hw/ppc/pegasos2: Fix PCI interrupt routing
[qemu/armbru.git] / tcg / tcg-op-gvec.c
blob291a65c4bfe744ab002cb42961cba9cb802ccfa5
1 /*
2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "tcg/tcg.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "tcg/tcg-gvec-desc.h"
26 #define MAX_UNROLL 4
28 #ifdef CONFIG_DEBUG_TCG
29 static const TCGOpcode vecop_list_empty[1] = { 0 };
30 #else
31 #define vecop_list_empty NULL
32 #endif
35 /* Verify vector size and alignment rules. OFS should be the OR of all
36 of the operand offsets so that we can check them all at once. */
37 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
39 uint32_t max_align;
41 switch (oprsz) {
42 case 8:
43 case 16:
44 case 32:
45 tcg_debug_assert(oprsz <= maxsz);
46 break;
47 default:
48 tcg_debug_assert(oprsz == maxsz);
49 break;
51 tcg_debug_assert(maxsz <= (8 << SIMD_MAXSZ_BITS));
53 max_align = maxsz >= 16 ? 15 : 7;
54 tcg_debug_assert((maxsz & max_align) == 0);
55 tcg_debug_assert((ofs & max_align) == 0);
58 /* Verify vector overlap rules for two operands. */
59 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
61 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
64 /* Verify vector overlap rules for three operands. */
65 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
67 check_overlap_2(d, a, s);
68 check_overlap_2(d, b, s);
69 check_overlap_2(a, b, s);
72 /* Verify vector overlap rules for four operands. */
73 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
74 uint32_t c, uint32_t s)
76 check_overlap_2(d, a, s);
77 check_overlap_2(d, b, s);
78 check_overlap_2(d, c, s);
79 check_overlap_2(a, b, s);
80 check_overlap_2(a, c, s);
81 check_overlap_2(b, c, s);
84 /* Create a descriptor from components. */
85 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
87 uint32_t desc = 0;
89 check_size_align(oprsz, maxsz, 0);
90 tcg_debug_assert(data == sextract32(data, 0, SIMD_DATA_BITS));
92 oprsz = (oprsz / 8) - 1;
93 maxsz = (maxsz / 8) - 1;
96 * We have just asserted in check_size_align that either
97 * oprsz is {8,16,32} or matches maxsz. Encode the final
98 * case with '2', as that would otherwise map to 24.
100 if (oprsz == maxsz) {
101 oprsz = 2;
104 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
105 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
106 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
108 return desc;
111 /* Generate a call to a gvec-style helper with two vector operands. */
112 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
113 uint32_t oprsz, uint32_t maxsz, int32_t data,
114 gen_helper_gvec_2 *fn)
116 TCGv_ptr a0, a1;
117 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
119 a0 = tcg_temp_ebb_new_ptr();
120 a1 = tcg_temp_ebb_new_ptr();
122 tcg_gen_addi_ptr(a0, cpu_env, dofs);
123 tcg_gen_addi_ptr(a1, cpu_env, aofs);
125 fn(a0, a1, desc);
127 tcg_temp_free_ptr(a0);
128 tcg_temp_free_ptr(a1);
131 /* Generate a call to a gvec-style helper with two vector operands
132 and one scalar operand. */
133 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
134 uint32_t oprsz, uint32_t maxsz, int32_t data,
135 gen_helper_gvec_2i *fn)
137 TCGv_ptr a0, a1;
138 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
140 a0 = tcg_temp_ebb_new_ptr();
141 a1 = tcg_temp_ebb_new_ptr();
143 tcg_gen_addi_ptr(a0, cpu_env, dofs);
144 tcg_gen_addi_ptr(a1, cpu_env, aofs);
146 fn(a0, a1, c, desc);
148 tcg_temp_free_ptr(a0);
149 tcg_temp_free_ptr(a1);
152 /* Generate a call to a gvec-style helper with three vector operands. */
153 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
154 uint32_t oprsz, uint32_t maxsz, int32_t data,
155 gen_helper_gvec_3 *fn)
157 TCGv_ptr a0, a1, a2;
158 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
160 a0 = tcg_temp_ebb_new_ptr();
161 a1 = tcg_temp_ebb_new_ptr();
162 a2 = tcg_temp_ebb_new_ptr();
164 tcg_gen_addi_ptr(a0, cpu_env, dofs);
165 tcg_gen_addi_ptr(a1, cpu_env, aofs);
166 tcg_gen_addi_ptr(a2, cpu_env, bofs);
168 fn(a0, a1, a2, desc);
170 tcg_temp_free_ptr(a0);
171 tcg_temp_free_ptr(a1);
172 tcg_temp_free_ptr(a2);
175 /* Generate a call to a gvec-style helper with four vector operands. */
176 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
177 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
178 int32_t data, gen_helper_gvec_4 *fn)
180 TCGv_ptr a0, a1, a2, a3;
181 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
183 a0 = tcg_temp_ebb_new_ptr();
184 a1 = tcg_temp_ebb_new_ptr();
185 a2 = tcg_temp_ebb_new_ptr();
186 a3 = tcg_temp_ebb_new_ptr();
188 tcg_gen_addi_ptr(a0, cpu_env, dofs);
189 tcg_gen_addi_ptr(a1, cpu_env, aofs);
190 tcg_gen_addi_ptr(a2, cpu_env, bofs);
191 tcg_gen_addi_ptr(a3, cpu_env, cofs);
193 fn(a0, a1, a2, a3, desc);
195 tcg_temp_free_ptr(a0);
196 tcg_temp_free_ptr(a1);
197 tcg_temp_free_ptr(a2);
198 tcg_temp_free_ptr(a3);
201 /* Generate a call to a gvec-style helper with five vector operands. */
202 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
203 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
204 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
206 TCGv_ptr a0, a1, a2, a3, a4;
207 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
209 a0 = tcg_temp_ebb_new_ptr();
210 a1 = tcg_temp_ebb_new_ptr();
211 a2 = tcg_temp_ebb_new_ptr();
212 a3 = tcg_temp_ebb_new_ptr();
213 a4 = tcg_temp_ebb_new_ptr();
215 tcg_gen_addi_ptr(a0, cpu_env, dofs);
216 tcg_gen_addi_ptr(a1, cpu_env, aofs);
217 tcg_gen_addi_ptr(a2, cpu_env, bofs);
218 tcg_gen_addi_ptr(a3, cpu_env, cofs);
219 tcg_gen_addi_ptr(a4, cpu_env, xofs);
221 fn(a0, a1, a2, a3, a4, desc);
223 tcg_temp_free_ptr(a0);
224 tcg_temp_free_ptr(a1);
225 tcg_temp_free_ptr(a2);
226 tcg_temp_free_ptr(a3);
227 tcg_temp_free_ptr(a4);
230 /* Generate a call to a gvec-style helper with three vector operands
231 and an extra pointer operand. */
232 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
233 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
234 int32_t data, gen_helper_gvec_2_ptr *fn)
236 TCGv_ptr a0, a1;
237 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
239 a0 = tcg_temp_ebb_new_ptr();
240 a1 = tcg_temp_ebb_new_ptr();
242 tcg_gen_addi_ptr(a0, cpu_env, dofs);
243 tcg_gen_addi_ptr(a1, cpu_env, aofs);
245 fn(a0, a1, ptr, desc);
247 tcg_temp_free_ptr(a0);
248 tcg_temp_free_ptr(a1);
251 /* Generate a call to a gvec-style helper with three vector operands
252 and an extra pointer operand. */
253 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
254 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
255 int32_t data, gen_helper_gvec_3_ptr *fn)
257 TCGv_ptr a0, a1, a2;
258 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
260 a0 = tcg_temp_ebb_new_ptr();
261 a1 = tcg_temp_ebb_new_ptr();
262 a2 = tcg_temp_ebb_new_ptr();
264 tcg_gen_addi_ptr(a0, cpu_env, dofs);
265 tcg_gen_addi_ptr(a1, cpu_env, aofs);
266 tcg_gen_addi_ptr(a2, cpu_env, bofs);
268 fn(a0, a1, a2, ptr, desc);
270 tcg_temp_free_ptr(a0);
271 tcg_temp_free_ptr(a1);
272 tcg_temp_free_ptr(a2);
275 /* Generate a call to a gvec-style helper with four vector operands
276 and an extra pointer operand. */
277 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
278 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
279 uint32_t maxsz, int32_t data,
280 gen_helper_gvec_4_ptr *fn)
282 TCGv_ptr a0, a1, a2, a3;
283 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
285 a0 = tcg_temp_ebb_new_ptr();
286 a1 = tcg_temp_ebb_new_ptr();
287 a2 = tcg_temp_ebb_new_ptr();
288 a3 = tcg_temp_ebb_new_ptr();
290 tcg_gen_addi_ptr(a0, cpu_env, dofs);
291 tcg_gen_addi_ptr(a1, cpu_env, aofs);
292 tcg_gen_addi_ptr(a2, cpu_env, bofs);
293 tcg_gen_addi_ptr(a3, cpu_env, cofs);
295 fn(a0, a1, a2, a3, ptr, desc);
297 tcg_temp_free_ptr(a0);
298 tcg_temp_free_ptr(a1);
299 tcg_temp_free_ptr(a2);
300 tcg_temp_free_ptr(a3);
303 /* Generate a call to a gvec-style helper with five vector operands
304 and an extra pointer operand. */
305 void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
306 uint32_t cofs, uint32_t eofs, TCGv_ptr ptr,
307 uint32_t oprsz, uint32_t maxsz, int32_t data,
308 gen_helper_gvec_5_ptr *fn)
310 TCGv_ptr a0, a1, a2, a3, a4;
311 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
313 a0 = tcg_temp_ebb_new_ptr();
314 a1 = tcg_temp_ebb_new_ptr();
315 a2 = tcg_temp_ebb_new_ptr();
316 a3 = tcg_temp_ebb_new_ptr();
317 a4 = tcg_temp_ebb_new_ptr();
319 tcg_gen_addi_ptr(a0, cpu_env, dofs);
320 tcg_gen_addi_ptr(a1, cpu_env, aofs);
321 tcg_gen_addi_ptr(a2, cpu_env, bofs);
322 tcg_gen_addi_ptr(a3, cpu_env, cofs);
323 tcg_gen_addi_ptr(a4, cpu_env, eofs);
325 fn(a0, a1, a2, a3, a4, ptr, desc);
327 tcg_temp_free_ptr(a0);
328 tcg_temp_free_ptr(a1);
329 tcg_temp_free_ptr(a2);
330 tcg_temp_free_ptr(a3);
331 tcg_temp_free_ptr(a4);
334 /* Return true if we want to implement something of OPRSZ bytes
335 in units of LNSZ. This limits the expansion of inline code. */
336 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
338 uint32_t q, r;
340 if (oprsz < lnsz) {
341 return false;
344 q = oprsz / lnsz;
345 r = oprsz % lnsz;
346 tcg_debug_assert((r & 7) == 0);
348 if (lnsz < 16) {
349 /* For sizes below 16, accept no remainder. */
350 if (r != 0) {
351 return false;
353 } else {
355 * Recall that ARM SVE allows vector sizes that are not a
356 * power of 2, but always a multiple of 16. The intent is
357 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
358 * In addition, expand_clr needs to handle a multiple of 8.
359 * Thus we can handle the tail with one more operation per
360 * diminishing power of 2.
362 q += ctpop32(r);
365 return q <= MAX_UNROLL;
368 static void expand_clr(uint32_t dofs, uint32_t maxsz);
370 /* Duplicate C as per VECE. */
371 uint64_t (dup_const)(unsigned vece, uint64_t c)
373 switch (vece) {
374 case MO_8:
375 return 0x0101010101010101ull * (uint8_t)c;
376 case MO_16:
377 return 0x0001000100010001ull * (uint16_t)c;
378 case MO_32:
379 return 0x0000000100000001ull * (uint32_t)c;
380 case MO_64:
381 return c;
382 default:
383 g_assert_not_reached();
387 /* Duplicate IN into OUT as per VECE. */
388 void tcg_gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
390 switch (vece) {
391 case MO_8:
392 tcg_gen_ext8u_i32(out, in);
393 tcg_gen_muli_i32(out, out, 0x01010101);
394 break;
395 case MO_16:
396 tcg_gen_deposit_i32(out, in, in, 16, 16);
397 break;
398 case MO_32:
399 tcg_gen_mov_i32(out, in);
400 break;
401 default:
402 g_assert_not_reached();
406 void tcg_gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
408 switch (vece) {
409 case MO_8:
410 tcg_gen_ext8u_i64(out, in);
411 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
412 break;
413 case MO_16:
414 tcg_gen_ext16u_i64(out, in);
415 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
416 break;
417 case MO_32:
418 tcg_gen_deposit_i64(out, in, in, 32, 32);
419 break;
420 case MO_64:
421 tcg_gen_mov_i64(out, in);
422 break;
423 default:
424 g_assert_not_reached();
428 /* Select a supported vector type for implementing an operation on SIZE
429 * bytes. If OP is 0, assume that the real operation to be performed is
430 * required by all backends. Otherwise, make sure than OP can be performed
431 * on elements of size VECE in the selected type. Do not select V64 if
432 * PREFER_I64 is true. Return 0 if no vector type is selected.
434 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
435 uint32_t size, bool prefer_i64)
438 * Recall that ARM SVE allows vector sizes that are not a
439 * power of 2, but always a multiple of 16. The intent is
440 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
441 * It is hard to imagine a case in which v256 is supported
442 * but v128 is not, but check anyway.
443 * In addition, expand_clr needs to handle a multiple of 8.
445 if (TCG_TARGET_HAS_v256 &&
446 check_size_impl(size, 32) &&
447 tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) &&
448 (!(size & 16) ||
449 (TCG_TARGET_HAS_v128 &&
450 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) &&
451 (!(size & 8) ||
452 (TCG_TARGET_HAS_v64 &&
453 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
454 return TCG_TYPE_V256;
456 if (TCG_TARGET_HAS_v128 &&
457 check_size_impl(size, 16) &&
458 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) &&
459 (!(size & 8) ||
460 (TCG_TARGET_HAS_v64 &&
461 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
462 return TCG_TYPE_V128;
464 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
465 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
466 return TCG_TYPE_V64;
468 return 0;
471 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
472 uint32_t maxsz, TCGv_vec t_vec)
474 uint32_t i = 0;
476 tcg_debug_assert(oprsz >= 8);
479 * This may be expand_clr for the tail of an operation, e.g.
