pc: Eliminate pc_common_machine_options()
[qemu/cris-port.git] / hw / intc / arm_gic.c
blob454bfd7df5449403ef3eb6091bf272208c181051
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "hw/sysbus.h"
22 #include "gic_internal.h"
23 #include "qom/cpu.h"
25 //#define DEBUG_GIC
27 #ifdef DEBUG_GIC
28 #define DPRINTF(fmt, ...) \
29 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
30 #else
31 #define DPRINTF(fmt, ...) do {} while(0)
32 #endif
34 static const uint8_t gic_id[] = {
35 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
38 #define NUM_CPU(s) ((s)->num_cpu)
40 static inline int gic_get_current_cpu(GICState *s)
42 if (s->num_cpu > 1) {
43 return current_cpu->cpu_index;
45 return 0;
48 /* Return true if this GIC config has interrupt groups, which is
49 * true if we're a GICv2, or a GICv1 with the security extensions.
51 static inline bool gic_has_groups(GICState *s)
53 return s->revision == 2 || s->security_extn;
56 /* TODO: Many places that call this routine could be optimized. */
57 /* Update interrupt status after enabled or pending bits have been changed. */
58 void gic_update(GICState *s)
60 int best_irq;
61 int best_prio;
62 int irq;
63 int irq_level, fiq_level;
64 int cpu;
65 int cm;
67 for (cpu = 0; cpu < NUM_CPU(s); cpu++) {
68 cm = 1 << cpu;
69 s->current_pending[cpu] = 1023;
70 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
71 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
72 qemu_irq_lower(s->parent_irq[cpu]);
73 qemu_irq_lower(s->parent_fiq[cpu]);
74 continue;
76 best_prio = 0x100;
77 best_irq = 1023;
78 for (irq = 0; irq < s->num_irq; irq++) {
79 if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
80 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
81 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
82 best_prio = GIC_GET_PRIORITY(irq, cpu);
83 best_irq = irq;
88 irq_level = fiq_level = 0;
90 if (best_prio < s->priority_mask[cpu]) {
91 s->current_pending[cpu] = best_irq;
92 if (best_prio < s->running_priority[cpu]) {
93 int group = GIC_TEST_GROUP(best_irq, cm);
95 if (extract32(s->ctlr, group, 1) &&
96 extract32(s->cpu_ctlr[cpu], group, 1)) {
97 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
98 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
99 best_irq, cpu);
100 fiq_level = 1;
101 } else {
102 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
103 best_irq, cpu);
104 irq_level = 1;
110 qemu_set_irq(s->parent_irq[cpu], irq_level);
111 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
115 void gic_set_pending_private(GICState *s, int cpu, int irq)
117 int cm = 1 << cpu;
119 if (gic_test_pending(s, irq, cm)) {
120 return;
123 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
124 GIC_SET_PENDING(irq, cm);
125 gic_update(s);
128 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
129 int cm, int target)
131 if (level) {
132 GIC_SET_LEVEL(irq, cm);
133 if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
134 DPRINTF("Set %d pending mask %x\n", irq, target);
135 GIC_SET_PENDING(irq, target);
137 } else {
138 GIC_CLEAR_LEVEL(irq, cm);
142 static void gic_set_irq_generic(GICState *s, int irq, int level,
143 int cm, int target)
145 if (level) {
146 GIC_SET_LEVEL(irq, cm);
147 DPRINTF("Set %d pending mask %x\n", irq, target);
148 if (GIC_TEST_EDGE_TRIGGER(irq)) {
149 GIC_SET_PENDING(irq, target);
151 } else {
152 GIC_CLEAR_LEVEL(irq, cm);
156 /* Process a change in an external IRQ input. */
157 static void gic_set_irq(void *opaque, int irq, int level)
159 /* Meaning of the 'irq' parameter:
160 * [0..N-1] : external interrupts
161 * [N..N+31] : PPI (internal) interrupts for CPU 0
162 * [N+32..N+63] : PPI (internal interrupts for CPU 1
163 * ...
