qed: Make qed_write_header() synchronous
[qemu/ericb.git] / block / qed.c
blob2665efc71c0ad163f728a7360f0d2155233c883c
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "qemu/bswap.h"
19 #include "trace.h"
20 #include "qed.h"
21 #include "qapi/qmp/qerror.h"
22 #include "sysemu/block-backend.h"
24 static const AIOCBInfo qed_aiocb_info = {
25 .aiocb_size = sizeof(QEDAIOCB),
28 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
29 const char *filename)
31 const QEDHeader *header = (const QEDHeader *)buf;
33 if (buf_size < sizeof(*header)) {
34 return 0;
36 if (le32_to_cpu(header->magic) != QED_MAGIC) {
37 return 0;
39 return 100;
42 /**
43 * Check whether an image format is raw
45 * @fmt: Backing file format, may be NULL
47 static bool qed_fmt_is_raw(const char *fmt)
49 return fmt && strcmp(fmt, "raw") == 0;
52 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
54 cpu->magic = le32_to_cpu(le->magic);
55 cpu->cluster_size = le32_to_cpu(le->cluster_size);
56 cpu->table_size = le32_to_cpu(le->table_size);
57 cpu->header_size = le32_to_cpu(le->header_size);
58 cpu->features = le64_to_cpu(le->features);
59 cpu->compat_features = le64_to_cpu(le->compat_features);
60 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
61 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
62 cpu->image_size = le64_to_cpu(le->image_size);
63 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
64 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
67 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
69 le->magic = cpu_to_le32(cpu->magic);
70 le->cluster_size = cpu_to_le32(cpu->cluster_size);
71 le->table_size = cpu_to_le32(cpu->table_size);
72 le->header_size = cpu_to_le32(cpu->header_size);
73 le->features = cpu_to_le64(cpu->features);
74 le->compat_features = cpu_to_le64(cpu->compat_features);
75 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
76 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
77 le->image_size = cpu_to_le64(cpu->image_size);
78 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
79 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
82 int qed_write_header_sync(BDRVQEDState *s)
84 QEDHeader le;
85 int ret;
87 qed_header_cpu_to_le(&s->header, &le);
88 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
89 if (ret != sizeof(le)) {
90 return ret;
92 return 0;
95 /**
96 * Update header in-place (does not rewrite backing filename or other strings)
98 * This function only updates known header fields in-place and does not affect
99 * extra data after the QED header.
101 static void qed_write_header(BDRVQEDState *s, BlockCompletionFunc cb,
102 void *opaque)
104 /* We must write full sectors for O_DIRECT but cannot necessarily generate
105 * the data following the header if an unrecognized compat feature is
106 * active. Therefore, first read the sectors containing the header, update
107 * them, and write back.
110 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
111 size_t len = nsectors * BDRV_SECTOR_SIZE;
112 uint8_t *buf;
113 struct iovec iov;
114 QEMUIOVector qiov;
115 int ret;
117 buf = qemu_blockalign(s->bs, len);
118 iov = (struct iovec) {
119 .iov_base = buf,
120 .iov_len = len,
122 qemu_iovec_init_external(&qiov, &iov, 1);
124 ret = bdrv_preadv(s->bs->file, 0, &qiov);
125 if (ret < 0) {
126 goto out;
129 /* Update header */
130 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
132 ret = bdrv_pwritev(s->bs->file, 0, &qiov);
133 if (ret < 0) {
134 goto out;
137 ret = 0;
138 out:
139 qemu_vfree(buf);
140 cb(opaque, ret);
143 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
145 uint64_t table_entries;
146 uint64_t l2_size;
148 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
149 l2_size = table_entries * cluster_size;
151 return l2_size * table_entries;
154 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
156 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
157 cluster_size > QED_MAX_CLUSTER_SIZE) {
158 return false;
160 if (cluster_size & (cluster_size - 1)) {
161 return false; /* not power of 2 */
163 return true;
166 static bool qed_is_table_size_valid(uint32_t table_size)
168 if (table_size < QED_MIN_TABLE_SIZE ||
169 table_size > QED_MAX_TABLE_SIZE) {
170 return false;
172 if (table_size & (table_size - 1)) {
173 return false; /* not power of 2 */
175 return true;
178 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
179 uint32_t table_size)
181 if (image_size % BDRV_SECTOR_SIZE != 0) {
182 return false; /* not multiple of sector size */
184 if (image_size > qed_max_image_size(cluster_size, table_size)) {
185 return false; /* image is too large */
187 return true;
191 * Read a string of known length from the image file
193 * @file: Image file
194 * @offset: File offset to start of string, in bytes
195 * @n: String length in bytes
196 * @buf: Destination buffer
197 * @buflen: Destination buffer length in bytes
198 * @ret: 0 on success, -errno on failure
200 * The string is NUL-terminated.
202 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
203 char *buf, size_t buflen)
205 int ret;
206 if (n >= buflen) {
207 return -EINVAL;
209 ret = bdrv_pread(file, offset, buf, n);
210 if (ret < 0) {
211 return ret;
213 buf[n] = '\0';
214 return 0;
218 * Allocate new clusters
220 * @s: QED state
221 * @n: Number of contiguous clusters to allocate
222 * @ret: Offset of first allocated cluster
224 * This function only produces the offset where the new clusters should be
225 * written. It updates BDRVQEDState but does not make any changes to the image
226 * file.
