4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
30 #include "hyperv-proto.h"
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #include "qemu/config-file.h"
35 #include "qemu/error-report.h"
36 #include "hw/i386/pc.h"
37 #include "hw/i386/apic.h"
38 #include "hw/i386/apic_internal.h"
39 #include "hw/i386/apic-msidef.h"
40 #include "hw/i386/intel_iommu.h"
41 #include "hw/i386/x86-iommu.h"
43 #include "exec/ioport.h"
44 #include "hw/pci/pci.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci/msix.h"
47 #include "migration/blocker.h"
48 #include "exec/memattrs.h"
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define MSR_KVM_WALL_CLOCK 0x11
62 #define MSR_KVM_SYSTEM_TIME 0x12
64 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
65 * 255 kvm_msr_entry structs */
66 #define MSR_BUF_SIZE 4096
68 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
69 KVM_CAP_INFO(SET_TSS_ADDR
),
70 KVM_CAP_INFO(EXT_CPUID
),
71 KVM_CAP_INFO(MP_STATE
),
75 static bool has_msr_star
;
76 static bool has_msr_hsave_pa
;
77 static bool has_msr_tsc_aux
;
78 static bool has_msr_tsc_adjust
;
79 static bool has_msr_tsc_deadline
;
80 static bool has_msr_feature_control
;
81 static bool has_msr_misc_enable
;
82 static bool has_msr_smbase
;
83 static bool has_msr_bndcfgs
;
84 static int lm_capable_kernel
;
85 static bool has_msr_hv_hypercall
;
86 static bool has_msr_hv_crash
;
87 static bool has_msr_hv_reset
;
88 static bool has_msr_hv_vpindex
;
89 static bool has_msr_hv_runtime
;
90 static bool has_msr_hv_synic
;
91 static bool has_msr_hv_stimer
;
92 static bool has_msr_hv_frequencies
;
93 static bool has_msr_xss
;
95 static uint32_t has_architectural_pmu_version
;
96 static uint32_t num_architectural_pmu_gp_counters
;
97 static uint32_t num_architectural_pmu_fixed_counters
;
101 static int has_pit_state2
;
103 static bool has_msr_mcg_ext_ctl
;
105 static struct kvm_cpuid2
*cpuid_cache
;
107 int kvm_has_pit_state2(void)
109 return has_pit_state2
;
112 bool kvm_has_smm(void)
114 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
117 bool kvm_has_adjust_clock_stable(void)
119 int ret
= kvm_check_extension(kvm_state
, KVM_CAP_ADJUST_CLOCK
);
121 return (ret
== KVM_CLOCK_TSC_STABLE
);
124 bool kvm_allows_irq0_override(void)
126 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
129 static bool kvm_x2apic_api_set_flags(uint64_t flags
)
131 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
133 return !kvm_vm_enable_cap(s
, KVM_CAP_X2APIC_API
, 0, flags
);
136 #define MEMORIZE(fn, _result) \
138 static bool _memorized; \
147 static bool has_x2apic_api
;
149 bool kvm_has_x2apic_api(void)
151 return has_x2apic_api
;
154 bool kvm_enable_x2apic(void)
157 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS
|
158 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
),
162 static int kvm_get_tsc(CPUState
*cs
)
164 X86CPU
*cpu
= X86_CPU(cs
);
165 CPUX86State
*env
= &cpu
->env
;
167 struct kvm_msrs info
;
168 struct kvm_msr_entry entries
[1];
172 if (env
->tsc_valid
) {
176 msr_data
.info
.nmsrs
= 1;
177 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
178 env
->tsc_valid
= !runstate_is_running();
180 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
186 env
->tsc
= msr_data
.entries
[0].data
;
190 static inline void do_kvm_synchronize_tsc(CPUState
*cpu
, run_on_cpu_data arg
)
195 void kvm_synchronize_all_tsc(void)
201 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, RUN_ON_CPU_NULL
);
206 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
208 struct kvm_cpuid2
*cpuid
;
211 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
212 cpuid
= g_malloc0(size
);
214 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
215 if (r
== 0 && cpuid
->nent
>= max
) {
223 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
231 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
234 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
236 struct kvm_cpuid2
*cpuid
;
239 if (cpuid_cache
!= NULL
) {
242 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
249 static const struct kvm_para_features
{
252 } para_features
[] = {
253 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
254 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
255 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
256 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
259 static int get_para_features(KVMState
*s
)
263 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
264 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
265 features
|= (1 << para_features
[i
].feature
);
272 static bool host_tsx_blacklisted(void)
274 int family
, model
, stepping
;\
275 char vendor
[CPUID_VENDOR_SZ
+ 1];
277 host_vendor_fms(vendor
, &family
, &model
, &stepping
);
279 /* Check if we are running on a Haswell host known to have broken TSX */
280 return !strcmp(vendor
, CPUID_VENDOR_INTEL
) &&
282 ((model
== 63 && stepping
< 4) ||
283 model
== 60 || model
== 69 || model
== 70);
286 /* Returns the value for a specific register on the cpuid entry
288 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
308 /* Find matching entry for function/index on kvm_cpuid2 struct
310 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
315 for (i
= 0; i
< cpuid
->nent
; ++i
) {
316 if (cpuid
->entries
[i
].function
== function
&&
317 cpuid
->entries
[i
].index
== index
) {
318 return &cpuid
->entries
[i
];
325 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
326 uint32_t index
, int reg
)
328 struct kvm_cpuid2
*cpuid
;
330 uint32_t cpuid_1_edx
;
333 cpuid
= get_supported_cpuid(s
);
335 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
338 ret
= cpuid_entry_get_reg(entry
, reg
);
341 /* Fixups for the data returned by KVM, below */
343 if (function
== 1 && reg
== R_EDX
) {
344 /* KVM before 2.6.30 misreports the following features */
345 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
346 } else if (function
== 1 && reg
== R_ECX
) {
347 /* We can set the hypervisor flag, even if KVM does not return it on
348 * GET_SUPPORTED_CPUID
350 ret
|= CPUID_EXT_HYPERVISOR
;
351 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
352 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
353 * and the irqchip is in the kernel.
355 if (kvm_irqchip_in_kernel() &&
356 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
357 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
360 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
361 * without the in-kernel irqchip
363 if (!kvm_irqchip_in_kernel()) {
364 ret
&= ~CPUID_EXT_X2APIC
;
366 } else if (function
== 6 && reg
== R_EAX
) {
367 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
368 } else if (function
== 7 && index
== 0 && reg
== R_EBX
) {
369 if (host_tsx_blacklisted()) {
370 ret
&= ~(CPUID_7_0_EBX_RTM
| CPUID_7_0_EBX_HLE
);
372 } else if (function
== 0x80000001 && reg
== R_EDX
) {
373 /* On Intel, kvm returns cpuid according to the Intel spec,
374 * so add missing bits according to the AMD spec:
376 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
377 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
378 } else if (function
== KVM_CPUID_FEATURES
&& reg
== R_EAX
) {
379 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
380 * be enabled without the in-kernel irqchip
382 if (!kvm_irqchip_in_kernel()) {
383 ret
&= ~(1U << KVM_FEATURE_PV_UNHALT
);
387 /* fallback for older kernels */
388 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
389 ret
= get_para_features(s
);
395 typedef struct HWPoisonPage
{
397 QLIST_ENTRY(HWPoisonPage
) list
;
400 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
401 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
403 static void kvm_unpoison_all(void *param
)
405 HWPoisonPage
*page
, *next_page
;
407 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
408 QLIST_REMOVE(page
, list
);
409 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
414 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
418 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
419 if (page
->ram_addr
== ram_addr
) {
423 page
= g_new(HWPoisonPage
, 1);
424 page
->ram_addr
= ram_addr
;
425 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
428 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
433 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
436 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
441 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
443 CPUState
*cs
= CPU(cpu
);
444 CPUX86State
*env
= &cpu
->env
;
445 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
446 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
447 uint64_t mcg_status
= MCG_STATUS_MCIP
;
450 if (code
== BUS_MCEERR_AR
) {
451 status
|= MCI_STATUS_AR
| 0x134;
452 mcg_status
|= MCG_STATUS_EIPV
;
455 mcg_status
|= MCG_STATUS_RIPV
;
458 flags
= cpu_x86_support_mca_broadcast(env
) ? MCE_INJECT_BROADCAST
: 0;
459 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
460 * guest kernel back into env->mcg_ext_ctl.
462 cpu_synchronize_state(cs
);
463 if (env
->mcg_ext_ctl
& MCG_EXT_CTL_LMCE_EN
) {
464 mcg_status
|= MCG_STATUS_LMCE
;
468 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
469 (MCM_ADDR_PHYS
<< 6) | 0xc, flags
);
472 static void hardware_memory_error(void)
474 fprintf(stderr
, "Hardware memory error!\n");
478 void kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
480 X86CPU
*cpu
= X86_CPU(c
);
481 CPUX86State
*env
= &cpu
->env
;
485 /* If we get an action required MCE, it has been injected by KVM
486 * while the VM was running. An action optional MCE instead should
487 * be coming from the main thread, which qemu_init_sigbus identifies
488 * as the "early kill" thread.
490 assert(code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
);
492 if ((env
->mcg_cap
& MCG_SER_P
) && addr
) {
493 ram_addr
= qemu_ram_addr_from_host(addr
);
494 if (ram_addr
!= RAM_ADDR_INVALID
&&
495 kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
496 kvm_hwpoison_page_add(ram_addr
);
497 kvm_mce_inject(cpu
, paddr
, code
);
501 fprintf(stderr
, "Hardware memory error for memory used by "
502 "QEMU itself instead of guest system!\n");
505 if (code
== BUS_MCEERR_AR
) {
506 hardware_memory_error();
509 /* Hope we are lucky for AO MCE */
512 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
514 CPUX86State
*env
= &cpu
->env
;
516 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
517 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
518 struct kvm_x86_mce mce
;
520 env
->exception_injected
= -1;
523 * There must be at least one bank in use if an MCE is pending.
