target-arm: Fix warn about implicit conversion
[qemu/cris-port.git] / hw / intc / arm_gic.c
blobb30cc917454b880636a3993a8b9e86113fea2d9d
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
29 //#define DEBUG_GIC
31 #ifdef DEBUG_GIC
32 #define DPRINTF(fmt, ...) \
33 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
34 #else
35 #define DPRINTF(fmt, ...) do {} while(0)
36 #endif
38 static const uint8_t gic_id_11mpcore[] = {
39 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
42 static const uint8_t gic_id_gicv1[] = {
43 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 static const uint8_t gic_id_gicv2[] = {
47 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 static inline int gic_get_current_cpu(GICState *s)
52 if (s->num_cpu > 1) {
53 return current_cpu->cpu_index;
55 return 0;
58 /* Return true if this GIC config has interrupt groups, which is
59 * true if we're a GICv2, or a GICv1 with the security extensions.
61 static inline bool gic_has_groups(GICState *s)
63 return s->revision == 2 || s->security_extn;
66 /* TODO: Many places that call this routine could be optimized. */
67 /* Update interrupt status after enabled or pending bits have been changed. */
68 void gic_update(GICState *s)
70 int best_irq;
71 int best_prio;
72 int irq;
73 int irq_level, fiq_level;
74 int cpu;
75 int cm;
77 for (cpu = 0; cpu < s->num_cpu; cpu++) {
78 cm = 1 << cpu;
79 s->current_pending[cpu] = 1023;
80 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
81 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
82 qemu_irq_lower(s->parent_irq[cpu]);
83 qemu_irq_lower(s->parent_fiq[cpu]);
84 continue;
86 best_prio = 0x100;
87 best_irq = 1023;
88 for (irq = 0; irq < s->num_irq; irq++) {
89 if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
90 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
91 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
92 best_prio = GIC_GET_PRIORITY(irq, cpu);
93 best_irq = irq;
98 if (best_irq != 1023) {
99 trace_gic_update_bestirq(cpu, best_irq, best_prio,
100 s->priority_mask[cpu], s->running_priority[cpu]);
103 irq_level = fiq_level = 0;
105 if (best_prio < s->priority_mask[cpu]) {
106 s->current_pending[cpu] = best_irq;
107 if (best_prio < s->running_priority[cpu]) {
108 int group = GIC_TEST_GROUP(best_irq, cm);
110 if (extract32(s->ctlr, group, 1) &&
111 extract32(s->cpu_ctlr[cpu], group, 1)) {
112 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
113 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
114 best_irq, cpu);
115 fiq_level = 1;
116 trace_gic_update_set_irq(cpu, "fiq", fiq_level);
117 } else {
118 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
119 best_irq, cpu);
120 irq_level = 1;
121 trace_gic_update_set_irq(cpu, "irq", irq_level);
127 qemu_set_irq(s->parent_irq[cpu], irq_level);
128 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
132 void gic_set_pending_private(GICState *s, int cpu, int irq)
134 int cm = 1 << cpu;
136 if (gic_test_pending(s, irq, cm)) {
137 return;
140 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
141 GIC_SET_PENDING(irq, cm);
142 gic_update(s);
145 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
146 int cm, int target)
148 if (level) {
149 GIC_SET_LEVEL(irq, cm);
150 if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
151 DPRINTF("Set %d pending mask %x\n", irq, target);
152 GIC_SET_PENDING(irq, target);
154 } else {
155 GIC_CLEAR_LEVEL(irq, cm);
159 static void gic_set_irq_generic(GICState *s, int irq, int level,
160 int cm, int target)
162 if (level) {
163 GIC_SET_LEVEL(irq, cm);
164 DPRINTF("Set %d pending mask %x\n", irq, target);
165 if (GIC_TEST_EDGE_TRIGGER(irq)) {
166 GIC_SET_PENDING(irq, target);
168 } else {
169 GIC_CLEAR_LEVEL(irq, cm);
173 /* Process a change in an external IRQ input. */
174 static void gic_set_irq(void *opaque, int irq, int level)
176 /* Meaning of the 'irq' parameter:
177 * [0..N-1] : external interrupts
178 * [N..N+31] : PPI (internal) interrupts for CPU 0
179 * [N+32..N+63] : PPI (internal interrupts for CPU 1
180 * ...
182 GICState *s = (GICState *)opaque;
183 int cm, target;
184 if (irq < (s->num_irq - GIC_INTERNAL)) {
185 /* The first external input line is internal interrupt 32. */
186 cm = ALL_CPU_MASK;
187 irq += GIC_INTERNAL;
188 target = GIC_TARGET(irq);
189 } else {
190 int cpu;
191 irq -= (s->num_irq - GIC_INTERNAL);
192 cpu = irq / GIC_INTERNAL;
193 irq %= GIC_INTERNAL;
194 cm = 1 << cpu;
195 target = cm;
198 assert(irq >= GIC_NR_SGIS);
200 if (level == GIC_TEST_LEVEL(irq, cm)) {
201 return;
204 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
205 gic_set_irq_11mpcore(s, irq, level, cm, target);
206 } else {
207 gic_set_irq_generic(s, irq, level, cm, target);
209 trace_gic_set_irq(irq, level, cm, target);
211 gic_update(s);
214 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
215 MemTxAttrs attrs)
217 uint16_t pending_irq = s->current_pending[cpu];
219 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
220 int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
221 /* On a GIC without the security extensions, reading this register
222 * behaves in the same way as a secure access to a GIC with them.