228 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
230 uint64_t offset = s->file_size;
231 s->file_size += n * s->header.cluster_size;
232 return offset;
235 QEDTable *qed_alloc_table(BDRVQEDState *s)
237 /* Honor O_DIRECT memory alignment requirements */
238 return qemu_blockalign(s->bs,
239 s->header.cluster_size * s->header.table_size);
243 * Allocate a new zeroed L2 table
245 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
247 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
249 l2_table->table = qed_alloc_table(s);
250 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
252 memset(l2_table->table->offsets, 0,
253 s->header.cluster_size * s->header.table_size);
254 return l2_table;
257 static void qed_aio_next_io(QEDAIOCB *acb, int ret);
259 static void qed_aio_start_io(QEDAIOCB *acb)
261 qed_aio_next_io(acb, 0);
264 static void qed_aio_next_io_cb(void *opaque, int ret)
266 QEDAIOCB *acb = opaque;
268 qed_aio_next_io(acb, ret);
271 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
273 assert(!s->allocating_write_reqs_plugged);
275 s->allocating_write_reqs_plugged = true;
278 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
280 QEDAIOCB *acb;
282 assert(s->allocating_write_reqs_plugged);
284 s->allocating_write_reqs_plugged = false;
286 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
287 if (acb) {
288 qed_aio_start_io(acb);
292 static void qed_finish_clear_need_check(void *opaque, int ret)
294 /* Do nothing */
297 static void qed_flush_after_clear_need_check(void *opaque, int ret)
299 BDRVQEDState *s = opaque;
301 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
303 /* No need to wait until flush completes */
304 qed_unplug_allocating_write_reqs(s);
307 static void qed_clear_need_check(void *opaque, int ret)
309 BDRVQEDState *s = opaque;
311 if (ret) {
312 qed_unplug_allocating_write_reqs(s);
313 return;
316 s->header.features &= ~QED_F_NEED_CHECK;
317 qed_write_header(s, qed_flush_after_clear_need_check, s);
320 static void qed_need_check_timer_cb(void *opaque)
322 BDRVQEDState *s = opaque;
324 /* The timer should only fire when allocating writes have drained */
325 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
327 trace_qed_need_check_timer_cb(s);
329 qed_acquire(s);
330 qed_plug_allocating_write_reqs(s);
332 /* Ensure writes are on disk before clearing flag */
333 bdrv_aio_flush(s->bs->file->bs, qed_clear_need_check, s);
334 qed_release(s);
337 void qed_acquire(BDRVQEDState *s)
339 aio_context_acquire(bdrv_get_aio_context(s->bs));
342 void qed_release(BDRVQEDState *s)
344 aio_context_release(bdrv_get_aio_context(s->bs));
347 static void qed_start_need_check_timer(BDRVQEDState *s)
349 trace_qed_start_need_check_timer(s);
351 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
352 * migration.
354 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
355 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
358 /* It's okay to call this multiple times or when no timer is started */
359 static void qed_cancel_need_check_timer(BDRVQEDState *s)
361 trace_qed_cancel_need_check_timer(s);
362 timer_del(s->need_check_timer);
365 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
367 BDRVQEDState *s = bs->opaque;
369 qed_cancel_need_check_timer(s);
370 timer_free(s->need_check_timer);
373 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
374 AioContext *new_context)
376 BDRVQEDState *s = bs->opaque;
378 s->need_check_timer = aio_timer_new(new_context,
379 QEMU_CLOCK_VIRTUAL, SCALE_NS,
380 qed_need_check_timer_cb, s);
381 if (s->header.features & QED_F_NEED_CHECK) {
382 qed_start_need_check_timer(s);
386 static void bdrv_qed_drain(BlockDriverState *bs)
388 BDRVQEDState *s = bs->opaque;
390 /* Fire the timer immediately in order to start doing I/O as soon as the
391 * header is flushed.
393 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
394 qed_cancel_need_check_timer(s);
395 qed_need_check_timer_cb(s);
399 static int bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags,
400 Error **errp)
402 BDRVQEDState *s = bs->opaque;
403 QEDHeader le_header;
404 int64_t file_size;
405 int ret;
407 s->bs = bs;
408 QSIMPLEQ_INIT(&s->allocating_write_reqs);
410 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
411 if (ret < 0) {
412 return ret;
414 qed_header_le_to_cpu(&le_header, &s->header);
416 if (s->header.magic != QED_MAGIC) {
417 error_setg(errp, "Image not in QED format");
418 return -EINVAL;
420 if (s->header.features & ~QED_FEATURE_MASK) {
421 /* image uses unsupported feature bits */
422 error_setg(errp, "Unsupported QED features: %" PRIx64,
423 s->header.features & ~QED_FEATURE_MASK);
424 return -ENOTSUP;
426 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
427 return -EINVAL;
430 /* Round down file size to the last cluster */
431 file_size = bdrv_getlength(bs->file->bs);
432 if (file_size < 0) {
433 return file_size;
435 s->file_size = qed_start_of_cluster(s, file_size);
437 if (!qed_is_table_size_valid(s->header.table_size)) {
438 return -EINVAL;
440 if (!qed_is_image_size_valid(s->header.image_size,
441 s->header.cluster_size,
442 s->header.table_size)) {
443 return -EINVAL;
445 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
446 return -EINVAL;
449 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
450 sizeof(uint64_t);
451 s->l2_shift = ctz32(s->header.cluster_size);
452 s->l2_mask = s->table_nelems - 1;
453 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
455 /* Header size calculation must not overflow uint32_t */
456 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
457 return -EINVAL;
460 if ((s->header.features & QED_F_BACKING_FILE)) {
461 if ((uint64_t)s->header.backing_filename_offset +
462 s->header.backing_filename_size >
463 s->header.cluster_size * s->header.header_size) {
464 return -EINVAL;
467 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
468 s->header.backing_filename_size, bs->backing_file,
469 sizeof(bs->backing_file));
470 if (ret < 0) {
471 return ret;
474 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
475 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
479 /* Reset unknown autoclear feature bits. This is a backwards
480 * compatibility mechanism that allows images to be opened by older
481 * programs, which "knock out" unknown feature bits. When an image is
482 * opened by a newer program again it can detect that the autoclear
483 * feature is no longer valid.