524 * Find it and use its values for the event injection.
526 for (bank
= 0; bank
< bank_num
; bank
++) {
527 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
531 assert(bank
< bank_num
);
534 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
535 mce
.mcg_status
= env
->mcg_status
;
536 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
537 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
539 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
544 static void cpu_update_state(void *opaque
, int running
, RunState state
)
546 CPUX86State
*env
= opaque
;
549 env
->tsc_valid
= false;
553 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
555 X86CPU
*cpu
= X86_CPU(cs
);
559 #ifndef KVM_CPUID_SIGNATURE_NEXT
560 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
563 static bool hyperv_hypercall_available(X86CPU
*cpu
)
565 return cpu
->hyperv_vapic
||
566 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
569 static bool hyperv_enabled(X86CPU
*cpu
)
571 CPUState
*cs
= CPU(cpu
);
572 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
573 (hyperv_hypercall_available(cpu
) ||
575 cpu
->hyperv_relaxed_timing
||
578 cpu
->hyperv_vpindex
||
579 cpu
->hyperv_runtime
||
584 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
586 X86CPU
*cpu
= X86_CPU(cs
);
587 CPUX86State
*env
= &cpu
->env
;
594 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
595 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
598 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
599 * TSC frequency doesn't match the one we want.
601 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
602 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
604 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
605 warn_report("TSC frequency mismatch between "
606 "VM (%" PRId64
" kHz) and host (%d kHz), "
607 "and TSC scaling unavailable",
608 env
->tsc_khz
, cur_freq
);
616 static bool tsc_is_stable_and_known(CPUX86State
*env
)
621 return (env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
)
622 || env
->user_tsc_khz
;
625 static int hyperv_handle_properties(CPUState
*cs
)
627 X86CPU
*cpu
= X86_CPU(cs
);
628 CPUX86State
*env
= &cpu
->env
;
630 if (cpu
->hyperv_time
&&
631 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) <= 0) {
632 cpu
->hyperv_time
= false;
635 if (cpu
->hyperv_relaxed_timing
) {
636 env
->features
[FEAT_HYPERV_EAX
] |= HV_HYPERCALL_AVAILABLE
;
638 if (cpu
->hyperv_vapic
) {
639 env
->features
[FEAT_HYPERV_EAX
] |= HV_HYPERCALL_AVAILABLE
;
640 env
->features
[FEAT_HYPERV_EAX
] |= HV_APIC_ACCESS_AVAILABLE
;
642 if (cpu
->hyperv_time
) {
643 env
->features
[FEAT_HYPERV_EAX
] |= HV_HYPERCALL_AVAILABLE
;
644 env
->features
[FEAT_HYPERV_EAX
] |= HV_TIME_REF_COUNT_AVAILABLE
;
645 env
->features
[FEAT_HYPERV_EAX
] |= HV_REFERENCE_TSC_AVAILABLE
;
647 if (has_msr_hv_frequencies
&& tsc_is_stable_and_known(env
)) {
648 env
->features
[FEAT_HYPERV_EAX
] |= HV_ACCESS_FREQUENCY_MSRS
;
649 env
->features
[FEAT_HYPERV_EDX
] |= HV_FREQUENCY_MSRS_AVAILABLE
;
652 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
653 env
->features
[FEAT_HYPERV_EDX
] |= HV_GUEST_CRASH_MSR_AVAILABLE
;
655 env
->features
[FEAT_HYPERV_EDX
] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
656 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
657 env
->features
[FEAT_HYPERV_EAX
] |= HV_RESET_AVAILABLE
;
659 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
660 env
->features
[FEAT_HYPERV_EAX
] |= HV_VP_INDEX_AVAILABLE
;
662 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
663 env
->features
[FEAT_HYPERV_EAX
] |= HV_VP_RUNTIME_AVAILABLE
;
665 if (cpu
->hyperv_synic
) {
666 if (!has_msr_hv_synic
||
667 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
668 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
672 env
->features
[FEAT_HYPERV_EAX
] |= HV_SYNIC_AVAILABLE
;
674 if (cpu
->hyperv_stimer
) {
675 if (!has_msr_hv_stimer
) {
676 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
679 env
->features
[FEAT_HYPERV_EAX
] |= HV_SYNTIMERS_AVAILABLE
;
684 static Error
*invtsc_mig_blocker
;
686 #define KVM_MAX_CPUID_ENTRIES 100
688 int kvm_arch_init_vcpu(CPUState
*cs
)
691 struct kvm_cpuid2 cpuid
;
692 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
693 } QEMU_PACKED cpuid_data
;
694 X86CPU
*cpu
= X86_CPU(cs
);
695 CPUX86State
*env
= &cpu
->env
;
696 uint32_t limit
, i
, j
, cpuid_i
;
698 struct kvm_cpuid_entry2
*c
;
699 uint32_t signature
[3];
700 int kvm_base
= KVM_CPUID_SIGNATURE
;
702 Error
*local_err
= NULL
;
704 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
708 r
= kvm_arch_set_tsc_khz(cs
);
713 /* vcpu's TSC frequency is either specified by user, or following
714 * the value used by KVM if the former is not present. In the
715 * latter case, we query it from KVM and record in env->tsc_khz,
716 * so that vcpu's TSC frequency can be migrated later via this field.
719 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
720 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
727 /* Paravirtualization CPUIDs */
728 if (hyperv_enabled(cpu
)) {
729 c
= &cpuid_data
.entries
[cpuid_i
++];
730 c
->function
= HV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
731 if (!cpu
->hyperv_vendor_id
) {
732 memcpy(signature
, "Microsoft Hv", 12);
734 size_t len
= strlen(cpu
->hyperv_vendor_id
);
737 error_report("hv-vendor-id truncated to 12 characters");
740 memset(signature
, 0, 12);
741 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
743 c
->eax
= HV_CPUID_MIN
;
744 c
->ebx
= signature
[0];
745 c
->ecx
= signature
[1];
746 c
->edx
= signature
[2];
748 c
= &cpuid_data
.entries
[cpuid_i
++];
749 c
->function
= HV_CPUID_INTERFACE
;
750 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
751 c
->eax
= signature
[0];
756 c
= &cpuid_data
.entries
[cpuid_i
++];
757 c
->function
= HV_CPUID_VERSION
;
761 c
= &cpuid_data
.entries
[cpuid_i
++];
762 c
->function
= HV_CPUID_FEATURES
;
763 r
= hyperv_handle_properties(cs
);
767 c
->eax
= env
->features
[FEAT_HYPERV_EAX
];
768 c
->ebx
= env
->features
[FEAT_HYPERV_EBX
];
769 c
->edx
= env
->features
[FEAT_HYPERV_EDX
];
771 c
= &cpuid_data
.entries
[cpuid_i
++];
772 c
->function
= HV_CPUID_ENLIGHTMENT_INFO
;
773 if (cpu
->hyperv_relaxed_timing
) {
774 c
->eax
|= HV_RELAXED_TIMING_RECOMMENDED
;
776 if (cpu
->hyperv_vapic
) {
777 c
->eax
|= HV_APIC_ACCESS_RECOMMENDED
;
779 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
781 c
= &cpuid_data
.entries
[cpuid_i
++];
782 c
->function
= HV_CPUID_IMPLEMENT_LIMITS
;
784 c
->eax
= cpu
->hv_max_vps
;
787 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
788 has_msr_hv_hypercall
= true;
791 if (cpu
->expose_kvm
) {
792 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
793 c
= &cpuid_data
.entries
[cpuid_i
++];
794 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
795 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
796 c
->ebx
= signature
[0];
797 c
->ecx
= signature
[1];
798 c
->edx
= signature
[2];
800 c
= &cpuid_data
.entries
[cpuid_i
++];
801 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
802 c
->eax
= env
->features
[FEAT_KVM
];
805 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
807 for (i
= 0; i
<= limit
; i
++) {
808 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
809 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
812 c
= &cpuid_data
.entries
[cpuid_i
++];
816 /* Keep reading function 2 till all the input is received */
820 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
821 KVM_CPUID_FLAG_STATE_READ_NEXT
;
822 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
823 times
= c
->eax
& 0xff;
825 for (j
= 1; j
< times
; ++j
) {
826 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
827 fprintf(stderr
, "cpuid_data is full, no space for "
828 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
831 c
= &cpuid_data
.entries
[cpuid_i
++];
833 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
834 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
842 if (i
== 0xd && j
== 64) {
846 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
848 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
850 if (i
== 4 && c
->eax
== 0) {
853 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
856 if (i
== 0xd && c
->eax
== 0) {
859 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
860 fprintf(stderr
, "cpuid_data is full, no space for "
861 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
864 c
= &cpuid_data
.entries
[cpuid_i
++];
870 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
878 cpu_x86_cpuid(env
, 0x0a, 0, &eax
, &unused
, &unused
, &edx
);
880 has_architectural_pmu_version
= eax
& 0xff;
881 if (has_architectural_pmu_version
> 0) {
882 num_architectural_pmu_gp_counters
= (eax
& 0xff00) >> 8;
884 /* Shouldn't be more than 32, since that's the number of bits
885 * available in EBX to tell us _which_ counters are available.