224 bool secure = !s->security_extn || attrs.secure;
226 if (group == 0 && !secure) {
227 /* Group0 interrupts hidden from Non-secure access */
228 return 1023;
230 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
231 /* Group1 interrupts only seen by Secure access if
232 * AckCtl bit set.
234 return 1022;
237 return pending_irq;
240 static int gic_get_group_priority(GICState *s, int cpu, int irq)
242 /* Return the group priority of the specified interrupt
243 * (which is the top bits of its priority, with the number
244 * of bits masked determined by the applicable binary point register).
246 int bpr;
247 uint32_t mask;
249 if (gic_has_groups(s) &&
250 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
251 GIC_TEST_GROUP(irq, (1 << cpu))) {
252 bpr = s->abpr[cpu];
253 } else {
254 bpr = s->bpr[cpu];
257 /* a BPR of 0 means the group priority bits are [7:1];
258 * a BPR of 1 means they are [7:2], and so on down to
259 * a BPR of 7 meaning no group priority bits at all.
261 mask = ~0U << ((bpr & 7) + 1);
263 return GIC_GET_PRIORITY(irq, cpu) & mask;
266 static void gic_activate_irq(GICState *s, int cpu, int irq)
268 /* Set the appropriate Active Priority Register bit for this IRQ,
269 * and update the running priority.
271 int prio = gic_get_group_priority(s, cpu, irq);
272 int preemption_level = prio >> (GIC_MIN_BPR + 1);
273 int regno = preemption_level / 32;
274 int bitno = preemption_level % 32;
276 if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
277 s->nsapr[regno][cpu] |= (1 << bitno);
278 } else {
279 s->apr[regno][cpu] |= (1 << bitno);
282 s->running_priority[cpu] = prio;
283 GIC_SET_ACTIVE(irq, 1 << cpu);
286 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
288 /* Recalculate the current running priority for this CPU based
289 * on the set bits in the Active Priority Registers.
291 int i;
292 for (i = 0; i < GIC_NR_APRS; i++) {
293 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
294 if (!apr) {
295 continue;
297 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
299 return 0x100;
302 static void gic_drop_prio(GICState *s, int cpu, int group)
304 /* Drop the priority of the currently active interrupt in the
305 * specified group.
307 * Note that we can guarantee (because of the requirement to nest
308 * GICC_IAR reads [which activate an interrupt and raise priority]
309 * with GICC_EOIR writes [which drop the priority for the interrupt])
310 * that the interrupt we're being called for is the highest priority
311 * active interrupt, meaning that it has the lowest set bit in the
312 * APR registers.
314 * If the guest does not honour the ordering constraints then the
315 * behaviour of the GIC is UNPREDICTABLE, which for us means that
316 * the values of the APR registers might become incorrect and the
317 * running priority will be wrong, so interrupts that should preempt
318 * might not do so, and interrupts that should not preempt might do so.
320 int i;
322 for (i = 0; i < GIC_NR_APRS; i++) {
323 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
324 if (!*papr) {
325 continue;
327 /* Clear lowest set bit */
328 *papr &= *papr - 1;
329 break;
332 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
335 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
337 int ret, irq, src;
338 int cm = 1 << cpu;
340 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
341 * for the case where this GIC supports grouping and the pending interrupt
342 * is in the wrong group.
344 irq = gic_get_current_pending_irq(s, cpu, attrs);
345 trace_gic_acknowledge_irq(cpu, irq);
347 if (irq >= GIC_MAXIRQ) {
348 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
349 return irq;
352 if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
353 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
354 return 1023;
357 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
358 /* Clear pending flags for both level and edge triggered interrupts.
359 * Level triggered IRQs will be reasserted once they become inactive.
361 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
362 ret = irq;
363 } else {
364 if (irq < GIC_NR_SGIS) {
365 /* Lookup the source CPU for the SGI and clear this in the
366 * sgi_pending map. Return the src and clear the overall pending
367 * state on this CPU if the SGI is not pending from any CPUs.