485 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
486 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
487 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
489 ret = qed_write_header_sync(s);
490 if (ret) {
491 return ret;
494 /* From here on only known autoclear feature bits are valid */
495 bdrv_flush(bs->file->bs);
498 s->l1_table = qed_alloc_table(s);
499 qed_init_l2_cache(&s->l2_cache);
501 ret = qed_read_l1_table_sync(s);
502 if (ret) {
503 goto out;
506 /* If image was not closed cleanly, check consistency */
507 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
508 /* Read-only images cannot be fixed. There is no risk of corruption
509 * since write operations are not possible. Therefore, allow
510 * potentially inconsistent images to be opened read-only. This can
511 * aid data recovery from an otherwise inconsistent image.
513 if (!bdrv_is_read_only(bs->file->bs) &&
514 !(flags & BDRV_O_INACTIVE)) {
515 BdrvCheckResult result = {0};
517 ret = qed_check(s, &result, true);
518 if (ret) {
519 goto out;
524 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
526 out:
527 if (ret) {
528 qed_free_l2_cache(&s->l2_cache);
529 qemu_vfree(s->l1_table);
531 return ret;
534 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
535 Error **errp)
537 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
538 false, errp);
539 if (!bs->file) {
540 return -EINVAL;
543 return bdrv_qed_do_open(bs, options, flags, errp);
546 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
548 BDRVQEDState *s = bs->opaque;
550 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
553 /* We have nothing to do for QED reopen, stubs just return
554 * success */
555 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
556 BlockReopenQueue *queue, Error **errp)
558 return 0;
561 static void bdrv_qed_close(BlockDriverState *bs)
563 BDRVQEDState *s = bs->opaque;
565 bdrv_qed_detach_aio_context(bs);
567 /* Ensure writes reach stable storage */
568 bdrv_flush(bs->file->bs);
570 /* Clean shutdown, no check required on next open */
571 if (s->header.features & QED_F_NEED_CHECK) {
572 s->header.features &= ~QED_F_NEED_CHECK;
573 qed_write_header_sync(s);
576 qed_free_l2_cache(&s->l2_cache);
577 qemu_vfree(s->l1_table);
580 static int qed_create(const char *filename, uint32_t cluster_size,
581 uint64_t image_size, uint32_t table_size,
582 const char *backing_file, const char *backing_fmt,
583 QemuOpts *opts, Error **errp)
585 QEDHeader header = {
586 .magic = QED_MAGIC,
587 .cluster_size = cluster_size,
588 .table_size = table_size,
589 .header_size = 1,
590 .features = 0,
591 .compat_features = 0,
592 .l1_table_offset = cluster_size,
593 .image_size = image_size,
595 QEDHeader le_header;
596 uint8_t *l1_table = NULL;
597 size_t l1_size = header.cluster_size * header.table_size;
598 Error *local_err = NULL;
599 int ret = 0;
600 BlockBackend *blk;
602 ret = bdrv_create_file(filename, opts, &local_err);
603 if (ret < 0) {
604 error_propagate(errp, local_err);
605 return ret;
608 blk = blk_new_open(filename, NULL, NULL,
609 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL,
610 &local_err);
611 if (blk == NULL) {
612 error_propagate(errp, local_err);
613 return -EIO;
616 blk_set_allow_write_beyond_eof(blk, true);
618 /* File must start empty and grow, check truncate is supported */
619 ret = blk_truncate(blk, 0, errp);
620 if (ret < 0) {
621 goto out;
624 if (backing_file) {
625 header.features |= QED_F_BACKING_FILE;
626 header.backing_filename_offset = sizeof(le_header);
627 header.backing_filename_size = strlen(backing_file);
629 if (qed_fmt_is_raw(backing_fmt)) {
630 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
634 qed_header_cpu_to_le(&header, &le_header);
635 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
636 if (ret < 0) {
637 goto out;
639 ret = blk_pwrite(blk, sizeof(le_header), backing_file,
640 header.backing_filename_size, 0);
641 if (ret < 0) {
642 goto out;
645 l1_table = g_malloc0(l1_size);
646 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
647 if (ret < 0) {
648 goto out;
651 ret = 0; /* success */
652 out:
653 g_free(l1_table);
654 blk_unref(blk);
655 return ret;
658 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
660 uint64_t image_size = 0;
661 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
662 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
663 char *backing_file = NULL;
664 char *backing_fmt = NULL;
665 int ret;
667 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
668 BDRV_SECTOR_SIZE);
669 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
670 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
671 cluster_size = qemu_opt_get_size_del(opts,
672 BLOCK_OPT_CLUSTER_SIZE,
673 QED_DEFAULT_CLUSTER_SIZE);
674 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
675 QED_DEFAULT_TABLE_SIZE);
677 if (!qed_is_cluster_size_valid(cluster_size)) {
678 error_setg(errp, "QED cluster size must be within range [%u, %u] "
679 "and power of 2",
680 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
681 ret = -EINVAL;
682 goto finish;
684 if (!qed_is_table_size_valid(table_size)) {
685 error_setg(errp, "QED table size must be within range [%u, %u] "
686 "and power of 2",