888 if (num_architectural_pmu_gp_counters
> MAX_GP_COUNTERS
) {
889 num_architectural_pmu_gp_counters
= MAX_GP_COUNTERS
;
892 if (has_architectural_pmu_version
> 1) {
893 num_architectural_pmu_fixed_counters
= edx
& 0x1f;
895 if (num_architectural_pmu_fixed_counters
> MAX_FIXED_COUNTERS
) {
896 num_architectural_pmu_fixed_counters
= MAX_FIXED_COUNTERS
;
902 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
904 for (i
= 0x80000000; i
<= limit
; i
++) {
905 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
906 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
909 c
= &cpuid_data
.entries
[cpuid_i
++];
913 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
916 /* Call Centaur's CPUID instructions they are supported. */
917 if (env
->cpuid_xlevel2
> 0) {
918 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
920 for (i
= 0xC0000000; i
<= limit
; i
++) {
921 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
922 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
925 c
= &cpuid_data
.entries
[cpuid_i
++];
929 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
933 cpuid_data
.cpuid
.nent
= cpuid_i
;
935 if (((env
->cpuid_version
>> 8)&0xF) >= 6
936 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
937 (CPUID_MCE
| CPUID_MCA
)
938 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
939 uint64_t mcg_cap
, unsupported_caps
;
943 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
945 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
949 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
950 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
951 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
955 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
956 if (unsupported_caps
) {
957 if (unsupported_caps
& MCG_LMCE_P
) {
958 error_report("kvm: LMCE not supported");
961 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64
,
965 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
966 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
968 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
973 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
975 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
977 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
978 !!(c
->ecx
& CPUID_EXT_SMX
);
981 if (env
->mcg_cap
& MCG_LMCE_P
) {
982 has_msr_mcg_ext_ctl
= has_msr_feature_control
= true;
985 if (!env
->user_tsc_khz
) {
986 if ((env
->features
[FEAT_8000_0007_EDX
] & CPUID_APM_INVTSC
) &&
987 invtsc_mig_blocker
== NULL
) {
989 error_setg(&invtsc_mig_blocker
,
990 "State blocked by non-migratable CPU device"
992 r
= migrate_add_blocker(invtsc_mig_blocker
, &local_err
);
994 error_report_err(local_err
);
995 error_free(invtsc_mig_blocker
);
999 vmstate_x86_cpu
.unmigratable
= 1;
1003 if (cpu
->vmware_cpuid_freq
1004 /* Guests depend on 0x40000000 to detect this feature, so only expose
1005 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1007 && kvm_base
== KVM_CPUID_SIGNATURE
1008 /* TSC clock must be stable and known for this feature. */
1009 && tsc_is_stable_and_known(env
)) {
1011 c
= &cpuid_data
.entries
[cpuid_i
++];
1012 c
->function
= KVM_CPUID_SIGNATURE
| 0x10;
1013 c
->eax
= env
->tsc_khz
;
1014 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1015 * APIC_BUS_CYCLE_NS */
1017 c
->ecx
= c
->edx
= 0;
1019 c
= cpuid_find_entry(&cpuid_data
.cpuid
, kvm_base
, 0);
1020 c
->eax
= MAX(c
->eax
, KVM_CPUID_SIGNATURE
| 0x10);
1023 cpuid_data
.cpuid
.nent
= cpuid_i
;
1025 cpuid_data
.cpuid
.padding
= 0;
1026 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
1032 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
1034 cpu
->kvm_msr_buf
= g_malloc0(MSR_BUF_SIZE
);
1036 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
1037 has_msr_tsc_aux
= false;
1043 migrate_del_blocker(invtsc_mig_blocker
);
1047 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
1049 CPUX86State
*env
= &cpu
->env
;
1052 if (kvm_irqchip_in_kernel()) {
1053 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
1054 KVM_MP_STATE_UNINITIALIZED
;
1056 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
1059 if (cpu
->hyperv_synic
) {
1061 for (i
= 0; i
< ARRAY_SIZE(env
->msr_hv_synic_sint
); i
++) {
1062 env
->msr_hv_synic_sint
[i
] = HV_SINT_MASKED
;
1067 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
1069 CPUX86State
*env
= &cpu
->env
;
1071 /* APs get directly into wait-for-SIPI state. */
1072 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
1073 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
1077 static int kvm_get_supported_msrs(KVMState
*s
)
1079 static int kvm_supported_msrs
;
1083 if (kvm_supported_msrs
== 0) {
1084 struct kvm_msr_list msr_list
, *kvm_msr_list
;
1086 kvm_supported_msrs
= -1;
1088 /* Obtain MSR list from KVM. These are the MSRs that we must
1091 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
1092 if (ret
< 0 && ret
!= -E2BIG
) {
1095 /* Old kernel modules had a bug and could write beyond the provided
1096 memory. Allocate at least a safe amount of 1K. */
1097 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
1099 sizeof(msr_list
.indices
[0])));
1101 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
1102 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
1106 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
1107 switch (kvm_msr_list
->indices
[i
]) {
1109 has_msr_star
= true;
1111 case MSR_VM_HSAVE_PA
:
1112 has_msr_hsave_pa
= true;
1115 has_msr_tsc_aux
= true;
1117 case MSR_TSC_ADJUST
:
1118 has_msr_tsc_adjust
= true;
1120 case MSR_IA32_TSCDEADLINE
:
1121 has_msr_tsc_deadline
= true;
1123 case MSR_IA32_SMBASE
:
1124 has_msr_smbase
= true;
1126 case MSR_IA32_MISC_ENABLE
:
1127 has_msr_misc_enable
= true;
1129 case MSR_IA32_BNDCFGS
:
1130 has_msr_bndcfgs
= true;
1135 case HV_X64_MSR_CRASH_CTL
:
1136 has_msr_hv_crash
= true;
1138 case HV_X64_MSR_RESET
:
1139 has_msr_hv_reset
= true;
1141 case HV_X64_MSR_VP_INDEX
:
1142 has_msr_hv_vpindex
= true;
1144 case HV_X64_MSR_VP_RUNTIME
:
1145 has_msr_hv_runtime
= true;
1147 case HV_X64_MSR_SCONTROL
:
1148 has_msr_hv_synic
= true;
1150 case HV_X64_MSR_STIMER0_CONFIG
:
1151 has_msr_hv_stimer
= true;
1153 case HV_X64_MSR_TSC_FREQUENCY
:
1154 has_msr_hv_frequencies
= true;
1160 g_free(kvm_msr_list
);
1166 static Notifier smram_machine_done
;
1167 static KVMMemoryListener smram_listener
;
1168 static AddressSpace smram_address_space
;
1169 static MemoryRegion smram_as_root
;
1170 static MemoryRegion smram_as_mem
;
1172 static void register_smram_listener(Notifier
*n
, void *unused
)
1174 MemoryRegion
*smram
=
1175 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1177 /* Outer container... */
1178 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1179 memory_region_set_enabled(&smram_as_root
, true);
1181 /* ... with two regions inside: normal system memory with low
1184 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1185 get_system_memory(), 0, ~0ull);
1186 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1187 memory_region_set_enabled(&smram_as_mem
, true);
1190 /* ... SMRAM with higher priority */
1191 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1192 memory_region_set_enabled(smram
, true);
1195 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1196 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1197 &smram_address_space
, 1);
1200 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1202 uint64_t identity_base
= 0xfffbc000;
1203 uint64_t shadow_mem
;
1205 struct utsname utsname
;
1207 #ifdef KVM_CAP_XSAVE
1208 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1212 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1215 #ifdef KVM_CAP_PIT_STATE2
1216 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1219 ret
= kvm_get_supported_msrs(s
);
1225 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1228 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1229 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1230 * Since these must be part of guest physical memory, we need to allocate
1231 * them, both by setting their start addresses in the kernel and by
1232 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1234 * Older KVM versions may not support setting the identity map base. In
1235 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1238 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1239 /* Allows up to 16M BIOSes. */
1240 identity_base
= 0xfeffc000;
1242 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1248 /* Set TSS base one page after EPT identity map. */
1249 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1254 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1255 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1257 fprintf(stderr
, "e820_add_entry() table is full\n");
1260 qemu_register_reset(kvm_unpoison_all
, NULL
);
1262 shadow_mem
= machine_kvm_shadow_mem(ms
);
1263 if (shadow_mem
!= -1) {
1265 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1271 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
) &&
1272 object_dynamic_cast(OBJECT(ms
), TYPE_PC_MACHINE
) &&
1273 pc_machine_is_smm_enabled(PC_MACHINE(ms
))) {
1274 smram_machine_done
.notify
= register_smram_listener
;
1275 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1280 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1282 lhs
->selector
= rhs
->selector
;
1283 lhs
->base
= rhs
->base
;
1284 lhs
->limit
= rhs
->limit
;
1296 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1298 unsigned flags
= rhs
->flags
;
1299 lhs
->selector
= rhs
->selector
;
1300 lhs
->base
= rhs
->base
;
1301 lhs
->limit
= rhs
->limit
;
