
*s
, uint64_t entries
)
1255 /* This assertion holds because there is no way we can address more than
1256 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1257 * offsets have to be representable in bytes); due to every cluster
1258 * corresponding to one refcount entry, we are well below that limit */
1259 assert(entries
< (UINT64_C(1) << (64 - 9)));
1261 /* Thanks to the assertion this will not overflow, because
1262 * s->refcount_order < 7.
1263 * (note: x << s->refcount_order == x * s->refcount_bits) */
1264 return DIV_ROUND_UP(entries
<< s
->refcount_order
, 8);
1268 * Reallocates *array so that it can hold new_size entries. *size must contain
1269 * the current number of entries in *array. If the reallocation fails, *array
1270 * and *size will not be modified and -errno will be returned. If the
1271 * reallocation is successful, *array will be set to the new buffer, *size
1272 * will be set to new_size and 0 will be returned. The size of the reallocated
1273 * refcount array buffer will be aligned to a cluster boundary, and the newly
1274 * allocated area will be zeroed.
1276 static int realloc_refcount_array(BDRVQcowState
*s
, void **array
,
1277 int64_t *size
, int64_t new_size
)
1279 size_t old_byte_size
, new_byte_size
;
1282 /* Round to clusters so the array can be directly written to disk */
1283 old_byte_size
= size_to_clusters(s
, refcount_array_byte_size(s
, *size
))
1285 new_byte_size
= size_to_clusters(s
, refcount_array_byte_size(s
, new_size
))
1288 if (new_byte_size
== old_byte_size
) {
1293 assert(new_byte_size
> 0);
1295 new_ptr
= g_try_realloc(*array
, new_byte_size
);
1300 if (new_byte_size
> old_byte_size
) {
1301 memset((void *)((uintptr_t)new_ptr
+ old_byte_size
), 0,
1302 new_byte_size
- old_byte_size
);
1312 * Increases the refcount for a range of clusters in a given refcount table.
1313 * This is used to construct a temporary refcount table out of L1 and L2 tables
1314 * which can be compared the the refcount table saved in the image.
1316 * Modifies the number of errors in res.
1318 static int inc_refcounts(BlockDriverState
*bs
,
1319 BdrvCheckResult
*res
,
1320 void **refcount_table
,
1321 int64_t *refcount_table_size
,
1322 int64_t offset
, int64_t size
)
1324 BDRVQcowState
*s
= bs
->opaque
;
1325 uint64_t start
, last
, cluster_offset
, k
, refcount
;
1332 start
= start_of_cluster(s
, offset
);
1333 last
= start_of_cluster(s
, offset
+ size
- 1);
1334 for(cluster_offset
= start
; cluster_offset
<= last
;
1335 cluster_offset
+= s
->cluster_size
) {
1336 k
= cluster_offset
>> s
->cluster_bits
;
1337 if (k
>= *refcount_table_size
) {
1338 ret
= realloc_refcount_array(s
, refcount_table
,
1339 refcount_table_size
, k
+ 1);
1341 res
->check_errors
++;
1346 refcount
= s
->get_refcount(*refcount_table
, k
);
1347 if (refcount
== s
->refcount_max
) {
1348 fprintf(stderr
, "ERROR: overflow cluster offset=0x%" PRIx64
1349 "\n", cluster_offset
);
1353 s
->set_refcount(*refcount_table
, k
, refcount
+ 1);
1359 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1361 CHECK_FRAG_INFO
= 0x2, /* update BlockFragInfo counters */
1365 * Increases the refcount in the given refcount table for the all clusters
1366 * referenced in the L2 table. While doing so, performs some checks on L2
1369 * Returns the number of errors found by the checks or -errno if an internal
1372 static int check_refcounts_l2(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1373 void **refcount_table
,
1374 int64_t *refcount_table_size
, int64_t l2_offset
,
1377 BDRVQcowState
*s
= bs
->opaque
;
1378 uint64_t *l2_table
, l2_entry
;
1379 uint64_t next_contiguous_offset
= 0;
1380 int i
, l2_size
, nb_csectors
, ret
;
1382 /* Read L2 table from disk */
1383 l2_size
= s
->l2_size
* sizeof(uint64_t);
1384 l2_table
= g_malloc(l2_size
);
1386 ret
= bdrv_pread(bs
->file
, l2_offset
, l2_table
, l2_size
);
1388 fprintf(stderr
, "ERROR: I/O error in check_refcounts_l2\n");
1389 res
->check_errors
++;
1393 /* Do the actual checks */
1394 for(i
= 0; i
< s
->l2_size
; i
++) {
1395 l2_entry
= be64_to_cpu(l2_table
[i
]);
1397 switch (qcow2_get_cluster_type(l2_entry
)) {
1398 case QCOW2_CLUSTER_COMPRESSED
:
1399 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1400 if (l2_entry
& QCOW_OFLAG_COPIED
) {
1401 fprintf(stderr
, "ERROR: cluster %" PRId64
": "
1402 "copied flag must never be set for compressed "
1403 "clusters\n", l2_entry
>> s
->cluster_bits
);
1404 l2_entry
&= ~QCOW_OFLAG_COPIED
;
1408 /* Mark cluster as used */
1409 nb_csectors
= ((l2_entry
>> s
->csize_shift
) &
1411 l2_entry
&= s
->cluster_offset_mask
;
1412 ret
= inc_refcounts(bs
, res
, refcount_table
, refcount_table_size
,
1413 l2_entry
& ~511, nb_csectors
* 512);
1418 if (flags
& CHECK_FRAG_INFO
) {
1419 res
->bfi
.allocated_clusters
++;
1420 res
->bfi
.compressed_clusters
++;
1422 /* Compressed clusters are fragmented by nature. Since they
1423 * take up sub-sector space but we only have sector granularity
1424 * I/O we need to re-read the same sectors even for adjacent
1425 * compressed clusters.
