2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "tcg/tcg-temp-internal.h"
23 #include "tcg/tcg-op-common.h"
24 #include "tcg/tcg-op-gvec-common.h"
25 #include "tcg/tcg-gvec-desc.h"
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty
[1] = { 0 };
32 #define vecop_list_empty NULL
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz
, uint32_t maxsz
, uint32_t ofs
)
46 tcg_debug_assert(oprsz
<= maxsz
);
49 tcg_debug_assert(oprsz
== maxsz
);
52 tcg_debug_assert(maxsz
<= (8 << SIMD_MAXSZ_BITS
));
54 max_align
= maxsz
>= 16 ? 15 : 7;
55 tcg_debug_assert((maxsz
& max_align
) == 0);
56 tcg_debug_assert((ofs
& max_align
) == 0);
59 /* Verify vector overlap rules for two operands. */
60 static void check_overlap_2(uint32_t d
, uint32_t a
, uint32_t s
)
62 tcg_debug_assert(d
== a
|| d
+ s
<= a
|| a
+ s
<= d
);
65 /* Verify vector overlap rules for three operands. */
66 static void check_overlap_3(uint32_t d
, uint32_t a
, uint32_t b
, uint32_t s
)
68 check_overlap_2(d
, a
, s
);
69 check_overlap_2(d
, b
, s
);
70 check_overlap_2(a
, b
, s
);
73 /* Verify vector overlap rules for four operands. */
74 static void check_overlap_4(uint32_t d
, uint32_t a
, uint32_t b
,
75 uint32_t c
, uint32_t s
)
77 check_overlap_2(d
, a
, s
);
78 check_overlap_2(d
, b
, s
);
79 check_overlap_2(d
, c
, s
);
80 check_overlap_2(a
, b
, s
);
81 check_overlap_2(a
, c
, s
);
82 check_overlap_2(b
, c
, s
);
85 /* Create a descriptor from components. */
86 uint32_t simd_desc(uint32_t oprsz
, uint32_t maxsz
, int32_t data
)
90 check_size_align(oprsz
, maxsz
, 0);
91 tcg_debug_assert(data
== sextract32(data
, 0, SIMD_DATA_BITS
));
93 oprsz
= (oprsz
/ 8) - 1;
94 maxsz
= (maxsz
/ 8) - 1;
97 * We have just asserted in check_size_align that either
98 * oprsz is {8,16,32} or matches maxsz. Encode the final
99 * case with '2', as that would otherwise map to 24.
101 if (oprsz
== maxsz
) {
105 desc
= deposit32(desc
, SIMD_OPRSZ_SHIFT
, SIMD_OPRSZ_BITS
, oprsz
);
106 desc
= deposit32(desc
, SIMD_MAXSZ_SHIFT
, SIMD_MAXSZ_BITS
, maxsz
);
107 desc
= deposit32(desc
, SIMD_DATA_SHIFT
, SIMD_DATA_BITS
, data
);
112 /* Generate a call to a gvec-style helper with two vector operands. */
113 void tcg_gen_gvec_2_ool(uint32_t dofs
, uint32_t aofs
,
114 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
115 gen_helper_gvec_2
*fn
)
118 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
120 a0
= tcg_temp_ebb_new_ptr();
121 a1
= tcg_temp_ebb_new_ptr();
123 tcg_gen_addi_ptr(a0
, tcg_env
, dofs
);
124 tcg_gen_addi_ptr(a1
, tcg_env
, aofs
);
128 tcg_temp_free_ptr(a0
);
129 tcg_temp_free_ptr(a1
);
132 /* Generate a call to a gvec-style helper with two vector operands
133 and one scalar operand. */
134 void tcg_gen_gvec_2i_ool(uint32_t dofs
, uint32_t aofs
, TCGv_i64 c
,
135 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
136 gen_helper_gvec_2i
*fn
)
139 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
141 a0
= tcg_temp_ebb_new_ptr();
142 a1
= tcg_temp_ebb_new_ptr();
144 tcg_gen_addi_ptr(a0
, tcg_env
, dofs
);
145 tcg_gen_addi_ptr(a1
, tcg_env
, aofs
);
149 tcg_temp_free_ptr(a0
);
150 tcg_temp_free_ptr(a1
);
153 /* Generate a call to a gvec-style helper with three vector operands. */
154 void tcg_gen_gvec_3_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
155 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
156 gen_helper_gvec_3
*fn
)
159 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
161 a0
= tcg_temp_ebb_new_ptr();
162 a1
= tcg_temp_ebb_new_ptr();
163 a2
= tcg_temp_ebb_new_ptr();
165 tcg_gen_addi_ptr(a0
, tcg_env
, dofs