1302 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1303 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1304 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1305 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1306 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1307 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1308 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1309 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1310 lhs
->unusable
= !lhs
->present
;
1314 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1316 lhs
->selector
= rhs
->selector
;
1317 lhs
->base
= rhs
->base
;
1318 lhs
->limit
= rhs
->limit
;
1319 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1320 ((rhs
->present
&& !rhs
->unusable
) * DESC_P_MASK
) |
1321 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1322 (rhs
->db
<< DESC_B_SHIFT
) |
1323 (rhs
->s
* DESC_S_MASK
) |
1324 (rhs
->l
<< DESC_L_SHIFT
) |
1325 (rhs
->g
* DESC_G_MASK
) |
1326 (rhs
->avl
* DESC_AVL_MASK
);
1329 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1332 *kvm_reg
= *qemu_reg
;
1334 *qemu_reg
= *kvm_reg
;
1338 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1340 CPUX86State
*env
= &cpu
->env
;
1341 struct kvm_regs regs
;
1345 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1351 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1352 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1353 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1354 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1355 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1356 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1357 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1358 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1359 #ifdef TARGET_X86_64
1360 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1361 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1362 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1363 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1364 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1365 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1366 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1367 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1370 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1371 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1374 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1380 static int kvm_put_fpu(X86CPU
*cpu
)
1382 CPUX86State
*env
= &cpu
->env
;
1386 memset(&fpu
, 0, sizeof fpu
);
1387 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1388 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1389 fpu
.fcw
= env
->fpuc
;
1390 fpu
.last_opcode
= env
->fpop
;
1391 fpu
.last_ip
= env
->fpip
;
1392 fpu
.last_dp
= env
->fpdp
;
1393 for (i
= 0; i
< 8; ++i
) {
1394 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1396 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1397 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1398 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1399 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1401 fpu
.mxcsr
= env
->mxcsr
;
1403 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1406 #define XSAVE_FCW_FSW 0
1407 #define XSAVE_FTW_FOP 1
1408 #define XSAVE_CWD_RIP 2
1409 #define XSAVE_CWD_RDP 4
1410 #define XSAVE_MXCSR 6
1411 #define XSAVE_ST_SPACE 8
1412 #define XSAVE_XMM_SPACE 40
1413 #define XSAVE_XSTATE_BV 128
1414 #define XSAVE_YMMH_SPACE 144
1415 #define XSAVE_BNDREGS 240
1416 #define XSAVE_BNDCSR 256
1417 #define XSAVE_OPMASK 272
1418 #define XSAVE_ZMM_Hi256 288
1419 #define XSAVE_Hi16_ZMM 416
1420 #define XSAVE_PKRU 672
1422 #define XSAVE_BYTE_OFFSET(word_offset) \
1423 ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1425 #define ASSERT_OFFSET(word_offset, field) \
1426 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1427 offsetof(X86XSaveArea, field))
1429 ASSERT_OFFSET(XSAVE_FCW_FSW
, legacy
.fcw
);
1430 ASSERT_OFFSET(XSAVE_FTW_FOP
, legacy
.ftw
);
1431 ASSERT_OFFSET(XSAVE_CWD_RIP
, legacy
.fpip
);
1432 ASSERT_OFFSET(XSAVE_CWD_RDP
, legacy
.fpdp
);
1433 ASSERT_OFFSET(XSAVE_MXCSR
, legacy
.mxcsr
);
1434 ASSERT_OFFSET(XSAVE_ST_SPACE
, legacy
.fpregs
);
1435 ASSERT_OFFSET(XSAVE_XMM_SPACE
, legacy
.xmm_regs
);
1436 ASSERT_OFFSET(XSAVE_XSTATE_BV
, header
.xstate_bv
);
1437 ASSERT_OFFSET(XSAVE_YMMH_SPACE
, avx_state
);
1438 ASSERT_OFFSET(XSAVE_BNDREGS
, bndreg_state
);
1439 ASSERT_OFFSET(XSAVE_BNDCSR
, bndcsr_state
);
1440 ASSERT_OFFSET(XSAVE_OPMASK
, opmask_state
);
1441 ASSERT_OFFSET(XSAVE_ZMM_Hi256
, zmm_hi256_state
);
1442 ASSERT_OFFSET(XSAVE_Hi16_ZMM
, hi16_zmm_state
);
1443 ASSERT_OFFSET(XSAVE_PKRU
, pkru_state
);
1445 static int kvm_put_xsave(X86CPU
*cpu
)
1447 CPUX86State
*env
= &cpu
->env
;
1448 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1451 return kvm_put_fpu(cpu
);
1453 x86_cpu_xsave_all_areas(cpu
, xsave
);
1455 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1458 static int kvm_put_xcrs(X86CPU
*cpu
)
1460 CPUX86State
*env
= &cpu
->env
;
1461 struct kvm_xcrs xcrs
= {};
1469 xcrs
.xcrs
[0].xcr
= 0;
1470 xcrs
.xcrs
[0].value
= env
->xcr0
;
1471 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1474 static int kvm_put_sregs(X86CPU
*cpu
)
1476 CPUX86State
*env
= &cpu
->env
;
1477 struct kvm_sregs sregs
;
1479 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1480 if (env
->interrupt_injected
>= 0) {
1481 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1482 (uint64_t)1 << (env
->interrupt_injected
% 64);
1485 if ((env
->eflags
& VM_MASK
)) {
1486 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1487 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1488 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1489 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1490 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1491 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1493 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1494 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1495 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1496 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1497 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1498 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1501 set_seg(&sregs
.tr
, &env
->tr
);
1502 set_seg(&sregs
.ldt
, &env
->ldt
);
1504 sregs
.idt
.limit
= env
->idt
.limit
;
1505 sregs
.idt
.base
= env
->idt
.base
;
1506 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1507 sregs
.gdt
.limit
= env
->gdt
.limit
;
1508 sregs
.gdt
.base
= env
->gdt
.base
;
1509 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1511 sregs
.cr0
= env
->cr
[0];
1512 sregs
.cr2
= env
->cr
[2];
1513 sregs
.cr3
= env
->cr
[3];
1514 sregs
.cr4
= env
->cr
[4];
1516 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1517 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1519 sregs
.efer
= env
->efer
;
1521 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1524 static void kvm_msr_buf_reset(X86CPU
*cpu
)
1526 memset(cpu
->kvm_msr_buf
, 0, MSR_BUF_SIZE
);
1529 static void kvm_msr_entry_add(X86CPU
*cpu
, uint32_t index
, uint64_t value
)
1531 struct kvm_msrs
*msrs
= cpu
->kvm_msr_buf
;
1532 void *limit
= ((void *)msrs
) + MSR_BUF_SIZE
;
1533 struct kvm_msr_entry
*entry
= &msrs
->entries
[msrs
->nmsrs
];
1535 assert((void *)(entry
+ 1) <= limit
);
1537 entry
->index
= index
;
1538 entry
->reserved
= 0;
1539 entry
->data
= value
;
1543 static int kvm_put_one_msr(X86CPU
*cpu
, int index
, uint64_t value
)
1545 kvm_msr_buf_reset(cpu
);
1546 kvm_msr_entry_add(cpu
, index
, value
);
1548 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1551 void kvm_put_apicbase(X86CPU
*cpu
, uint64_t value
)
1555 ret
= kvm_put_one_msr(cpu
, MSR_IA32_APICBASE
, value
);
1559 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1561 CPUX86State
*env
= &cpu
->env
;
1564 if (!has_msr_tsc_deadline
) {
1568 ret
= kvm_put_one_msr(cpu
, MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1578 * Provide a separate write service for the feature control MSR in order to
1579 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1580 * before writing any other state because forcibly leaving nested mode
1581 * invalidates the VCPU state.
1583 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1587 if (!has_msr_feature_control
) {
1591 ret
= kvm_put_one_msr(cpu
, MSR_IA32_FEATURE_CONTROL
,
1592 cpu
->env
.msr_ia32_feature_control
);
1601 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1603 CPUX86State
*env
= &cpu
->env
;
1607 kvm_msr_buf_reset(cpu
);
1609 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1610 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1611 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1612 kvm_msr_entry_add(cpu
, MSR_PAT
, env
->pat
);
1614 kvm_msr_entry_add(cpu
, MSR_STAR
, env
->star
);
1616 if (has_msr_hsave_pa
) {
1617 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1619 if (has_msr_tsc_aux
) {
1620 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, env
->tsc_aux
);
1622 if (has_msr_tsc_adjust
) {
1623 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, env
->tsc_adjust
);
1625 if (has_msr_misc_enable
) {
1626 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
,
1627 env
->msr_ia32_misc_enable
);
1629 if (has_msr_smbase
) {
1630 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, env
->smbase
);
1632 if (has_msr_bndcfgs
) {
1633 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1636 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, env
->xss
);
1638 #ifdef TARGET_X86_64
1639 if (lm_capable_kernel
) {
1640 kvm_msr_entry_add(cpu
, MSR_CSTAR
, env
->cstar
);
1641 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, env
->kernelgsbase
);
1642 kvm_msr_entry_add(cpu
, MSR_FMASK
, env
->fmask
);
1643 kvm_msr_entry_add(cpu
, MSR_LSTAR
, env
->lstar
);
1647 * The following MSRs have side effects on the guest or are too heavy
1648 * for normal writeback. Limit them to reset or full state updates.