480 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
481 * are misaligned wrt the maximum vector size, so do that first.
483 if (dofs & 8) {
484 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
485 i += 8;
488 switch (type) {
489 case TCG_TYPE_V256:
491 * Recall that ARM SVE allows vector sizes that are not a
492 * power of 2, but always a multiple of 16. The intent is
493 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
495 for (; i + 32 <= oprsz; i += 32) {
496 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
498 /* fallthru */
499 case TCG_TYPE_V128:
500 for (; i + 16 <= oprsz; i += 16) {
501 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
503 break;
504 case TCG_TYPE_V64:
505 for (; i < oprsz; i += 8) {
506 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
508 break;
509 default:
510 g_assert_not_reached();
513 if (oprsz < maxsz) {
514 expand_clr(dofs + oprsz, maxsz - oprsz);
518 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
519 * Only one of IN_32 or IN_64 may be set;
520 * IN_C is used if IN_32 and IN_64 are unset.
522 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
523 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
524 uint64_t in_c)
526 TCGType type;
527 TCGv_i64 t_64;
528 TCGv_i32 t_32, t_desc;
529 TCGv_ptr t_ptr;
530 uint32_t i;
532 assert(vece <= (in_32 ? MO_32 : MO_64));
533 assert(in_32 == NULL || in_64 == NULL);
535 /* If we're storing 0, expand oprsz to maxsz. */
536 if (in_32 == NULL && in_64 == NULL) {
537 in_c = dup_const(vece, in_c);
538 if (in_c == 0) {
539 oprsz = maxsz;
540 vece = MO_8;
541 } else if (in_c == dup_const(MO_8, in_c)) {
542 vece = MO_8;
546 /* Implement inline with a vector type, if possible.
547 * Prefer integer when 64-bit host and no variable dup.
549 type = choose_vector_type(NULL, vece, oprsz,
550 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
551 && (in_64 == NULL || vece == MO_64)));
552 if (type != 0) {
553 TCGv_vec t_vec = tcg_temp_new_vec(type);
555 if (in_32) {
556 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
557 } else if (in_64) {
558 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
559 } else {
560 tcg_gen_dupi_vec(vece, t_vec, in_c);
562 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
563 tcg_temp_free_vec(t_vec);
564 return;
567 /* Otherwise, inline with an integer type, unless "large". */
568 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
569 t_64 = NULL;
570 t_32 = NULL;
572 if (in_32) {
573 /* We are given a 32-bit variable input. For a 64-bit host,
574 use a 64-bit operation unless the 32-bit operation would
575 be simple enough. */
576 if (TCG_TARGET_REG_BITS == 64
577 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
578 t_64 = tcg_temp_ebb_new_i64();
579 tcg_gen_extu_i32_i64(t_64, in_32);
580 tcg_gen_dup_i64(vece, t_64, t_64);
581 } else {
582 t_32 = tcg_temp_ebb_new_i32();
583 tcg_gen_dup_i32(vece, t_32, in_32);
585 } else if (in_64) {
586 /* We are given a 64-bit variable input. */
587 t_64 = tcg_temp_ebb_new_i64();
588 tcg_gen_dup_i64(vece, t_64, in_64);
589 } else {
590 /* We are given a constant input. */
591 /* For 64-bit hosts, use 64-bit constants for "simple" constants
592 or when we'd need too many 32-bit stores, or when a 64-bit
593 constant is really required. */
594 if (vece == MO_64
595 || (TCG_TARGET_REG_BITS == 64
596 && (in_c == 0 || in_c == -1
597 || !check_size_impl(oprsz, 4)))) {
598 t_64 = tcg_constant_i64(in_c);
599 } else {
600 t_32 = tcg_constant_i32(in_c);
604 /* Implement inline if we picked an implementation size above. */
605 if (t_32) {
606 for (i = 0; i < oprsz; i += 4) {
607 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
609 tcg_temp_free_i32(t_32);
610 goto done;
612 if (t_64) {
613 for (i = 0; i < oprsz; i += 8) {
614 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
616 tcg_temp_free_i64(t_64);
617 goto done;
621 /* Otherwise implement out of line. */
622 t_ptr = tcg_temp_ebb_new_ptr();
623 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
626 * This may be expand_clr for the tail of an operation, e.g.
627 * oprsz == 8 && maxsz == 64. The size of the clear is misaligned
628 * wrt simd_desc and will assert. Simply pass all replicated byte
629 * stores through to memset.
631 if (oprsz == maxsz && vece == MO_8) {
632 TCGv_ptr t_size = tcg_constant_ptr(oprsz);
633 TCGv_i32 t_val;
635 if (in_32) {
636 t_val = in_32;
637 } else if (in_64) {
638 t_val = tcg_temp_ebb_new_i32();
639 tcg_gen_extrl_i64_i32(t_val, in_64);
640 } else {
641 t_val = tcg_constant_i32(in_c);
643 gen_helper_memset(t_ptr, t_ptr, t_val, t_size);
645 if (in_64) {
646 tcg_temp_free_i32(t_val);
648 tcg_temp_free_ptr(t_ptr);
649 return;
652 t_desc = tcg_constant_i32(simd_desc(oprsz, maxsz, 0));
654 if (vece == MO_64) {
655 if (in_64) {
656 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
657 } else {
658 t_64 = tcg_constant_i64(in_c);
659 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
661 } else {
662 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
663 static dup_fn * const fns[3] = {
664 gen_helper_gvec_dup8,
665 gen_helper_gvec_dup16,
666 gen_helper_gvec_dup32
669 if (in_32) {
670 fns[vece](t_ptr, t_desc, in_32);
671 } else if (in_64) {
672 t_32 = tcg_temp_ebb_new_i32();
673 tcg_gen_extrl_i64_i32(t_32, in_64);
674 fns[vece](t_ptr, t_desc, t_32);
675 tcg_temp_free_i32(t_32);
676 } else {
677 if (vece == MO_8) {
678 in_c &= 0xff;
679 } else if (vece == MO_16) {
680 in_c &= 0xffff;
682 t_32 = tcg_constant_i32(in_c);
683 fns[vece](t_ptr, t_desc, t_32);
687 tcg_temp_free_ptr(t_ptr);
688 return;
690 done:
691 if (oprsz < maxsz) {
692 expand_clr(dofs + oprsz, maxsz - oprsz);
696 /* Likewise, but with zero. */
697 static void expand_clr(uint32_t dofs, uint32_t maxsz)
699 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
702 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
703 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
704 bool load_dest, void (*fni)(TCGv_i32, TCGv_i32))
706 TCGv_i32 t0 = tcg_temp_new_i32();
707 TCGv_i32 t1 = tcg_temp_new_i32();
708 uint32_t i;
710 for (i = 0; i < oprsz; i += 4) {
711 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
712 if (load_dest) {
713 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
715 fni(t1, t0);
716 tcg_gen_st_i32(t1, cpu_env, dofs + i);
718 tcg_temp_free_i32(t0);
719 tcg_temp_free_i32(t1);
722 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
723 int32_t c, bool load_dest,
724 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
726 TCGv_i32 t0 = tcg_temp_new_i32();
727 TCGv_i32 t1 = tcg_temp_new_i32();
728 uint32_t i;
730 for (i = 0; i < oprsz; i += 4) {
731 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
732 if (load_dest) {
733 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
735 fni(t1, t0, c);
736 tcg_gen_st_i32(t1, cpu_env, dofs + i);
738 tcg_temp_free_i32(t0);
739 tcg_temp_free_i32(t1);
742 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
743 TCGv_i32 c, bool scalar_first,
744 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
746 TCGv_i32 t0 = tcg_temp_new_i32();
747 TCGv_i32 t1 = tcg_temp_new_i32();
748 uint32_t i;
750 for (i = 0; i < oprsz; i += 4) {
751 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
752 if (scalar_first) {
753 fni(t1, c, t0);
754 } else {
755 fni(t1, t0, c);
757 tcg_gen_st_i32(t1, cpu_env, dofs + i);
759 tcg_temp_free_i32(t0);
760 tcg_temp_free_i32(t1);
763 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
764 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
765 uint32_t bofs, uint32_t oprsz, bool load_dest,
766 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
768 TCGv_i32 t0 = tcg_temp_new_i32();
769 TCGv_i32 t1 = tcg_temp_new_i32();
770 TCGv_i32 t2 = tcg_temp_new_i32();
771 uint32_t i;
773 for (i = 0; i < oprsz; i += 4) {
774 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
775 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
776 if (load_dest) {
777 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
779 fni(t2, t0, t1);
780 tcg_gen_st_i32(t2, cpu_env, dofs + i);
782 tcg_temp_free_i32(t2);
783 tcg_temp_free_i32(t1);
784 tcg_temp_free_i32(t0);
787 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
788 uint32_t oprsz, int32_t c, bool load_dest,
789 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
791 TCGv_i32 t0 = tcg_temp_new_i32();
792 TCGv_i32 t1 = tcg_temp_new_i32();
793 TCGv_i32 t2 = tcg_temp_new_i32();
794 uint32_t i;
796 for (i = 0; i < oprsz; i += 4) {
797 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
798 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
799 if (load_dest) {
800 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
802 fni(t2, t0, t1, c);
803 tcg_gen_st_i32(t2, cpu_env, dofs + i);
805 tcg_temp_free_i32(t0);
806 tcg_temp_free_i32(t1);
807 tcg_temp_free_i32(t2);
810 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
811 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
812 uint32_t cofs, uint32_t oprsz, bool write_aofs,
813 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
815 TCGv_i32 t0 = tcg_temp_new_i32();
816 TCGv_i32 t1 = tcg_temp_new_i32();
817 TCGv_i32 t2 = tcg_temp_new_i32();
818 TCGv_i32 t3 = tcg_temp_new_i32();
819 uint32_t i;
821 for (i = 0; i < oprsz; i += 4) {
822 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
823 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
824 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
825 fni(t0, t1, t2, t3);
826 tcg_gen_st_i32(t0, cpu_env, dofs + i);
827 if (write_aofs) {
828 tcg_gen_st_i32(t1, cpu_env, aofs + i);
831 tcg_temp_free_i32(t3);
832 tcg_temp_free_i32(t2);
833 tcg_temp_free_i32(t1);
834 tcg_temp_free_i32(t0);
837 static void expand_4i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
838 uint32_t cofs, uint32_t oprsz, int32_t c,
839 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32,
840 int32_t))
842 TCGv_i32 t0 = tcg_temp_new_i32();
843 TCGv_i32 t1 = tcg_temp_new_i32();
844 TCGv_i32 t2 = tcg_temp_new_i32();
845 TCGv_i32 t3 = tcg_temp_new_i32();
846 uint32_t i;
848 for (i = 0; i < oprsz; i += 4) {
849 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
850 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
851 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
852 fni(t0, t1, t2, t3, c);
853 tcg_gen_st_i32(t0, cpu_env, dofs + i);
855 tcg_temp_free_i32(t3);
856 tcg_temp_free_i32(t2);
857 tcg_temp_free_i32(t1);
858 tcg_temp_free_i32(t0);
861 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
862 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
863 bool load_dest, void (*fni)(TCGv_i64, TCGv_i64))
865 TCGv_i64 t0 = tcg_temp_new_i64();
866 TCGv_i64 t1 = tcg_temp_new_i64();
867 uint32_t i;
869 for (i = 0; i < oprsz; i += 8) {
870 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
871 if (load_dest) {
872 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
874 fni(t1, t0);
875 tcg_gen_st_i64(t1, cpu_env, dofs + i);
877 tcg_temp_free_i64(t0);
878 tcg_temp_free_i64(t1);
881 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
882 int64_t c, bool load_dest,
883 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
885 TCGv_i64 t0 = tcg_temp_new_i64();
886 TCGv_i64 t1 = tcg_temp_new_i64();
887 uint32_t i;
889 for (i = 0; i < oprsz; i += 8) {
890 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
891 if (load_dest) {
892 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
894 fni(t1, t0, c);
895 tcg_gen_st_i64(t1, cpu_env, dofs + i);
897 tcg_temp_free_i64(t0);
898 tcg_temp_free_i64(t1);
901 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
902 TCGv_i64 c, bool scalar_first,
903 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
905 TCGv_i64 t0 = tcg_temp_new_i64();
906 TCGv_i64 t1 = tcg_temp_new_i64();
907 uint32_t i;
909 for (i = 0; i < oprsz; i += 8) {
910 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
911 if (scalar_first) {
912 fni(t1, c, t0);
913 } else {
914 fni(t1, t0, c);
916 tcg_gen_st_i64(t1, cpu_env, dofs + i);
918 tcg_temp_free_i64(t0);
919 tcg_temp_free_i64(t1);
922 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
923 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
924 uint32_t bofs, uint32_t oprsz, bool load_dest,
925 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
927 TCGv_i64 t0 = tcg_temp_new_i64();
928 TCGv_i64 t1 = tcg_temp_new_i64();
929 TCGv_i64 t2 = tcg_temp_new_i64();
930 uint32_t i;
932 for (i = 0; i < oprsz; i += 8) {
933 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
934 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
935 if (load_dest) {
936 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
938 fni(t2, t0, t1);
939 tcg_gen_st_i64(t2, cpu_env, dofs + i);
941 tcg_temp_free_i64(t2);
942 tcg_temp_free_i64(t1);
943 tcg_temp_free_i64(t0);
946 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
947 uint32_t oprsz, int64_t c, bool load_dest,
948 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
950 TCGv_i64 t0 = tcg_temp_new_i64();
951 TCGv_i64 t1 = tcg_temp_new_i64();
952 TCGv_i64 t2 = tcg_temp_new_i64();
953 uint32_t i;
955 for (i = 0; i < oprsz; i += 8) {
956 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
957 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
958 if (load_dest) {
959 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
961 fni(t2, t0, t1, c);
962 tcg_gen_st_i64(t2, cpu_env, dofs + i);
964 tcg_temp_free_i64(t0);
965 tcg_temp_free_i64(t1);
966 tcg_temp_free_i64(t2);
969 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
970 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
971 uint32_t cofs, uint32_t oprsz, bool write_aofs,
972 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
974 TCGv_i64 t0 = tcg_temp_new_i64();
975 TCGv_i64 t1 = tcg_temp_new_i64();
976 TCGv_i64 t2 = tcg_temp_new_i64();
977 TCGv_i64 t3 = tcg_temp_new_i64();
978 uint32_t i;
980 for (i = 0; i < oprsz; i += 8) {
981 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
982 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
983 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
984 fni(t0, t1, t2, t3);
985 tcg_gen_st_i64(t0, cpu_env, dofs + i);
986 if (write_aofs) {
987 tcg_gen_st_i64(t1, cpu_env, aofs + i);
990 tcg_temp_free_i64(t3);
991 tcg_temp_free_i64(t2);
992 tcg_temp_free_i64(t1);
993 tcg_temp_free_i64(t0);
996 static void expand_4i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
997 uint32_t cofs, uint32_t oprsz, int64_t c,
998 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64,
999 int64_t))
1001 TCGv_i64 t0 = tcg_temp_new_i64();
1002 TCGv_i64 t1 = tcg_temp_new_i64();
1003 TCGv_i64 t2 = tcg_temp_new_i64();
1004 TCGv_i64 t3 = tcg_temp_new_i64();
1005 uint32_t i;
1007 for (i = 0; i < oprsz; i += 8) {
1008 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
1009 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
1010 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
1011 fni(t0, t1, t2, t3, c);