369 assert(s->sgi_pending[irq][cpu] != 0);
370 src = ctz32(s->sgi_pending[irq][cpu]);
371 s->sgi_pending[irq][cpu] &= ~(1 << src);
372 if (s->sgi_pending[irq][cpu] == 0) {
373 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
375 ret = irq | ((src & 0x7) << 10);
376 } else {
377 /* Clear pending state for both level and edge triggered
378 * interrupts. (level triggered interrupts with an active line
379 * remain pending, see gic_test_pending)
381 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
382 ret = irq;
386 gic_activate_irq(s, cpu, irq);
387 gic_update(s);
388 DPRINTF("ACK %d\n", irq);
389 return ret;
392 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
393 MemTxAttrs attrs)
395 if (s->security_extn && !attrs.secure) {
396 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
397 return; /* Ignore Non-secure access of Group0 IRQ */
399 val = 0x80 | (val >> 1); /* Non-secure view */
402 if (irq < GIC_INTERNAL) {
403 s->priority1[irq][cpu] = val;
404 } else {
405 s->priority2[(irq) - GIC_INTERNAL] = val;
409 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
410 MemTxAttrs attrs)
412 uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
414 if (s->security_extn && !attrs.secure) {
415 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
416 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
418 prio = (prio << 1) & 0xff; /* Non-secure view */
420 return prio;
423 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
424 MemTxAttrs attrs)
426 if (s->security_extn && !attrs.secure) {
427 if (s->priority_mask[cpu] & 0x80) {
428 /* Priority Mask in upper half */
429 pmask = 0x80 | (pmask >> 1);
430 } else {
431 /* Non-secure write ignored if priority mask is in lower half */
432 return;
435 s->priority_mask[cpu] = pmask;
438 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
440 uint32_t pmask = s->priority_mask[cpu];
442 if (s->security_extn && !attrs.secure) {
443 if (pmask & 0x80) {
444 /* Priority Mask in upper half, return Non-secure view */
445 pmask = (pmask << 1) & 0xff;
446 } else {
447 /* Priority Mask in lower half, RAZ */
448 pmask = 0;
451 return pmask;
454 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
456 uint32_t ret = s->cpu_ctlr[cpu];
458 if (s->security_extn && !attrs.secure) {
459 /* Construct the NS banked view of GICC_CTLR from the correct
460 * bits of the S banked view. We don't need to move the bypass
461 * control bits because we don't implement that (IMPDEF) part
462 * of the GIC architecture.
464 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
466 return ret;
469 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
470 MemTxAttrs attrs)
472 uint32_t mask;
474 if (s->security_extn && !attrs.secure) {
475 /* The NS view can only write certain bits in the register;
476 * the rest are unchanged
478 mask = GICC_CTLR_EN_GRP1;
479 if (s->revision == 2) {
480 mask |= GICC_CTLR_EOIMODE_NS;
482 s->cpu_ctlr[cpu] &= ~mask;
483 s->cpu_ctlr[cpu] |= (value << 1) & mask;
484 } else {
485 if (s->revision == 2) {
486 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
487 } else {
488 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
490 s->cpu_ctlr[cpu] = value & mask;
492 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
493 "Group1 Interrupts %sabled\n", cpu,
494 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
495 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
498 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
500 if (s->security_extn && !attrs.secure) {
501 if (s->running_priority[cpu] & 0x80) {
502 /* Running priority in upper half of range: return the Non-secure
503 * view of the priority.
505 return s->running_priority[cpu] << 1;
506 } else {
507 /* Running priority in lower half of range: RAZ */
508 return 0;
510 } else {
511 return s->running_priority[cpu];
515 /* Return true if we should split priority drop and interrupt deactivation,
516 * ie whether the relevant EOIMode bit is set.
518 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
520 if (s->revision != 2) {
521 /* Before GICv2 prio-drop and deactivate are not separable */
522 return false;
524 if (s->security_extn && !attrs.secure) {
525 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
527 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
530 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
532 int cm = 1 << cpu;
533 int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
535 if (!gic_eoi_split(s, cpu, attrs)) {
536 /* This is UNPREDICTABLE; we choose to ignore it */
537 qemu_log_mask(LOG_GUEST_ERROR,
538 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
539 return;
542 if (s->security_extn && !attrs.secure && !group) {
543 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
544 return;
547 GIC_CLEAR_ACTIVE(irq, cm);
550 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
552 int cm = 1 << cpu;
553 int group;
555 DPRINTF("EOI %d\n", irq);
556 if (irq >= s->num_irq) {
557 /* This handles two cases:
558 * 1. If software writes the ID of a spurious interrupt [ie 1023]
559 * to the GICC_EOIR, the GIC ignores that write.
560 * 2. If software writes the number of a non-existent interrupt
561 * this must be a subcase of "value written does not match the last
562 * valid interrupt value read from the Interrupt Acknowledge
563 * register" and so this is UNPREDICTABLE. We choose to ignore it.
565 return;
567 if (s->running_priority[cpu] == 0x100) {
568 return; /* No active IRQ. */
571 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
572 /* Mark level triggered interrupts as pending if they are still
573 raised. */
574 if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
575 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
576 DPRINTF("Set %d pending mask %x\n", irq, cm);
577 GIC_SET_PENDING(irq, cm);
581 group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
583 if (s->security_extn && !attrs.secure && !group) {
584 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
585 return;
588 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
589 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
590 * i.e. go ahead and complete the irq anyway.