1650 if (level
>= KVM_PUT_RESET_STATE
) {
1651 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, env
->tsc
);
1652 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, env
->system_time_msr
);
1653 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1654 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
1655 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, env
->async_pf_en_msr
);
1657 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
1658 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, env
->pv_eoi_en_msr
);
1660 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
1661 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, env
->steal_time_msr
);
1663 if (has_architectural_pmu_version
> 0) {
1664 if (has_architectural_pmu_version
> 1) {
1665 /* Stop the counter. */
1666 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1667 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1670 /* Set the counter values. */
1671 for (i
= 0; i
< num_architectural_pmu_fixed_counters
; i
++) {
1672 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
,
1673 env
->msr_fixed_counters
[i
]);
1675 for (i
= 0; i
< num_architectural_pmu_gp_counters
; i
++) {
1676 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
,
1677 env
->msr_gp_counters
[i
]);
1678 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
,
1679 env
->msr_gp_evtsel
[i
]);
1681 if (has_architectural_pmu_version
> 1) {
1682 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
,
1683 env
->msr_global_status
);
1684 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1685 env
->msr_global_ovf_ctrl
);
1687 /* Now start the PMU. */
1688 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
,
1689 env
->msr_fixed_ctr_ctrl
);
1690 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
1691 env
->msr_global_ctrl
);
1695 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
1696 * only sync them to KVM on the first cpu
1698 if (current_cpu
== first_cpu
) {
1699 if (has_msr_hv_hypercall
) {
1700 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
,
1701 env
->msr_hv_guest_os_id
);
1702 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
,
1703 env
->msr_hv_hypercall
);
1705 if (cpu
->hyperv_time
) {
1706 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
,
1710 if (cpu
->hyperv_vapic
) {
1711 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
,
1714 if (has_msr_hv_crash
) {
1717 for (j
= 0; j
< HV_CRASH_PARAMS
; j
++)
1718 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
,
1719 env
->msr_hv_crash_params
[j
]);
1721 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_CTL
, HV_CRASH_CTL_NOTIFY
);
1723 if (has_msr_hv_runtime
) {
1724 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, env
->msr_hv_runtime
);
1726 if (cpu
->hyperv_synic
) {
1729 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
, HV_SYNIC_VERSION
);
1731 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
,
1732 env
->msr_hv_synic_control
);
1733 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
,
1734 env
->msr_hv_synic_evt_page
);
1735 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
,
1736 env
->msr_hv_synic_msg_page
);
1738 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1739 kvm_msr_entry_add(cpu
, HV_X64_MSR_SINT0
+ j
,
1740 env
->msr_hv_synic_sint
[j
]);
1743 if (has_msr_hv_stimer
) {
1746 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1747 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_CONFIG
+ j
* 2,
1748 env
->msr_hv_stimer_config
[j
]);
1751 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1752 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_COUNT
+ j
* 2,
1753 env
->msr_hv_stimer_count
[j
]);
1756 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
1757 uint64_t phys_mask
= MAKE_64BIT_MASK(0, cpu
->phys_bits
);
1759 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, env
->mtrr_deftype
);
1760 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1761 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1762 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1763 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1764 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1765 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1766 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1767 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1768 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1769 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1770 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1771 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1772 /* The CPU GPs if we write to a bit above the physical limit of
1773 * the host CPU (and KVM emulates that)
1775 uint64_t mask
= env
->mtrr_var
[i
].mask
;
1778 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
),
1779 env
->mtrr_var
[i
].base
);
1780 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), mask
);
1784 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1785 * kvm_put_msr_feature_control. */
1790 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, env
->mcg_status
);
1791 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, env
->mcg_ctl
);
1792 if (has_msr_mcg_ext_ctl
) {
1793 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, env
->mcg_ext_ctl
);
1795 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1796 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1800 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1805 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
1806 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
1807 error_report("error: failed to set MSR 0x%" PRIx32
" to 0x%" PRIx64
,
1808 (uint32_t)e
->index
, (uint64_t)e
->data
);
1811 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
1816 static int kvm_get_fpu(X86CPU
*cpu
)
1818 CPUX86State
*env
= &cpu
->env
;
1822 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1827 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1828 env
->fpus
= fpu
.fsw
;
1829 env
->fpuc
= fpu
.fcw
;
1830 env
->fpop
= fpu
.last_opcode
;
1831 env
->fpip
= fpu
.last_ip
;
1832 env
->fpdp
= fpu
.last_dp
;
1833 for (i
= 0; i
< 8; ++i
) {
1834 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1836 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1837 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1838 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1839 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1841 env
->mxcsr
= fpu
.mxcsr
;
1846 static int kvm_get_xsave(X86CPU
*cpu
)
1848 CPUX86State
*env
= &cpu
->env
;
1849 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1853 return kvm_get_fpu(cpu
);
1856 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1860 x86_cpu_xrstor_all_areas(cpu
, xsave
);
1865 static int kvm_get_xcrs(X86CPU
*cpu
)
1867 CPUX86State
*env
= &cpu
->env
;
1869 struct kvm_xcrs xcrs
;
1875 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1880 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1881 /* Only support xcr0 now */
1882 if (xcrs
.xcrs
[i
].xcr
== 0) {
1883 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1890 static int kvm_get_sregs(X86CPU
*cpu
)
1892 CPUX86State
*env
= &cpu
->env
;
1893 struct kvm_sregs sregs
;
1897 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1902 /* There can only be one pending IRQ set in the bitmap at a time, so try
1903 to find it and save its number instead (-1 for none). */
1904 env
->interrupt_injected
= -1;
1905 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1906 if (sregs
.interrupt_bitmap
[i
]) {
1907 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1908 env
->interrupt_injected
= i
* 64 + bit
;
1913 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1914 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1915 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1916 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1917 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1918 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1920 get_seg(&env
->tr
, &sregs
.tr
);
1921 get_seg(&env
->ldt
, &sregs
.ldt
);
1923 env
->idt
.limit
= sregs
.idt
.limit
;
1924 env
->idt
.base
= sregs
.idt
.base
;
1925 env
->gdt
.limit
= sregs
.gdt
.limit
;
1926 env
->gdt
.base
= sregs
.gdt
.base
;
1928 env
->cr
[0] = sregs
.cr0
;
1929 env
->cr
[2] = sregs
.cr2
;
1930 env
->cr
[3] = sregs
.cr3
;
1931 env
->cr
[4] = sregs
.cr4
;
1933 env
->efer
= sregs
.efer
;
1935 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1937 #define HFLAG_COPY_MASK \
1938 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1939 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1940 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1941 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1943 hflags
= env
->hflags
& HFLAG_COPY_MASK
;
1944 hflags
|= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1945 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1946 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1947 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1948 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1950 if (env
->cr
[4] & CR4_OSFXSR_MASK
) {
1951 hflags
|= HF_OSFXSR_MASK
;
1954 if (env
->efer
& MSR_EFER_LMA
) {
1955 hflags
|= HF_LMA_MASK
;
1958 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1959 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1961 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1962 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1963 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1964 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1965 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1966 !(hflags
& HF_CS32_MASK
)) {
1967 hflags
|= HF_ADDSEG_MASK
;
1969 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1970 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1973 env
->hflags
= hflags
;
1978 static int kvm_get_msrs(X86CPU
*cpu
)
1980 CPUX86State
*env
= &cpu
->env
;
1981 struct kvm_msr_entry
*msrs
= cpu
->kvm_msr_buf
->entries
;
1983 uint64_t mtrr_top_bits
;
1985 kvm_msr_buf_reset(cpu
);
1987 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, 0);
1988 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, 0);
1989 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, 0);
1990 kvm_msr_entry_add(cpu
, MSR_PAT
, 0);
1992 kvm_msr_entry_add(cpu
, MSR_STAR
, 0);
1994 if (has_msr_hsave_pa
) {
1995 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, 0);
1997 if (has_msr_tsc_aux
) {
1998 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, 0);
2000 if (has_msr_tsc_adjust
) {
2001 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, 0);
2003 if (has_msr_tsc_deadline
) {
2004 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, 0);
2006 if (has_msr_misc_enable
) {
2007 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
, 0);
2009 if (has_msr_smbase
) {
2010 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, 0);
2012 if (has_msr_feature_control
) {
2013 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
, 0);
2015 if (has_msr_bndcfgs
) {
2016 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, 0);
2019 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, 0);
2023 if (!env
->tsc_valid
) {
2024 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, 0);
2025 env
->tsc_valid
= !runstate_is_running();
2028 #ifdef TARGET_X86_64
2029 if (lm_capable_kernel
) {
2030 kvm_msr_entry_add(cpu
, MSR_CSTAR
, 0);
2031 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, 0);
2032 kvm_msr_entry_add(cpu
, MSR_FMASK
, 0);
2033 kvm_msr_entry_add(cpu
, MSR_LSTAR
, 0);
2036 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, 0);
2037 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, 0);
2038 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_ASYNC_PF
)) {
2039 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, 0);
2041 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_PV_EOI
)) {
2042 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, 0);
2044 if (env
->features
[FEAT_KVM
] & (1 << KVM_FEATURE_STEAL_TIME
)) {
2045 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, 0);
2047 if (has_architectural_pmu_version
> 0) {
2048 if (has_architectural_pmu_version
> 1) {
2049 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
2050 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2051 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
, 0);
2052 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
, 0);
2054 for (i
= 0; i
< num_architectural_pmu_fixed_counters
; i
++) {
2055 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
, 0);
2057 for (i
= 0; i
< num_architectural_pmu_gp_counters
; i
++) {
2058 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
, 0);
2059 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
, 0);
2064 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, 0);
2065 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, 0);
2066 if (has_msr_mcg_ext_ctl
) {
2067 kvm_msr_entry_add(cpu
, MSR_MCG_EXT_CTL
, 0);
2069 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2070 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, 0);
2074 if (has_msr_hv_hypercall
) {
2075 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
, 0);
2076 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
, 0);
2078 if (cpu
->hyperv_vapic
) {
2079 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
2081 if (cpu
->hyperv_time
) {
2082 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, 0);
2084 if (has_msr_hv_crash
) {
2087 for (j
= 0; j
< HV_CRASH_PARAMS
; j
++) {
2088 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
, 0);
2091 if (has_msr_hv_runtime
) {
2092 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, 0);
2094 if (cpu
->hyperv_synic
) {
2097 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
, 0);
2098 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
, 0);
2099 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
, 0);
2100 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2101 kvm_msr_entry_add(cpu
, msr
, 0);
2104 if (has_msr_hv_stimer
) {
2107 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2109 kvm_msr_entry_add(cpu
, msr
, 0);
2112 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
2113 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, 0);
2114 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, 0);
2115 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, 0);
2116 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, 0);
2117 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, 0);
2118 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, 0);
2119 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, 0);
2120 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, 0);
2121 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, 0);
2122 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, 0);
2123 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, 0);
2124 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, 0);
2125 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2126 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
), 0);
2127 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), 0);
2131 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, cpu
->kvm_msr_buf
);
2136 if (ret
< cpu
->kvm_msr_buf
->nmsrs
) {
2137 struct kvm_msr_entry
*e
= &cpu
->kvm_msr_buf
->entries
[ret
];
2138 error_report("error: failed to get MSR 0x%" PRIx32
,
2139 (uint32_t)e
->index
);
2142 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2144 * MTRR masks: Each mask consists of 5 parts
2145 * a 10..0: must be zero
2147 * c n-1.12: actual mask bits
2148 * d 51..n: reserved must be zero
2149 * e 63.52: reserved must be zero
2151 * 'n' is the number of physical bits supported by the CPU and is
2152 * apparently always <= 52. We know our 'n' but don't know what
2153 * the destinations 'n' is; it might be smaller, in which case
2154 * it masks (c) on loading. It might be larger, in which case
2155 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2156 * we're migrating to.