165 GICState *s = (GICState *)opaque;
166 int cm, target;
167 if (irq < (s->num_irq - GIC_INTERNAL)) {
168 /* The first external input line is internal interrupt 32. */
169 cm = ALL_CPU_MASK;
170 irq += GIC_INTERNAL;
171 target = GIC_TARGET(irq);
172 } else {
173 int cpu;
174 irq -= (s->num_irq - GIC_INTERNAL);
175 cpu = irq / GIC_INTERNAL;
176 irq %= GIC_INTERNAL;
177 cm = 1 << cpu;
178 target = cm;
181 assert(irq >= GIC_NR_SGIS);
183 if (level == GIC_TEST_LEVEL(irq, cm)) {
184 return;
187 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
188 gic_set_irq_11mpcore(s, irq, level, cm, target);
189 } else {
190 gic_set_irq_generic(s, irq, level, cm, target);
193 gic_update(s);
196 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
197 MemTxAttrs attrs)
199 uint16_t pending_irq = s->current_pending[cpu];
201 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
202 int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
203 /* On a GIC without the security extensions, reading this register
204 * behaves in the same way as a secure access to a GIC with them.
206 bool secure = !s->security_extn || attrs.secure;
208 if (group == 0 && !secure) {
209 /* Group0 interrupts hidden from Non-secure access */
210 return 1023;
212 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
213 /* Group1 interrupts only seen by Secure access if
214 * AckCtl bit set.
216 return 1022;
219 return pending_irq;
222 static void gic_set_running_irq(GICState *s, int cpu, int irq)
224 s->running_irq[cpu] = irq;
225 if (irq == 1023) {
226 s->running_priority[cpu] = 0x100;
227 } else {
228 s->running_priority[cpu] = GIC_GET_PRIORITY(irq, cpu);
230 gic_update(s);
233 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
235 int ret, irq, src;
236 int cm = 1 << cpu;
238 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
239 * for the case where this GIC supports grouping and the pending interrupt
240 * is in the wrong group.
242 irq = gic_get_current_pending_irq(s, cpu, attrs);;
244 if (irq >= GIC_MAXIRQ) {
245 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
246 return irq;
249 if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
250 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
251 return 1023;
253 s->last_active[irq][cpu] = s->running_irq[cpu];
255 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
256 /* Clear pending flags for both level and edge triggered interrupts.
257 * Level triggered IRQs will be reasserted once they become inactive.
259 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
260 ret = irq;
261 } else {
262 if (irq < GIC_NR_SGIS) {
263 /* Lookup the source CPU for the SGI and clear this in the
264 * sgi_pending map. Return the src and clear the overall pending
265 * state on this CPU if the SGI is not pending from any CPUs.
267 assert(s->sgi_pending[irq][cpu] != 0);
268 src = ctz32(s->sgi_pending[irq][cpu]);
269 s->sgi_pending[irq][cpu] &= ~(1 << src);
270 if (s->sgi_pending[irq][cpu] == 0) {
271 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
273 ret = irq | ((src & 0x7) << 10);
274 } else {
275 /* Clear pending state for both level and edge triggered
276 * interrupts. (level triggered interrupts with an active line
277 * remain pending, see gic_test_pending)
279 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
280 ret = irq;
284 gic_set_running_irq(s, cpu, irq);
285 DPRINTF("ACK %d\n", irq);
286 return ret;
289 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
290 MemTxAttrs attrs)
292 if (s->security_extn && !attrs.secure) {
293 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
294 return; /* Ignore Non-secure access of Group0 IRQ */
296 val = 0x80 | (val >> 1); /* Non-secure view */
299 if (irq < GIC_INTERNAL) {
300 s->priority1[irq][cpu] = val;
301 } else {
302 s->priority2[(irq) - GIC_INTERNAL] = val;
306 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
307 MemTxAttrs attrs)
309 uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
311 if (s->security_extn && !attrs.secure) {
312 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
313 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
315 prio = (prio << 1) & 0xff; /* Non-secure view */
317 return prio;
320 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
321 MemTxAttrs attrs)
323 if (s->security_extn && !attrs.secure) {
324 if (s->priority_mask[cpu] & 0x80) {
325 /* Priority Mask in upper half */
326 pmask = 0x80 | (pmask >> 1);
327 } else {
328 /* Non-secure write ignored if priority mask is in lower half */
329 return;
332 s->priority_mask[cpu] = pmask;
335 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
337 uint32_t pmask = s->priority_mask[cpu];
339 if (s->security_extn && !attrs.secure) {
340 if (pmask & 0x80) {
341 /* Priority Mask in upper half, return Non-secure view */
342 pmask = (pmask << 1) & 0xff;
343 } else {
344 /* Priority Mask in lower half, RAZ */
345 pmask = 0;
348 return pmask;
351 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
353 uint32_t ret = s->cpu_ctlr[cpu];
355 if (s->security_extn && !attrs.secure) {
356 /* Construct the NS banked view of GICC_CTLR from the correct
357 * bits of the S banked view. We don't need to move the bypass
358 * control bits because we don't implement that (IMPDEF) part
359 * of the GIC architecture.