1012 tcg_gen_st_i64(t0, cpu_env, dofs + i);
1014 tcg_temp_free_i64(t3);
1015 tcg_temp_free_i64(t2);
1016 tcg_temp_free_i64(t1);
1017 tcg_temp_free_i64(t0);
1020 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
1021 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1022 uint32_t oprsz, uint32_t tysz, TCGType type,
1023 bool load_dest,
1024 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
1026 TCGv_vec t0 = tcg_temp_new_vec(type);
1027 TCGv_vec t1 = tcg_temp_new_vec(type);
1028 uint32_t i;
1030 for (i = 0; i < oprsz; i += tysz) {
1031 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1032 if (load_dest) {
1033 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
1035 fni(vece, t1, t0);
1036 tcg_gen_st_vec(t1, cpu_env, dofs + i);
1038 tcg_temp_free_vec(t0);
1039 tcg_temp_free_vec(t1);
1042 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
1043 using host vectors. */
1044 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1045 uint32_t oprsz, uint32_t tysz, TCGType type,
1046 int64_t c, bool load_dest,
1047 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
1049 TCGv_vec t0 = tcg_temp_new_vec(type);
1050 TCGv_vec t1 = tcg_temp_new_vec(type);
1051 uint32_t i;
1053 for (i = 0; i < oprsz; i += tysz) {
1054 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1055 if (load_dest) {
1056 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
1058 fni(vece, t1, t0, c);
1059 tcg_gen_st_vec(t1, cpu_env, dofs + i);
1061 tcg_temp_free_vec(t0);
1062 tcg_temp_free_vec(t1);
1065 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1066 uint32_t oprsz, uint32_t tysz, TCGType type,
1067 TCGv_vec c, bool scalar_first,
1068 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1070 TCGv_vec t0 = tcg_temp_new_vec(type);
1071 TCGv_vec t1 = tcg_temp_new_vec(type);
1072 uint32_t i;
1074 for (i = 0; i < oprsz; i += tysz) {
1075 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1076 if (scalar_first) {
1077 fni(vece, t1, c, t0);
1078 } else {
1079 fni(vece, t1, t0, c);
1081 tcg_gen_st_vec(t1, cpu_env, dofs + i);
1083 tcg_temp_free_vec(t0);
1084 tcg_temp_free_vec(t1);
1087 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1088 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1089 uint32_t bofs, uint32_t oprsz,
1090 uint32_t tysz, TCGType type, bool load_dest,
1091 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1093 TCGv_vec t0 = tcg_temp_new_vec(type);
1094 TCGv_vec t1 = tcg_temp_new_vec(type);
1095 TCGv_vec t2 = tcg_temp_new_vec(type);
1096 uint32_t i;
1098 for (i = 0; i < oprsz; i += tysz) {
1099 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1100 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1101 if (load_dest) {
1102 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1104 fni(vece, t2, t0, t1);
1105 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1107 tcg_temp_free_vec(t2);
1108 tcg_temp_free_vec(t1);
1109 tcg_temp_free_vec(t0);
1113 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1114 * using host vectors.
1116 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1117 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
1118 TCGType type, int64_t c, bool load_dest,
1119 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
1120 int64_t))
1122 TCGv_vec t0 = tcg_temp_new_vec(type);
1123 TCGv_vec t1 = tcg_temp_new_vec(type);
1124 TCGv_vec t2 = tcg_temp_new_vec(type);
1125 uint32_t i;
1127 for (i = 0; i < oprsz; i += tysz) {
1128 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1129 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1130 if (load_dest) {
1131 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1133 fni(vece, t2, t0, t1, c);
1134 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1136 tcg_temp_free_vec(t0);
1137 tcg_temp_free_vec(t1);
1138 tcg_temp_free_vec(t2);
1141 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1142 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1143 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1144 uint32_t tysz, TCGType type, bool write_aofs,
1145 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1146 TCGv_vec, TCGv_vec))
1148 TCGv_vec t0 = tcg_temp_new_vec(type);
1149 TCGv_vec t1 = tcg_temp_new_vec(type);
1150 TCGv_vec t2 = tcg_temp_new_vec(type);
1151 TCGv_vec t3 = tcg_temp_new_vec(type);
1152 uint32_t i;
1154 for (i = 0; i < oprsz; i += tysz) {
1155 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
1156 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
1157 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
1158 fni(vece, t0, t1, t2, t3);
1159 tcg_gen_st_vec(t0, cpu_env, dofs + i);
1160 if (write_aofs) {
1161 tcg_gen_st_vec(t1, cpu_env, aofs + i);
1164 tcg_temp_free_vec(t3);
1165 tcg_temp_free_vec(t2);
1166 tcg_temp_free_vec(t1);
1167 tcg_temp_free_vec(t0);
1171 * Expand OPSZ bytes worth of four-vector operands and an immediate operand
1172 * using host vectors.
1174 static void expand_4i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1175 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1176 uint32_t tysz, TCGType type, int64_t c,
1177 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1178 TCGv_vec, TCGv_vec, int64_t))
1180 TCGv_vec t0 = tcg_temp_new_vec(type);
1181 TCGv_vec t1 = tcg_temp_new_vec(type);
1182 TCGv_vec t2 = tcg_temp_new_vec(type);
1183 TCGv_vec t3 = tcg_temp_new_vec(type);
1184 uint32_t i;
1186 for (i = 0; i < oprsz; i += tysz) {
1187 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
1188 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
1189 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
1190 fni(vece, t0, t1, t2, t3, c);
1191 tcg_gen_st_vec(t0, cpu_env, dofs + i);
1193 tcg_temp_free_vec(t3);
1194 tcg_temp_free_vec(t2);
1195 tcg_temp_free_vec(t1);
1196 tcg_temp_free_vec(t0);
1199 /* Expand a vector two-operand operation. */
1200 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
1201 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
1203 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1204 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1205 TCGType type;
1206 uint32_t some;
1208 check_size_align(oprsz, maxsz, dofs | aofs);
1209 check_overlap_2(dofs, aofs, maxsz);
1211 type = 0;
1212 if (g->fniv) {
1213 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1215 switch (type) {
1216 case TCG_TYPE_V256:
1217 /* Recall that ARM SVE allows vector sizes that are not a
1218 * power of 2, but always a multiple of 16. The intent is
1219 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1221 some = QEMU_ALIGN_DOWN(oprsz, 32);
1222 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1223 g->load_dest, g->fniv);
1224 if (some == oprsz) {
1225 break;
1227 dofs += some;
1228 aofs += some;
1229 oprsz -= some;
1230 maxsz -= some;
1231 /* fallthru */
1232 case TCG_TYPE_V128:
1233 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1234 g->load_dest, g->fniv);
1235 break;
1236 case TCG_TYPE_V64:
1237 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1238 g->load_dest, g->fniv);
1239 break;
1241 case 0:
1242 if (g->fni8 && check_size_impl(oprsz, 8)) {
1243 expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8);
1244 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1245 expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4);
1246 } else {
1247 assert(g->fno != NULL);
1248 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
1249 oprsz = maxsz;
1251 break;
1253 default:
1254 g_assert_not_reached();
1256 tcg_swap_vecop_list(hold_list);
1258 if (oprsz < maxsz) {
1259 expand_clr(dofs + oprsz, maxsz - oprsz);
1263 /* Expand a vector operation with two vectors and an immediate. */
1264 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1265 uint32_t maxsz, int64_t c, const GVecGen2i *g)
1267 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1268 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1269 TCGType type;
1270 uint32_t some;
1272 check_size_align(oprsz, maxsz, dofs | aofs);
1273 check_overlap_2(dofs, aofs, maxsz);
1275 type = 0;
1276 if (g->fniv) {
1277 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1279 switch (type) {
1280 case TCG_TYPE_V256:
1281 /* Recall that ARM SVE allows vector sizes that are not a
1282 * power of 2, but always a multiple of 16. The intent is
1283 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1285 some = QEMU_ALIGN_DOWN(oprsz, 32);
1286 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1287 c, g->load_dest, g->fniv);
1288 if (some == oprsz) {
1289 break;
1291 dofs += some;
1292 aofs += some;
1293 oprsz -= some;
1294 maxsz -= some;
1295 /* fallthru */
1296 case TCG_TYPE_V128:
1297 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1298 c, g->load_dest, g->fniv);
1299 break;
1300 case TCG_TYPE_V64:
1301 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1302 c, g->load_dest, g->fniv);
1303 break;
1305 case 0:
1306 if (g->fni8 && check_size_impl(oprsz, 8)) {
1307 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1308 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1309 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1310 } else {
1311 if (g->fno) {
1312 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1313 } else {
1314 TCGv_i64 tcg_c = tcg_constant_i64(c);
1315 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1316 maxsz, c, g->fnoi);
1318 oprsz = maxsz;
1320 break;
1322 default:
1323 g_assert_not_reached();
1325 tcg_swap_vecop_list(hold_list);
1327 if (oprsz < maxsz) {
1328 expand_clr(dofs + oprsz, maxsz - oprsz);
1332 /* Expand a vector operation with two vectors and a scalar. */
1333 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1334 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1336 TCGType type;
1338 check_size_align(oprsz, maxsz, dofs | aofs);
1339 check_overlap_2(dofs, aofs, maxsz);
1341 type = 0;
1342 if (g->fniv) {
1343 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1345 if (type != 0) {
1346 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1347 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1348 TCGv_vec t_vec = tcg_temp_new_vec(type);
1349 uint32_t some;
1351 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1353 switch (type) {
1354 case TCG_TYPE_V256:
1355 /* Recall that ARM SVE allows vector sizes that are not a
1356 * power of 2, but always a multiple of 16. The intent is
1357 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1359 some = QEMU_ALIGN_DOWN(oprsz, 32);
1360 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1361 t_vec, g->scalar_first, g->fniv);
1362 if (some == oprsz) {
1363 break;
1365 dofs += some;
1366 aofs += some;
1367 oprsz -= some;
1368 maxsz -= some;
1369 /* fallthru */
1371 case TCG_TYPE_V128:
1372 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1373 t_vec, g->scalar_first, g->fniv);
1374 break;
1376 case TCG_TYPE_V64:
1377 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1378 t_vec, g->scalar_first, g->fniv);
1379 break;
1381 default:
1382 g_assert_not_reached();
1384 tcg_temp_free_vec(t_vec);
1385 tcg_swap_vecop_list(hold_list);
1386 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1387 TCGv_i64 t64 = tcg_temp_new_i64();
1389 tcg_gen_dup_i64(g->vece, t64, c);
1390 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1391 tcg_temp_free_i64(t64);
1392 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1393 TCGv_i32 t32 = tcg_temp_new_i32();
1395 tcg_gen_extrl_i64_i32(t32, c);
1396 tcg_gen_dup_i32(g->vece, t32, t32);
1397 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1398 tcg_temp_free_i32(t32);
1399 } else {
1400 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1401 return;
1404 if (oprsz < maxsz) {
1405 expand_clr(dofs + oprsz, maxsz - oprsz);
1409 /* Expand a vector three-operand operation. */
1410 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1411 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1413 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1414 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1415 TCGType type;
1416 uint32_t some;
1418 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1419 check_overlap_3(dofs, aofs, bofs, maxsz);
1421 type = 0;
1422 if (g->fniv) {
1423 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1425 switch (type) {
1426 case TCG_TYPE_V256:
1427 /* Recall that ARM SVE allows vector sizes that are not a
1428 * power of 2, but always a multiple of 16. The intent is
1429 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1431 some = QEMU_ALIGN_DOWN(oprsz, 32);
1432 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1433 g->load_dest, g->fniv);
1434 if (some == oprsz) {
1435 break;
1437 dofs += some;
1438 aofs += some;
1439 bofs += some;
1440 oprsz -= some;
1441 maxsz -= some;
1442 /* fallthru */
1443 case TCG_TYPE_V128:
1444 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1445 g->load_dest, g->fniv);
1446 break;
1447 case TCG_TYPE_V64:
1448 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1449 g->load_dest, g->fniv);
1450 break;
1452 case 0:
1453 if (g->fni8 && check_size_impl(oprsz, 8)) {
1454 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1455 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1456 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1457 } else {
1458 assert(g->fno != NULL);
1459 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1460 maxsz, g->data, g->fno);
1461 oprsz = maxsz;
1463 break;
1465 default:
1466 g_assert_not_reached();
1468 tcg_swap_vecop_list(hold_list);
1470 if (oprsz < maxsz) {
1471 expand_clr(dofs + oprsz, maxsz - oprsz);
1475 /* Expand a vector operation with three vectors and an immediate. */
1476 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1477 uint32_t oprsz, uint32_t maxsz, int64_t c,
1478 const GVecGen3i *g)
1480 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1481 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1482 TCGType type;
1483 uint32_t some;
1485 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1486 check_overlap_3(dofs, aofs, bofs, maxsz);
1488 type = 0;
1489 if (g->fniv) {
1490 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1492 switch (type) {
1493 case TCG_TYPE_V256:
1495 * Recall that ARM SVE allows vector sizes that are not a
1496 * power of 2, but always a multiple of 16. The intent is
1497 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1499 some = QEMU_ALIGN_DOWN(oprsz, 32);
1500 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1501 c, g->load_dest, g->fniv);
1502 if (some == oprsz) {
1503 break;
1505 dofs += some;
1506 aofs += some;
1507 bofs += some;
1508 oprsz -= some;
1509 maxsz -= some;
1510 /* fallthru */
1511 case TCG_TYPE_V128:
1512 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1513 c, g->load_dest, g->fniv);
1514 break;
1515 case TCG_TYPE_V64:
1516 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1517 c, g->load_dest, g->fniv);
1518 break;
1520 case 0:
1521 if (g->fni8 && check_size_impl(oprsz, 8)) {
1522 expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8);