2159 if (cpu
->fill_mtrr_mask
) {
2160 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS
> 52);
2161 assert(cpu
->phys_bits
<= TARGET_PHYS_ADDR_SPACE_BITS
);
2162 mtrr_top_bits
= MAKE_64BIT_MASK(cpu
->phys_bits
, 52 - cpu
->phys_bits
);
2167 for (i
= 0; i
< ret
; i
++) {
2168 uint32_t index
= msrs
[i
].index
;
2170 case MSR_IA32_SYSENTER_CS
:
2171 env
->sysenter_cs
= msrs
[i
].data
;
2173 case MSR_IA32_SYSENTER_ESP
:
2174 env
->sysenter_esp
= msrs
[i
].data
;
2176 case MSR_IA32_SYSENTER_EIP
:
2177 env
->sysenter_eip
= msrs
[i
].data
;
2180 env
->pat
= msrs
[i
].data
;
2183 env
->star
= msrs
[i
].data
;
2185 #ifdef TARGET_X86_64
2187 env
->cstar
= msrs
[i
].data
;
2189 case MSR_KERNELGSBASE
:
2190 env
->kernelgsbase
= msrs
[i
].data
;
2193 env
->fmask
= msrs
[i
].data
;
2196 env
->lstar
= msrs
[i
].data
;
2200 env
->tsc
= msrs
[i
].data
;
2203 env
->tsc_aux
= msrs
[i
].data
;
2205 case MSR_TSC_ADJUST
:
2206 env
->tsc_adjust
= msrs
[i
].data
;
2208 case MSR_IA32_TSCDEADLINE
:
2209 env
->tsc_deadline
= msrs
[i
].data
;
2211 case MSR_VM_HSAVE_PA
:
2212 env
->vm_hsave
= msrs
[i
].data
;
2214 case MSR_KVM_SYSTEM_TIME
:
2215 env
->system_time_msr
= msrs
[i
].data
;
2217 case MSR_KVM_WALL_CLOCK
:
2218 env
->wall_clock_msr
= msrs
[i
].data
;
2220 case MSR_MCG_STATUS
:
2221 env
->mcg_status
= msrs
[i
].data
;
2224 env
->mcg_ctl
= msrs
[i
].data
;
2226 case MSR_MCG_EXT_CTL
:
2227 env
->mcg_ext_ctl
= msrs
[i
].data
;
2229 case MSR_IA32_MISC_ENABLE
:
2230 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2232 case MSR_IA32_SMBASE
:
2233 env
->smbase
= msrs
[i
].data
;
2235 case MSR_IA32_FEATURE_CONTROL
:
2236 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2238 case MSR_IA32_BNDCFGS
:
2239 env
->msr_bndcfgs
= msrs
[i
].data
;
2242 env
->xss
= msrs
[i
].data
;
2245 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2246 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2247 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2250 case MSR_KVM_ASYNC_PF_EN
:
2251 env
->async_pf_en_msr
= msrs
[i
].data
;
2253 case MSR_KVM_PV_EOI_EN
:
2254 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2256 case MSR_KVM_STEAL_TIME
:
2257 env
->steal_time_msr
= msrs
[i
].data
;
2259 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2260 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2262 case MSR_CORE_PERF_GLOBAL_CTRL
:
2263 env
->msr_global_ctrl
= msrs
[i
].data
;
2265 case MSR_CORE_PERF_GLOBAL_STATUS
:
2266 env
->msr_global_status
= msrs
[i
].data
;
2268 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2269 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2271 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2272 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2274 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2275 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2277 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2278 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2280 case HV_X64_MSR_HYPERCALL
:
2281 env
->msr_hv_hypercall
= msrs
[i
].data
;
2283 case HV_X64_MSR_GUEST_OS_ID
:
2284 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2286 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2287 env
->msr_hv_vapic
= msrs
[i
].data
;
2289 case HV_X64_MSR_REFERENCE_TSC
:
2290 env
->msr_hv_tsc
= msrs
[i
].data
;
2292 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2293 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2295 case HV_X64_MSR_VP_RUNTIME
:
2296 env
->msr_hv_runtime
= msrs
[i
].data
;
2298 case HV_X64_MSR_SCONTROL
:
2299 env
->msr_hv_synic_control
= msrs
[i
].data
;
2301 case HV_X64_MSR_SIEFP
:
2302 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2304 case HV_X64_MSR_SIMP
:
2305 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2307 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2308 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2310 case HV_X64_MSR_STIMER0_CONFIG
:
2311 case HV_X64_MSR_STIMER1_CONFIG
:
2312 case HV_X64_MSR_STIMER2_CONFIG
:
2313 case HV_X64_MSR_STIMER3_CONFIG
:
2314 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2317 case HV_X64_MSR_STIMER0_COUNT
:
2318 case HV_X64_MSR_STIMER1_COUNT
:
2319 case HV_X64_MSR_STIMER2_COUNT
:
2320 case HV_X64_MSR_STIMER3_COUNT
:
2321 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2324 case MSR_MTRRdefType
:
2325 env
->mtrr_deftype
= msrs
[i
].data
;
2327 case MSR_MTRRfix64K_00000
:
2328 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2330 case MSR_MTRRfix16K_80000
:
2331 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2333 case MSR_MTRRfix16K_A0000
:
2334 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2336 case MSR_MTRRfix4K_C0000
:
2337 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2339 case MSR_MTRRfix4K_C8000
:
2340 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2342 case MSR_MTRRfix4K_D0000
:
2343 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2345 case MSR_MTRRfix4K_D8000
:
2346 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2348 case MSR_MTRRfix4K_E0000
:
2349 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2351 case MSR_MTRRfix4K_E8000
:
2352 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2354 case MSR_MTRRfix4K_F0000
:
2355 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2357 case MSR_MTRRfix4K_F8000
:
2358 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2360 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2362 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
|
2365 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2374 static int kvm_put_mp_state(X86CPU
*cpu
)
2376 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2378 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2381 static int kvm_get_mp_state(X86CPU
*cpu
)
2383 CPUState
*cs
= CPU(cpu
);
2384 CPUX86State
*env
= &cpu
->env
;
2385 struct kvm_mp_state mp_state
;
2388 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2392 env
->mp_state
= mp_state
.mp_state
;
2393 if (kvm_irqchip_in_kernel()) {
2394 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2399 static int kvm_get_apic(X86CPU
*cpu
)
2401 DeviceState
*apic
= cpu
->apic_state
;
2402 struct kvm_lapic_state kapic
;
2405 if (apic
&& kvm_irqchip_in_kernel()) {
2406 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2411 kvm_get_apic_state(apic
, &kapic
);
2416 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2418 CPUState
*cs
= CPU(cpu
);
2419 CPUX86State
*env
= &cpu
->env
;
2420 struct kvm_vcpu_events events
= {};
2422 if (!kvm_has_vcpu_events()) {
2426 events
.exception
.injected
= (env
->exception_injected
>= 0);
2427 events
.exception
.nr
= env
->exception_injected
;
2428 events
.exception
.has_error_code
= env
->has_error_code
;
2429 events
.exception
.error_code
= env
->error_code
;
2430 events
.exception
.pad
= 0;
2432 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2433 events
.interrupt
.nr
= env
->interrupt_injected
;
2434 events
.interrupt
.soft
= env
->soft_interrupt
;
2436 events
.nmi
.injected
= env
->nmi_injected
;
2437 events
.nmi
.pending
= env
->nmi_pending
;
2438 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2441 events
.sipi_vector
= env
->sipi_vector
;
2444 if (has_msr_smbase
) {
2445 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2446 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2447 if (kvm_irqchip_in_kernel()) {
2448 /* As soon as these are moved to the kernel, remove them
2449 * from cs->interrupt_request.
2451 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2452 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2453 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2455 /* Keep these in cs->interrupt_request. */
2456 events
.smi
.pending
= 0;
2457 events
.smi
.latched_init
= 0;
2459 /* Stop SMI delivery on old machine types to avoid a reboot
2460 * on an inward migration of an old VM.
2462 if (!cpu
->kvm_no_smi_migration
) {
2463 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2467 if (level
>= KVM_PUT_RESET_STATE
) {
2468 events
.flags
|= KVM_VCPUEVENT_VALID_NMI_PENDING
;
2469 if (env
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
2470 events
.flags
|= KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2474 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2477 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2479 CPUX86State
*env
= &cpu
->env
;
2480 struct kvm_vcpu_events events
;
2483 if (!kvm_has_vcpu_events()) {
2487 memset(&events
, 0, sizeof(events
));
2488 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2492 env
->exception_injected
=
2493 events
.exception
.injected
? events
.exception
.nr
: -1;
2494 env
->has_error_code
= events
.exception
.has_error_code
;
2495 env
->error_code
= events
.exception
.error_code
;
2497 env
->interrupt_injected
=
2498 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2499 env
->soft_interrupt
= events
.interrupt
.soft
;
2501 env
->nmi_injected
= events
.nmi
.injected
;
2502 env
->nmi_pending
= events
.nmi
.pending
;
2503 if (events
.nmi
.masked
) {
2504 env
->hflags2
|= HF2_NMI_MASK
;
2506 env
->hflags2
&= ~HF2_NMI_MASK
;
2509 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2510 if (events
.smi
.smm
) {
2511 env
->hflags
|= HF_SMM_MASK
;
2513 env
->hflags
&= ~HF_SMM_MASK
;
2515 if (events
.smi
.pending
) {
2516 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2518 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2520 if (events
.smi
.smm_inside_nmi
) {
2521 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2523 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2525 if (events
.smi
.latched_init
) {
2526 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2528 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2532 env
->sipi_vector
= events
.sipi_vector
;
2537 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2539 CPUState
*cs
= CPU(cpu
);
2540 CPUX86State
*env
= &cpu
->env
;
2542 unsigned long reinject_trap
= 0;
2544 if (!kvm_has_vcpu_events()) {
2545 if (env
->exception_injected
== 1) {
2546 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2547 } else if (env
->exception_injected
== 3) {
2548 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2550 env
->exception_injected
= -1;
2554 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2555 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2556 * by updating the debug state once again if single-stepping is on.