361 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
363 return ret;
366 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
367 MemTxAttrs attrs)
369 uint32_t mask;
371 if (s->security_extn && !attrs.secure) {
372 /* The NS view can only write certain bits in the register;
373 * the rest are unchanged
375 mask = GICC_CTLR_EN_GRP1;
376 if (s->revision == 2) {
377 mask |= GICC_CTLR_EOIMODE_NS;
379 s->cpu_ctlr[cpu] &= ~mask;
380 s->cpu_ctlr[cpu] |= (value << 1) & mask;
381 } else {
382 if (s->revision == 2) {
383 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
384 } else {
385 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
387 s->cpu_ctlr[cpu] = value & mask;
389 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
390 "Group1 Interrupts %sabled\n", cpu,
391 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
392 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
395 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
397 if (s->security_extn && !attrs.secure) {
398 if (s->running_priority[cpu] & 0x80) {
399 /* Running priority in upper half of range: return the Non-secure
400 * view of the priority.
402 return s->running_priority[cpu] << 1;
403 } else {
404 /* Running priority in lower half of range: RAZ */
405 return 0;
407 } else {
408 return s->running_priority[cpu];
412 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
414 int update = 0;
415 int cm = 1 << cpu;
416 DPRINTF("EOI %d\n", irq);
417 if (irq >= s->num_irq) {
418 /* This handles two cases:
419 * 1. If software writes the ID of a spurious interrupt [ie 1023]
420 * to the GICC_EOIR, the GIC ignores that write.
421 * 2. If software writes the number of a non-existent interrupt
422 * this must be a subcase of "value written does not match the last
423 * valid interrupt value read from the Interrupt Acknowledge
424 * register" and so this is UNPREDICTABLE. We choose to ignore it.
426 return;
428 if (s->running_irq[cpu] == 1023)
429 return; /* No active IRQ. */
431 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
432 /* Mark level triggered interrupts as pending if they are still
433 raised. */
434 if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
435 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
436 DPRINTF("Set %d pending mask %x\n", irq, cm);
437 GIC_SET_PENDING(irq, cm);
438 update = 1;
442 if (s->security_extn && !attrs.secure && !GIC_TEST_GROUP(irq, cm)) {
443 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
444 return;
447 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
448 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
449 * i.e. go ahead and complete the irq anyway.
452 if (irq != s->running_irq[cpu]) {
453 /* Complete an IRQ that is not currently running. */
454 int tmp = s->running_irq[cpu];
455 while (s->last_active[tmp][cpu] != 1023) {
456 if (s->last_active[tmp][cpu] == irq) {
457 s->last_active[tmp][cpu] = s->last_active[irq][cpu];
458 break;
460 tmp = s->last_active[tmp][cpu];
462 if (update) {
463 gic_update(s);
465 } else {
466 /* Complete the current running IRQ. */
467 gic_set_running_irq(s, cpu, s->last_active[s->running_irq[cpu]][cpu]);
471 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
473 GICState *s = (GICState *)opaque;
474 uint32_t res;
475 int irq;
476 int i;
477 int cpu;
478 int cm;
479 int mask;
481 cpu = gic_get_current_cpu(s);
482 cm = 1 << cpu;
483 if (offset < 0x100) {
484 if (offset == 0) { /* GICD_CTLR */
485 if (s->security_extn && !attrs.secure) {
486 /* The NS bank of this register is just an alias of the
487 * EnableGrp1 bit in the S bank version.