1523 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1524 expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4);
1525 } else {
1526 assert(g->fno != NULL);
1527 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
1528 oprsz = maxsz;
1530 break;
1532 default:
1533 g_assert_not_reached();
1535 tcg_swap_vecop_list(hold_list);
1537 if (oprsz < maxsz) {
1538 expand_clr(dofs + oprsz, maxsz - oprsz);
1542 /* Expand a vector four-operand operation. */
1543 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1544 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1546 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1547 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1548 TCGType type;
1549 uint32_t some;
1551 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1552 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1554 type = 0;
1555 if (g->fniv) {
1556 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1558 switch (type) {
1559 case TCG_TYPE_V256:
1560 /* Recall that ARM SVE allows vector sizes that are not a
1561 * power of 2, but always a multiple of 16. The intent is
1562 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1564 some = QEMU_ALIGN_DOWN(oprsz, 32);
1565 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1566 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1567 if (some == oprsz) {
1568 break;
1570 dofs += some;
1571 aofs += some;
1572 bofs += some;
1573 cofs += some;
1574 oprsz -= some;
1575 maxsz -= some;
1576 /* fallthru */
1577 case TCG_TYPE_V128:
1578 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1579 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1580 break;
1581 case TCG_TYPE_V64:
1582 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1583 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1584 break;
1586 case 0:
1587 if (g->fni8 && check_size_impl(oprsz, 8)) {
1588 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1589 g->write_aofs, g->fni8);
1590 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1591 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1592 g->write_aofs, g->fni4);
1593 } else {
1594 assert(g->fno != NULL);
1595 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1596 oprsz, maxsz, g->data, g->fno);
1597 oprsz = maxsz;
1599 break;
1601 default:
1602 g_assert_not_reached();
1604 tcg_swap_vecop_list(hold_list);
1606 if (oprsz < maxsz) {
1607 expand_clr(dofs + oprsz, maxsz - oprsz);
1611 /* Expand a vector four-operand operation. */
1612 void tcg_gen_gvec_4i(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1613 uint32_t oprsz, uint32_t maxsz, int64_t c,
1614 const GVecGen4i *g)
1616 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1617 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1618 TCGType type;
1619 uint32_t some;
1621 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1622 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1624 type = 0;
1625 if (g->fniv) {
1626 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1628 switch (type) {
1629 case TCG_TYPE_V256:
1631 * Recall that ARM SVE allows vector sizes that are not a
1632 * power of 2, but always a multiple of 16. The intent is
1633 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1635 some = QEMU_ALIGN_DOWN(oprsz, 32);
1636 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, some,
1637 32, TCG_TYPE_V256, c, g->fniv);
1638 if (some == oprsz) {
1639 break;
1641 dofs += some;
1642 aofs += some;
1643 bofs += some;
1644 cofs += some;
1645 oprsz -= some;
1646 maxsz -= some;
1647 /* fallthru */
1648 case TCG_TYPE_V128:
1649 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1650 16, TCG_TYPE_V128, c, g->fniv);
1651 break;
1652 case TCG_TYPE_V64:
1653 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1654 8, TCG_TYPE_V64, c, g->fniv);
1655 break;
1657 case 0:
1658 if (g->fni8 && check_size_impl(oprsz, 8)) {
1659 expand_4i_i64(dofs, aofs, bofs, cofs, oprsz, c, g->fni8);
1660 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1661 expand_4i_i32(dofs, aofs, bofs, cofs, oprsz, c, g->fni4);
1662 } else {
1663 assert(g->fno != NULL);
1664 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1665 oprsz, maxsz, c, g->fno);
1666 oprsz = maxsz;
1668 break;
1670 default:
1671 g_assert_not_reached();
1673 tcg_swap_vecop_list(hold_list);
1675 if (oprsz < maxsz) {
1676 expand_clr(dofs + oprsz, maxsz - oprsz);
1681 * Expand specific vector operations.
1684 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1686 tcg_gen_mov_vec(a, b);
1689 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1690 uint32_t oprsz, uint32_t maxsz)
1692 static const GVecGen2 g = {
1693 .fni8 = tcg_gen_mov_i64,
1694 .fniv = vec_mov2,
1695 .fno = gen_helper_gvec_mov,
1696 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1698 if (dofs != aofs) {
1699 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1700 } else {
1701 check_size_align(oprsz, maxsz, dofs);
1702 if (oprsz < maxsz) {
1703 expand_clr(dofs + oprsz, maxsz - oprsz);
1708 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1709 uint32_t maxsz, TCGv_i32 in)
1711 check_size_align(oprsz, maxsz, dofs);
1712 tcg_debug_assert(vece <= MO_32);
1713 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1716 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1717 uint32_t maxsz, TCGv_i64 in)
1719 check_size_align(oprsz, maxsz, dofs);
1720 tcg_debug_assert(vece <= MO_64);
1721 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1724 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1725 uint32_t oprsz, uint32_t maxsz)
1727 check_size_align(oprsz, maxsz, dofs);
1728 if (vece <= MO_64) {
1729 TCGType type = choose_vector_type(NULL, vece, oprsz, 0);
1730 if (type != 0) {
1731 TCGv_vec t_vec = tcg_temp_new_vec(type);
1732 tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs);
1733 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
1734 tcg_temp_free_vec(t_vec);
1735 } else if (vece <= MO_32) {
1736 TCGv_i32 in = tcg_temp_ebb_new_i32();
1737 switch (vece) {
1738 case MO_8:
1739 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1740 break;
1741 case MO_16:
1742 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1743 break;
1744 default:
1745 tcg_gen_ld_i32(in, cpu_env, aofs);
1746 break;
1748 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1749 tcg_temp_free_i32(in);
1750 } else {
1751 TCGv_i64 in = tcg_temp_ebb_new_i64();
1752 tcg_gen_ld_i64(in, cpu_env, aofs);
1753 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1754 tcg_temp_free_i64(in);
1756 } else if (vece == 4) {
1757 /* 128-bit duplicate. */
1758 int i;
1760 tcg_debug_assert(oprsz >= 16);
1761 if (TCG_TARGET_HAS_v128) {
1762 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1764 tcg_gen_ld_vec(in, cpu_env, aofs);
1765 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1766 tcg_gen_st_vec(in, cpu_env, dofs + i);
1768 tcg_temp_free_vec(in);
1769 } else {
1770 TCGv_i64 in0 = tcg_temp_ebb_new_i64();
1771 TCGv_i64 in1 = tcg_temp_ebb_new_i64();
1773 tcg_gen_ld_i64(in0, cpu_env, aofs);
1774 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1775 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1776 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1777 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1779 tcg_temp_free_i64(in0);
1780 tcg_temp_free_i64(in1);
1782 if (oprsz < maxsz) {
1783 expand_clr(dofs + oprsz, maxsz - oprsz);
1785 } else if (vece == 5) {
1786 /* 256-bit duplicate. */
1787 int i;
1789 tcg_debug_assert(oprsz >= 32);
1790 tcg_debug_assert(oprsz % 32 == 0);
1791 if (TCG_TARGET_HAS_v256) {
1792 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V256);
1794 tcg_gen_ld_vec(in, cpu_env, aofs);
1795 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1796 tcg_gen_st_vec(in, cpu_env, dofs + i);
1798 tcg_temp_free_vec(in);
1799 } else if (TCG_TARGET_HAS_v128) {
1800 TCGv_vec in0 = tcg_temp_new_vec(TCG_TYPE_V128);
1801 TCGv_vec in1 = tcg_temp_new_vec(TCG_TYPE_V128);
1803 tcg_gen_ld_vec(in0, cpu_env, aofs);
1804 tcg_gen_ld_vec(in1, cpu_env, aofs + 16);
1805 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1806 tcg_gen_st_vec(in0, cpu_env, dofs + i);
1807 tcg_gen_st_vec(in1, cpu_env, dofs + i + 16);
1809 tcg_temp_free_vec(in0);
1810 tcg_temp_free_vec(in1);
1811 } else {
1812 TCGv_i64 in[4];
1813 int j;
1815 for (j = 0; j < 4; ++j) {
1816 in[j] = tcg_temp_ebb_new_i64();
1817 tcg_gen_ld_i64(in[j], cpu_env, aofs + j * 8);
1819 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1820 for (j = 0; j < 4; ++j) {
1821 tcg_gen_st_i64(in[j], cpu_env, dofs + i + j * 8);
1824 for (j = 0; j < 4; ++j) {
1825 tcg_temp_free_i64(in[j]);
1828 if (oprsz < maxsz) {
1829 expand_clr(dofs + oprsz, maxsz - oprsz);
1831 } else {
1832 g_assert_not_reached();
1836 void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz,
1837 uint32_t maxsz, uint64_t x)
1839 check_size_align(oprsz, maxsz, dofs);
1840 do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x);
1843 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1844 uint32_t oprsz, uint32_t maxsz)
1846 static const GVecGen2 g = {
1847 .fni8 = tcg_gen_not_i64,
1848 .fniv = tcg_gen_not_vec,
1849 .fno = gen_helper_gvec_not,
1850 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1852 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1855 /* Perform a vector addition using normal addition and a mask. The mask
1856 should be the sign bit of each lane. This 6-operation form is more
1857 efficient than separate additions when there are 4 or more lanes in
1858 the 64-bit operation. */
1859 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1861 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
1862 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
1863 TCGv_i64 t3 = tcg_temp_ebb_new_i64();
1865 tcg_gen_andc_i64(t1, a, m);
1866 tcg_gen_andc_i64(t2, b, m);
1867 tcg_gen_xor_i64(t3, a, b);
1868 tcg_gen_add_i64(d, t1, t2);
1869 tcg_gen_and_i64(t3, t3, m);
1870 tcg_gen_xor_i64(d, d, t3);
1872 tcg_temp_free_i64(t1);
1873 tcg_temp_free_i64(t2);
1874 tcg_temp_free_i64(t3);
1877 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1879 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
1880 gen_addv_mask(d, a, b, m);
1883 void tcg_gen_vec_add8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1885 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
1886 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
1887 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
1888 TCGv_i32 t3 = tcg_temp_ebb_new_i32();
1890 tcg_gen_andc_i32(t1, a, m);
1891 tcg_gen_andc_i32(t2, b, m);
1892 tcg_gen_xor_i32(t3, a, b);
1893 tcg_gen_add_i32(d, t1, t2);
1894 tcg_gen_and_i32(t3, t3, m);
1895 tcg_gen_xor_i32(d, d, t3);
1897 tcg_temp_free_i32(t1);
1898 tcg_temp_free_i32(t2);
1899 tcg_temp_free_i32(t3);
1902 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1904 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
1905 gen_addv_mask(d, a, b, m);
1908 void tcg_gen_vec_add16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1910 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
1911 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
1913 tcg_gen_andi_i32(t1, a, ~0xffff);
1914 tcg_gen_add_i32(t2, a, b);
1915 tcg_gen_add_i32(t1, t1, b);
1916 tcg_gen_deposit_i32(d, t1, t2, 0, 16);
1918 tcg_temp_free_i32(t1);
1919 tcg_temp_free_i32(t2);
1922 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1924 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
1925 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
1927 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1928 tcg_gen_add_i64(t2, a, b);
1929 tcg_gen_add_i64(t1, t1, b);
1930 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1932 tcg_temp_free_i64(t1);
1933 tcg_temp_free_i64(t2);
1936 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
1938 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1939 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1941 static const GVecGen3 g[4] = {
1942 { .fni8 = tcg_gen_vec_add8_i64,
1943 .fniv = tcg_gen_add_vec,
1944 .fno = gen_helper_gvec_add8,
1945 .opt_opc = vecop_list_add,
1946 .vece = MO_8 },
1947 { .fni8 = tcg_gen_vec_add16_i64,
1948 .fniv = tcg_gen_add_vec,
1949 .fno = gen_helper_gvec_add16,
1950 .opt_opc = vecop_list_add,
1951 .vece = MO_16 },
1952 { .fni4 = tcg_gen_add_i32,
1953 .fniv = tcg_gen_add_vec,
1954 .fno = gen_helper_gvec_add32,
1955 .opt_opc = vecop_list_add,
1956 .vece = MO_32 },
1957 { .fni8 = tcg_gen_add_i64,
1958 .fniv = tcg_gen_add_vec,
1959 .fno = gen_helper_gvec_add64,
1960 .opt_opc = vecop_list_add,
1961 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1962 .vece = MO_64 },
1965 tcg_debug_assert(vece <= MO_64);
1966 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1969 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1970 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1972 static const GVecGen2s g[4] = {
1973 { .fni8 = tcg_gen_vec_add8_i64,
1974 .fniv = tcg_gen_add_vec,
1975 .fno = gen_helper_gvec_adds8,
1976 .opt_opc = vecop_list_add,
1977 .vece = MO_8 },
1978 { .fni8 = tcg_gen_vec_add16_i64,
1979 .fniv = tcg_gen_add_vec,
1980 .fno = gen_helper_gvec_adds16,
1981 .opt_opc = vecop_list_add,
1982 .vece = MO_16 },
1983 { .fni4 = tcg_gen_add_i32,
1984 .fniv = tcg_gen_add_vec,
1985 .fno = gen_helper_gvec_adds32,
1986 .opt_opc = vecop_list_add,
1987 .vece = MO_32 },
1988 { .fni8 = tcg_gen_add_i64,
1989 .fniv = tcg_gen_add_vec,
1990 .fno = gen_helper_gvec_adds64,
1991 .opt_opc = vecop_list_add,
1992 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1993 .vece = MO_64 },
1996 tcg_debug_assert(vece <= MO_64);
1997 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
2000 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
2001 int64_t c, uint32_t oprsz, uint32_t maxsz)
2003 TCGv_i64 tmp = tcg_constant_i64(c);
2004 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
2007 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
2009 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
2010 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2012 static const GVecGen2s g[4] = {
2013 { .fni8 = tcg_gen_vec_sub8_i64,
2014 .fniv = tcg_gen_sub_vec,
2015 .fno = gen_helper_gvec_subs8,
2016 .opt_opc = vecop_list_sub,
2017 .vece = MO_8 },
2018 { .fni8 = tcg_gen_vec_sub16_i64,
2019 .fniv = tcg_gen_sub_vec,
2020 .fno = gen_helper_gvec_subs16,
2021 .opt_opc = vecop_list_sub,
2022 .vece = MO_16 },
2023 { .fni4 = tcg_gen_sub_i32,
2024 .fniv = tcg_gen_sub_vec,
2025 .fno = gen_helper_gvec_subs32,
2026 .opt_opc = vecop_list_sub,
2027 .vece = MO_32 },
2028 { .fni8 = tcg_gen_sub_i64,
2029 .fniv = tcg_gen_sub_vec,
2030 .fno = gen_helper_gvec_subs64,
2031 .opt_opc = vecop_list_sub,
2032 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2033 .vece = MO_64 },
2036 tcg_debug_assert(vece <= MO_64);
2037 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
2040 /* Perform a vector subtraction using normal subtraction and a mask.