687 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
688 ret = -EINVAL;
689 goto finish;
691 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
692 error_setg(errp, "QED image size must be a non-zero multiple of "
693 "cluster size and less than %" PRIu64 " bytes",
694 qed_max_image_size(cluster_size, table_size));
695 ret = -EINVAL;
696 goto finish;
699 ret = qed_create(filename, cluster_size, image_size, table_size,
700 backing_file, backing_fmt, opts, errp);
702 finish:
703 g_free(backing_file);
704 g_free(backing_fmt);
705 return ret;
708 typedef struct {
709 BlockDriverState *bs;
710 Coroutine *co;
711 uint64_t pos;
712 int64_t status;
713 int *pnum;
714 BlockDriverState **file;
715 } QEDIsAllocatedCB;
717 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
719 QEDIsAllocatedCB *cb = opaque;
720 BDRVQEDState *s = cb->bs->opaque;
721 *cb->pnum = len / BDRV_SECTOR_SIZE;
722 switch (ret) {
723 case QED_CLUSTER_FOUND:
724 offset |= qed_offset_into_cluster(s, cb->pos);
725 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
726 *cb->file = cb->bs->file->bs;
727 break;
728 case QED_CLUSTER_ZERO:
729 cb->status = BDRV_BLOCK_ZERO;
730 break;
731 case QED_CLUSTER_L2:
732 case QED_CLUSTER_L1:
733 cb->status = 0;
734 break;
735 default:
736 assert(ret < 0);
737 cb->status = ret;
738 break;
741 if (cb->co) {
742 aio_co_wake(cb->co);
746 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
747 int64_t sector_num,
748 int nb_sectors, int *pnum,
749 BlockDriverState **file)
751 BDRVQEDState *s = bs->opaque;
752 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
753 QEDIsAllocatedCB cb = {
754 .bs = bs,
755 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
756 .status = BDRV_BLOCK_OFFSET_MASK,
757 .pnum = pnum,
758 .file = file,
760 QEDRequest request = { .l2_table = NULL };
761 uint64_t offset;
762 int ret;
764 ret = qed_find_cluster(s, &request, cb.pos, &len, &offset);
765 qed_is_allocated_cb(&cb, ret, offset, len);
767 /* The callback was invoked immediately */
768 assert(cb.status != BDRV_BLOCK_OFFSET_MASK);
770 qed_unref_l2_cache_entry(request.l2_table);
772 return cb.status;
775 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
777 return acb->common.bs->opaque;
781 * Read from the backing file or zero-fill if no backing file
783 * @s: QED state
784 * @pos: Byte position in device
785 * @qiov: Destination I/O vector
786 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
787 * @cb: Completion function
788 * @opaque: User data for completion function
790 * This function reads qiov->size bytes starting at pos from the backing file.
791 * If there is no backing file then zeroes are read.
793 static int qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
794 QEMUIOVector *qiov,
795 QEMUIOVector **backing_qiov)
797 uint64_t backing_length = 0;
798 size_t size;
799 int ret;
801 /* If there is a backing file, get its length. Treat the absence of a
802 * backing file like a zero length backing file.
804 if (s->bs->backing) {
805 int64_t l = bdrv_getlength(s->bs->backing->bs);
806 if (l < 0) {
807 return l;
809 backing_length = l;
812 /* Zero all sectors if reading beyond the end of the backing file */
813 if (pos >= backing_length ||
814 pos + qiov->size > backing_length) {
815 qemu_iovec_memset(qiov, 0, 0, qiov->size);
818 /* Complete now if there are no backing file sectors to read */
819 if (pos >= backing_length) {
820 return 0;
823 /* If the read straddles the end of the backing file, shorten it */
824 size = MIN((uint64_t)backing_length - pos, qiov->size);
826 assert(*backing_qiov == NULL);
827 *backing_qiov = g_new(QEMUIOVector, 1);
828 qemu_iovec_init(*backing_qiov, qiov->niov);
829 qemu_iovec_concat(*backing_qiov, qiov, 0, size);
831 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
832 ret = bdrv_preadv(s->bs->backing, pos, *backing_qiov);
833 if (ret < 0) {
834 return ret;
836 return 0;
840 * Copy data from backing file into the image
842 * @s: QED state
843 * @pos: Byte position in device
844 * @len: Number of bytes
845 * @offset: Byte offset in image file
847 static int qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
848 uint64_t len, uint64_t offset)
850 QEMUIOVector qiov;
851 QEMUIOVector *backing_qiov = NULL;
852 struct iovec iov;
853 int ret;
855 /* Skip copy entirely if there is no work to do */
856 if (len == 0) {
857 return 0;
860 iov = (struct iovec) {
861 .iov_base = qemu_blockalign(s->bs, len),
862 .iov_len = len,
864 qemu_iovec_init_external(&qiov, &iov, 1);
866 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
868 if (backing_qiov) {
869 qemu_iovec_destroy(backing_qiov);
870 g_free(backing_qiov);
871 backing_qiov = NULL;
874 if (ret) {
875 goto out;
878 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
879 ret = bdrv_pwritev(s->bs->file, offset, &qiov);
880 if (ret < 0) {
881 goto out;
883 ret = 0;
884 out:
885 qemu_vfree(iov.iov_base);
886 return ret;
890 * Link one or more contiguous clusters into a table
892 * @s: QED state
893 * @table: L2 table
894 * @index: First cluster index
895 * @n: Number of contiguous clusters
896 * @cluster: First cluster offset
898 * The cluster offset may be an allocated byte offset in the image file, the
899 * zero cluster marker, or the unallocated cluster marker.