1427 res
->bfi
.fragmented_clusters
++;
1431 case QCOW2_CLUSTER_ZERO
:
1432 if ((l2_entry
& L2E_OFFSET_MASK
) == 0) {
1437 case QCOW2_CLUSTER_NORMAL
:
1439 uint64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
1441 if (flags
& CHECK_FRAG_INFO
) {
1442 res
->bfi
.allocated_clusters
++;
1443 if (next_contiguous_offset
&&
1444 offset
!= next_contiguous_offset
) {
1445 res
->bfi
.fragmented_clusters
++;
1447 next_contiguous_offset
= offset
+ s
->cluster_size
;
1450 /* Mark cluster as used */
1451 ret
= inc_refcounts(bs
, res
, refcount_table
, refcount_table_size
,
1452 offset
, s
->cluster_size
);
1457 /* Correct offsets are cluster aligned */
1458 if (offset_into_cluster(s
, offset
)) {
1459 fprintf(stderr
, "ERROR offset=%" PRIx64
": Cluster is not "
1460 "properly aligned; L2 entry corrupted.\n", offset
);
1466 case QCOW2_CLUSTER_UNALLOCATED
:
1483 * Increases the refcount for the L1 table, its L2 tables and all referenced
1484 * clusters in the given refcount table. While doing so, performs some checks
1485 * on L1 and L2 entries.
1487 * Returns the number of errors found by the checks or -errno if an internal
1490 static int check_refcounts_l1(BlockDriverState
*bs
,
1491 BdrvCheckResult
*res
,
1492 void **refcount_table
,
1493 int64_t *refcount_table_size
,
1494 int64_t l1_table_offset
, int l1_size
,
1497 BDRVQcowState
*s
= bs
->opaque
;
1498 uint64_t *l1_table
= NULL
, l2_offset
, l1_size2
;
1501 l1_size2
= l1_size
* sizeof(uint64_t);
1503 /* Mark L1 table as used */
1504 ret
= inc_refcounts(bs
, res
, refcount_table
, refcount_table_size
,
1505 l1_table_offset
, l1_size2
);
1510 /* Read L1 table entries from disk */
1512 l1_table
= g_try_malloc(l1_size2
);
1513 if (l1_table
== NULL
) {
1515 res
->check_errors
++;
1518 ret
= bdrv_pread(bs
->file
, l1_table_offset
, l1_table
, l1_size2
);
1520 fprintf(stderr
, "ERROR: I/O error in check_refcounts_l1\n");
1521 res
->check_errors
++;
1524 for(i
= 0;i
< l1_size
; i
++)
1525 be64_to_cpus(&l1_table
[i
]);
1528 /* Do the actual checks */
1529 for(i
= 0; i
< l1_size
; i
++) {
1530 l2_offset
= l1_table
[i
];
1532 /* Mark L2 table as used */
1533 l2_offset
&= L1E_OFFSET_MASK
;
1534 ret
= inc_refcounts(bs
, res
, refcount_table
, refcount_table_size
,
1535 l2_offset
, s
->cluster_size
);
1540 /* L2 tables are cluster aligned */
1541 if (offset_into_cluster(s
, l2_offset
)) {
1542 fprintf(stderr
, "ERROR l2_offset=%" PRIx64
": Table is not "
1543 "cluster aligned; L1 entry corrupted\n", l2_offset
);
1547 /* Process and check L2 entries */
1548 ret
= check_refcounts_l2(bs
, res
, refcount_table
,
1549 refcount_table_size
, l2_offset
, flags
);
1564 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1566 * This function does not print an error message nor does it increment
1567 * check_errors if qcow2_get_refcount fails (this is because such an error will
1568 * have been already detected and sufficiently signaled by the calling function
1569 * (qcow2_check_refcounts) by the time this function is called).