2041 Compare gen_addv_mask above. */
2042 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
2044 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
2045 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2046 TCGv_i64 t3 = tcg_temp_ebb_new_i64();
2048 tcg_gen_or_i64(t1, a, m);
2049 tcg_gen_andc_i64(t2, b, m);
2050 tcg_gen_eqv_i64(t3, a, b);
2051 tcg_gen_sub_i64(d, t1, t2);
2052 tcg_gen_and_i64(t3, t3, m);
2053 tcg_gen_xor_i64(d, d, t3);
2055 tcg_temp_free_i64(t1);
2056 tcg_temp_free_i64(t2);
2057 tcg_temp_free_i64(t3);
2060 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2062 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
2063 gen_subv_mask(d, a, b, m);
2066 void tcg_gen_vec_sub8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2068 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
2069 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
2070 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
2071 TCGv_i32 t3 = tcg_temp_ebb_new_i32();
2073 tcg_gen_or_i32(t1, a, m);
2074 tcg_gen_andc_i32(t2, b, m);
2075 tcg_gen_eqv_i32(t3, a, b);
2076 tcg_gen_sub_i32(d, t1, t2);
2077 tcg_gen_and_i32(t3, t3, m);
2078 tcg_gen_xor_i32(d, d, t3);
2080 tcg_temp_free_i32(t1);
2081 tcg_temp_free_i32(t2);
2082 tcg_temp_free_i32(t3);
2085 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2087 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
2088 gen_subv_mask(d, a, b, m);
2091 void tcg_gen_vec_sub16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2093 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
2094 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
2096 tcg_gen_andi_i32(t1, b, ~0xffff);
2097 tcg_gen_sub_i32(t2, a, b);
2098 tcg_gen_sub_i32(t1, a, t1);
2099 tcg_gen_deposit_i32(d, t1, t2, 0, 16);
2101 tcg_temp_free_i32(t1);
2102 tcg_temp_free_i32(t2);
2105 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2107 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
2108 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2110 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2111 tcg_gen_sub_i64(t2, a, b);
2112 tcg_gen_sub_i64(t1, a, t1);
2113 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2115 tcg_temp_free_i64(t1);
2116 tcg_temp_free_i64(t2);
2119 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
2120 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2122 static const GVecGen3 g[4] = {
2123 { .fni8 = tcg_gen_vec_sub8_i64,
2124 .fniv = tcg_gen_sub_vec,
2125 .fno = gen_helper_gvec_sub8,
2126 .opt_opc = vecop_list_sub,
2127 .vece = MO_8 },
2128 { .fni8 = tcg_gen_vec_sub16_i64,
2129 .fniv = tcg_gen_sub_vec,
2130 .fno = gen_helper_gvec_sub16,
2131 .opt_opc = vecop_list_sub,
2132 .vece = MO_16 },
2133 { .fni4 = tcg_gen_sub_i32,
2134 .fniv = tcg_gen_sub_vec,
2135 .fno = gen_helper_gvec_sub32,
2136 .opt_opc = vecop_list_sub,
2137 .vece = MO_32 },
2138 { .fni8 = tcg_gen_sub_i64,
2139 .fniv = tcg_gen_sub_vec,
2140 .fno = gen_helper_gvec_sub64,
2141 .opt_opc = vecop_list_sub,
2142 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2143 .vece = MO_64 },
2146 tcg_debug_assert(vece <= MO_64);
2147 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2150 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
2152 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
2153 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2155 static const GVecGen3 g[4] = {
2156 { .fniv = tcg_gen_mul_vec,
2157 .fno = gen_helper_gvec_mul8,
2158 .opt_opc = vecop_list_mul,
2159 .vece = MO_8 },
2160 { .fniv = tcg_gen_mul_vec,
2161 .fno = gen_helper_gvec_mul16,
2162 .opt_opc = vecop_list_mul,
2163 .vece = MO_16 },
2164 { .fni4 = tcg_gen_mul_i32,
2165 .fniv = tcg_gen_mul_vec,
2166 .fno = gen_helper_gvec_mul32,
2167 .opt_opc = vecop_list_mul,
2168 .vece = MO_32 },
2169 { .fni8 = tcg_gen_mul_i64,
2170 .fniv = tcg_gen_mul_vec,
2171 .fno = gen_helper_gvec_mul64,
2172 .opt_opc = vecop_list_mul,
2173 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2174 .vece = MO_64 },
2177 tcg_debug_assert(vece <= MO_64);
2178 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2181 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
2182 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2184 static const GVecGen2s g[4] = {
2185 { .fniv = tcg_gen_mul_vec,
2186 .fno = gen_helper_gvec_muls8,
2187 .opt_opc = vecop_list_mul,
2188 .vece = MO_8 },
2189 { .fniv = tcg_gen_mul_vec,
2190 .fno = gen_helper_gvec_muls16,
2191 .opt_opc = vecop_list_mul,
2192 .vece = MO_16 },
2193 { .fni4 = tcg_gen_mul_i32,
2194 .fniv = tcg_gen_mul_vec,
2195 .fno = gen_helper_gvec_muls32,
2196 .opt_opc = vecop_list_mul,
2197 .vece = MO_32 },
2198 { .fni8 = tcg_gen_mul_i64,
2199 .fniv = tcg_gen_mul_vec,
2200 .fno = gen_helper_gvec_muls64,
2201 .opt_opc = vecop_list_mul,
2202 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2203 .vece = MO_64 },
2206 tcg_debug_assert(vece <= MO_64);
2207 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
2210 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
2211 int64_t c, uint32_t oprsz, uint32_t maxsz)
2213 TCGv_i64 tmp = tcg_constant_i64(c);
2214 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
2217 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2218 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2220 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
2221 static const GVecGen3 g[4] = {
2222 { .fniv = tcg_gen_ssadd_vec,
2223 .fno = gen_helper_gvec_ssadd8,
2224 .opt_opc = vecop_list,
2225 .vece = MO_8 },
2226 { .fniv = tcg_gen_ssadd_vec,
2227 .fno = gen_helper_gvec_ssadd16,
2228 .opt_opc = vecop_list,
2229 .vece = MO_16 },
2230 { .fniv = tcg_gen_ssadd_vec,
2231 .fno = gen_helper_gvec_ssadd32,
2232 .opt_opc = vecop_list,
2233 .vece = MO_32 },
2234 { .fniv = tcg_gen_ssadd_vec,
2235 .fno = gen_helper_gvec_ssadd64,
2236 .opt_opc = vecop_list,
2237 .vece = MO_64 },
2239 tcg_debug_assert(vece <= MO_64);
2240 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2243 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
2244 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2246 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
2247 static const GVecGen3 g[4] = {
2248 { .fniv = tcg_gen_sssub_vec,
2249 .fno = gen_helper_gvec_sssub8,
2250 .opt_opc = vecop_list,
2251 .vece = MO_8 },
2252 { .fniv = tcg_gen_sssub_vec,
2253 .fno = gen_helper_gvec_sssub16,
2254 .opt_opc = vecop_list,
2255 .vece = MO_16 },
2256 { .fniv = tcg_gen_sssub_vec,
2257 .fno = gen_helper_gvec_sssub32,
2258 .opt_opc = vecop_list,
2259 .vece = MO_32 },
2260 { .fniv = tcg_gen_sssub_vec,
2261 .fno = gen_helper_gvec_sssub64,
2262 .opt_opc = vecop_list,
2263 .vece = MO_64 },
2265 tcg_debug_assert(vece <= MO_64);
2266 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2269 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2271 TCGv_i32 max = tcg_constant_i32(-1);
2272 tcg_gen_add_i32(d, a, b);
2273 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
2276 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2278 TCGv_i64 max = tcg_constant_i64(-1);
2279 tcg_gen_add_i64(d, a, b);
2280 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
2283 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2284 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2286 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
2287 static const GVecGen3 g[4] = {
2288 { .fniv = tcg_gen_usadd_vec,
2289 .fno = gen_helper_gvec_usadd8,
2290 .opt_opc = vecop_list,
2291 .vece = MO_8 },
2292 { .fniv = tcg_gen_usadd_vec,
2293 .fno = gen_helper_gvec_usadd16,
2294 .opt_opc = vecop_list,
2295 .vece = MO_16 },
2296 { .fni4 = tcg_gen_usadd_i32,
2297 .fniv = tcg_gen_usadd_vec,
2298 .fno = gen_helper_gvec_usadd32,
2299 .opt_opc = vecop_list,
2300 .vece = MO_32 },
2301 { .fni8 = tcg_gen_usadd_i64,
2302 .fniv = tcg_gen_usadd_vec,
2303 .fno = gen_helper_gvec_usadd64,
2304 .opt_opc = vecop_list,
2305 .vece = MO_64 }
2307 tcg_debug_assert(vece <= MO_64);
2308 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2311 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2313 TCGv_i32 min = tcg_constant_i32(0);
2314 tcg_gen_sub_i32(d, a, b);
2315 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
2318 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2320 TCGv_i64 min = tcg_constant_i64(0);
2321 tcg_gen_sub_i64(d, a, b);
2322 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
2325 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
2326 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2328 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
2329 static const GVecGen3 g[4] = {
2330 { .fniv = tcg_gen_ussub_vec,
2331 .fno = gen_helper_gvec_ussub8,
2332 .opt_opc = vecop_list,
2333 .vece = MO_8 },
2334 { .fniv = tcg_gen_ussub_vec,
2335 .fno = gen_helper_gvec_ussub16,
2336 .opt_opc = vecop_list,
2337 .vece = MO_16 },
2338 { .fni4 = tcg_gen_ussub_i32,
2339 .fniv = tcg_gen_ussub_vec,
2340 .fno = gen_helper_gvec_ussub32,
2341 .opt_opc = vecop_list,
2342 .vece = MO_32 },
2343 { .fni8 = tcg_gen_ussub_i64,
2344 .fniv = tcg_gen_ussub_vec,
2345 .fno = gen_helper_gvec_ussub64,
2346 .opt_opc = vecop_list,
2347 .vece = MO_64 }
2349 tcg_debug_assert(vece <= MO_64);
2350 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2353 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
2354 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2356 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
2357 static const GVecGen3 g[4] = {
2358 { .fniv = tcg_gen_smin_vec,
2359 .fno = gen_helper_gvec_smin8,
2360 .opt_opc = vecop_list,
2361 .vece = MO_8 },
2362 { .fniv = tcg_gen_smin_vec,
2363 .fno = gen_helper_gvec_smin16,
2364 .opt_opc = vecop_list,
2365 .vece = MO_16 },
2366 { .fni4 = tcg_gen_smin_i32,
2367 .fniv = tcg_gen_smin_vec,
2368 .fno = gen_helper_gvec_smin32,
2369 .opt_opc = vecop_list,
2370 .vece = MO_32 },
2371 { .fni8 = tcg_gen_smin_i64,
2372 .fniv = tcg_gen_smin_vec,
2373 .fno = gen_helper_gvec_smin64,
2374 .opt_opc = vecop_list,
2375 .vece = MO_64 }
2377 tcg_debug_assert(vece <= MO_64);
2378 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2381 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
2382 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2384 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
2385 static const GVecGen3 g[4] = {
2386 { .fniv = tcg_gen_umin_vec,
2387 .fno = gen_helper_gvec_umin8,
2388 .opt_opc = vecop_list,
2389 .vece = MO_8 },
2390 { .fniv = tcg_gen_umin_vec,
2391 .fno = gen_helper_gvec_umin16,
2392 .opt_opc = vecop_list,
2393 .vece = MO_16 },
2394 { .fni4 = tcg_gen_umin_i32,
2395 .fniv = tcg_gen_umin_vec,
2396 .fno = gen_helper_gvec_umin32,
2397 .opt_opc = vecop_list,
2398 .vece = MO_32 },
2399 { .fni8 = tcg_gen_umin_i64,
2400 .fniv = tcg_gen_umin_vec,
2401 .fno = gen_helper_gvec_umin64,
2402 .opt_opc = vecop_list,
2403 .vece = MO_64 }
2405 tcg_debug_assert(vece <= MO_64);
2406 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2409 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
2410 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2412 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
2413 static const GVecGen3 g[4] = {
2414 { .fniv = tcg_gen_smax_vec,
2415 .fno = gen_helper_gvec_smax8,
2416 .opt_opc = vecop_list,
2417 .vece = MO_8 },
2418 { .fniv = tcg_gen_smax_vec,
2419 .fno = gen_helper_gvec_smax16,
2420 .opt_opc = vecop_list,
2421 .vece = MO_16 },
2422 { .fni4 = tcg_gen_smax_i32,
2423 .fniv = tcg_gen_smax_vec,
2424 .fno = gen_helper_gvec_smax32,
2425 .opt_opc = vecop_list,
2426 .vece = MO_32 },
2427 { .fni8 = tcg_gen_smax_i64,
2428 .fniv = tcg_gen_smax_vec,
2429 .fno = gen_helper_gvec_smax64,
2430 .opt_opc = vecop_list,
2431 .vece = MO_64 }
2433 tcg_debug_assert(vece <= MO_64);
2434 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2437 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
2438 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2440 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
2441 static const GVecGen3 g[4] = {
2442 { .fniv = tcg_gen_umax_vec,
2443 .fno = gen_helper_gvec_umax8,
2444 .opt_opc = vecop_list,
2445 .vece = MO_8 },
2446 { .fniv = tcg_gen_umax_vec,
2447 .fno = gen_helper_gvec_umax16,
2448 .opt_opc = vecop_list,
2449 .vece = MO_16 },
2450 { .fni4 = tcg_gen_umax_i32,
2451 .fniv = tcg_gen_umax_vec,
2452 .fno = gen_helper_gvec_umax32,
2453 .opt_opc = vecop_list,
2454 .vece = MO_32 },
2455 { .fni8 = tcg_gen_umax_i64,
2456 .fniv = tcg_gen_umax_vec,
2457 .fno = gen_helper_gvec_umax64,
2458 .opt_opc = vecop_list,
2459 .vece = MO_64 }
2461 tcg_debug_assert(vece <= MO_64);
2462 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2465 /* Perform a vector negation using normal negation and a mask.