489 return extract32(s->ctlr, 1, 1);
490 } else {
491 return s->ctlr;
494 if (offset == 4)
495 /* Interrupt Controller Type Register */
496 return ((s->num_irq / 32) - 1)
497 | ((NUM_CPU(s) - 1) << 5)
498 | (s->security_extn << 10);
499 if (offset < 0x08)
500 return 0;
501 if (offset >= 0x80) {
502 /* Interrupt Group Registers: these RAZ/WI if this is an NS
503 * access to a GIC with the security extensions, or if the GIC
504 * doesn't have groups at all.
506 res = 0;
507 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
508 /* Every byte offset holds 8 group status bits */
509 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
510 if (irq >= s->num_irq) {
511 goto bad_reg;
513 for (i = 0; i < 8; i++) {
514 if (GIC_TEST_GROUP(irq + i, cm)) {
515 res |= (1 << i);
519 return res;
521 goto bad_reg;
522 } else if (offset < 0x200) {
523 /* Interrupt Set/Clear Enable. */
524 if (offset < 0x180)
525 irq = (offset - 0x100) * 8;
526 else
527 irq = (offset - 0x180) * 8;
528 irq += GIC_BASE_IRQ;
529 if (irq >= s->num_irq)
530 goto bad_reg;
531 res = 0;
532 for (i = 0; i < 8; i++) {
533 if (GIC_TEST_ENABLED(irq + i, cm)) {
534 res |= (1 << i);
537 } else if (offset < 0x300) {
538 /* Interrupt Set/Clear Pending. */
539 if (offset < 0x280)
540 irq = (offset - 0x200) * 8;
541 else
542 irq = (offset - 0x280) * 8;
543 irq += GIC_BASE_IRQ;
544 if (irq >= s->num_irq)
545 goto bad_reg;
546 res = 0;
547 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
548 for (i = 0; i < 8; i++) {
549 if (gic_test_pending(s, irq + i, mask)) {
550 res |= (1 << i);
553 } else if (offset < 0x400) {
554 /* Interrupt Active. */
555 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
556 if (irq >= s->num_irq)
557 goto bad_reg;
558 res = 0;
559 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
560 for (i = 0; i < 8; i++) {
561 if (GIC_TEST_ACTIVE(irq + i, mask)) {
562 res |= (1 << i);
565 } else if (offset < 0x800) {
566 /* Interrupt Priority. */
567 irq = (offset - 0x400) + GIC_BASE_IRQ;
568 if (irq >= s->num_irq)
569 goto bad_reg;
570 res = gic_get_priority(s, cpu, irq, attrs);
571 } else if (offset < 0xc00) {
572 /* Interrupt CPU Target. */
573 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
574 /* For uniprocessor GICs these RAZ/WI */
575 res = 0;
576 } else {
577 irq = (offset - 0x800) + GIC_BASE_IRQ;
578 if (irq >= s->num_irq) {
579 goto bad_reg;
581 if (irq >= 29 && irq <= 31) {
582 res = cm;
583 } else {
584 res = GIC_TARGET(irq);
587 } else if (offset < 0xf00) {
588 /* Interrupt Configuration. */
589 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
590 if (irq >= s->num_irq)
591 goto bad_reg;
592 res = 0;
593 for (i = 0; i < 4; i++) {
594 if (GIC_TEST_MODEL(irq + i))
595 res |= (1 << (i * 2));
596 if (GIC_TEST_EDGE_TRIGGER(irq + i))
597 res |= (2 << (i * 2));
599 } else if (offset < 0xf10) {
600 goto bad_reg;
601 } else if (offset < 0xf30) {
602 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
603 goto bad_reg;
606 if (offset < 0xf20) {
607 /* GICD_CPENDSGIRn */
608 irq = (offset - 0xf10);
609 } else {
610 irq = (offset - 0xf20);
611 /* GICD_SPENDSGIRn */
614 res = s->sgi_pending[irq][cpu];
615 } else if (offset < 0xfe0) {
616 goto bad_reg;
617 } else /* offset >= 0xfe0 */ {
618 if (offset & 3) {
619 res = 0;
620 } else {
621 res = gic_id[(offset - 0xfe0) >> 2];
624 return res;
625 bad_reg:
626 qemu_log_mask(LOG_GUEST_ERROR,
627 "gic_dist_readb: Bad offset %x\n", (int)offset);
628 return 0;
631 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
632 unsigned size, MemTxAttrs attrs)
634 switch (size) {
635 case 1:
636 *data = gic_dist_readb(opaque, offset, attrs);
637 return MEMTX_OK;
638 case 2:
639 *data = gic_dist_readb(opaque, offset, attrs);
640 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
641 return MEMTX_OK;
642 case 4:
643 *data = gic_dist_readb(opaque, offset, attrs);
644 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
645 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
646 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