901 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
902 unsigned int n, uint64_t cluster)
904 int i;
905 for (i = index; i < index + n; i++) {
906 table->offsets[i] = cluster;
907 if (!qed_offset_is_unalloc_cluster(cluster) &&
908 !qed_offset_is_zero_cluster(cluster)) {
909 cluster += s->header.cluster_size;
914 static void qed_aio_complete_bh(void *opaque)
916 QEDAIOCB *acb = opaque;
917 BDRVQEDState *s = acb_to_s(acb);
918 BlockCompletionFunc *cb = acb->common.cb;
919 void *user_opaque = acb->common.opaque;
920 int ret = acb->bh_ret;
922 qemu_aio_unref(acb);
924 /* Invoke callback */
925 qed_acquire(s);
926 cb(user_opaque, ret);
927 qed_release(s);
930 static void qed_resume_alloc_bh(void *opaque)
932 qed_aio_start_io(opaque);
935 static void qed_aio_complete(QEDAIOCB *acb, int ret)
937 BDRVQEDState *s = acb_to_s(acb);
939 trace_qed_aio_complete(s, acb, ret);
941 /* Free resources */
942 qemu_iovec_destroy(&acb->cur_qiov);
943 qed_unref_l2_cache_entry(acb->request.l2_table);
945 /* Free the buffer we may have allocated for zero writes */
946 if (acb->flags & QED_AIOCB_ZERO) {
947 qemu_vfree(acb->qiov->iov[0].iov_base);
948 acb->qiov->iov[0].iov_base = NULL;
951 /* Arrange for a bh to invoke the completion function */
952 acb->bh_ret = ret;
953 aio_bh_schedule_oneshot(bdrv_get_aio_context(acb->common.bs),
954 qed_aio_complete_bh, acb);
956 /* Start next allocating write request waiting behind this one. Note that
957 * requests enqueue themselves when they first hit an unallocated cluster
958 * but they wait until the entire request is finished before waking up the
959 * next request in the queue. This ensures that we don't cycle through
960 * requests multiple times but rather finish one at a time completely.
962 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
963 QEDAIOCB *next_acb;
964 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
965 next_acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
966 if (next_acb) {
967 aio_bh_schedule_oneshot(bdrv_get_aio_context(acb->common.bs),
968 qed_resume_alloc_bh, next_acb);
969 } else if (s->header.features & QED_F_NEED_CHECK) {
970 qed_start_need_check_timer(s);
976 * Commit the current L2 table to the cache
978 static void qed_commit_l2_update(void *opaque, int ret)
980 QEDAIOCB *acb = opaque;
981 BDRVQEDState *s = acb_to_s(acb);
982 CachedL2Table *l2_table = acb->request.l2_table;
983 uint64_t l2_offset = l2_table->offset;
985 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
987 /* This is guaranteed to succeed because we just committed the entry to the
988 * cache.
990 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
991 assert(acb->request.l2_table != NULL);
993 qed_aio_next_io(acb, ret);
997 * Update L1 table with new L2 table offset and write it out
999 static void qed_aio_write_l1_update(void *opaque, int ret)
1001 QEDAIOCB *acb = opaque;
1002 BDRVQEDState *s = acb_to_s(acb);
1003 int index;
1005 if (ret) {
1006 qed_aio_complete(acb, ret);
1007 return;
1010 index = qed_l1_index(s, acb->cur_pos);
1011 s->l1_table->offsets[index] = acb->request.l2_table->offset;
1013 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
1017 * Update L2 table with new cluster offsets and write them out
1019 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
1021 BDRVQEDState *s = acb_to_s(acb);
1022 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1023 int index;
1025 if (ret) {
1026 goto err;
1029 if (need_alloc) {
1030 qed_unref_l2_cache_entry(acb->request.l2_table);
1031 acb->request.l2_table = qed_new_l2_table(s);
1034 index = qed_l2_index(s, acb->cur_pos);
1035 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1036 offset);
1038 if (need_alloc) {
1039 /* Write out the whole new L2 table */
1040 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1041 qed_aio_write_l1_update, acb);
1042 } else {
1043 /* Write out only the updated part of the L2 table */
1044 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1045 qed_aio_next_io_cb, acb);
1047 return;
1049 err:
1050 qed_aio_complete(acb, ret);
1053 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1055 QEDAIOCB *acb = opaque;
1056 qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1060 * Flush new data clusters before updating the L2 table
1062 * This flush is necessary when a backing file is in use. A crash during an
1063 * allocating write could result in empty clusters in the image. If the write
1064 * only touched a subregion of the cluster, then backing image sectors have
1065 * been lost in the untouched region. The solution is to flush after writing a
1066 * new data cluster and before updating the L2 table.