2466 Compare gen_subv_mask above. */
2467 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
2469 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2470 TCGv_i64 t3 = tcg_temp_ebb_new_i64();
2472 tcg_gen_andc_i64(t3, m, b);
2473 tcg_gen_andc_i64(t2, b, m);
2474 tcg_gen_sub_i64(d, m, t2);
2475 tcg_gen_xor_i64(d, d, t3);
2477 tcg_temp_free_i64(t2);
2478 tcg_temp_free_i64(t3);
2481 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
2483 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
2484 gen_negv_mask(d, b, m);
2487 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
2489 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
2490 gen_negv_mask(d, b, m);
2493 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
2495 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
2496 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2498 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2499 tcg_gen_neg_i64(t2, b);
2500 tcg_gen_neg_i64(t1, t1);
2501 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2503 tcg_temp_free_i64(t1);
2504 tcg_temp_free_i64(t2);
2507 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
2508 uint32_t oprsz, uint32_t maxsz)
2510 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
2511 static const GVecGen2 g[4] = {
2512 { .fni8 = tcg_gen_vec_neg8_i64,
2513 .fniv = tcg_gen_neg_vec,
2514 .fno = gen_helper_gvec_neg8,
2515 .opt_opc = vecop_list,
2516 .vece = MO_8 },
2517 { .fni8 = tcg_gen_vec_neg16_i64,
2518 .fniv = tcg_gen_neg_vec,
2519 .fno = gen_helper_gvec_neg16,
2520 .opt_opc = vecop_list,
2521 .vece = MO_16 },
2522 { .fni4 = tcg_gen_neg_i32,
2523 .fniv = tcg_gen_neg_vec,
2524 .fno = gen_helper_gvec_neg32,
2525 .opt_opc = vecop_list,
2526 .vece = MO_32 },
2527 { .fni8 = tcg_gen_neg_i64,
2528 .fniv = tcg_gen_neg_vec,
2529 .fno = gen_helper_gvec_neg64,
2530 .opt_opc = vecop_list,
2531 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2532 .vece = MO_64 },
2535 tcg_debug_assert(vece <= MO_64);
2536 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2539 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
2541 TCGv_i64 t = tcg_temp_ebb_new_i64();
2542 int nbit = 8 << vece;
2544 /* Create -1 for each negative element. */
2545 tcg_gen_shri_i64(t, b, nbit - 1);
2546 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2547 tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
2550 * Invert (via xor -1) and add one.
2551 * Because of the ordering the msb is cleared,
2552 * so we never have carry into the next element.
2554 tcg_gen_xor_i64(d, b, t);
2555 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2556 tcg_gen_add_i64(d, d, t);
2558 tcg_temp_free_i64(t);
2561 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
2563 gen_absv_mask(d, b, MO_8);
2566 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
2568 gen_absv_mask(d, b, MO_16);
2571 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
2572 uint32_t oprsz, uint32_t maxsz)
2574 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
2575 static const GVecGen2 g[4] = {
2576 { .fni8 = tcg_gen_vec_abs8_i64,
2577 .fniv = tcg_gen_abs_vec,
2578 .fno = gen_helper_gvec_abs8,
2579 .opt_opc = vecop_list,
2580 .vece = MO_8 },
2581 { .fni8 = tcg_gen_vec_abs16_i64,
2582 .fniv = tcg_gen_abs_vec,
2583 .fno = gen_helper_gvec_abs16,
2584 .opt_opc = vecop_list,
2585 .vece = MO_16 },
2586 { .fni4 = tcg_gen_abs_i32,
2587 .fniv = tcg_gen_abs_vec,
2588 .fno = gen_helper_gvec_abs32,
2589 .opt_opc = vecop_list,
2590 .vece = MO_32 },
2591 { .fni8 = tcg_gen_abs_i64,
2592 .fniv = tcg_gen_abs_vec,
2593 .fno = gen_helper_gvec_abs64,
2594 .opt_opc = vecop_list,
2595 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2596 .vece = MO_64 },
2599 tcg_debug_assert(vece <= MO_64);
2600 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2603 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
2604 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2606 static const GVecGen3 g = {
2607 .fni8 = tcg_gen_and_i64,
2608 .fniv = tcg_gen_and_vec,
2609 .fno = gen_helper_gvec_and,
2610 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2613 if (aofs == bofs) {
2614 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2615 } else {
2616 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2620 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2621 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2623 static const GVecGen3 g = {
2624 .fni8 = tcg_gen_or_i64,
2625 .fniv = tcg_gen_or_vec,
2626 .fno = gen_helper_gvec_or,
2627 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2630 if (aofs == bofs) {
2631 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2632 } else {
2633 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2637 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2638 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2640 static const GVecGen3 g = {
2641 .fni8 = tcg_gen_xor_i64,
2642 .fniv = tcg_gen_xor_vec,
2643 .fno = gen_helper_gvec_xor,
2644 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2647 if (aofs == bofs) {
2648 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2649 } else {
2650 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2654 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2655 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2657 static const GVecGen3 g = {
2658 .fni8 = tcg_gen_andc_i64,
2659 .fniv = tcg_gen_andc_vec,
2660 .fno = gen_helper_gvec_andc,
2661 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2664 if (aofs == bofs) {
2665 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2666 } else {
2667 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2671 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2672 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2674 static const GVecGen3 g = {
2675 .fni8 = tcg_gen_orc_i64,
2676 .fniv = tcg_gen_orc_vec,
2677 .fno = gen_helper_gvec_orc,
2678 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2681 if (aofs == bofs) {
2682 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2683 } else {
2684 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2688 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2689 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2691 static const GVecGen3 g = {
2692 .fni8 = tcg_gen_nand_i64,
2693 .fniv = tcg_gen_nand_vec,
2694 .fno = gen_helper_gvec_nand,
2695 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2698 if (aofs == bofs) {
2699 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2700 } else {
2701 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2705 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2706 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2708 static const GVecGen3 g = {
2709 .fni8 = tcg_gen_nor_i64,
2710 .fniv = tcg_gen_nor_vec,
2711 .fno = gen_helper_gvec_nor,
2712 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2715 if (aofs == bofs) {
2716 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2717 } else {
2718 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2722 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2723 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2725 static const GVecGen3 g = {
2726 .fni8 = tcg_gen_eqv_i64,
2727 .fniv = tcg_gen_eqv_vec,
2728 .fno = gen_helper_gvec_eqv,
2729 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2732 if (aofs == bofs) {
2733 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2734 } else {
2735 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2739 static const GVecGen2s gop_ands = {
2740 .fni8 = tcg_gen_and_i64,
2741 .fniv = tcg_gen_and_vec,
2742 .fno = gen_helper_gvec_ands,
2743 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2744 .vece = MO_64
2747 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2748 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2750 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2751 tcg_gen_dup_i64(vece, tmp, c);
2752 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2753 tcg_temp_free_i64(tmp);
2756 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2757 int64_t c, uint32_t oprsz, uint32_t maxsz)
2759 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2760 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2763 static const GVecGen2s gop_xors = {
2764 .fni8 = tcg_gen_xor_i64,
2765 .fniv = tcg_gen_xor_vec,
2766 .fno = gen_helper_gvec_xors,
2767 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2768 .vece = MO_64
2771 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2772 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2774 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2775 tcg_gen_dup_i64(vece, tmp, c);
2776 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2777 tcg_temp_free_i64(tmp);
2780 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2781 int64_t c, uint32_t oprsz, uint32_t maxsz)
2783 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2784 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2787 static const GVecGen2s gop_ors = {
2788 .fni8 = tcg_gen_or_i64,
2789 .fniv = tcg_gen_or_vec,
2790 .fno = gen_helper_gvec_ors,
2791 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2792 .vece = MO_64
2795 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2796 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2798 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2799 tcg_gen_dup_i64(vece, tmp, c);
2800 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2801 tcg_temp_free_i64(tmp);
2804 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2805 int64_t c, uint32_t oprsz, uint32_t maxsz)
2807 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2808 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2811 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2813 uint64_t mask = dup_const(MO_8, 0xff << c);
2814 tcg_gen_shli_i64(d, a, c);
2815 tcg_gen_andi_i64(d, d, mask);
2818 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2820 uint64_t mask = dup_const(MO_16, 0xffff << c);
2821 tcg_gen_shli_i64(d, a, c);
2822 tcg_gen_andi_i64(d, d, mask);
2825 void tcg_gen_vec_shl8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2827 uint32_t mask = dup_const(MO_8, 0xff << c);
2828 tcg_gen_shli_i32(d, a, c);
2829 tcg_gen_andi_i32(d, d, mask);
2832 void tcg_gen_vec_shl16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2834 uint32_t mask = dup_const(MO_16, 0xffff << c);
2835 tcg_gen_shli_i32(d, a, c);
2836 tcg_gen_andi_i32(d, d, mask);
2839 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2840 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2842 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
2843 static const GVecGen2i g[4] = {
2844 { .fni8 = tcg_gen_vec_shl8i_i64,
2845 .fniv = tcg_gen_shli_vec,
2846 .fno = gen_helper_gvec_shl8i,
2847 .opt_opc = vecop_list,
2848 .vece = MO_8 },
2849 { .fni8 = tcg_gen_vec_shl16i_i64,
2850 .fniv = tcg_gen_shli_vec,
2851 .fno = gen_helper_gvec_shl16i,
2852 .opt_opc = vecop_list,
2853 .vece = MO_16 },
2854 { .fni4 = tcg_gen_shli_i32,
2855 .fniv = tcg_gen_shli_vec,
2856 .fno = gen_helper_gvec_shl32i,
2857 .opt_opc = vecop_list,
2858 .vece = MO_32 },
2859 { .fni8 = tcg_gen_shli_i64,
2860 .fniv = tcg_gen_shli_vec,
2861 .fno = gen_helper_gvec_shl64i,
2862 .opt_opc = vecop_list,
2863 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2864 .vece = MO_64 },
2867 tcg_debug_assert(vece <= MO_64);
2868 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2869 if (shift == 0) {
2870 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2871 } else {
2872 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2876 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2878 uint64_t mask = dup_const(MO_8, 0xff >> c);
2879 tcg_gen_shri_i64(d, a, c);
2880 tcg_gen_andi_i64(d, d, mask);
2883 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2885 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2886 tcg_gen_shri_i64(d, a, c);
2887 tcg_gen_andi_i64(d, d, mask);
2890 void tcg_gen_vec_shr8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2892 uint32_t mask = dup_const(MO_8, 0xff >> c);
2893 tcg_gen_shri_i32(d, a, c);
2894 tcg_gen_andi_i32(d, d, mask);
2897 void tcg_gen_vec_shr16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2899 uint32_t mask = dup_const(MO_16, 0xffff >> c);
2900 tcg_gen_shri_i32(d, a, c);
2901 tcg_gen_andi_i32(d, d, mask);
2904 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2905 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2907 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
2908 static const GVecGen2i g[4] = {
2909 { .fni8 = tcg_gen_vec_shr8i_i64,
2910 .fniv = tcg_gen_shri_vec,
2911 .fno = gen_helper_gvec_shr8i,
2912 .opt_opc = vecop_list,
2913 .vece = MO_8 },
2914 { .fni8 = tcg_gen_vec_shr16i_i64,
2915 .fniv = tcg_gen_shri_vec,
2916 .fno = gen_helper_gvec_shr16i,
2917 .opt_opc = vecop_list,
2918 .vece = MO_16 },
2919 { .fni4 = tcg_gen_shri_i32,
2920 .fniv = tcg_gen_shri_vec,
2921 .fno = gen_helper_gvec_shr32i,
2922 .opt_opc = vecop_list,
2923 .vece = MO_32 },
2924 { .fni8 = tcg_gen_shri_i64,
2925 .fniv = tcg_gen_shri_vec,
2926 .fno = gen_helper_gvec_shr64i,
2927 .opt_opc = vecop_list,
2928 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2929 .vece = MO_64 },
2932 tcg_debug_assert(vece <= MO_64);
2933 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2934 if (shift == 0) {
2935 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2936 } else {
2937 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2941 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2943 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2944 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2945 TCGv_i64 s = tcg_temp_ebb_new_i64();
2947 tcg_gen_shri_i64(d, a, c);