647 return MEMTX_OK;
648 default:
649 return MEMTX_ERROR;
653 static void gic_dist_writeb(void *opaque, hwaddr offset,
654 uint32_t value, MemTxAttrs attrs)
656 GICState *s = (GICState *)opaque;
657 int irq;
658 int i;
659 int cpu;
661 cpu = gic_get_current_cpu(s);
662 if (offset < 0x100) {
663 if (offset == 0) {
664 if (s->security_extn && !attrs.secure) {
665 /* NS version is just an alias of the S version's bit 1 */
666 s->ctlr = deposit32(s->ctlr, 1, 1, value);
667 } else if (gic_has_groups(s)) {
668 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
669 } else {
670 s->ctlr = value & GICD_CTLR_EN_GRP0;
672 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
673 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
674 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
675 } else if (offset < 4) {
676 /* ignored. */
677 } else if (offset >= 0x80) {
678 /* Interrupt Group Registers: RAZ/WI for NS access to secure
679 * GIC, or for GICs without groups.
681 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
682 /* Every byte offset holds 8 group status bits */
683 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
684 if (irq >= s->num_irq) {
685 goto bad_reg;
687 for (i = 0; i < 8; i++) {
688 /* Group bits are banked for private interrupts */
689 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
690 if (value & (1 << i)) {
691 /* Group1 (Non-secure) */
692 GIC_SET_GROUP(irq + i, cm);
693 } else {
694 /* Group0 (Secure) */
695 GIC_CLEAR_GROUP(irq + i, cm);
699 } else {
700 goto bad_reg;
702 } else if (offset < 0x180) {
703 /* Interrupt Set Enable. */
704 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
705 if (irq >= s->num_irq)
706 goto bad_reg;
707 if (irq < GIC_NR_SGIS) {
708 value = 0xff;
711 for (i = 0; i < 8; i++) {
712 if (value & (1 << i)) {
713 int mask =
714 (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
715 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
717 if (!GIC_TEST_ENABLED(irq + i, cm)) {
718 DPRINTF("Enabled IRQ %d\n", irq + i);
720 GIC_SET_ENABLED(irq + i, cm);
721 /* If a raised level triggered IRQ enabled then mark
722 is as pending. */
723 if (GIC_TEST_LEVEL(irq + i, mask)
724 && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
725 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
726 GIC_SET_PENDING(irq + i, mask);
730 } else if (offset < 0x200) {
731 /* Interrupt Clear Enable. */
732 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
733 if (irq >= s->num_irq)
734 goto bad_reg;
735 if (irq < GIC_NR_SGIS) {
736 value = 0;
739 for (i = 0; i < 8; i++) {
740 if (value & (1 << i)) {
741 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
743 if (GIC_TEST_ENABLED(irq + i, cm)) {
744 DPRINTF("Disabled IRQ %d\n", irq + i);
746 GIC_CLEAR_ENABLED(irq + i, cm);
749 } else if (offset < 0x280) {
750 /* Interrupt Set Pending. */
751 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
752 if (irq >= s->num_irq)
753 goto bad_reg;
754 if (irq < GIC_NR_SGIS) {
755 value = 0;
758 for (i = 0; i < 8; i++) {
759 if (value & (1 << i)) {
760 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
763 } else if (offset < 0x300) {
764 /* Interrupt Clear Pending. */
765 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
766 if (irq >= s->num_irq)
767 goto bad_reg;
768 if (irq < GIC_NR_SGIS) {
769 value = 0;
772 for (i = 0; i < 8; i++) {
773 /* ??? This currently clears the pending bit for all CPUs, even
774 for per-CPU interrupts. It's unclear whether this is the
775 corect behavior. */
776 if (value & (1 << i)) {
777 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
780 } else if (offset < 0x400) {
781 /* Interrupt Active. */
782 goto bad_reg;
783 } else if (offset < 0x800) {
784 /* Interrupt Priority. */
785 irq = (offset - 0x400) + GIC_BASE_IRQ;
786 if (irq >= s->num_irq)
787 goto bad_reg;
788 gic_set_priority(s, cpu, irq, value, attrs);
789 } else if (offset < 0xc00) {
790 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
791 * annoying exception of the 11MPCore's GIC.