1068 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1070 QEDAIOCB *acb = opaque;
1071 BDRVQEDState *s = acb_to_s(acb);
1073 if (!bdrv_aio_flush(s->bs->file->bs, qed_aio_write_l2_update_cb, opaque)) {
1074 qed_aio_complete(acb, -EIO);
1079 * Write data to the image file
1081 static void qed_aio_write_main(void *opaque, int ret)
1083 QEDAIOCB *acb = opaque;
1084 BDRVQEDState *s = acb_to_s(acb);
1085 uint64_t offset = acb->cur_cluster +
1086 qed_offset_into_cluster(s, acb->cur_pos);
1087 BlockCompletionFunc *next_fn;
1089 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1091 if (ret) {
1092 qed_aio_complete(acb, ret);
1093 return;
1096 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1097 next_fn = qed_aio_next_io_cb;
1098 } else {
1099 if (s->bs->backing) {
1100 next_fn = qed_aio_write_flush_before_l2_update;
1101 } else {
1102 next_fn = qed_aio_write_l2_update_cb;
1106 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1107 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1108 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1109 next_fn, acb);
1113 * Populate untouched regions of new data cluster
1115 static void qed_aio_write_cow(void *opaque, int ret)
1117 QEDAIOCB *acb = opaque;
1118 BDRVQEDState *s = acb_to_s(acb);
1119 uint64_t start, len, offset;
1121 /* Populate front untouched region of new data cluster */
1122 start = qed_start_of_cluster(s, acb->cur_pos);
1123 len = qed_offset_into_cluster(s, acb->cur_pos);
1125 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1126 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1127 if (ret) {
1128 qed_aio_complete(acb, ret);
1129 return;
1132 /* Populate back untouched region of new data cluster */
1133 start = acb->cur_pos + acb->cur_qiov.size;
1134 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1135 offset = acb->cur_cluster +
1136 qed_offset_into_cluster(s, acb->cur_pos) +
1137 acb->cur_qiov.size;
1139 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1140 ret = qed_copy_from_backing_file(s, start, len, offset);
1142 qed_aio_write_main(acb, ret);
1146 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1148 static bool qed_should_set_need_check(BDRVQEDState *s)
1150 /* The flush before L2 update path ensures consistency */
1151 if (s->bs->backing) {
1152 return false;
1155 return !(s->header.features & QED_F_NEED_CHECK);
1158 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1160 QEDAIOCB *acb = opaque;
1162 if (ret) {
1163 qed_aio_complete(acb, ret);
1164 return;
1167 qed_aio_write_l2_update(acb, 0, 1);
1171 * Write new data cluster
1173 * @acb: Write request
1174 * @len: Length in bytes
1176 * This path is taken when writing to previously unallocated clusters.
1178 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1180 BDRVQEDState *s = acb_to_s(acb);
1181 BlockCompletionFunc *cb;
1183 /* Cancel timer when the first allocating request comes in */
1184 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1185 qed_cancel_need_check_timer(s);
1188 /* Freeze this request if another allocating write is in progress */
1189 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1190 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1192 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1193 s->allocating_write_reqs_plugged) {
1194 return; /* wait for existing request to finish */
1197 acb->cur_nclusters = qed_bytes_to_clusters(s,
1198 qed_offset_into_cluster(s, acb->cur_pos) + len);
1199 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1201 if (acb->flags & QED_AIOCB_ZERO) {
1202 /* Skip ahead if the clusters are already zero */
1203 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1204 qed_aio_start_io(acb);
1205 return;
1208 cb = qed_aio_write_zero_cluster;
1209 } else {
1210 cb = qed_aio_write_cow;
1211 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1214 if (qed_should_set_need_check(s)) {
1215 s->header.features |= QED_F_NEED_CHECK;
1216 qed_write_header(s, cb, acb);
1217 } else {
1218 cb(acb, 0);
1223 * Write data cluster in place
1225 * @acb: Write request
1226 * @offset: Cluster offset in bytes
1227 * @len: Length in bytes
1229 * This path is taken when writing to already allocated clusters.