2948 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2949 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2950 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2951 tcg_gen_or_i64(d, d, s); /* include sign extension */
2952 tcg_temp_free_i64(s);
2955 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2957 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2958 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2959 TCGv_i64 s = tcg_temp_ebb_new_i64();
2961 tcg_gen_shri_i64(d, a, c);
2962 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2963 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2964 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2965 tcg_gen_or_i64(d, d, s); /* include sign extension */
2966 tcg_temp_free_i64(s);
2969 void tcg_gen_vec_sar8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2971 uint32_t s_mask = dup_const(MO_8, 0x80 >> c);
2972 uint32_t c_mask = dup_const(MO_8, 0xff >> c);
2973 TCGv_i32 s = tcg_temp_ebb_new_i32();
2975 tcg_gen_shri_i32(d, a, c);
2976 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */
2977 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */
2978 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */
2979 tcg_gen_or_i32(d, d, s); /* include sign extension */
2980 tcg_temp_free_i32(s);
2983 void tcg_gen_vec_sar16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2985 uint32_t s_mask = dup_const(MO_16, 0x8000 >> c);
2986 uint32_t c_mask = dup_const(MO_16, 0xffff >> c);
2987 TCGv_i32 s = tcg_temp_ebb_new_i32();
2989 tcg_gen_shri_i32(d, a, c);
2990 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */
2991 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */
2992 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */
2993 tcg_gen_or_i32(d, d, s); /* include sign extension */
2994 tcg_temp_free_i32(s);
2997 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2998 int64_t shift, uint32_t oprsz, uint32_t maxsz)
3000 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
3001 static const GVecGen2i g[4] = {
3002 { .fni8 = tcg_gen_vec_sar8i_i64,
3003 .fniv = tcg_gen_sari_vec,
3004 .fno = gen_helper_gvec_sar8i,
3005 .opt_opc = vecop_list,
3006 .vece = MO_8 },
3007 { .fni8 = tcg_gen_vec_sar16i_i64,
3008 .fniv = tcg_gen_sari_vec,
3009 .fno = gen_helper_gvec_sar16i,
3010 .opt_opc = vecop_list,
3011 .vece = MO_16 },
3012 { .fni4 = tcg_gen_sari_i32,
3013 .fniv = tcg_gen_sari_vec,
3014 .fno = gen_helper_gvec_sar32i,
3015 .opt_opc = vecop_list,
3016 .vece = MO_32 },
3017 { .fni8 = tcg_gen_sari_i64,
3018 .fniv = tcg_gen_sari_vec,
3019 .fno = gen_helper_gvec_sar64i,
3020 .opt_opc = vecop_list,
3021 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3022 .vece = MO_64 },
3025 tcg_debug_assert(vece <= MO_64);
3026 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3027 if (shift == 0) {
3028 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
3029 } else {
3030 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
3034 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
3036 uint64_t mask = dup_const(MO_8, 0xff << c);
3038 tcg_gen_shli_i64(d, a, c);
3039 tcg_gen_shri_i64(a, a, 8 - c);
3040 tcg_gen_andi_i64(d, d, mask);
3041 tcg_gen_andi_i64(a, a, ~mask);
3042 tcg_gen_or_i64(d, d, a);
3045 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
3047 uint64_t mask = dup_const(MO_16, 0xffff << c);
3049 tcg_gen_shli_i64(d, a, c);
3050 tcg_gen_shri_i64(a, a, 16 - c);
3051 tcg_gen_andi_i64(d, d, mask);
3052 tcg_gen_andi_i64(a, a, ~mask);
3053 tcg_gen_or_i64(d, d, a);
3056 void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs,
3057 int64_t shift, uint32_t oprsz, uint32_t maxsz)
3059 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
3060 static const GVecGen2i g[4] = {
3061 { .fni8 = tcg_gen_vec_rotl8i_i64,
3062 .fniv = tcg_gen_rotli_vec,
3063 .fno = gen_helper_gvec_rotl8i,
3064 .opt_opc = vecop_list,
3065 .vece = MO_8 },
3066 { .fni8 = tcg_gen_vec_rotl16i_i64,
3067 .fniv = tcg_gen_rotli_vec,
3068 .fno = gen_helper_gvec_rotl16i,
3069 .opt_opc = vecop_list,
3070 .vece = MO_16 },
3071 { .fni4 = tcg_gen_rotli_i32,
3072 .fniv = tcg_gen_rotli_vec,
3073 .fno = gen_helper_gvec_rotl32i,
3074 .opt_opc = vecop_list,
3075 .vece = MO_32 },
3076 { .fni8 = tcg_gen_rotli_i64,
3077 .fniv = tcg_gen_rotli_vec,
3078 .fno = gen_helper_gvec_rotl64i,
3079 .opt_opc = vecop_list,
3080 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3081 .vece = MO_64 },
3084 tcg_debug_assert(vece <= MO_64);
3085 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3086 if (shift == 0) {
3087 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
3088 } else {
3089 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
3093 void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs,
3094 int64_t shift, uint32_t oprsz, uint32_t maxsz)
3096 tcg_debug_assert(vece <= MO_64);
3097 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3098 tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1),
3099 oprsz, maxsz);
3103 * Specialized generation vector shifts by a non-constant scalar.
3106 typedef struct {
3107 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
3108 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
3109 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
3110 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
3111 gen_helper_gvec_2 *fno[4];
3112 TCGOpcode s_list[2];
3113 TCGOpcode v_list[2];
3114 } GVecGen2sh;
3116 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3117 uint32_t oprsz, uint32_t tysz, TCGType type,
3118 TCGv_i32 shift,
3119 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
3121 TCGv_vec t0 = tcg_temp_new_vec(type);
3122 uint32_t i;
3124 for (i = 0; i < oprsz; i += tysz) {
3125 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
3126 fni(vece, t0, t0, shift);
3127 tcg_gen_st_vec(t0, cpu_env, dofs + i);
3129 tcg_temp_free_vec(t0);
3132 static void
3133 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
3134 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
3136 TCGType type;
3137 uint32_t some;
3139 check_size_align(oprsz, maxsz, dofs | aofs);
3140 check_overlap_2(dofs, aofs, maxsz);
3142 /* If the backend has a scalar expansion, great. */
3143 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
3144 if (type) {
3145 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
3146 switch (type) {
3147 case TCG_TYPE_V256:
3148 some = QEMU_ALIGN_DOWN(oprsz, 32);
3149 expand_2sh_vec(vece, dofs, aofs, some, 32,
3150 TCG_TYPE_V256, shift, g->fniv_s);
3151 if (some == oprsz) {
3152 break;
3154 dofs += some;
3155 aofs += some;
3156 oprsz -= some;
3157 maxsz -= some;
3158 /* fallthru */
3159 case TCG_TYPE_V128:
3160 expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
3161 TCG_TYPE_V128, shift, g->fniv_s);
3162 break;
3163 case TCG_TYPE_V64:
3164 expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
3165 TCG_TYPE_V64, shift, g->fniv_s);
3166 break;
3167 default:
3168 g_assert_not_reached();
3170 tcg_swap_vecop_list(hold_list);
3171 goto clear_tail;
3174 /* If the backend supports variable vector shifts, also cool. */
3175 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
3176 if (type) {
3177 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
3178 TCGv_vec v_shift = tcg_temp_new_vec(type);
3180 if (vece == MO_64) {
3181 TCGv_i64 sh64 = tcg_temp_ebb_new_i64();
3182 tcg_gen_extu_i32_i64(sh64, shift);
3183 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
3184 tcg_temp_free_i64(sh64);
3185 } else {
3186 tcg_gen_dup_i32_vec(vece, v_shift, shift);
3189 switch (type) {
3190 case TCG_TYPE_V256:
3191 some = QEMU_ALIGN_DOWN(oprsz, 32);
3192 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
3193 v_shift, false, g->fniv_v);
3194 if (some == oprsz) {
3195 break;
3197 dofs += some;
3198 aofs += some;
3199 oprsz -= some;
3200 maxsz -= some;
3201 /* fallthru */
3202 case TCG_TYPE_V128:
3203 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
3204 v_shift, false, g->fniv_v);
3205 break;
3206 case TCG_TYPE_V64:
3207 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
3208 v_shift, false, g->fniv_v);
3209 break;
3210 default:
3211 g_assert_not_reached();
3213 tcg_temp_free_vec(v_shift);
3214 tcg_swap_vecop_list(hold_list);
3215 goto clear_tail;
3218 /* Otherwise fall back to integral... */
3219 if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3220 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
3221 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3222 TCGv_i64 sh64 = tcg_temp_ebb_new_i64();
3223 tcg_gen_extu_i32_i64(sh64, shift);
3224 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
3225 tcg_temp_free_i64(sh64);
3226 } else {
3227 TCGv_ptr a0 = tcg_temp_ebb_new_ptr();
3228 TCGv_ptr a1 = tcg_temp_ebb_new_ptr();
3229 TCGv_i32 desc = tcg_temp_ebb_new_i32();
3231 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
3232 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
3233 tcg_gen_addi_ptr(a0, cpu_env, dofs);
3234 tcg_gen_addi_ptr(a1, cpu_env, aofs);
3236 g->fno[vece](a0, a1, desc);
3238 tcg_temp_free_ptr(a0);
3239 tcg_temp_free_ptr(a1);
3240 tcg_temp_free_i32(desc);
3241 return;
3244 clear_tail:
3245 if (oprsz < maxsz) {
3246 expand_clr(dofs + oprsz, maxsz - oprsz);
3250 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
3251 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3253 static const GVecGen2sh g = {
3254 .fni4 = tcg_gen_shl_i32,
3255 .fni8 = tcg_gen_shl_i64,
3256 .fniv_s = tcg_gen_shls_vec,
3257 .fniv_v = tcg_gen_shlv_vec,
3258 .fno = {
3259 gen_helper_gvec_shl8i,
3260 gen_helper_gvec_shl16i,
3261 gen_helper_gvec_shl32i,
3262 gen_helper_gvec_shl64i,
3264 .s_list = { INDEX_op_shls_vec, 0 },
3265 .v_list = { INDEX_op_shlv_vec, 0 },
3268 tcg_debug_assert(vece <= MO_64);
3269 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3272 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
3273 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3275 static const GVecGen2sh g = {
3276 .fni4 = tcg_gen_shr_i32,
3277 .fni8 = tcg_gen_shr_i64,
3278 .fniv_s = tcg_gen_shrs_vec,
3279 .fniv_v = tcg_gen_shrv_vec,
3280 .fno = {
3281 gen_helper_gvec_shr8i,
3282 gen_helper_gvec_shr16i,
3283 gen_helper_gvec_shr32i,
3284 gen_helper_gvec_shr64i,
3286 .s_list = { INDEX_op_shrs_vec, 0 },
3287 .v_list = { INDEX_op_shrv_vec, 0 },
3290 tcg_debug_assert(vece <= MO_64);
3291 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3294 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
3295 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3297 static const GVecGen2sh g = {
3298 .fni4 = tcg_gen_sar_i32,
3299 .fni8 = tcg_gen_sar_i64,
3300 .fniv_s = tcg_gen_sars_vec,
3301 .fniv_v = tcg_gen_sarv_vec,
3302 .fno = {
3303 gen_helper_gvec_sar8i,
3304 gen_helper_gvec_sar16i,
3305 gen_helper_gvec_sar32i,
3306 gen_helper_gvec_sar64i,
3308 .s_list = { INDEX_op_sars_vec, 0 },
3309 .v_list = { INDEX_op_sarv_vec, 0 },
3312 tcg_debug_assert(vece <= MO_64);
3313 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3316 void tcg_gen_gvec_rotls(unsigned vece, uint32_t dofs, uint32_t aofs,
3317 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3319 static const GVecGen2sh g = {
3320 .fni4 = tcg_gen_rotl_i32,
3321 .fni8 = tcg_gen_rotl_i64,
3322 .fniv_s = tcg_gen_rotls_vec,
3323 .fniv_v = tcg_gen_rotlv_vec,
3324 .fno = {
3325 gen_helper_gvec_rotl8i,
3326 gen_helper_gvec_rotl16i,
3327 gen_helper_gvec_rotl32i,
3328 gen_helper_gvec_rotl64i,
3330 .s_list = { INDEX_op_rotls_vec, 0 },
3331 .v_list = { INDEX_op_rotlv_vec, 0 },
3334 tcg_debug_assert(vece <= MO_64);
3335 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3339 * Expand D = A << (B % element bits)
3341 * Unlike scalar shifts, where it is easy for the target front end
3342 * to include the modulo as part of the expansion. If the target
3343 * naturally includes the modulo as part of the operation, great!
3344 * If the target has some other behaviour from out-of-range shifts,
3345 * then it could not use this function anyway, and would need to
3346 * do it's own expansion with custom functions.
3348 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
3349 TCGv_vec a, TCGv_vec b)
3351 TCGv_vec t = tcg_temp_new_vec_matching(d);
3352 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3354 tcg_gen_and_vec(vece, t, b, m);
3355 tcg_gen_shlv_vec(vece, d, a, t);
3356 tcg_temp_free_vec(t);
3359 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3361 TCGv_i32 t = tcg_temp_ebb_new_i32();
3363 tcg_gen_andi_i32(t, b, 31);
3364 tcg_gen_shl_i32(d, a, t);
3365 tcg_temp_free_i32(t);
3368 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3370 TCGv_i64 t = tcg_temp_ebb_new_i64();
3372 tcg_gen_andi_i64(t, b, 63);
3373 tcg_gen_shl_i64(d, a, t);
3374 tcg_temp_free_i64(t);
3377 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3378 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3380 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
3381 static const GVecGen3 g[4] = {
3382 { .fniv = tcg_gen_shlv_mod_vec,
3383 .fno = gen_helper_gvec_shl8v,
3384 .opt_opc = vecop_list,
3385 .vece = MO_8 },
3386 { .fniv = tcg_gen_shlv_mod_vec,
3387 .fno = gen_helper_gvec_shl16v,
3388 .opt_opc = vecop_list,
3389 .vece = MO_16 },
3390 { .fni4 = tcg_gen_shl_mod_i32,
3391 .fniv = tcg_gen_shlv_mod_vec,
3392 .fno = gen_helper_gvec_shl32v,
3393 .opt_opc = vecop_list,
3394 .vece = MO_32 },
3395 { .fni8 = tcg_gen_shl_mod_i64,
3396 .fniv = tcg_gen_shlv_mod_vec,
3397 .fno = gen_helper_gvec_shl64v,
3398 .opt_opc = vecop_list,
3399 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3400 .vece = MO_64 },
3403 tcg_debug_assert(vece <= MO_64);
3404 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3408 * Similarly for logical right shifts.