593 gic_drop_prio(s, cpu, group);
595 /* In GICv2 the guest can choose to split priority-drop and deactivate */
596 if (!gic_eoi_split(s, cpu, attrs)) {
597 GIC_CLEAR_ACTIVE(irq, cm);
599 gic_update(s);
602 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
604 GICState *s = (GICState *)opaque;
605 uint32_t res;
606 int irq;
607 int i;
608 int cpu;
609 int cm;
610 int mask;
612 cpu = gic_get_current_cpu(s);
613 cm = 1 << cpu;
614 if (offset < 0x100) {
615 if (offset == 0) { /* GICD_CTLR */
616 if (s->security_extn && !attrs.secure) {
617 /* The NS bank of this register is just an alias of the
618 * EnableGrp1 bit in the S bank version.
620 return extract32(s->ctlr, 1, 1);
621 } else {
622 return s->ctlr;
625 if (offset == 4)
626 /* Interrupt Controller Type Register */
627 return ((s->num_irq / 32) - 1)
628 | ((s->num_cpu - 1) << 5)
629 | (s->security_extn << 10);
630 if (offset < 0x08)
631 return 0;
632 if (offset >= 0x80) {
633 /* Interrupt Group Registers: these RAZ/WI if this is an NS
634 * access to a GIC with the security extensions, or if the GIC
635 * doesn't have groups at all.
637 res = 0;
638 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
639 /* Every byte offset holds 8 group status bits */
640 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
641 if (irq >= s->num_irq) {
642 goto bad_reg;
644 for (i = 0; i < 8; i++) {
645 if (GIC_TEST_GROUP(irq + i, cm)) {
646 res |= (1 << i);
650 return res;
652 goto bad_reg;
653 } else if (offset < 0x200) {
654 /* Interrupt Set/Clear Enable. */
655 if (offset < 0x180)
656 irq = (offset - 0x100) * 8;
657 else
658 irq = (offset - 0x180) * 8;
659 irq += GIC_BASE_IRQ;
660 if (irq >= s->num_irq)
661 goto bad_reg;
662 res = 0;
663 for (i = 0; i < 8; i++) {
664 if (s->security_extn && !attrs.secure &&
665 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
666 continue; /* Ignore Non-secure access of Group0 IRQ */
669 if (GIC_TEST_ENABLED(irq + i, cm)) {
670 res |= (1 << i);
673 } else if (offset < 0x300) {
674 /* Interrupt Set/Clear Pending. */
675 if (offset < 0x280)
676 irq = (offset - 0x200) * 8;
677 else
678 irq = (offset - 0x280) * 8;
679 irq += GIC_BASE_IRQ;
680 if (irq >= s->num_irq)
681 goto bad_reg;
682 res = 0;
683 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
684 for (i = 0; i < 8; i++) {
685 if (s->security_extn && !attrs.secure &&
686 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
687 continue; /* Ignore Non-secure access of Group0 IRQ */
690 if (gic_test_pending(s, irq + i, mask)) {
691 res |= (1 << i);
694 } else if (offset < 0x400) {
695 /* Interrupt Active. */
696 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
697 if (irq >= s->num_irq)
698 goto bad_reg;
699 res = 0;
700 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
701 for (i = 0; i < 8; i++) {
702 if (s->security_extn && !attrs.secure &&
703 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
704 continue; /* Ignore Non-secure access of Group0 IRQ */
707 if (GIC_TEST_ACTIVE(irq + i, mask)) {
708 res |= (1 << i);
711 } else if (offset < 0x800) {
712 /* Interrupt Priority. */
713 irq = (offset - 0x400) + GIC_BASE_IRQ;
714 if (irq >= s->num_irq)
715 goto bad_reg;
716 res = gic_get_priority(s, cpu, irq, attrs);
717 } else if (offset < 0xc00) {
718 /* Interrupt CPU Target. */
719 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
720 /* For uniprocessor GICs these RAZ/WI */
721 res = 0;
722 } else {
723 irq = (offset - 0x800) + GIC_BASE_IRQ;
724 if (irq >= s->num_irq) {
725 goto bad_reg;
727 if (irq >= 29 && irq <= 31) {
728 res = cm;
729 } else {
730 res = GIC_TARGET(irq);
733 } else if (offset < 0xf00) {
734 /* Interrupt Configuration. */
735 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
736 if (irq >= s->num_irq)
737 goto bad_reg;
738 res = 0;
739 for (i = 0; i < 4; i++) {
740 if (s->security_extn && !attrs.secure &&
741 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
742 continue; /* Ignore Non-secure access of Group0 IRQ */
745 if (GIC_TEST_MODEL(irq + i))
746 res |= (1 << (i * 2));
747 if (GIC_TEST_EDGE_TRIGGER(irq + i))
748 res |= (2 << (i * 2));
750 } else if (offset < 0xf10) {
751 goto bad_reg;
752 } else if (offset < 0xf30) {
753 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
754 goto bad_reg;
757 if (offset < 0xf20) {
758 /* GICD_CPENDSGIRn */
759 irq = (offset - 0xf10);
760 } else {
761 irq = (offset - 0xf20);
762 /* GICD_SPENDSGIRn */
765 if (s->security_extn && !attrs.secure &&
766 !GIC_TEST_GROUP(irq, 1 << cpu)) {
767 res = 0; /* Ignore Non-secure access of Group0 IRQ */
768 } else {
769 res = s->sgi_pending[irq][cpu];
771 } else if (offset < 0xfd0) {
772 goto bad_reg;
773 } else if (offset < 0x1000) {
774 if (offset & 3) {
775 res = 0;
776 } else {
777 switch (s->revision) {
778 case REV_11MPCORE:
779 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
780 break;
781 case 1:
782 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
783 break;
784 case 2:
785 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
786 break;
787 case REV_NVIC:
788 /* Shouldn't be able to get here */
789 abort();
790 default:
791 res = 0;
794 } else {
795 g_assert_not_reached();
797 return res;
798 bad_reg:
799 qemu_log_mask(LOG_GUEST_ERROR,
800 "gic_dist_readb: Bad offset %x\n", (int)offset);
801 return 0;