1231 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1233 /* Allocate buffer for zero writes */
1234 if (acb->flags & QED_AIOCB_ZERO) {
1235 struct iovec *iov = acb->qiov->iov;
1237 if (!iov->iov_base) {
1238 iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len);
1239 if (iov->iov_base == NULL) {
1240 qed_aio_complete(acb, -ENOMEM);
1241 return;
1243 memset(iov->iov_base, 0, iov->iov_len);
1247 /* Calculate the I/O vector */
1248 acb->cur_cluster = offset;
1249 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1251 /* Do the actual write */
1252 qed_aio_write_main(acb, 0);
1256 * Write data cluster
1258 * @opaque: Write request
1259 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1260 * or -errno
1261 * @offset: Cluster offset in bytes
1262 * @len: Length in bytes
1264 static void qed_aio_write_data(void *opaque, int ret,
1265 uint64_t offset, size_t len)
1267 QEDAIOCB *acb = opaque;
1269 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1271 acb->find_cluster_ret = ret;
1273 switch (ret) {
1274 case QED_CLUSTER_FOUND:
1275 qed_aio_write_inplace(acb, offset, len);
1276 break;
1278 case QED_CLUSTER_L2:
1279 case QED_CLUSTER_L1:
1280 case QED_CLUSTER_ZERO:
1281 qed_aio_write_alloc(acb, len);
1282 break;
1284 default:
1285 qed_aio_complete(acb, ret);
1286 break;
1291 * Read data cluster
1293 * @opaque: Read request
1294 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1295 * or -errno
1296 * @offset: Cluster offset in bytes
1297 * @len: Length in bytes
1299 static void qed_aio_read_data(void *opaque, int ret,
1300 uint64_t offset, size_t len)
1302 QEDAIOCB *acb = opaque;
1303 BDRVQEDState *s = acb_to_s(acb);
1304 BlockDriverState *bs = acb->common.bs;
1306 /* Adjust offset into cluster */
1307 offset += qed_offset_into_cluster(s, acb->cur_pos);
1309 trace_qed_aio_read_data(s, acb, ret, offset, len);
1311 if (ret < 0) {
1312 goto err;
1315 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1317 /* Handle zero cluster and backing file reads */
1318 if (ret == QED_CLUSTER_ZERO) {
1319 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1320 qed_aio_start_io(acb);
1321 return;
1322 } else if (ret != QED_CLUSTER_FOUND) {
1323 ret = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1324 &acb->backing_qiov);
1325 qed_aio_next_io(acb, ret);
1326 return;
1329 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1330 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1331 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1332 qed_aio_next_io_cb, acb);
1333 return;
1335 err:
1336 qed_aio_complete(acb, ret);
1340 * Begin next I/O or complete the request
1342 static void qed_aio_next_io(QEDAIOCB *acb, int ret)
1344 BDRVQEDState *s = acb_to_s(acb);
1345 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1346 qed_aio_write_data : qed_aio_read_data;
1347 uint64_t offset;
1348 size_t len;
1350 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1352 if (acb->backing_qiov) {
1353 qemu_iovec_destroy(acb->backing_qiov);
1354 g_free(acb->backing_qiov);
1355 acb->backing_qiov = NULL;
1358 /* Handle I/O error */
1359 if (ret) {
1360 qed_aio_complete(acb, ret);
1361 return;
1364 acb->qiov_offset += acb->cur_qiov.size;
1365 acb->cur_pos += acb->cur_qiov.size;
1366 qemu_iovec_reset(&acb->cur_qiov);
1368 /* Complete request */
1369 if (acb->cur_pos >= acb->end_pos) {
1370 qed_aio_complete(acb, 0);
1371 return;
1374 /* Find next cluster and start I/O */
1375 len = acb->end_pos - acb->cur_pos;
1376 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1377 io_fn(acb, ret, offset, len);
1380 static BlockAIOCB *qed_aio_setup(BlockDriverState *bs,
1381 int64_t sector_num,
1382 QEMUIOVector *qiov, int nb_sectors,
1383 BlockCompletionFunc *cb,
1384 void *opaque, int flags)
1386 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1388 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1389 opaque, flags);
1391 acb->flags = flags;
1392 acb->qiov = qiov;
1393 acb->qiov_offset = 0;
1394 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1395 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1396 acb->backing_qiov = NULL;
1397 acb->request.l2_table = NULL;
1398 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1400 /* Start request */
1401 qed_aio_start_io(acb);
1402 return &acb->common;
1405 static BlockAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1406 int64_t sector_num,
1407 QEMUIOVector *qiov, int nb_sectors,
1408 BlockCompletionFunc *cb,
1409 void *opaque)
1411 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1414 static BlockAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1415 int64_t sector_num,
1416 QEMUIOVector *qiov, int nb_sectors,
1417 BlockCompletionFunc *cb,
1418 void *opaque)
1420 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1421 opaque, QED_AIOCB_WRITE);
1424 typedef struct {
1425 Coroutine *co;
1426 int ret;
1427 bool done;
1428 } QEDWriteZeroesCB;
1430 static void coroutine_fn qed_co_pwrite_zeroes_cb(void *opaque, int ret)
1432 QEDWriteZeroesCB *cb = opaque;
1434 cb->done = true;
1435 cb->ret = ret;
1436 if (cb->co) {
1437 aio_co_wake(cb->co);
1441 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1442 int64_t offset,
1443 int count,
1444 BdrvRequestFlags flags)
1446 BlockAIOCB *blockacb;
1447 BDRVQEDState *s = bs->opaque;
1448 QEDWriteZeroesCB cb = { .done = false };
1449 QEMUIOVector qiov;
1450 struct iovec iov;
1452 /* Fall back if the request is not aligned */
1453 if (qed_offset_into_cluster(s, offset) ||
1454 qed_offset_into_cluster(s, count)) {
1455 return -ENOTSUP;
1458 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1459 * then it will be allocated during request processing.
1461 iov.iov_base = NULL;
1462 iov.iov_len = count;
1464 qemu_iovec_init_external(&qiov, &iov, 1);
1465 blockacb = qed_aio_setup(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1466 count >> BDRV_SECTOR_BITS,
1467 qed_co_pwrite_zeroes_cb, &cb,
1468 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1469 if (!blockacb) {
1470 return -EIO;
1472 if (!cb.done) {
1473 cb.co = qemu_coroutine_self();
1474 qemu_coroutine_yield();
1476 assert(cb.done);
1477 return cb.ret;
1480 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset, Error **errp)
1482 BDRVQEDState *s = bs->opaque;
1483 uint64_t old_image_size;
1484 int ret;
1486 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1487 s->header.table_size)) {
1488 error_setg(errp, "Invalid image size specified");
1489 return -EINVAL;
1492 if ((uint64_t)offset < s->header.image_size) {
1493 error_setg(errp, "Shrinking images is currently not supported");
1494 return -ENOTSUP;
1497 old_image_size = s->header.image_size;
1498 s->header.image_size = offset;
1499 ret = qed_write_header_sync(s);
1500 if (ret < 0) {
1501 s->header.image_size = old_image_size;
1502 error_setg_errno(errp, -ret, "Failed to update the image size");
1504 return ret;
1507 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1509 BDRVQEDState *s = bs->opaque;
1510 return s->header.image_size;
1513 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1515 BDRVQEDState *s = bs->opaque;
1517 memset(bdi, 0, sizeof(*bdi));
1518 bdi->cluster_size = s->header.cluster_size;
1519 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1520 bdi->unallocated_blocks_are_zero = true;
1521 bdi->can_write_zeroes_with_unmap = true;
1522 return 0;
1525 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1526 const char *backing_file,
1527 const char *backing_fmt)
1529 BDRVQEDState *s = bs->opaque;
1530 QEDHeader new_header, le_header;
1531 void *buffer;
1532 size_t buffer_len, backing_file_len;
1533 int ret;
1535 /* Refuse to set backing filename if unknown compat feature bits are
1536 * active. If the image uses an unknown compat feature then we may not
1537 * know the layout of data following the header structure and cannot safely
1538 * add a new string.