1571 static int check_oflag_copied(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1574 BDRVQcowState
*s
= bs
->opaque
;
1575 uint64_t *l2_table
= qemu_blockalign(bs
, s
->cluster_size
);
1580 for (i
= 0; i
< s
->l1_size
; i
++) {
1581 uint64_t l1_entry
= s
->l1_table
[i
];
1582 uint64_t l2_offset
= l1_entry
& L1E_OFFSET_MASK
;
1583 bool l2_dirty
= false;
1589 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1592 /* don't print message nor increment check_errors */
1595 if ((refcount
== 1) != ((l1_entry
& QCOW_OFLAG_COPIED
) != 0)) {
1596 fprintf(stderr
, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1597 "l1_entry=%" PRIx64
" refcount=%" PRIu64
"\n",
1598 fix
& BDRV_FIX_ERRORS
? "Repairing" :
1600 i
, l1_entry
, refcount
);
1601 if (fix
& BDRV_FIX_ERRORS
) {
1602 s
->l1_table
[i
] = refcount
== 1
1603 ? l1_entry
| QCOW_OFLAG_COPIED
1604 : l1_entry
& ~QCOW_OFLAG_COPIED
;
1605 ret
= qcow2_write_l1_entry(bs
, i
);
1607 res
->check_errors
++;
1610 res
->corruptions_fixed
++;
1616 ret
= bdrv_pread(bs
->file
, l2_offset
, l2_table
,
1617 s
->l2_size
* sizeof(uint64_t));
1619 fprintf(stderr
, "ERROR: Could not read L2 table: %s\n",
1621 res
->check_errors
++;
1625 for (j
= 0; j
< s
->l2_size
; j
++) {
1626 uint64_t l2_entry
= be64_to_cpu(l2_table
[j
]);
1627 uint64_t data_offset
= l2_entry
& L2E_OFFSET_MASK
;
1628 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
1630 if ((cluster_type
== QCOW2_CLUSTER_NORMAL
) ||
1631 ((cluster_type
== QCOW2_CLUSTER_ZERO
) && (data_offset
!= 0))) {
1632 ret
= qcow2_get_refcount(bs
,
1633 data_offset
>> s
->cluster_bits
,
1636 /* don't print message nor increment check_errors */
1639 if ((refcount
== 1) != ((l2_entry
& QCOW_OFLAG_COPIED
) != 0)) {
1640 fprintf(stderr
, "%s OFLAG_COPIED data cluster: "
1641 "l2_entry=%" PRIx64
" refcount=%" PRIu64
"\n",
1642 fix
& BDRV_FIX_ERRORS
? "Repairing" :
1644 l2_entry
, refcount
);
1645 if (fix
& BDRV_FIX_ERRORS
) {
1646 l2_table
[j
] = cpu_to_be64(refcount
== 1
1647 ? l2_entry
| QCOW_OFLAG_COPIED
1648 : l2_entry
& ~QCOW_OFLAG_COPIED
);
1650 res
->corruptions_fixed
++;
1659 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L2
,
1660 l2_offset
, s
->cluster_size
);
1662 fprintf(stderr
, "ERROR: Could not write L2 table; metadata "
1663 "overlap check failed: %s\n", strerror(-ret
));
1664 res
->check_errors
++;
1668 ret
= bdrv_pwrite(bs
->file
, l2_offset
, l2_table
, s
->cluster_size
);
1670 fprintf(stderr
, "ERROR: Could not write L2 table: %s\n",
1672 res
->check_errors
++;
1681 qemu_vfree(l2_table
);
1686 * Checks consistency of refblocks and accounts for each refblock in
1689 static int check_refblocks(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1690 BdrvCheckMode fix
, bool *rebuild
,
1691 void **refcount_table
, int64_t *nb_clusters
)
1693 BDRVQcowState
*s
= bs
->opaque
;
1697 for(i
= 0; i
< s
->refcount_table_size
; i
++) {
1698 uint64_t offset
, cluster
;
1699 offset
= s
->refcount_table
[i
];
1700 cluster
= offset
>> s
->cluster_bits
;
1702 /* Refcount blocks are cluster aligned */
1703 if (offset_into_cluster(s
, offset
)) {
1704 fprintf(stderr
, "ERROR refcount block %" PRId64
" is not "
1705 "cluster aligned; refcount table entry corrupted\n", i
);
1711 if (cluster
>= *nb_clusters
) {
1712 fprintf(stderr
, "%s refcount block %" PRId64
" is outside image\n",
1713 fix
& BDRV_FIX_ERRORS
? "Repairing" : "ERROR", i
);
1715 if (fix
& BDRV_FIX_ERRORS
) {
1716 int64_t new_nb_clusters
;
1718 if (offset
> INT64_MAX
- s
->cluster_size
) {
1723 ret
= bdrv_truncate(bs
->file
, offset
+ s
->cluster_size
);
1727 size
= bdrv_getlength(bs
->file
);
1733 new_nb_clusters
= size_to_clusters(s
, size
);
1734 assert(new_nb_clusters
>= *nb_clusters
);
1736 ret
= realloc_refcount_array(s
, refcount_table
,
1737 nb_clusters
, new_nb_clusters
);
1739 res
->check_errors
++;
1743 if (cluster
>= *nb_clusters
) {
1748 res
->corruptions_fixed
++;
1749 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1750 offset
, s
->cluster_size
);
1754 /* No need to check whether the refcount is now greater than 1:
1755 * This area was just allocated and zeroed, so it can only be
1756 * exactly 1 after inc_refcounts() */
1762 fprintf(stderr
, "ERROR could not resize image: %s\n",
1771 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1772 offset
, s
->cluster_size
);
1776 if (s
->get_refcount(*refcount_table
, cluster
) != 1) {
1777 fprintf(stderr
, "ERROR refcount block %" PRId64
1778 " refcount=%" PRIu64
"\n", i
,
1779 s
->get_refcount(*refcount_table
, cluster
));
1790 * Calculates an in-memory refcount table.