804 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
805 unsigned size, MemTxAttrs attrs)
807 switch (size) {
808 case 1:
809 *data = gic_dist_readb(opaque, offset, attrs);
810 return MEMTX_OK;
811 case 2:
812 *data = gic_dist_readb(opaque, offset, attrs);
813 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
814 return MEMTX_OK;
815 case 4:
816 *data = gic_dist_readb(opaque, offset, attrs);
817 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
818 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
819 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
820 return MEMTX_OK;
821 default:
822 return MEMTX_ERROR;
826 static void gic_dist_writeb(void *opaque, hwaddr offset,
827 uint32_t value, MemTxAttrs attrs)
829 GICState *s = (GICState *)opaque;
830 int irq;
831 int i;
832 int cpu;
834 cpu = gic_get_current_cpu(s);
835 if (offset < 0x100) {
836 if (offset == 0) {
837 if (s->security_extn && !attrs.secure) {
838 /* NS version is just an alias of the S version's bit 1 */
839 s->ctlr = deposit32(s->ctlr, 1, 1, value);
840 } else if (gic_has_groups(s)) {
841 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
842 } else {
843 s->ctlr = value & GICD_CTLR_EN_GRP0;
845 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
846 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
847 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
848 } else if (offset < 4) {
849 /* ignored. */
850 } else if (offset >= 0x80) {
851 /* Interrupt Group Registers: RAZ/WI for NS access to secure
852 * GIC, or for GICs without groups.
854 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
855 /* Every byte offset holds 8 group status bits */
856 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
857 if (irq >= s->num_irq) {
858 goto bad_reg;
860 for (i = 0; i < 8; i++) {
861 /* Group bits are banked for private interrupts */
862 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
863 if (value & (1 << i)) {
864 /* Group1 (Non-secure) */
865 GIC_SET_GROUP(irq + i, cm);
866 } else {
867 /* Group0 (Secure) */
868 GIC_CLEAR_GROUP(irq + i, cm);
872 } else {
873 goto bad_reg;
875 } else if (offset < 0x180) {
876 /* Interrupt Set Enable. */
877 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
878 if (irq >= s->num_irq)
879 goto bad_reg;
880 if (irq < GIC_NR_SGIS) {
881 value = 0xff;
884 for (i = 0; i < 8; i++) {
885 if (value & (1 << i)) {
886 int mask =
887 (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
888 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
890 if (s->security_extn && !attrs.secure &&
891 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
892 continue; /* Ignore Non-secure access of Group0 IRQ */
895 if (!GIC_TEST_ENABLED(irq + i, cm)) {
896 DPRINTF("Enabled IRQ %d\n", irq + i);
897 trace_gic_enable_irq(irq + i);
899 GIC_SET_ENABLED(irq + i, cm);
900 /* If a raised level triggered IRQ enabled then mark
901 is as pending. */
902 if (GIC_TEST_LEVEL(irq + i, mask)
903 && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
904 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
905 GIC_SET_PENDING(irq + i, mask);
909 } else if (offset < 0x200) {
910 /* Interrupt Clear Enable. */
911 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
912 if (irq >= s->num_irq)
913 goto bad_reg;
914 if (irq < GIC_NR_SGIS) {
915 value = 0;
918 for (i = 0; i < 8; i++) {
919 if (value & (1 << i)) {
920 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
922 if (s->security_extn && !attrs.secure &&
923 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
924 continue; /* Ignore Non-secure access of Group0 IRQ */
927 if (GIC_TEST_ENABLED(irq + i, cm)) {
928 DPRINTF("Disabled IRQ %d\n", irq + i);
929 trace_gic_disable_irq(irq + i);
931 GIC_CLEAR_ENABLED(irq + i, cm);
934 } else if (offset < 0x280) {
935 /* Interrupt Set Pending. */
936 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
937 if (irq >= s->num_irq)
938 goto bad_reg;
939 if (irq < GIC_NR_SGIS) {
940 value = 0;
943 for (i = 0; i < 8; i++) {
944 if (value & (1 << i)) {
945 if (s->security_extn && !attrs.secure &&
946 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
947 continue; /* Ignore Non-secure access of Group0 IRQ */
950 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
953 } else if (offset < 0x300) {
954 /* Interrupt Clear Pending. */
955 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
956 if (irq >= s->num_irq)
957 goto bad_reg;
958 if (irq < GIC_NR_SGIS) {
959 value = 0;
962 for (i = 0; i < 8; i++) {
963 if (s->security_extn && !attrs.secure &&
964 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
965 continue; /* Ignore Non-secure access of Group0 IRQ */
968 /* ??? This currently clears the pending bit for all CPUs, even
969 for per-CPU interrupts. It's unclear whether this is the
970 corect behavior. */
971 if (value & (1 << i)) {
972 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
975 } else if (offset < 0x400) {
976 /* Interrupt Active. */
977 goto bad_reg;
978 } else if (offset < 0x800) {
979 /* Interrupt Priority. */
980 irq = (offset - 0x400) + GIC_BASE_IRQ;
981 if (irq >= s->num_irq)
982 goto bad_reg;
983 gic_set_priority(s, cpu, irq, value, attrs);
984 } else if (offset < 0xc00) {
985 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
986 * annoying exception of the 11MPCore's GIC.