1540 if (backing_file && (s->header.compat_features &
1541 ~QED_COMPAT_FEATURE_MASK)) {
1542 return -ENOTSUP;
1545 memcpy(&new_header, &s->header, sizeof(new_header));
1547 new_header.features &= ~(QED_F_BACKING_FILE |
1548 QED_F_BACKING_FORMAT_NO_PROBE);
1550 /* Adjust feature flags */
1551 if (backing_file) {
1552 new_header.features |= QED_F_BACKING_FILE;
1554 if (qed_fmt_is_raw(backing_fmt)) {
1555 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1559 /* Calculate new header size */
1560 backing_file_len = 0;
1562 if (backing_file) {
1563 backing_file_len = strlen(backing_file);
1566 buffer_len = sizeof(new_header);
1567 new_header.backing_filename_offset = buffer_len;
1568 new_header.backing_filename_size = backing_file_len;
1569 buffer_len += backing_file_len;
1571 /* Make sure we can rewrite header without failing */
1572 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1573 return -ENOSPC;
1576 /* Prepare new header */
1577 buffer = g_malloc(buffer_len);
1579 qed_header_cpu_to_le(&new_header, &le_header);
1580 memcpy(buffer, &le_header, sizeof(le_header));
1581 buffer_len = sizeof(le_header);
1583 if (backing_file) {
1584 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1585 buffer_len += backing_file_len;
1588 /* Write new header */
1589 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1590 g_free(buffer);
1591 if (ret == 0) {
1592 memcpy(&s->header, &new_header, sizeof(new_header));
1594 return ret;
1597 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1599 BDRVQEDState *s = bs->opaque;
1600 Error *local_err = NULL;
1601 int ret;
1603 bdrv_qed_close(bs);
1605 memset(s, 0, sizeof(BDRVQEDState));
1606 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1607 if (local_err) {
1608 error_propagate(errp, local_err);
1609 error_prepend(errp, "Could not reopen qed layer: ");
1610 return;
1611 } else if (ret < 0) {
1612 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1613 return;
1617 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1618 BdrvCheckMode fix)
1620 BDRVQEDState *s = bs->opaque;
1622 return qed_check(s, result, !!fix);
1625 static QemuOptsList qed_create_opts = {
1626 .name = "qed-create-opts",
1627 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1628 .desc = {
1630 .name = BLOCK_OPT_SIZE,
1631 .type = QEMU_OPT_SIZE,
1632 .help = "Virtual disk size"
1635 .name = BLOCK_OPT_BACKING_FILE,
1636 .type = QEMU_OPT_STRING,
1637 .help = "File name of a base image"
1640 .name = BLOCK_OPT_BACKING_FMT,
1641 .type = QEMU_OPT_STRING,
1642 .help = "Image format of the base image"
1645 .name = BLOCK_OPT_CLUSTER_SIZE,
1646 .type = QEMU_OPT_SIZE,
1647 .help = "Cluster size (in bytes)",
1648 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1651 .name = BLOCK_OPT_TABLE_SIZE,
1652 .type = QEMU_OPT_SIZE,
1653 .help = "L1/L2 table size (in clusters)"
1655 { /* end of list */ }
1659 static BlockDriver bdrv_qed = {
1660 .format_name = "qed",
1661 .instance_size = sizeof(BDRVQEDState),
1662 .create_opts = &qed_create_opts,
1663 .supports_backing = true,
1665 .bdrv_probe = bdrv_qed_probe,
1666 .bdrv_open = bdrv_qed_open,
1667 .bdrv_close = bdrv_qed_close,
1668 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1669 .bdrv_child_perm = bdrv_format_default_perms,
1670 .bdrv_create = bdrv_qed_create,
1671 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1672 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1673 .bdrv_aio_readv = bdrv_qed_aio_readv,
1674 .bdrv_aio_writev = bdrv_qed_aio_writev,
1675 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1676 .bdrv_truncate = bdrv_qed_truncate,
1677 .bdrv_getlength = bdrv_qed_getlength,
1678 .bdrv_get_info = bdrv_qed_get_info,
1679 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1680 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1681 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1682 .bdrv_check = bdrv_qed_check,
1683 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1684 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1685 .bdrv_drain = bdrv_qed_drain,
1688 static void bdrv_qed_init(void)
1690 bdrv_register(&bdrv_qed);
1693 block_init(bdrv_qed_init);