1792 static int calculate_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1793 BdrvCheckMode fix
, bool *rebuild
,
1794 void **refcount_table
, int64_t *nb_clusters
)
1796 BDRVQcowState
*s
= bs
->opaque
;
1801 if (!*refcount_table
) {
1802 int64_t old_size
= 0;
1803 ret
= realloc_refcount_array(s
, refcount_table
,
1804 &old_size
, *nb_clusters
);
1806 res
->check_errors
++;
1812 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1813 0, s
->cluster_size
);
1818 /* current L1 table */
1819 ret
= check_refcounts_l1(bs
, res
, refcount_table
, nb_clusters
,
1820 s
->l1_table_offset
, s
->l1_size
, CHECK_FRAG_INFO
);
1826 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
1827 sn
= s
->snapshots
+ i
;
1828 ret
= check_refcounts_l1(bs
, res
, refcount_table
, nb_clusters
,
1829 sn
->l1_table_offset
, sn
->l1_size
, 0);
1834 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1835 s
->snapshots_offset
, s
->snapshots_size
);
1841 ret
= inc_refcounts(bs
, res
, refcount_table
, nb_clusters
,
1842 s
->refcount_table_offset
,
1843 s
->refcount_table_size
* sizeof(uint64_t));
1848 return check_refblocks(bs
, res
, fix
, rebuild
, refcount_table
, nb_clusters
);
1852 * Compares the actual reference count for each cluster in the image against the
1853 * refcount as reported by the refcount structures on-disk.
1855 static void compare_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1856 BdrvCheckMode fix
, bool *rebuild
,
1857 int64_t *highest_cluster
,
1858 void *refcount_table
, int64_t nb_clusters
)
1860 BDRVQcowState
*s
= bs
->opaque
;
1862 uint64_t refcount1
, refcount2
;
1865 for (i
= 0, *highest_cluster
= 0; i
< nb_clusters
; i
++) {
1866 ret
= qcow2_get_refcount(bs
, i
, &refcount1
);
1868 fprintf(stderr
, "Can't get refcount for cluster %" PRId64
": %s\n",
1870 res
->check_errors
++;
1874 refcount2
= s
->get_refcount(refcount_table
, i
);
1876 if (refcount1
> 0 || refcount2
> 0) {
1877 *highest_cluster
= i
;
1880 if (refcount1
!= refcount2
) {
1881 /* Check if we're allowed to fix the mismatch */
1882 int *num_fixed
= NULL
;
1883 if (refcount1
== 0) {
1885 } else if (refcount1
> refcount2
&& (fix
& BDRV_FIX_LEAKS
)) {
1886 num_fixed
= &res
->leaks_fixed
;
1887 } else if (refcount1
< refcount2
&& (fix
& BDRV_FIX_ERRORS
)) {
1888 num_fixed
= &res
->corruptions_fixed
;
1891 fprintf(stderr
, "%s cluster %" PRId64
" refcount=%" PRIu64
1892 " reference=%" PRIu64
"\n",
1893 num_fixed
!= NULL
? "Repairing" :
1894 refcount1
< refcount2
? "ERROR" :
1896 i
, refcount1
, refcount2
);
1899 ret
= update_refcount(bs
, i
<< s
->cluster_bits
, 1,
1900 refcount_diff(refcount1
, refcount2
),
1901 refcount1
> refcount2
,
1902 QCOW2_DISCARD_ALWAYS
);
1909 /* And if we couldn't, print an error */
1910 if (refcount1
< refcount2
) {
1920 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1921 * the on-disk refcount structures.
1923 * On input, *first_free_cluster tells where to start looking, and need not
1924 * actually be a free cluster; the returned offset will not be before that
1925 * cluster. On output, *first_free_cluster points to the first gap found, even
1926 * if that gap was too small to be used as the returned offset.