793 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
794 irq = (offset - 0x800) + GIC_BASE_IRQ;
795 if (irq >= s->num_irq) {
796 goto bad_reg;
798 if (irq < 29) {
799 value = 0;
800 } else if (irq < GIC_INTERNAL) {
801 value = ALL_CPU_MASK;
803 s->irq_target[irq] = value & ALL_CPU_MASK;
805 } else if (offset < 0xf00) {
806 /* Interrupt Configuration. */
807 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
808 if (irq >= s->num_irq)
809 goto bad_reg;
810 if (irq < GIC_NR_SGIS)
811 value |= 0xaa;
812 for (i = 0; i < 4; i++) {
813 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
814 if (value & (1 << (i * 2))) {
815 GIC_SET_MODEL(irq + i);
816 } else {
817 GIC_CLEAR_MODEL(irq + i);
820 if (value & (2 << (i * 2))) {
821 GIC_SET_EDGE_TRIGGER(irq + i);
822 } else {
823 GIC_CLEAR_EDGE_TRIGGER(irq + i);
826 } else if (offset < 0xf10) {
827 /* 0xf00 is only handled for 32-bit writes. */
828 goto bad_reg;
829 } else if (offset < 0xf20) {
830 /* GICD_CPENDSGIRn */
831 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
832 goto bad_reg;
834 irq = (offset - 0xf10);
836 s->sgi_pending[irq][cpu] &= ~value;
837 if (s->sgi_pending[irq][cpu] == 0) {
838 GIC_CLEAR_PENDING(irq, 1 << cpu);
840 } else if (offset < 0xf30) {
841 /* GICD_SPENDSGIRn */
842 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
843 goto bad_reg;
845 irq = (offset - 0xf20);
847 GIC_SET_PENDING(irq, 1 << cpu);
848 s->sgi_pending[irq][cpu] |= value;
849 } else {
850 goto bad_reg;
852 gic_update(s);
853 return;
854 bad_reg:
855 qemu_log_mask(LOG_GUEST_ERROR,
856 "gic_dist_writeb: Bad offset %x\n", (int)offset);
859 static void gic_dist_writew(void *opaque, hwaddr offset,
860 uint32_t value, MemTxAttrs attrs)
862 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
863 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
866 static void gic_dist_writel(void *opaque, hwaddr offset,
867 uint32_t value, MemTxAttrs attrs)
869 GICState *s = (GICState *)opaque;
870 if (offset == 0xf00) {
871 int cpu;
872 int irq;
873 int mask;
874 int target_cpu;
876 cpu = gic_get_current_cpu(s);
877 irq = value & 0x3ff;
878 switch ((value >> 24) & 3) {
879 case 0:
880 mask = (value >> 16) & ALL_CPU_MASK;
881 break;
882 case 1:
883 mask = ALL_CPU_MASK ^ (1 << cpu);
884 break;
885 case 2:
886 mask = 1 << cpu;
887 break;
888 default:
889 DPRINTF("Bad Soft Int target filter\n");
890 mask = ALL_CPU_MASK;
891 break;
893 GIC_SET_PENDING(irq, mask);
894 target_cpu = ctz32(mask);
895 while (target_cpu < GIC_NCPU) {
896 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
897 mask &= ~(1 << target_cpu);
898 target_cpu = ctz32(mask);
900 gic_update(s);
901 return;
903 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
904 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
907 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
908 unsigned size, MemTxAttrs attrs)
910 switch (size) {
911 case 1:
912 gic_dist_writeb(opaque, offset, data, attrs);
913 return MEMTX_OK;
914 case 2:
915 gic_dist_writew(opaque, offset, data, attrs);
916 return MEMTX_OK;
917 case 4:
918 gic_dist_writel(opaque, offset, data, attrs);
919 return MEMTX_OK;
920 default:
921 return MEMTX_ERROR;
925 static const MemoryRegionOps gic_dist_ops = {
926 .read_with_attrs = gic_dist_read,
927 .write_with_attrs = gic_dist_write,