);
166 tcg_gen_addi_ptr(a1
, tcg_env
, aofs
);
167 tcg_gen_addi_ptr(a2
, tcg_env
, bofs
);
169 fn(a0
, a1
, a2
, desc
);
171 tcg_temp_free_ptr(a0
);
172 tcg_temp_free_ptr(a1
);
173 tcg_temp_free_ptr(a2
);
176 /* Generate a call to a gvec-style helper with four vector operands. */
177 void tcg_gen_gvec_4_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
178 uint32_t cofs
, uint32_t oprsz
, uint32_t maxsz
,
179 int32_t data
, gen_helper_gvec_4
*fn
)
181 TCGv_ptr a0
, a1
, a2
, a3
;
182 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
184 a0
= tcg_temp_ebb_new_ptr();
185 a1
= tcg_temp_ebb_new_ptr();
186 a2
= tcg_temp_ebb_new_ptr();
187 a3
= tcg_temp_ebb_new_ptr();
189 tcg_gen_addi_ptr(a0
, tcg_env
, dofs
);
190 tcg_gen_addi_ptr(a1
, tcg_env
, aofs
);
191 tcg_gen_addi_ptr(a2
, tcg_env
, bofs
);
192 tcg_gen_addi_ptr(a3
, tcg_env
, cofs
);
194 fn(a0
, a1
, a2
, a3
, desc
);
196 tcg_temp_free_ptr(a0
);
197 tcg_temp_free_ptr(a1
);
198 tcg_temp_free_ptr(a2
);
199 tcg_temp_free_ptr(a3
);
202 /* Generate a call to a gvec-style helper with five vector operands. */
203 void tcg_gen_gvec_5_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
204 uint32_t cofs
, uint32_t xofs
, uint32_t oprsz
,
205 uint32_t maxsz
, int32_t data
, gen_helper_gvec_5
*fn
)
207 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
208 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
210 a0
= tcg_temp_ebb_new_ptr();
211 a1
= tcg_temp_ebb_new_ptr();
212 a2
= tcg_temp_ebb_new_ptr();
213 a3
= tcg_temp_ebb_new_ptr();
214 a4
= tcg_temp_ebb_new_ptr();
216 tcg_gen_addi_ptr(a0
, tcg_env
, dofs
);
217 tcg_gen_addi_ptr(a1
, tcg_env
, aofs
);
218 tcg_gen_addi_ptr(a2
, tcg_env
, bofs
);
219 tcg_gen_addi_ptr(a3
, tcg_env
, cofs
);
220 tcg_gen_addi_ptr(a4
, tcg_env
, xofs
);
222 fn(a0
, a1
, a2
, a3
, a4
, desc
);
224 tcg_temp_free_ptr(a0
);
225 tcg_temp_free_ptr(a1
);
226 tcg_temp_free_ptr(a2
);
227 tcg_temp_free_ptr(a3
);
228 tcg_temp_free_ptr(a4
);
231 /* Generate a call to a gvec-style helper with three vector operands
232 and an extra pointer operand. */
233 void tcg_gen_gvec_2_ptr(uint32_t dofs
, uint32_t aofs
,
234 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
235 int32_t data
, gen_helper_gvec_2_ptr
*fn
)
238 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
240 a0
= tcg_temp_ebb_new_ptr();
241 a1
= tcg_temp_ebb_new_ptr();
243 tcg_gen_addi_ptr(a0
, tcg_env
, dofs
);
244 tcg_gen_addi_ptr(a1
, tcg_env
, aofs
);
246 fn(a0
, a1
, ptr
, desc
);
248 tcg_temp_free_ptr(a0
);
249 tcg_temp_free_ptr(a1
);
252 /* Generate a call to a gvec-style helper with three vector operands
253 and an extra pointer operand. */
254 void tcg_gen_gvec_3_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
255 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
256 int32_t data
, gen_helper_gvec_3_ptr
*fn
)
259 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
261 a0
= tcg_temp_ebb_new_ptr();
262 a1
= tcg_temp_ebb_new_ptr();
263 a2
= tcg_temp_ebb_new_ptr();
265 tcg_gen_addi_ptr(a0
, tcg_env
, dofs
);
266 tcg_gen_addi_ptr(a1
, tcg_env
, aofs
);
267 tcg_gen_addi_ptr(a2
, tcg_env
, bofs
);
269 fn(a0
, a1
, a2
, ptr
, desc
);
271 tcg_temp_free_ptr(a0
);
272 tcg_temp_free_ptr(a1
);
273 tcg_temp_free_ptr(a2
);
276 /* Generate a call to a gvec-style helper with four vector operands
277 and an extra pointer operand. */
278 void tcg_gen_gvec_4_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
279 uint32_t cofs
, TCGv_ptr ptr
, uint32_t oprsz
,
280 uint32_t maxsz
, int32_t data
,
281 gen_helper_gvec_4_ptr
*fn
)
283 TCGv_ptr a0
, a1
, a2