1928 * Note that *first_free_cluster is a cluster index whereas the return value is
1931 static int64_t alloc_clusters_imrt(BlockDriverState
*bs
,
1933 void **refcount_table
,
1934 int64_t *imrt_nb_clusters
,
1935 int64_t *first_free_cluster
)
1937 BDRVQcowState
*s
= bs
->opaque
;
1938 int64_t cluster
= *first_free_cluster
, i
;
1939 bool first_gap
= true;
1940 int contiguous_free_clusters
;
1943 /* Starting at *first_free_cluster, find a range of at least cluster_count
1944 * continuously free clusters */
1945 for (contiguous_free_clusters
= 0;
1946 cluster
< *imrt_nb_clusters
&&
1947 contiguous_free_clusters
< cluster_count
;
1950 if (!s
->get_refcount(*refcount_table
, cluster
)) {
1951 contiguous_free_clusters
++;
1953 /* If this is the first free cluster found, update
1954 * *first_free_cluster accordingly */
1955 *first_free_cluster
= cluster
;
1958 } else if (contiguous_free_clusters
) {
1959 contiguous_free_clusters
= 0;
1963 /* If contiguous_free_clusters is greater than zero, it contains the number
1964 * of continuously free clusters until the current cluster; the first free
1965 * cluster in the current "gap" is therefore
1966 * cluster - contiguous_free_clusters */
1968 /* If no such range could be found, grow the in-memory refcount table
1969 * accordingly to append free clusters at the end of the image */
1970 if (contiguous_free_clusters
< cluster_count
) {
1971 /* contiguous_free_clusters clusters are already empty at the image end;
1972 * we need cluster_count clusters; therefore, we have to allocate
1973 * cluster_count - contiguous_free_clusters new clusters at the end of
1974 * the image (which is the current value of cluster; note that cluster
1975 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
1977 ret
= realloc_refcount_array(s
, refcount_table
, imrt_nb_clusters
,
1978 cluster
+ cluster_count
1979 - contiguous_free_clusters
);
1985 /* Go back to the first free cluster */
1986 cluster
-= contiguous_free_clusters
;
1987 for (i
= 0; i
< cluster_count
; i
++) {
1988 s
->set_refcount(*refcount_table
, cluster
+ i
, 1);
1991 return cluster
<< s
->cluster_bits
;
1995 * Creates a new refcount structure based solely on the in-memory information
1996 * given through *refcount_table. All necessary allocations will be reflected
1999 * On success, the old refcount structure is leaked (it will be covered by the
2000 * new refcount structure).
2002 static int rebuild_refcount_structure(BlockDriverState
*bs
,
2003 BdrvCheckResult
*res
,
2004 void **refcount_table
,
2005 int64_t *nb_clusters
)
2007 BDRVQcowState
*s
= bs
->opaque
;
2008 int64_t first_free_cluster
= 0, reftable_offset
= -1, cluster
= 0;
2009 int64_t refblock_offset
, refblock_start
, refblock_index
;
2010 uint32_t reftable_size
= 0;
2011 uint64_t *on_disk_reftable
= NULL
;
2012 void *on_disk_refblock
;
2015 uint64_t reftable_offset
;
2016 uint32_t reftable_clusters
;
2017 } QEMU_PACKED reftable_offset_and_clusters
;
2019 qcow2_cache_empty(bs
, s
->refcount_block_cache
);
2022 for (; cluster
< *nb_clusters
; cluster
++) {
2023 if (!s
->get_refcount(*refcount_table
, cluster
)) {
2027 refblock_index
= cluster
>> s
->refcount_block_bits
;
2028 refblock_start
= refblock_index
<< s
->refcount_block_bits
;
2030 /* Don't allocate a cluster in a refblock already written to disk */
2031 if (first_free_cluster
< refblock_start
) {
2032 first_free_cluster
= refblock_start
;
2034 refblock_offset
= alloc_clusters_imrt(bs
, 1, refcount_table
,
2035 nb_clusters
, &first_free_cluster
);
2036 if (refblock_offset
< 0) {
2037 fprintf(stderr
, "ERROR allocating refblock: %s\n",
2038 strerror(-refblock_offset
));
2039 res
->check_errors
++;
2040 ret
= refblock_offset
;
2044 if (reftable_size
<= refblock_index
) {
2045 uint32_t old_reftable_size
= reftable_size
;
2046 uint64_t *new_on_disk_reftable
;
2048 reftable_size
= ROUND_UP((refblock_index
+ 1) * sizeof(uint64_t),
2049 s
->cluster_size
) / sizeof(uint64_t);
2050 new_on_disk_reftable
= g_try_realloc(on_disk_reftable
,
2053 if (!new_on_disk_reftable