928 .endianness = DEVICE_NATIVE_ENDIAN,
931 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
932 uint64_t *data, MemTxAttrs attrs)
934 switch (offset) {
935 case 0x00: /* Control */
936 *data = gic_get_cpu_control(s, cpu, attrs);
937 break;
938 case 0x04: /* Priority mask */
939 *data = gic_get_priority_mask(s, cpu, attrs);
940 break;
941 case 0x08: /* Binary Point */
942 if (s->security_extn && !attrs.secure) {
943 /* BPR is banked. Non-secure copy stored in ABPR. */
944 *data = s->abpr[cpu];
945 } else {
946 *data = s->bpr[cpu];
948 break;
949 case 0x0c: /* Acknowledge */
950 *data = gic_acknowledge_irq(s, cpu, attrs);
951 break;
952 case 0x14: /* Running Priority */
953 *data = gic_get_running_priority(s, cpu, attrs);
954 break;
955 case 0x18: /* Highest Pending Interrupt */
956 *data = gic_get_current_pending_irq(s, cpu, attrs);
957 break;
958 case 0x1c: /* Aliased Binary Point */
959 /* GIC v2, no security: ABPR
960 * GIC v1, no security: not implemented (RAZ/WI)
961 * With security extensions, secure access: ABPR (alias of NS BPR)
962 * With security extensions, nonsecure access: RAZ/WI
964 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
965 *data = 0;
966 } else {
967 *data = s->abpr[cpu];
969 break;
970 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
971 *data = s->apr[(offset - 0xd0) / 4][cpu];
972 break;
973 default:
974 qemu_log_mask(LOG_GUEST_ERROR,
975 "gic_cpu_read: Bad offset %x\n", (int)offset);
976 return MEMTX_ERROR;
978 return MEMTX_OK;
981 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
982 uint32_t value, MemTxAttrs attrs)
984 switch (offset) {
985 case 0x00: /* Control */
986 gic_set_cpu_control(s, cpu, value, attrs);
987 break;
988 case 0x04: /* Priority mask */
989 gic_set_priority_mask(s, cpu, value, attrs);
990 break;
991 case 0x08: /* Binary Point */
992 if (s->security_extn && !attrs.secure) {
993 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
994 } else {
995 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
997 break;
998 case 0x10: /* End Of Interrupt */
999 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1000 return MEMTX_OK;
1001 case 0x1c: /* Aliased Binary Point */
1002 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1003 /* unimplemented, or NS access: RAZ/WI */
1004 return MEMTX_OK;
1005 } else {
1006 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1008 break;
1009 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1010 qemu_log_mask(LOG_UNIMP, "Writing APR not implemented\n");
1011 break;
1012 default:
1013 qemu_log_mask(LOG_GUEST_ERROR,
1014 "gic_cpu_write: Bad offset %x\n", (int)offset);
1015 return MEMTX_ERROR;
1017 gic_update(s);
1018 return MEMTX_OK;
1021 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1022 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1023 unsigned size, MemTxAttrs attrs)
1025 GICState *s = (GICState *)opaque;
1026 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1029 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1030 uint64_t value, unsigned size,
1031 MemTxAttrs attrs)
1033 GICState *s = (GICState *)opaque;
1034 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1037 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1038 * These just decode the opaque pointer into GICState* + cpu id.