, a3
;
284 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
286 a0
= tcg_temp_ebb_new_ptr();
287 a1
= tcg_temp_ebb_new_ptr();
288 a2
= tcg_temp_ebb_new_ptr();
289 a3
= tcg_temp_ebb_new_ptr();
291 tcg_gen_addi_ptr(a0
, tcg_env
, dofs
);
292 tcg_gen_addi_ptr(a1
, tcg_env
, aofs
);
293 tcg_gen_addi_ptr(a2
, tcg_env
, bofs
);
294 tcg_gen_addi_ptr(a3
, tcg_env
, cofs
);
296 fn(a0
, a1
, a2
, a3
, ptr
, desc
);
298 tcg_temp_free_ptr(a0
);
299 tcg_temp_free_ptr(a1
);
300 tcg_temp_free_ptr(a2
);
301 tcg_temp_free_ptr(a3
);
304 /* Generate a call to a gvec-style helper with five vector operands
305 and an extra pointer operand. */
306 void tcg_gen_gvec_5_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
307 uint32_t cofs
, uint32_t eofs
, TCGv_ptr ptr
,
308 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
309 gen_helper_gvec_5_ptr
*fn
)
311 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
312 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
314 a0
= tcg_temp_ebb_new_ptr();
315 a1
= tcg_temp_ebb_new_ptr();
316 a2
= tcg_temp_ebb_new_ptr();
317 a3
= tcg_temp_ebb_new_ptr();
318 a4
= tcg_temp_ebb_new_ptr();
320 tcg_gen_addi_ptr(a0
, tcg_env
, dofs
);
321 tcg_gen_addi_ptr(a1
, tcg_env
, aofs
);
322 tcg_gen_addi_ptr(a2
, tcg_env
, bofs
);
323 tcg_gen_addi_ptr(a3
, tcg_env
, cofs
);
324 tcg_gen_addi_ptr(a4
, tcg_env
, eofs
);
326 fn(a0
, a1
, a2
, a3
, a4
, ptr
, desc
);
328 tcg_temp_free_ptr(a0
);
329 tcg_temp_free_ptr(a1
);
330 tcg_temp_free_ptr(a2
);
331 tcg_temp_free_ptr(a3
);
332 tcg_temp_free_ptr(a4
);
335 /* Return true if we want to implement something of OPRSZ bytes
336 in units of LNSZ. This limits the expansion of inline code. */
337 static inline bool check_size_impl(uint32_t oprsz
, uint32_t lnsz
)
347 tcg_debug_assert((r
& 7) == 0);
350 /* For sizes below 16, accept no remainder. */
356 * Recall that ARM SVE allows vector sizes that are not a
357 * power of 2, but always a multiple of 16. The intent is
358 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
359 * In addition, expand_clr needs to handle a multiple of 8.
360 * Thus we can handle the tail with one more operation per
361 * diminishing power of 2.
366 return q
<= MAX_UNROLL
;
369 static void expand_clr(uint32_t dofs
, uint32_t maxsz
);
371 /* Duplicate C as per VECE. */
372 uint64_t (dup_const
)(unsigned vece
, uint64_t c
)
376 return 0x0101010101010101ull
* (uint8_t)c
;
378 return 0x0001000100010001ull
* (uint16_t)c
;
380 return 0x0000000100000001ull
* (uint32_t)c
;
384 g_assert_not_reached();
388 /* Duplicate IN into OUT as per VECE. */
389 void tcg_gen_dup_i32(unsigned vece
, TCGv_i32 out
, TCGv_i32 in
)
393 tcg_gen_ext8u_i32(out
, in
);
394 tcg_gen_muli_i32(out
, out
, 0x01010101);
397 tcg_gen_deposit_i32(out
, in
, in
, 16, 16);
400 tcg_gen_mov_i32(out
, in
);
403 g_assert_not_reached();
407 void tcg_gen_dup_i64(unsigned vece
, TCGv_i64 out
, TCGv_i64 in
)
411 tcg_gen_ext8u_i64(out
, in
);
412 tcg_gen_muli_i64(out
, out
, 0x0101010101010101ull
);
415 tcg_gen_ext16u_i64(out
, in
);
416 tcg_gen_muli_i64(out
, out
, 0x0001000100010001ull
);
419 tcg_gen_deposit_i64(out
, in
, in
, 32, 32);
422 tcg_gen_mov_i64(out
, in
);
425 g_assert_not_reached();
429 /* Select a supported vector type for implementing an operation on SIZE
430 * bytes. If OP is 0, assume that the real operation to be performed is
431 * required by all backends. Otherwise, make sure than OP can be performed
432 * on elements of size VECE in the selected type. Do not select V64 if
433 * PREFER_I64 is true. Return 0 if no vector type is selected.