) {
2054 res
->check_errors
++;
2058 on_disk_reftable
= new_on_disk_reftable
;
2060 memset(on_disk_reftable
+ old_reftable_size
, 0,
2061 (reftable_size
- old_reftable_size
) * sizeof(uint64_t));
2063 /* The offset we have for the reftable is now no longer valid;
2064 * this will leak that range, but we can easily fix that by running
2065 * a leak-fixing check after this rebuild operation */
2066 reftable_offset
= -1;
2068 on_disk_reftable
[refblock_index
] = refblock_offset
;
2070 /* If this is apparently the last refblock (for now), try to squeeze the
2072 if (refblock_index
== (*nb_clusters
- 1) >> s
->refcount_block_bits
&&
2073 reftable_offset
< 0)
2075 uint64_t reftable_clusters
= size_to_clusters(s
, reftable_size
*
2077 reftable_offset
= alloc_clusters_imrt(bs
, reftable_clusters
,
2078 refcount_table
, nb_clusters
,
2079 &first_free_cluster
);
2080 if (reftable_offset
< 0) {
2081 fprintf(stderr
, "ERROR allocating reftable: %s\n",
2082 strerror(-reftable_offset
));
2083 res
->check_errors
++;
2084 ret
= reftable_offset
;
2089 ret
= qcow2_pre_write_overlap_check(bs
, 0, refblock_offset
,
2092 fprintf(stderr
, "ERROR writing refblock: %s\n", strerror(-ret
));
2096 /* The size of *refcount_table is always cluster-aligned, therefore the
2097 * write operation will not overflow */
2098 on_disk_refblock
= (void *)((char *) *refcount_table
+
2099 refblock_index
* s
->cluster_size
);
2101 ret
= bdrv_write(bs
->file
, refblock_offset
/ BDRV_SECTOR_SIZE
,
2102 on_disk_refblock
, s
->cluster_sectors
);
2104 fprintf(stderr
, "ERROR writing refblock: %s\n", strerror(-ret
));
2108 /* Go to the end of this refblock */
2109 cluster
= refblock_start
+ s
->refcount_block_size
- 1;
2112 if (reftable_offset
< 0) {
2113 uint64_t post_refblock_start
, reftable_clusters
;
2115 post_refblock_start
= ROUND_UP(*nb_clusters
, s
->refcount_block_size
);
2116 reftable_clusters
= size_to_clusters(s
,
2117 reftable_size
* sizeof(uint64_t));
2118 /* Not pretty but simple */
2119 if (first_free_cluster
< post_refblock_start
) {
2120 first_free_cluster
= post_refblock_start
;
2122 reftable_offset
= alloc_clusters_imrt(bs
, reftable_clusters
,
2123 refcount_table
, nb_clusters
,
2124 &first_free_cluster
);
2125 if (reftable_offset
< 0) {
2126 fprintf(stderr
, "ERROR allocating reftable: %s\n",
2127 strerror(-reftable_offset
));
2128 res
->check_errors
++;
2129 ret
= reftable_offset
;
2133 goto write_refblocks
;
2136 assert(on_disk_reftable
);
2138 for (refblock_index
= 0; refblock_index
< reftable_size
; refblock_index
++) {
2139 cpu_to_be64s(&on_disk_reftable
[refblock_index
]);
2142 ret
= qcow2_pre_write_overlap_check(bs
, 0, reftable_offset
,
2143 reftable_size
* sizeof(uint64_t));
2145 fprintf(stderr
, "ERROR writing reftable: %s\n", strerror(-ret
));
2149 assert(reftable_size
< INT_MAX
/ sizeof(uint64_t));
2150 ret
= bdrv_pwrite(bs
->file
, reftable_offset
, on_disk_reftable
,
2151 reftable_size
* sizeof(uint64_t));
2153 fprintf(stderr
, "ERROR writing reftable: %s\n", strerror(-ret
));
2157 /* Enter new reftable into the image header */
2158 cpu_to_be64w(&reftable_offset_and_clusters
.reftable_offset
,
2160 cpu_to_be32w(&reftable_offset_and_clusters
.reftable_clusters
,
2161 size_to_clusters(s
, reftable_size
* sizeof(uint64_t)));
2162 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
,
2163 refcount_table_offset
),
2164 &reftable_offset_and_clusters
,
2165 sizeof(reftable_offset_and_clusters
));
2167 fprintf(stderr
, "ERROR setting reftable: %s\n", strerror(-ret
));
2171 for (refblock_index
= 0; refblock_index
< reftable_size
; refblock_index
++) {
2172 be64_to_cpus(&on_disk_reftable
[refblock_index
]);
2174 s
->refcount_table
= on_disk_reftable
;
2175 s
->refcount_table_offset
= reftable_offset
;
2176 s
->refcount_table_size
= reftable_size
;
2181 g_free(on_disk_reftable
);
2186 * Checks an image for refcount consistency.
2188 * Returns 0 if no errors are found, the number of errors in case the image is
2189 * detected as corrupted, and -errno when an internal error occurred.