3411 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
3412 TCGv_vec a, TCGv_vec b)
3414 TCGv_vec t = tcg_temp_new_vec_matching(d);
3415 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3417 tcg_gen_and_vec(vece, t, b, m);
3418 tcg_gen_shrv_vec(vece, d, a, t);
3419 tcg_temp_free_vec(t);
3422 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3424 TCGv_i32 t = tcg_temp_ebb_new_i32();
3426 tcg_gen_andi_i32(t, b, 31);
3427 tcg_gen_shr_i32(d, a, t);
3428 tcg_temp_free_i32(t);
3431 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3433 TCGv_i64 t = tcg_temp_ebb_new_i64();
3435 tcg_gen_andi_i64(t, b, 63);
3436 tcg_gen_shr_i64(d, a, t);
3437 tcg_temp_free_i64(t);
3440 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3441 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3443 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
3444 static const GVecGen3 g[4] = {
3445 { .fniv = tcg_gen_shrv_mod_vec,
3446 .fno = gen_helper_gvec_shr8v,
3447 .opt_opc = vecop_list,
3448 .vece = MO_8 },
3449 { .fniv = tcg_gen_shrv_mod_vec,
3450 .fno = gen_helper_gvec_shr16v,
3451 .opt_opc = vecop_list,
3452 .vece = MO_16 },
3453 { .fni4 = tcg_gen_shr_mod_i32,
3454 .fniv = tcg_gen_shrv_mod_vec,
3455 .fno = gen_helper_gvec_shr32v,
3456 .opt_opc = vecop_list,
3457 .vece = MO_32 },
3458 { .fni8 = tcg_gen_shr_mod_i64,
3459 .fniv = tcg_gen_shrv_mod_vec,
3460 .fno = gen_helper_gvec_shr64v,
3461 .opt_opc = vecop_list,
3462 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3463 .vece = MO_64 },
3466 tcg_debug_assert(vece <= MO_64);
3467 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3471 * Similarly for arithmetic right shifts.
3474 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
3475 TCGv_vec a, TCGv_vec b)
3477 TCGv_vec t = tcg_temp_new_vec_matching(d);
3478 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3480 tcg_gen_and_vec(vece, t, b, m);
3481 tcg_gen_sarv_vec(vece, d, a, t);
3482 tcg_temp_free_vec(t);
3485 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3487 TCGv_i32 t = tcg_temp_ebb_new_i32();
3489 tcg_gen_andi_i32(t, b, 31);
3490 tcg_gen_sar_i32(d, a, t);
3491 tcg_temp_free_i32(t);
3494 static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3496 TCGv_i64 t = tcg_temp_ebb_new_i64();
3498 tcg_gen_andi_i64(t, b, 63);
3499 tcg_gen_sar_i64(d, a, t);
3500 tcg_temp_free_i64(t);
3503 void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs,
3504 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3506 static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 };
3507 static const GVecGen3 g[4] = {
3508 { .fniv = tcg_gen_sarv_mod_vec,
3509 .fno = gen_helper_gvec_sar8v,
3510 .opt_opc = vecop_list,
3511 .vece = MO_8 },
3512 { .fniv = tcg_gen_sarv_mod_vec,
3513 .fno = gen_helper_gvec_sar16v,
3514 .opt_opc = vecop_list,
3515 .vece = MO_16 },
3516 { .fni4 = tcg_gen_sar_mod_i32,
3517 .fniv = tcg_gen_sarv_mod_vec,
3518 .fno = gen_helper_gvec_sar32v,
3519 .opt_opc = vecop_list,
3520 .vece = MO_32 },
3521 { .fni8 = tcg_gen_sar_mod_i64,
3522 .fniv = tcg_gen_sarv_mod_vec,
3523 .fno = gen_helper_gvec_sar64v,
3524 .opt_opc = vecop_list,
3525 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3526 .vece = MO_64 },
3529 tcg_debug_assert(vece <= MO_64);
3530 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3534 * Similarly for rotates.
3537 static void tcg_gen_rotlv_mod_vec(unsigned vece, TCGv_vec d,
3538 TCGv_vec a, TCGv_vec b)
3540 TCGv_vec t = tcg_temp_new_vec_matching(d);
3541 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3543 tcg_gen_and_vec(vece, t, b, m);
3544 tcg_gen_rotlv_vec(vece, d, a, t);
3545 tcg_temp_free_vec(t);
3548 static void tcg_gen_rotl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3550 TCGv_i32 t = tcg_temp_ebb_new_i32();
3552 tcg_gen_andi_i32(t, b, 31);
3553 tcg_gen_rotl_i32(d, a, t);
3554 tcg_temp_free_i32(t);
3557 static void tcg_gen_rotl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3559 TCGv_i64 t = tcg_temp_ebb_new_i64();
3561 tcg_gen_andi_i64(t, b, 63);
3562 tcg_gen_rotl_i64(d, a, t);
3563 tcg_temp_free_i64(t);
3566 void tcg_gen_gvec_rotlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3567 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3569 static const TCGOpcode vecop_list[] = { INDEX_op_rotlv_vec, 0 };
3570 static const GVecGen3 g[4] = {
3571 { .fniv = tcg_gen_rotlv_mod_vec,
3572 .fno = gen_helper_gvec_rotl8v,
3573 .opt_opc = vecop_list,
3574 .vece = MO_8 },
3575 { .fniv = tcg_gen_rotlv_mod_vec,
3576 .fno = gen_helper_gvec_rotl16v,
3577 .opt_opc = vecop_list,
3578 .vece = MO_16 },
3579 { .fni4 = tcg_gen_rotl_mod_i32,
3580 .fniv = tcg_gen_rotlv_mod_vec,
3581 .fno = gen_helper_gvec_rotl32v,
3582 .opt_opc = vecop_list,
3583 .vece = MO_32 },
3584 { .fni8 = tcg_gen_rotl_mod_i64,
3585 .fniv = tcg_gen_rotlv_mod_vec,
3586 .fno = gen_helper_gvec_rotl64v,
3587 .opt_opc = vecop_list,
3588 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3589 .vece = MO_64 },
3592 tcg_debug_assert(vece <= MO_64);
3593 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3596 static void tcg_gen_rotrv_mod_vec(unsigned vece, TCGv_vec d,
3597 TCGv_vec a, TCGv_vec b)
3599 TCGv_vec t = tcg_temp_new_vec_matching(d);
3600 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3602 tcg_gen_and_vec(vece, t, b, m);
3603 tcg_gen_rotrv_vec(vece, d, a, t);
3604 tcg_temp_free_vec(t);
3607 static void tcg_gen_rotr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3609 TCGv_i32 t = tcg_temp_ebb_new_i32();
3611 tcg_gen_andi_i32(t, b, 31);
3612 tcg_gen_rotr_i32(d, a, t);
3613 tcg_temp_free_i32(t);
3616 static void tcg_gen_rotr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3618 TCGv_i64 t = tcg_temp_ebb_new_i64();
3620 tcg_gen_andi_i64(t, b, 63);
3621 tcg_gen_rotr_i64(d, a, t);
3622 tcg_temp_free_i64(t);
3625 void tcg_gen_gvec_rotrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3626 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3628 static const TCGOpcode vecop_list[] = { INDEX_op_rotrv_vec, 0 };
3629 static const GVecGen3 g[4] = {
3630 { .fniv = tcg_gen_rotrv_mod_vec,
3631 .fno = gen_helper_gvec_rotr8v,
3632 .opt_opc = vecop_list,
3633 .vece = MO_8 },
3634 { .fniv = tcg_gen_rotrv_mod_vec,
3635 .fno = gen_helper_gvec_rotr16v,
3636 .opt_opc = vecop_list,
3637 .vece = MO_16 },
3638 { .fni4 = tcg_gen_rotr_mod_i32,
3639 .fniv = tcg_gen_rotrv_mod_vec,
3640 .fno = gen_helper_gvec_rotr32v,
3641 .opt_opc = vecop_list,
3642 .vece = MO_32 },
3643 { .fni8 = tcg_gen_rotr_mod_i64,
3644 .fniv = tcg_gen_rotrv_mod_vec,
3645 .fno = gen_helper_gvec_rotr64v,
3646 .opt_opc = vecop_list,
3647 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3648 .vece = MO_64 },
3651 tcg_debug_assert(vece <= MO_64);
3652 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3655 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3656 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3657 uint32_t oprsz, TCGCond cond)
3659 TCGv_i32 t0 = tcg_temp_ebb_new_i32();
3660 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
3661 uint32_t i;
3663 for (i = 0; i < oprsz; i += 4) {
3664 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
3665 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
3666 tcg_gen_setcond_i32(cond, t0, t0, t1);
3667 tcg_gen_neg_i32(t0, t0);
3668 tcg_gen_st_i32(t0, cpu_env, dofs + i);
3670 tcg_temp_free_i32(t1);
3671 tcg_temp_free_i32(t0);
3674 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3675 uint32_t oprsz, TCGCond cond)
3677 TCGv_i64 t0 = tcg_temp_ebb_new_i64();
3678 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
3679 uint32_t i;
3681 for (i = 0; i < oprsz; i += 8) {
3682 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
3683 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
3684 tcg_gen_setcond_i64(cond, t0, t0, t1);
3685 tcg_gen_neg_i64(t0, t0);
3686 tcg_gen_st_i64(t0, cpu_env, dofs + i);
3688 tcg_temp_free_i64(t1);
3689 tcg_temp_free_i64(t0);
3692 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3693 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
3694 TCGType type, TCGCond cond)
3696 TCGv_vec t0 = tcg_temp_new_vec(type);
3697 TCGv_vec t1 = tcg_temp_new_vec(type);
3698 uint32_t i;
3700 for (i = 0; i < oprsz; i += tysz) {
3701 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
3702 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
3703 tcg_gen_cmp_vec(cond, vece, t0, t0, t1);
3704 tcg_gen_st_vec(t0, cpu_env, dofs + i);
3706 tcg_temp_free_vec(t1);
3707 tcg_temp_free_vec(t0);
3710 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
3711 uint32_t aofs, uint32_t bofs,
3712 uint32_t oprsz, uint32_t maxsz)
3714 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 };
3715 static gen_helper_gvec_3 * const eq_fn[4] = {
3716 gen_helper_gvec_eq8, gen_helper_gvec_eq16,
3717 gen_helper_gvec_eq32, gen_helper_gvec_eq64
3719 static gen_helper_gvec_3 * const ne_fn[4] = {
3720 gen_helper_gvec_ne8, gen_helper_gvec_ne16,
3721 gen_helper_gvec_ne32, gen_helper_gvec_ne64
3723 static gen_helper_gvec_3 * const lt_fn[4] = {
3724 gen_helper_gvec_lt8, gen_helper_gvec_lt16,
3725 gen_helper_gvec_lt32, gen_helper_gvec_lt64
3727 static gen_helper_gvec_3 * const le_fn[4] = {
3728 gen_helper_gvec_le8, gen_helper_gvec_le16,
3729 gen_helper_gvec_le32, gen_helper_gvec_le64
3731 static gen_helper_gvec_3 * const ltu_fn[4] = {
3732 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
3733 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
3735 static gen_helper_gvec_3 * const leu_fn[4] = {
3736 gen_helper_gvec_leu8, gen_helper_gvec_leu16,
3737 gen_helper_gvec_leu32, gen_helper_gvec_leu64
3739 static gen_helper_gvec_3 * const * const fns[16] = {
3740 [TCG_COND_EQ] = eq_fn,
3741 [TCG_COND_NE] = ne_fn,
3742 [TCG_COND_LT] = lt_fn,
3743 [TCG_COND_LE] = le_fn,
3744 [TCG_COND_LTU] = ltu_fn,
3745 [TCG_COND_LEU] = leu_fn,
3748 const TCGOpcode *hold_list;
3749 TCGType type;
3750 uint32_t some;
3752 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
3753 check_overlap_3(dofs, aofs, bofs, maxsz);
3755 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
3756 do_dup(MO_8, dofs, oprsz, maxsz,
3757 NULL, NULL, -(cond == TCG_COND_ALWAYS));
3758 return;
3762 * Implement inline with a vector type, if possible.
3763 * Prefer integer when 64-bit host and 64-bit comparison.
3765 hold_list = tcg_swap_vecop_list(cmp_list);
3766 type = choose_vector_type(cmp_list, vece, oprsz,
3767 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
3768 switch (type) {
3769 case TCG_TYPE_V256:
3770 /* Recall that ARM SVE allows vector sizes that are not a
3771 * power of 2, but always a multiple of 16. The intent is
3772 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3774 some = QEMU_ALIGN_DOWN(oprsz, 32);
3775 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
3776 if (some == oprsz) {
3777 break;
3779 dofs += some;
3780 aofs += some;
3781 bofs += some;
3782 oprsz -= some;
3783 maxsz -= some;
3784 /* fallthru */
3785 case TCG_TYPE_V128:
3786 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
3787 break;
3788 case TCG_TYPE_V64:
3789 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
3790 break;
3792 case 0:
3793 if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3794 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
3795 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3796 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
3797 } else {
3798 gen_helper_gvec_3 * const *fn = fns[cond];
3800 if (fn == NULL) {
3801 uint32_t tmp;
3802 tmp = aofs, aofs = bofs, bofs = tmp;
3803 cond = tcg_swap_cond(cond);
3804 fn = fns[cond];
3805 assert(fn != NULL);
3807 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
3808 oprsz = maxsz;
3810 break;
3812 default:
3813 g_assert_not_reached();
3815 tcg_swap_vecop_list(hold_list);
3817 if (oprsz < maxsz) {
3818 expand_clr(dofs + oprsz, maxsz - oprsz);
3822 static void tcg_gen_bitsel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c)
3824 TCGv_i64 t = tcg_temp_ebb_new_i64();
3826 tcg_gen_and_i64(t, b, a);
3827 tcg_gen_andc_i64(d, c, a);
3828 tcg_gen_or_i64(d, d, t);
3829 tcg_temp_free_i64(t);
3832 void tcg_gen_gvec_bitsel(unsigned vece, uint32_t dofs, uint32_t aofs,
3833 uint32_t bofs, uint32_t cofs,
3834 uint32_t oprsz, uint32_t maxsz)
3836 static const GVecGen4 g = {
3837 .fni8 = tcg_gen_bitsel_i64,
3838 .fniv = tcg_gen_bitsel_vec,
3839 .fno = gen_helper_gvec_bitsel,
3842 tcg_gen_gvec_4(dofs, aofs, bofs, cofs, oprsz, maxsz, &g);