988 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
989 irq = (offset - 0x800) + GIC_BASE_IRQ;
990 if (irq >= s->num_irq) {
991 goto bad_reg;
993 if (irq < 29) {
994 value = 0;
995 } else if (irq < GIC_INTERNAL) {
996 value = ALL_CPU_MASK;
998 s->irq_target[irq] = value & ALL_CPU_MASK;
1000 } else if (offset < 0xf00) {
1001 /* Interrupt Configuration. */
1002 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1003 if (irq >= s->num_irq)
1004 goto bad_reg;
1005 if (irq < GIC_NR_SGIS)
1006 value |= 0xaa;
1007 for (i = 0; i < 4; i++) {
1008 if (s->security_extn && !attrs.secure &&
1009 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
1010 continue; /* Ignore Non-secure access of Group0 IRQ */
1013 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
1014 if (value & (1 << (i * 2))) {
1015 GIC_SET_MODEL(irq + i);
1016 } else {
1017 GIC_CLEAR_MODEL(irq + i);
1020 if (value & (2 << (i * 2))) {
1021 GIC_SET_EDGE_TRIGGER(irq + i);
1022 } else {
1023 GIC_CLEAR_EDGE_TRIGGER(irq + i);
1026 } else if (offset < 0xf10) {
1027 /* 0xf00 is only handled for 32-bit writes. */
1028 goto bad_reg;
1029 } else if (offset < 0xf20) {
1030 /* GICD_CPENDSGIRn */
1031 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
1032 goto bad_reg;
1034 irq = (offset - 0xf10);
1036 if (!s->security_extn || attrs.secure ||
1037 GIC_TEST_GROUP(irq, 1 << cpu)) {
1038 s->sgi_pending[irq][cpu] &= ~value;
1039 if (s->sgi_pending[irq][cpu] == 0) {
1040 GIC_CLEAR_PENDING(irq, 1 << cpu);
1043 } else if (offset < 0xf30) {
1044 /* GICD_SPENDSGIRn */
1045 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
1046 goto bad_reg;
1048 irq = (offset - 0xf20);
1050 if (!s->security_extn || attrs.secure ||
1051 GIC_TEST_GROUP(irq, 1 << cpu)) {
1052 GIC_SET_PENDING(irq, 1 << cpu);
1053 s->sgi_pending[irq][cpu] |= value;
1055 } else {
1056 goto bad_reg;
1058 gic_update(s);
1059 return;
1060 bad_reg:
1061 qemu_log_mask(LOG_GUEST_ERROR,
1062 "gic_dist_writeb: Bad offset %x\n", (int)offset);
1065 static void gic_dist_writew(void *opaque, hwaddr offset,
1066 uint32_t value, MemTxAttrs attrs)
1068 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1069 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1072 static void gic_dist_writel(void *opaque, hwaddr offset,
1073 uint32_t value, MemTxAttrs attrs)
1075 GICState *s = (GICState *)opaque;
1076 if (offset == 0xf00) {
1077 int cpu;
1078 int irq;
1079 int mask;
1080 int target_cpu;
1082 cpu = gic_get_current_cpu(s);
1083 irq = value & 0x3ff;
1084 switch ((value >> 24) & 3) {
1085 case 0:
1086 mask = (value >> 16) & ALL_CPU_MASK;
1087 break;
1088 case 1:
1089 mask = ALL_CPU_MASK ^ (1 << cpu);
1090 break;
1091 case 2:
1092 mask = 1 << cpu;
1093 break;
1094 default:
1095 DPRINTF("Bad Soft Int target filter\n");
1096 mask = ALL_CPU_MASK;
1097 break;
1099 GIC_SET_PENDING(irq, mask);
1100 target_cpu = ctz32(mask);
1101 while (target_cpu < GIC_NCPU) {
1102 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1103 mask &= ~(1 << target_cpu);
1104 target_cpu = ctz32(mask);
1106 gic_update(s);
1107 return;
1109 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1110 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1113 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1114 unsigned size, MemTxAttrs attrs)
1116 switch (size) {
1117 case 1:
1118 gic_dist_writeb(opaque, offset, data, attrs);
1119 return MEMTX_OK;
1120 case 2:
1121 gic_dist_writew(opaque, offset, data, attrs);
1122 return MEMTX_OK;
1123 case 4:
1124 gic_dist_writel(opaque, offset, data, attrs);
1125 return MEMTX_OK;
1126 default:
1127 return MEMTX_ERROR;
1131 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1133 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1134 * second half of GICC_NSAPR.