2191 int qcow2_check_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
2194 BDRVQcowState
*s
= bs
->opaque
;
2195 BdrvCheckResult pre_compare_res
;
2196 int64_t size
, highest_cluster
, nb_clusters
;
2197 void *refcount_table
= NULL
;
2198 bool rebuild
= false;
2201 size
= bdrv_getlength(bs
->file
);
2203 res
->check_errors
++;
2207 nb_clusters
= size_to_clusters(s
, size
);
2208 if (nb_clusters
> INT_MAX
) {
2209 res
->check_errors
++;
2213 res
->bfi
.total_clusters
=
2214 size_to_clusters(s
, bs
->total_sectors
* BDRV_SECTOR_SIZE
);
2216 ret
= calculate_refcounts(bs
, res
, fix
, &rebuild
, &refcount_table
,
2222 /* In case we don't need to rebuild the refcount structure (but want to fix
2223 * something), this function is immediately called again, in which case the
2224 * result should be ignored */
2225 pre_compare_res
= *res
;
2226 compare_refcounts(bs
, res
, 0, &rebuild
, &highest_cluster
, refcount_table
,
2229 if (rebuild
&& (fix
& BDRV_FIX_ERRORS
)) {
2230 BdrvCheckResult old_res
= *res
;
2231 int fresh_leaks
= 0;
2233 fprintf(stderr
, "Rebuilding refcount structure\n");
2234 ret
= rebuild_refcount_structure(bs
, res
, &refcount_table
,
2240 res
->corruptions
= 0;
2243 /* Because the old reftable has been exchanged for a new one the
2244 * references have to be recalculated */
2246 memset(refcount_table
, 0, refcount_array_byte_size(s
, nb_clusters
));
2247 ret
= calculate_refcounts(bs
, res
, 0, &rebuild
, &refcount_table
,
2253 if (fix
& BDRV_FIX_LEAKS
) {
2254 /* The old refcount structures are now leaked, fix it; the result
2255 * can be ignored, aside from leaks which were introduced by
2256 * rebuild_refcount_structure() that could not be fixed */
2257 BdrvCheckResult saved_res
= *res
;
2258 *res
= (BdrvCheckResult
){ 0 };
2260 compare_refcounts(bs
, res
, BDRV_FIX_LEAKS
, &rebuild
,
2261 &highest_cluster
, refcount_table
, nb_clusters
);
2263 fprintf(stderr
, "ERROR rebuilt refcount structure is still "
2267 /* Any leaks accounted for here were introduced by
2268 * rebuild_refcount_structure() because that function has created a
2269 * new refcount structure from scratch */
2270 fresh_leaks
= res
->leaks
;
2274 if (res
->corruptions
< old_res
.corruptions
) {
2275 res
->corruptions_fixed
+= old_res
.corruptions
- res
->corruptions
;
2277 if (res
->leaks
< old_res
.leaks
) {
2278 res
->leaks_fixed
+= old_res
.leaks
- res
->leaks
;
2280 res
->leaks
+= fresh_leaks
;
2283 fprintf(stderr
, "ERROR need to rebuild refcount structures\n");
2284 res
->check_errors
++;
2289 if (res
->leaks
|| res
->corruptions
) {
2290 *res
= pre_compare_res
;
2291 compare_refcounts(bs
, res
, fix
, &rebuild
, &highest_cluster
,
2292 refcount_table
, nb_clusters
);
2296 /* check OFLAG_COPIED */
2297 ret
= check_oflag_copied(bs
, res
, fix
);
2302 res
->image_end_offset
= (highest_cluster
+ 1) * s
->cluster_size
;
2306 g_free(refcount_table
);
2311 #define overlaps_with(ofs, sz) \
2312 ranges_overlap(offset, size, ofs, sz)
2315 * Checks if the given offset into the image file is actually free to use by
2316 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2317 * i.e. a sanity check without relying on the refcount tables.