2557 * Another reason to call kvm_update_guest_debug here is a pending debug
2558 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2559 * reinject them via SET_GUEST_DEBUG.
2561 if (reinject_trap
||
2562 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2563 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2568 static int kvm_put_debugregs(X86CPU
*cpu
)
2570 CPUX86State
*env
= &cpu
->env
;
2571 struct kvm_debugregs dbgregs
;
2574 if (!kvm_has_debugregs()) {
2578 for (i
= 0; i
< 4; i
++) {
2579 dbgregs
.db
[i
] = env
->dr
[i
];
2581 dbgregs
.dr6
= env
->dr
[6];
2582 dbgregs
.dr7
= env
->dr
[7];
2585 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2588 static int kvm_get_debugregs(X86CPU
*cpu
)
2590 CPUX86State
*env
= &cpu
->env
;
2591 struct kvm_debugregs dbgregs
;
2594 if (!kvm_has_debugregs()) {
2598 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2602 for (i
= 0; i
< 4; i
++) {
2603 env
->dr
[i
] = dbgregs
.db
[i
];
2605 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2606 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2611 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2613 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2616 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2618 if (level
>= KVM_PUT_RESET_STATE
) {
2619 ret
= kvm_put_msr_feature_control(x86_cpu
);
2625 if (level
== KVM_PUT_FULL_STATE
) {
2626 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2627 * because TSC frequency mismatch shouldn't abort migration,
2628 * unless the user explicitly asked for a more strict TSC
2629 * setting (e.g. using an explicit "tsc-freq" option).
2631 kvm_arch_set_tsc_khz(cpu
);
2634 ret
= kvm_getput_regs(x86_cpu
, 1);
2638 ret
= kvm_put_xsave(x86_cpu
);
2642 ret
= kvm_put_xcrs(x86_cpu
);
2646 ret
= kvm_put_sregs(x86_cpu
);
2650 /* must be before kvm_put_msrs */
2651 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2655 ret
= kvm_put_msrs(x86_cpu
, level
);
2659 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2663 if (level
>= KVM_PUT_RESET_STATE
) {
2664 ret
= kvm_put_mp_state(x86_cpu
);
2670 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2674 ret
= kvm_put_debugregs(x86_cpu
);
2679 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2686 int kvm_arch_get_registers(CPUState
*cs
)
2688 X86CPU
*cpu
= X86_CPU(cs
);
2691 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2693 ret
= kvm_get_vcpu_events(cpu
);
2698 * KVM_GET_MPSTATE can modify CS and RIP, call it before
2699 * KVM_GET_REGS and KVM_GET_SREGS.
2701 ret
= kvm_get_mp_state(cpu
);
2705 ret
= kvm_getput_regs(cpu
, 0);
2709 ret
= kvm_get_xsave(cpu
);
2713 ret
= kvm_get_xcrs(cpu
);
2717 ret
= kvm_get_sregs(cpu
);
2721 ret
= kvm_get_msrs(cpu
);
2725 ret
= kvm_get_apic(cpu
);
2729 ret
= kvm_get_debugregs(cpu
);
2735 cpu_sync_bndcs_hflags(&cpu
->env
);
2739 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2741 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2742 CPUX86State
*env
= &x86_cpu
->env
;
2746 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2747 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2748 qemu_mutex_lock_iothread();
2749 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2750 qemu_mutex_unlock_iothread();
2751 DPRINTF("injected NMI\n");
2752 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2754 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2758 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2759 qemu_mutex_lock_iothread();
2760 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2761 qemu_mutex_unlock_iothread();
2762 DPRINTF("injected SMI\n");
2763 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2765 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2771 if (!kvm_pic_in_kernel()) {
2772 qemu_mutex_lock_iothread();
2775 /* Force the VCPU out of its inner loop to process any INIT requests
2776 * or (for userspace APIC, but it is cheap to combine the checks here)
2777 * pending TPR access reports.
2779 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2780 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2781 !(env
->hflags
& HF_SMM_MASK
)) {
2782 cpu
->exit_request
= 1;
2784 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2785 cpu
->exit_request
= 1;
2789 if (!kvm_pic_in_kernel()) {
2790 /* Try to inject an interrupt if the guest can accept it */
2791 if (run
->ready_for_interrupt_injection
&&
2792 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2793 (env
->eflags
& IF_MASK
)) {
2796 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2797 irq
= cpu_get_pic_interrupt(env
);
2799 struct kvm_interrupt intr
;
2802 DPRINTF("injected interrupt %d\n", irq
);
2803 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2806 "KVM: injection failed, interrupt lost (%s)\n",
2812 /* If we have an interrupt but the guest is not ready to receive an
2813 * interrupt, request an interrupt window exit. This will
2814 * cause a return to userspace as soon as the guest is ready to
2815 * receive interrupts. */
2816 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2817 run
->request_interrupt_window
= 1;
2819 run
->request_interrupt_window
= 0;
2822 DPRINTF("setting tpr\n");
2823 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2825 qemu_mutex_unlock_iothread();
2829 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2831 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2832 CPUX86State
*env
= &x86_cpu
->env
;
2834 if (run
->flags
& KVM_RUN_X86_SMM
) {
2835 env
->hflags
|= HF_SMM_MASK
;
2837 env
->hflags
&= ~HF_SMM_MASK
;
2840 env
->eflags
|= IF_MASK
;
2842 env
->eflags
&= ~IF_MASK
;
2845 /* We need to protect the apic state against concurrent accesses from
2846 * different threads in case the userspace irqchip is used. */
2847 if (!kvm_irqchip_in_kernel()) {
2848 qemu_mutex_lock_iothread();
2850 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2851 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2852 if (!kvm_irqchip_in_kernel()) {
2853 qemu_mutex_unlock_iothread();
2855 return cpu_get_mem_attrs(env
);
2858 int kvm_arch_process_async_events(CPUState
*cs
)
2860 X86CPU
*cpu
= X86_CPU(cs
);
2861 CPUX86State
*env
= &cpu
->env
;
2863 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2864 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2865 assert(env
->mcg_cap
);
2867 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2869 kvm_cpu_synchronize_state(cs
);
2871 if (env
->exception_injected
== EXCP08_DBLE
) {
2872 /* this means triple fault */
2873 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2874 cs
->exit_request
= 1;
2877 env
->exception_injected
= EXCP12_MCHK
;
2878 env
->has_error_code
= 0;
2881 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2882 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2886 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2887 !(env
->hflags
& HF_SMM_MASK
)) {
2888 kvm_cpu_synchronize_state(cs
);
2892 if (kvm_irqchip_in_kernel()) {
2896 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2897 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2898 apic_poll_irq(cpu
->apic_state
);
2900 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2901 (env
->eflags
& IF_MASK
)) ||
2902 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2905 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2906 kvm_cpu_synchronize_state(cs
);
2909 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2910 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2911 kvm_cpu_synchronize_state(cs
);
2912 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2913 env
->tpr_access_type
);
2919 static int kvm_handle_halt(X86CPU
*cpu
)
2921 CPUState
*cs
= CPU(cpu
);
2922 CPUX86State
*env
= &cpu
->env
;
2924 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2925 (env
->eflags
& IF_MASK
)) &&
2926 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2934 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2936 CPUState
*cs
= CPU(cpu
);
2937 struct kvm_run
*run
= cs
->kvm_run
;
2939 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2940 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2945 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2947 static const uint8_t int3
= 0xcc;
2949 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2950 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2956 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2960 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2961 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2973 static int nb_hw_breakpoint
;
2975 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2979 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2980 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2981 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
2988 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
2989 target_ulong len
, int type
)
2992 case GDB_BREAKPOINT_HW
:
2995 case GDB_WATCHPOINT_WRITE
:
2996 case GDB_WATCHPOINT_ACCESS
:
3003 if (addr
& (len
- 1)) {
3015 if (nb_hw_breakpoint
== 4) {
3018 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
3021 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
3022 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
3023 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
3029 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
3030 target_ulong len
, int type
)
3034 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
3039 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
3044 void kvm_arch_remove_all_hw_breakpoints(void)
3046 nb_hw_breakpoint
= 0;
3049 static CPUWatchpoint hw_watchpoint
;
3051 static int kvm_handle_debug(X86CPU
*cpu
,
3052 struct kvm_debug_exit_arch
*arch_info
)
3054 CPUState
*cs
= CPU(cpu
);
3055 CPUX86State
*env
= &cpu
->env
;
3059 if (arch_info
->exception
== 1) {
3060 if (arch_info
->dr6
& (1 << 14)) {
3061 if (cs
->singlestep_enabled
) {
3065 for (n
= 0; n
< 4; n
++) {
3066 if (arch_info
->dr6
& (1 << n
)) {
3067 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
3073 cs
->watchpoint_hit
= &hw_watchpoint
;
3074 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3075 hw_watchpoint
.flags
= BP_MEM_WRITE
;
3079 cs
->watchpoint_hit
= &hw_watchpoint
;
3080 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3081 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
3087 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
3091 cpu_synchronize_state(cs
);
3092 assert(env
->exception_injected
== -1);
3095 env
->exception_injected
= arch_info
->exception
;
3096 env
->has_error_code
= 0;
3102 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
3104 const uint8_t type_code
[] = {
3105 [GDB_BREAKPOINT_HW
] = 0x0,
3106 [GDB_WATCHPOINT_WRITE
] = 0x1,
3107 [GDB_WATCHPOINT_ACCESS
] = 0x3
3109 const uint8_t len_code
[] = {
3110 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3114 if (kvm_sw_breakpoints_active(cpu
)) {
3115 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3117 if (nb_hw_breakpoint
> 0) {
3118 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3119 dbg
->arch
.debugreg
[7] = 0x0600;
3120 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3121 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3122 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3123 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3124 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3129 static bool host_supports_vmx(void)
3131 uint32_t ecx
, unused
;
3133 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3134 return ecx
& CPUID_EXT_VMX
;
3137 #define VMX_INVALID_GUEST_STATE 0x80000021
3139 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3141 X86CPU
*cpu
= X86_CPU(cs
);
3145 switch (run
->exit_reason
) {
3147 DPRINTF("handle_hlt\n");
3148 qemu_mutex_lock_iothread();
3149 ret
= kvm_handle_halt(cpu
);
3150 qemu_mutex_unlock_iothread();
3152 case KVM_EXIT_SET_TPR
:
3155 case KVM_EXIT_TPR_ACCESS
:
3156 qemu_mutex_lock_iothread();
3157 ret
= kvm_handle_tpr_access(cpu
);
3158 qemu_mutex_unlock_iothread();
3160 case KVM_EXIT_FAIL_ENTRY
:
3161 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3162 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3164 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3166 "\nIf you're running a guest on an Intel machine without "
3167 "unrestricted mode\n"
3168 "support, the failure can be most likely due to the guest "
3169 "entering an invalid\n"
3170 "state for Intel VT. For example, the guest maybe running "
3171 "in big real mode\n"
3172 "which is not supported on less recent Intel processors."