1136 switch (GIC_MIN_BPR) {
1137 case 0:
1138 if (regno < 2) {
1139 return s->nsapr[regno + 2][cpu];
1141 break;
1142 case 1:
1143 if (regno == 0) {
1144 return s->nsapr[regno + 1][cpu];
1146 break;
1147 case 2:
1148 if (regno == 0) {
1149 return extract32(s->nsapr[0][cpu], 16, 16);
1151 break;
1152 case 3:
1153 if (regno == 0) {
1154 return extract32(s->nsapr[0][cpu], 8, 8);
1156 break;
1157 default:
1158 g_assert_not_reached();
1160 return 0;
1163 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1164 uint32_t value)
1166 /* Write the Nonsecure view of GICC_APR<regno>. */
1167 switch (GIC_MIN_BPR) {
1168 case 0:
1169 if (regno < 2) {
1170 s->nsapr[regno + 2][cpu] = value;
1172 break;
1173 case 1:
1174 if (regno == 0) {
1175 s->nsapr[regno + 1][cpu] = value;
1177 break;
1178 case 2:
1179 if (regno == 0) {
1180 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1182 break;
1183 case 3:
1184 if (regno == 0) {
1185 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1187 break;
1188 default:
1189 g_assert_not_reached();
1193 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1194 uint64_t *data, MemTxAttrs attrs)
1196 switch (offset) {
1197 case 0x00: /* Control */
1198 *data = gic_get_cpu_control(s, cpu, attrs);
1199 break;
1200 case 0x04: /* Priority mask */
1201 *data = gic_get_priority_mask(s, cpu, attrs);
1202 break;
1203 case 0x08: /* Binary Point */
1204 if (s->security_extn && !attrs.secure) {
1205 /* BPR is banked. Non-secure copy stored in ABPR. */
1206 *data = s->abpr[cpu];
1207 } else {
1208 *data = s->bpr[cpu];
1210 break;
1211 case 0x0c: /* Acknowledge */
1212 *data = gic_acknowledge_irq(s, cpu, attrs);
1213 break;
1214 case 0x14: /* Running Priority */
1215 *data = gic_get_running_priority(s, cpu, attrs);
1216 break;
1217 case 0x18: /* Highest Pending Interrupt */
1218 *data = gic_get_current_pending_irq(s, cpu, attrs);
1219 break;
1220 case 0x1c: /* Aliased Binary Point */
1221 /* GIC v2, no security: ABPR
1222 * GIC v1, no security: not implemented (RAZ/WI)
1223 * With security extensions, secure access: ABPR (alias of NS BPR)
1224 * With security extensions, nonsecure access: RAZ/WI
1226 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1227 *data = 0;
1228 } else {
1229 *data = s->abpr[cpu];
1231 break;
1232 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1234 int regno = (offset - 0xd0) / 4;
1236 if (regno >= GIC_NR_APRS || s->revision != 2) {
1237 *data = 0;
1238 } else if (s->security_extn && !attrs.secure) {
1239 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1240 *data = gic_apr_ns_view(s, regno, cpu);
1241 } else {
1242 *data = s->apr[regno][cpu];
1244 break;
1246 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1248 int regno = (offset - 0xe0) / 4;
1250 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1251 (s->security_extn && !attrs.secure)) {
1252 *data = 0;
1253 } else {
1254 *data = s->nsapr[regno][cpu];
1256 break;
1258 default:
1259 qemu_log_mask(LOG_GUEST_ERROR,
1260 "gic_cpu_read: Bad offset %x\n", (int)offset);
1261 return MEMTX_ERROR;
1263 return MEMTX_OK;
1266 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1267 uint32_t value, MemTxAttrs attrs)
1269 switch (offset) {
1270 case 0x00: /* Control */
1271 gic_set_cpu_control(s, cpu, value, attrs);
1272 break;
1273 case 0x04: /* Priority mask */
1274 gic_set_priority_mask(s, cpu, value, attrs);
1275 break;
1276 case 0x08: /* Binary Point */
1277 if (s->security_extn && !attrs.secure) {
1278 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1279 } else {
1280 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1282 break;
1283 case 0x10: /* End Of Interrupt */
1284 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1285 return MEMTX_OK;
1286 case 0x1c: /* Aliased Binary Point */
1287 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1288 /* unimplemented, or NS access: RAZ/WI */
1289 return MEMTX_OK;
1290 } else {
1291 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1293 break;
1294 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1296 int regno = (offset - 0xd0) / 4;
1298 if (regno >= GIC_NR_APRS || s->revision != 2) {
1299 return MEMTX_OK;
1301 if (s->security_extn && !attrs.secure) {