2319 * The ign parameter specifies what checks not to perform (being a bitmask of
2320 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2323 * - 0 if writing to this offset will not affect the mentioned metadata
2324 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2325 * - a negative value (-errno) indicating an error while performing a check,
2326 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2328 int qcow2_check_metadata_overlap(BlockDriverState
*bs
, int ign
, int64_t offset
,
2331 BDRVQcowState
*s
= bs
->opaque
;
2332 int chk
= s
->overlap_check
& ~ign
;
2339 if (chk
& QCOW2_OL_MAIN_HEADER
) {
2340 if (offset
< s
->cluster_size
) {
2341 return QCOW2_OL_MAIN_HEADER
;
2345 /* align range to test to cluster boundaries */
2346 size
= align_offset(offset_into_cluster(s
, offset
) + size
, s
->cluster_size
);
2347 offset
= start_of_cluster(s
, offset
);
2349 if ((chk
& QCOW2_OL_ACTIVE_L1
) && s
->l1_size
) {
2350 if (overlaps_with(s
->l1_table_offset
, s
->l1_size
* sizeof(uint64_t))) {
2351 return QCOW2_OL_ACTIVE_L1
;
2355 if ((chk
& QCOW2_OL_REFCOUNT_TABLE
) && s
->refcount_table_size
) {
2356 if (overlaps_with(s
->refcount_table_offset
,
2357 s
->refcount_table_size
* sizeof(uint64_t))) {
2358 return QCOW2_OL_REFCOUNT_TABLE
;
2362 if ((chk
& QCOW2_OL_SNAPSHOT_TABLE
) && s
->snapshots_size
) {
2363 if (overlaps_with(s
->snapshots_offset
, s
->snapshots_size
)) {
2364 return QCOW2_OL_SNAPSHOT_TABLE
;
2368 if ((chk
& QCOW2_OL_INACTIVE_L1
) && s
->snapshots
) {
2369 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2370 if (s
->snapshots
[i
].l1_size
&&
2371 overlaps_with(s
->snapshots
[i
].l1_table_offset
,
2372 s
->snapshots
[i
].l1_size
* sizeof(uint64_t))) {
2373 return QCOW2_OL_INACTIVE_L1
;
2378 if ((chk
& QCOW2_OL_ACTIVE_L2
) && s
->l1_table
) {
2379 for (i
= 0; i
< s
->l1_size
; i
++) {
2380 if ((s
->l1_table
[i
] & L1E_OFFSET_MASK
) &&
2381 overlaps_with(s
->l1_table
[i
] & L1E_OFFSET_MASK
,
2383 return QCOW2_OL_ACTIVE_L2
;
2388 if ((chk
& QCOW2_OL_REFCOUNT_BLOCK
) && s
->refcount_table
) {
2389 for (i
= 0; i
< s
->refcount_table_size
; i
++) {
2390 if ((s
->refcount_table
[i
] & REFT_OFFSET_MASK
) &&
2391 overlaps_with(s
->refcount_table
[i
] & REFT_OFFSET_MASK
,
2393 return QCOW2_OL_REFCOUNT_BLOCK
;
2398 if ((chk
& QCOW2_OL_INACTIVE_L2
) && s
->snapshots
) {
2399 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2400 uint64_t l1_ofs
= s
->snapshots
[i
].l1_table_offset
;
2401 uint32_t l1_sz
= s
->snapshots
[i
].l1_size
;
2402 uint64_t l1_sz2
= l1_sz
* sizeof(uint64_t);
2403 uint64_t *l1
= g_try_malloc(l1_sz2
);
2406 if (l1_sz2
&& l1
== NULL
) {
2410 ret
= bdrv_pread(bs
->file
, l1_ofs
, l1
, l1_sz2
);
2416 for (j
= 0; j
< l1_sz
; j
++) {
2417 uint64_t l2_ofs
= be64_to_cpu(l1
[j
]) & L1E_OFFSET_MASK
;
2418 if (l2_ofs
&& overlaps_with(l2_ofs
, s
->cluster_size
)) {
2420 return QCOW2_OL_INACTIVE_L2
;
2431 static const char *metadata_ol_names
[] = {
2432 [QCOW2_OL_MAIN_HEADER_BITNR
] = "qcow2_header",
2433 [QCOW2_OL_ACTIVE_L1_BITNR
] = "active L1 table",
2434 [QCOW2_OL_ACTIVE_L2_BITNR
] = "active L2 table",
2435 [QCOW2_OL_REFCOUNT_TABLE_BITNR
] = "refcount table",
2436 [QCOW2_OL_REFCOUNT_BLOCK_BITNR
] = "refcount block",
2437 [QCOW2_OL_SNAPSHOT_TABLE_BITNR
] = "snapshot table",
2438 [QCOW2_OL_INACTIVE_L1_BITNR
] = "inactive L1 table",
2439 [QCOW2_OL_INACTIVE_L2_BITNR
] = "inactive L2 table",
2443 * First performs a check for metadata overlaps (through
2444 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2445 * while performing a check), that value is returned. If an impending overlap
2446 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2447 * and -EIO returned.
2449 * Returns 0 if there were neither overlaps nor errors while checking for
2450 * overlaps; or a negative value (-errno) on error.
2452 int qcow2_pre_write_overlap_check(BlockDriverState
*bs
, int ign
, int64_t offset
,
2455 int ret
= qcow2_check_metadata_overlap(bs
, ign
, offset
, size
);
2459 } else if (ret
> 0) {
2460 int metadata_ol_bitnr
= ctz32(ret
);
2461 assert(metadata_ol_bitnr
< QCOW2_OL_MAX_BITNR
);
2463 qcow2_signal_corruption(bs
, true, offset
, size
, "Preventing invalid "
2464 "write on metadata (overlaps with %s)",
2465 metadata_ol_names
[metadata_ol_bitnr
]);