435 static TCGType
choose_vector_type(const TCGOpcode
*list
, unsigned vece
,
436 uint32_t size
, bool prefer_i64
)
439 * Recall that ARM SVE allows vector sizes that are not a
440 * power of 2, but always a multiple of 16. The intent is
441 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
442 * It is hard to imagine a case in which v256 is supported
443 * but v128 is not, but check anyway.
444 * In addition, expand_clr needs to handle a multiple of 8.
446 if (TCG_TARGET_HAS_v256
&&
447 check_size_impl(size
, 32) &&
448 tcg_can_emit_vecop_list(list
, TCG_TYPE_V256
, vece
) &&
450 (TCG_TARGET_HAS_v128
&&
451 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
))) &&
453 (TCG_TARGET_HAS_v64
&&
454 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
455 return TCG_TYPE_V256
;
457 if (TCG_TARGET_HAS_v128
&&
458 check_size_impl(size
, 16) &&
459 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
) &&
461 (TCG_TARGET_HAS_v64
&&
462 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
463 return TCG_TYPE_V128
;
465 if (TCG_TARGET_HAS_v64
&& !prefer_i64
&& check_size_impl(size
, 8)
466 && tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)) {
472 static void do_dup_store(TCGType type
, uint32_t dofs
, uint32_t oprsz
,
473 uint32_t maxsz
, TCGv_vec t_vec
)
477 tcg_debug_assert(oprsz
>= 8);
480 * This may be expand_clr for the tail of an operation, e.g.
481 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
482 * are misaligned wrt the maximum vector size, so do that first.
485 tcg_gen_stl_vec(t_vec
, tcg_env
, dofs
+ i
, TCG_TYPE_V64
);
492 * Recall that ARM SVE allows vector sizes that are not a
493 * power of 2, but always a multiple of 16. The intent is
494 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
496 for (; i
+ 32 <= oprsz
; i
+= 32) {
497 tcg_gen_stl_vec(t_vec
, tcg_env
, dofs
+ i
, TCG_TYPE_V256
);
501 for (; i
+ 16 <= oprsz
; i
+= 16) {
502 tcg_gen_stl_vec(t_vec
, tcg_env
, dofs
+ i
, TCG_TYPE_V128
);
506 for (; i
< oprsz
; i
+= 8) {
507 tcg_gen_stl_vec(t_vec
, tcg_env
, dofs
+ i
, TCG_TYPE_V64
);
511 g_assert_not_reached();
515 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
519 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
520 * Only one of IN_32 or IN_64 may be set;
521 * IN_C is used if IN_32 and IN_64 are unset.
523 static void do_dup(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
524 uint32_t maxsz
, TCGv_i32 in_32
, TCGv_i64 in_64
,
529 TCGv_i32 t_32
, t_desc
;
533 assert(vece
<= (in_32
? MO_32
: MO_64
));
534 assert(in_32
== NULL
|| in_64
== NULL
);
536 /* If we're storing 0, expand oprsz to maxsz. */
537 if (in_32
== NULL
&& in_64
== NULL
) {
538 in_c
= dup_const(vece
, in_c
);
542 } else if (in_c
== dup_const(MO_8
, in_c
)) {
547 /* Implement inline with a vector type, if possible.
548 * Prefer integer when 64-bit host and no variable dup.