3177 case KVM_EXIT_EXCEPTION
:
3178 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3179 run
->ex
.exception
, run
->ex
.error_code
);
3182 case KVM_EXIT_DEBUG
:
3183 DPRINTF("kvm_exit_debug\n");
3184 qemu_mutex_lock_iothread();
3185 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3186 qemu_mutex_unlock_iothread();
3188 case KVM_EXIT_HYPERV
:
3189 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3191 case KVM_EXIT_IOAPIC_EOI
:
3192 ioapic_eoi_broadcast(run
->eoi
.vector
);
3196 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3204 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3206 X86CPU
*cpu
= X86_CPU(cs
);
3207 CPUX86State
*env
= &cpu
->env
;
3209 kvm_cpu_synchronize_state(cs
);
3210 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3211 ((env
->segs
[R_CS
].selector
& 3) != 3);
3214 void kvm_arch_init_irq_routing(KVMState
*s
)
3216 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3217 /* If kernel can't do irq routing, interrupt source
3218 * override 0->2 cannot be set up as required by HPET.
3219 * So we have to disable it.
3223 /* We know at this point that we're using the in-kernel
3224 * irqchip, so we can use irqfds, and on x86 we know
3225 * we can use msi via irqfd and GSI routing.
3227 kvm_msi_via_irqfd_allowed
= true;
3228 kvm_gsi_routing_allowed
= true;
3230 if (kvm_irqchip_is_split()) {
3233 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3234 MSI routes for signaling interrupts to the local apics. */
3235 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3236 if (kvm_irqchip_add_msi_route(s
, 0, NULL
) < 0) {
3237 error_report("Could not enable split IRQ mode.");
3244 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3247 if (machine_kernel_irqchip_split(ms
)) {
3248 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3250 error_report("Could not enable split irqchip mode: %s",
3254 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3255 kvm_split_irqchip
= true;
3263 /* Classic KVM device assignment interface. Will remain x86 only. */
3264 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3265 uint32_t flags
, uint32_t *dev_id
)
3267 struct kvm_assigned_pci_dev dev_data
= {
3268 .segnr
= dev_addr
->domain
,
3269 .busnr
= dev_addr
->bus
,
3270 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3275 dev_data
.assigned_dev_id
=
3276 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3278 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3283 *dev_id
= dev_data
.assigned_dev_id
;
3288 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3290 struct kvm_assigned_pci_dev dev_data
= {
3291 .assigned_dev_id
= dev_id
,
3294 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3297 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3298 uint32_t irq_type
, uint32_t guest_irq
)
3300 struct kvm_assigned_irq assigned_irq
= {
3301 .assigned_dev_id
= dev_id
,
3302 .guest_irq
= guest_irq
,
3306 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3307 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3309 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3313 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3316 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3317 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3319 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3322 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3324 struct kvm_assigned_pci_dev dev_data
= {
3325 .assigned_dev_id
= dev_id
,
3326 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3329 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3332 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3335 struct kvm_assigned_irq assigned_irq
= {
3336 .assigned_dev_id
= dev_id
,
3340 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3343 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3345 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3346 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3349 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3351 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3352 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3355 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3357 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3358 KVM_DEV_IRQ_HOST_MSI
);
3361 bool kvm_device_msix_supported(KVMState
*s
)
3363 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3364 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3365 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3368 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3369 uint32_t nr_vectors
)
3371 struct kvm_assigned_msix_nr msix_nr
= {
3372 .assigned_dev_id
= dev_id
,
3373 .entry_nr
= nr_vectors
,
3376 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3379 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3382 struct kvm_assigned_msix_entry msix_entry
= {
3383 .assigned_dev_id
= dev_id
,
3388 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3391 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3393 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3394 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3397 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3399 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3400 KVM_DEV_IRQ_HOST_MSIX
);
3403 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3404 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3406 X86IOMMUState
*iommu
= x86_iommu_get_default();
3410 MSIMessage src
, dst
;
3411 X86IOMMUClass
*class = X86_IOMMU_GET_CLASS(iommu
);
3413 src
.address
= route
->u
.msi
.address_hi
;
3414 src
.address
<<= VTD_MSI_ADDR_HI_SHIFT
;
3415 src
.address
|= route
->u
.msi
.address_lo
;
3416 src
.data
= route
->u
.msi
.data
;
3418 ret
= class->int_remap(iommu
, &src
, &dst
, dev
? \
3419 pci_requester_id(dev
) : \
3420 X86_IOMMU_SID_INVALID
);
3422 trace_kvm_x86_fixup_msi_error(route
->gsi
);
3426 route
->u
.msi
.address_hi
= dst
.address
>> VTD_MSI_ADDR_HI_SHIFT
;
3427 route
->u
.msi
.address_lo
= dst
.address
& VTD_MSI_ADDR_LO_MASK
;
3428 route
->u
.msi
.data
= dst
.data
;
3434 typedef struct MSIRouteEntry MSIRouteEntry
;
3436 struct MSIRouteEntry
{
3437 PCIDevice
*dev
; /* Device pointer */
3438 int vector
; /* MSI/MSIX vector index */
3439 int virq
; /* Virtual IRQ index */
3440 QLIST_ENTRY(MSIRouteEntry
) list
;
3443 /* List of used GSI routes */
3444 static QLIST_HEAD(, MSIRouteEntry
) msi_route_list
= \
3445 QLIST_HEAD_INITIALIZER(msi_route_list
);
3447 static void kvm_update_msi_routes_all(void *private, bool global
,
3448 uint32_t index
, uint32_t mask
)
3451 MSIRouteEntry
*entry
;
3455 /* TODO: explicit route update */
3456 QLIST_FOREACH(entry
, &msi_route_list
, list
) {
3459 if (!msix_enabled(dev
) && !msi_enabled(dev
)) {
3462 msg
= pci_get_msi_message(dev
, entry
->vector
);
3463 kvm_irqchip_update_msi_route(kvm_state
, entry
->virq
, msg
, dev
);
3465 kvm_irqchip_commit_routes(kvm_state
);
3466 trace_kvm_x86_update_msi_routes(cnt
);
3469 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
3470 int vector
, PCIDevice
*dev
)
3472 static bool notify_list_inited
= false;
3473 MSIRouteEntry
*entry
;
3476 /* These are (possibly) IOAPIC routes only used for split
3477 * kernel irqchip mode, while what we are housekeeping are
3478 * PCI devices only. */
3482 entry
= g_new0(MSIRouteEntry
, 1);
3484 entry
->vector
= vector
;
3485 entry
->virq
= route
->gsi
;
3486 QLIST_INSERT_HEAD(&msi_route_list
, entry
, list
);
3488 trace_kvm_x86_add_msi_route(route
->gsi
);
3490 if (!notify_list_inited
) {
3491 /* For the first time we do add route, add ourselves into
3492 * IOMMU's IEC notify list if needed. */
3493 X86IOMMUState
*iommu
= x86_iommu_get_default();
3495 x86_iommu_iec_register_notifier(iommu
,
3496 kvm_update_msi_routes_all
,
3499 notify_list_inited
= true;
3504 int kvm_arch_release_virq_post(int virq
)
3506 MSIRouteEntry
*entry
, *next
;
3507 QLIST_FOREACH_SAFE(entry
, &msi_route_list
, list
, next
) {
3508 if (entry
->virq
== virq
) {
3509 trace_kvm_x86_remove_msi_route(virq
);
3510 QLIST_REMOVE(entry
, list
);
3517 int kvm_arch_msi_data_to_gsi(uint32_t data
)