1040 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1041 unsigned size, MemTxAttrs attrs)
1043 GICState **backref = (GICState **)opaque;
1044 GICState *s = *backref;
1045 int id = (backref - s->backref);
1046 return gic_cpu_read(s, id, addr, data, attrs);
1049 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1050 uint64_t value, unsigned size,
1051 MemTxAttrs attrs)
1053 GICState **backref = (GICState **)opaque;
1054 GICState *s = *backref;
1055 int id = (backref - s->backref);
1056 return gic_cpu_write(s, id, addr, value, attrs);
1059 static const MemoryRegionOps gic_thiscpu_ops = {
1060 .read_with_attrs = gic_thiscpu_read,
1061 .write_with_attrs = gic_thiscpu_write,
1062 .endianness = DEVICE_NATIVE_ENDIAN,
1065 static const MemoryRegionOps gic_cpu_ops = {
1066 .read_with_attrs = gic_do_cpu_read,
1067 .write_with_attrs = gic_do_cpu_write,
1068 .endianness = DEVICE_NATIVE_ENDIAN,
1071 void gic_init_irqs_and_distributor(GICState *s)
1073 SysBusDevice *sbd = SYS_BUS_DEVICE(s);
1074 int i;
1076 i = s->num_irq - GIC_INTERNAL;
1077 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
1078 * GPIO array layout is thus:
1079 * [0..N-1] SPIs
1080 * [N..N+31] PPIs for CPU 0
1081 * [N+32..N+63] PPIs for CPU 1
1082 * ...
1084 if (s->revision != REV_NVIC) {
1085 i += (GIC_INTERNAL * s->num_cpu);
1087 qdev_init_gpio_in(DEVICE(s), gic_set_irq, i);
1088 for (i = 0; i < NUM_CPU(s); i++) {
1089 sysbus_init_irq(sbd, &s->parent_irq[i]);
1091 for (i = 0; i < NUM_CPU(s); i++) {
1092 sysbus_init_irq(sbd, &s->parent_fiq[i]);
1094 memory_region_init_io(&s->iomem, OBJECT(s), &gic_dist_ops, s,
1095 "gic_dist", 0x1000);
1098 static void arm_gic_realize(DeviceState *dev, Error **errp)
1100 /* Device instance realize function for the GIC sysbus device */
1101 int i;
1102 GICState *s = ARM_GIC(dev);
1103 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1104 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1105 Error *local_err = NULL;
1107 agc->parent_realize(dev, &local_err);
1108 if (local_err) {
1109 error_propagate(errp, local_err);
1110 return;
1113 gic_init_irqs_and_distributor(s);
1115 /* Memory regions for the CPU interfaces (NVIC doesn't have these):
1116 * a region for "CPU interface for this core", then a region for
1117 * "CPU interface for core 0", "for core 1", ...
1118 * NB that the memory region size of 0x100 applies for the 11MPCore
1119 * and also cores following the GIC v1 spec (ie A9).
1120 * GIC v2 defines a larger memory region (0x1000) so this will need
1121 * to be extended when we implement A15.
1123 memory_region_init_io(&s->cpuiomem[0], OBJECT(s), &gic_thiscpu_ops, s,
1124 "gic_cpu", 0x100);
1125 for (i = 0; i < NUM_CPU(s); i++) {
1126 s->backref[i] = s;
1127 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1128 &s->backref[i], "gic_cpu", 0x100);
1130 /* Distributor */
1131 sysbus_init_mmio(sbd, &s->iomem);
1132 /* cpu interfaces (one for "current cpu" plus one per cpu) */
1133 for (i = 0; i <= NUM_CPU(s); i++) {
1134 sysbus_init_mmio(sbd, &s->cpuiomem[i]);
1138 static void arm_gic_class_init(ObjectClass *klass, void *data)
1140 DeviceClass *dc = DEVICE_CLASS(klass);
1141 ARMGICClass *agc = ARM_GIC_CLASS(klass);
1143 agc->parent_realize = dc->realize;
1144 dc->realize = arm_gic_realize;
1147 static const TypeInfo arm_gic_info = {
1148 .name = TYPE_ARM_GIC,
1149 .parent = TYPE_ARM_GIC_COMMON,
1150 .instance_size = sizeof(GICState),
1151 .class_init = arm_gic_class_init,
1152 .class_size = sizeof(ARMGICClass),
1155 static void arm_gic_register_types(void)
1157 type_register_static(&arm_gic_info);
1160 type_init(arm_gic_register_types)