1302 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1303 gic_apr_write_ns_view(s, regno, cpu, value);
1304 } else {
1305 s->apr[regno][cpu] = value;
1307 break;
1309 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1311 int regno = (offset - 0xe0) / 4;
1313 if (regno >= GIC_NR_APRS || s->revision != 2) {
1314 return MEMTX_OK;
1316 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1317 return MEMTX_OK;
1319 s->nsapr[regno][cpu] = value;
1320 break;
1322 case 0x1000:
1323 /* GICC_DIR */
1324 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1325 break;
1326 default:
1327 qemu_log_mask(LOG_GUEST_ERROR,
1328 "gic_cpu_write: Bad offset %x\n", (int)offset);
1329 return MEMTX_ERROR;
1331 gic_update(s);
1332 return MEMTX_OK;
1335 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1336 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1337 unsigned size, MemTxAttrs attrs)
1339 GICState *s = (GICState *)opaque;
1340 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1343 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1344 uint64_t value, unsigned size,
1345 MemTxAttrs attrs)
1347 GICState *s = (GICState *)opaque;
1348 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1351 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1352 * These just decode the opaque pointer into GICState* + cpu id.
1354 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1355 unsigned size, MemTxAttrs attrs)
1357 GICState **backref = (GICState **)opaque;
1358 GICState *s = *backref;
1359 int id = (backref - s->backref);
1360 return gic_cpu_read(s, id, addr, data, attrs);
1363 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1364 uint64_t value, unsigned size,
1365 MemTxAttrs attrs)
1367 GICState **backref = (GICState **)opaque;
1368 GICState *s = *backref;
1369 int id = (backref - s->backref);
1370 return gic_cpu_write(s, id, addr, value, attrs);
1373 static const MemoryRegionOps gic_ops[2] = {
1375 .read_with_attrs = gic_dist_read,
1376 .write_with_attrs = gic_dist_write,
1377 .endianness = DEVICE_NATIVE_ENDIAN,
1380 .read_with_attrs = gic_thiscpu_read,
1381 .write_with_attrs = gic_thiscpu_write,
1382 .endianness = DEVICE_NATIVE_ENDIAN,
1386 static const MemoryRegionOps gic_cpu_ops = {
1387 .read_with_attrs = gic_do_cpu_read,
1388 .write_with_attrs = gic_do_cpu_write,
1389 .endianness = DEVICE_NATIVE_ENDIAN,
1392 /* This function is used by nvic model */
1393 void gic_init_irqs_and_distributor(GICState *s)
1395 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1398 static void arm_gic_realize(DeviceState *dev, Error **errp)
1400 /* Device instance realize function for the GIC sysbus device */
1401 int i;
1402 GICState *s = ARM_GIC(dev);
1403 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1404 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1405 Error *local_err = NULL;
1407 agc->parent_realize(dev, &local_err);
1408 if (local_err) {
1409 error_propagate(errp, local_err);
1410 return;
1413 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1414 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1416 /* Extra core-specific regions for the CPU interfaces. This is
1417 * necessary for "franken-GIC" implementations, for example on
1418 * Exynos 4.
1419 * NB that the memory region size of 0x100 applies for the 11MPCore
1420 * and also cores following the GIC v1 spec (ie A9).
1421 * GIC v2 defines a larger memory region (0x1000) so this will need
1422 * to be extended when we implement A15.
1424 for (i = 0; i < s->num_cpu; i++) {
1425 s->backref[i] = s;
1426 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1427 &s->backref[i], "gic_cpu", 0x100);
1428 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1432 static void arm_gic_class_init(ObjectClass *klass, void *data)
1434 DeviceClass *dc = DEVICE_CLASS(klass);
1435 ARMGICClass *agc = ARM_GIC_CLASS(klass);
1437 agc->parent_realize = dc->realize;
1438 dc->realize = arm_gic_realize;
1441 static const TypeInfo arm_gic_info = {
1442 .name = TYPE_ARM_GIC,
1443 .parent = TYPE_ARM_GIC_COMMON,
1444 .instance_size = sizeof(GICState),
1445 .class_init = arm_gic_class_init,
1446 .class_size = sizeof(ARMGICClass),
1449 static void arm_gic_register_types(void)
1451 type_register_static(&arm_gic_info);
1454 type_init(arm_gic_register_types)