550 type
= choose_vector_type(NULL
, vece
, oprsz
,
551 (TCG_TARGET_REG_BITS
== 64 && in_32
== NULL
552 && (in_64
== NULL
|| vece
== MO_64
)));
554 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
557 tcg_gen_dup_i32_vec(vece
, t_vec
, in_32
);
559 tcg_gen_dup_i64_vec(vece
, t_vec
, in_64
);
561 tcg_gen_dupi_vec(vece
, t_vec
, in_c
);
563 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
567 /* Otherwise, inline with an integer type, unless "large". */
568 if (check_size_impl(oprsz
, TCG_TARGET_REG_BITS
/ 8)) {
573 /* We are given a 32-bit variable input. For a 64-bit host,
574 use a 64-bit operation unless the 32-bit operation would
576 if (TCG_TARGET_REG_BITS
== 64
577 && (vece
!= MO_32
|| !check_size_impl(oprsz
, 4))) {
578 t_64
= tcg_temp_ebb_new_i64();
579 tcg_gen_extu_i32_i64(t_64
, in_32
);
580 tcg_gen_dup_i64(vece
, t_64
, t_64
);
582 t_32
= tcg_temp_ebb_new_i32();
583 tcg_gen_dup_i32(vece
, t_32
, in_32
);
586 /* We are given a 64-bit variable input. */
587 t_64
= tcg_temp_ebb_new_i64();
588 tcg_gen_dup_i64(vece
, t_64
, in_64
);
590 /* We are given a constant input. */
591 /* For 64-bit hosts, use 64-bit constants for "simple" constants
592 or when we'd need too many 32-bit stores, or when a 64-bit
593 constant is really required. */
595 || (TCG_TARGET_REG_BITS
== 64
596 && (in_c
== 0 || in_c
== -1
597 || !check_size_impl(oprsz
, 4)))) {
598 t_64
= tcg_constant_i64(in_c
);
600 t_32
= tcg_constant_i32(in_c
);
604 /* Implement inline if we picked an implementation size above. */
606 for (i
= 0; i
< oprsz
; i
+= 4) {
607 tcg_gen_st_i32(t_32
, tcg_env
, dofs
+ i
);
609 tcg_temp_free_i32(t_32
);
613 for (i
= 0; i
< oprsz
; i
+= 8) {
614 tcg_gen_st_i64(t_64
, tcg_env
, dofs
+ i
);
616 tcg_temp_free_i64(t_64
);
621 /* Otherwise implement out of line. */
622 t_ptr
= tcg_temp_ebb_new_ptr();
623 tcg_gen_addi_ptr(t_ptr
, tcg_env
, dofs
);
626 * This may be expand_clr for the tail of an operation, e.g.
627 * oprsz == 8 && maxsz == 64. The size of the clear is misaligned
628 * wrt simd_desc and will assert. Simply pass all replicated byte
629 * stores through to memset.
631 if (oprsz
== maxsz
&& vece
== MO_8
) {
632 TCGv_ptr t_size
= tcg_constant_ptr(oprsz
);
638 t_val
= tcg_temp_ebb_new_i32();
639 tcg_gen_extrl_i64_i32(t_val
, in_64
);
641 t_val
= tcg_constant_i32(in_c
);
643 gen_helper_memset(t_ptr
, t_ptr
, t_val
, t_size
);
646 tcg_temp_free_i32(t_val
);
648 tcg_temp_free_ptr(t_ptr
);
652 t_desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, 0));
656 gen_helper_gvec_dup64(t_ptr
, t_desc
, in_64
);
658 t_64
= tcg_constant_i64(in_c
);
659 gen_helper_gvec_dup64(t_ptr
, t_desc
, t_64
);
662 typedef void dup_fn(TCGv_ptr
, TCGv_i32
, TCGv_i32
);
663 static dup_fn
* const fns
[3] = {
664 gen_helper_gvec_dup8
,
665 gen_helper_gvec_dup16
,
666 gen_helper_gvec_dup32
670 fns
[vece
](t_ptr
, t_desc
, in_32
);
672 t_32
= tcg_temp_ebb_new_i32();
673 tcg_gen_extrl_i64_i32(t_32
, in_64
);
674 fns
[vece
](t_ptr
, t_desc
, t_32
);
675 tcg_temp_free_i32(t_32
);
679 } else if (vece
== MO_16
) {
682 t_32
= tcg_constant_i32(in_c
);
683 fns
[vece
](t_ptr
, t_desc
, t_32
);
687 tcg_temp_free_ptr(t_ptr
);
692 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
696 /* Likewise, but with zero. */
697 static void expand_clr(uint32_t dofs
, uint32_t maxsz
)
699 do_dup(MO_8
, dofs
, maxsz
, maxsz
, NULL
, NULL
, 0);
702 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
703 static void expand_2_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
704 bool load_dest
, void (*fni
)(TCGv_i32
, TCGv_i32
))
706 TCGv_i32 t0
= tcg_temp_new_i32();
707 TCGv_i32 t1
= tcg_temp_new_i32();
710 for (i
= 0; i
< oprsz
; i
+= 4) {
711 tcg_gen_ld_i32(t0
, tcg_env
, aofs
+ i
);
713 tcg_gen_ld_i32(t1
, tcg_env
, dofs
+ i
);
716 tcg_gen_st_i32(t1
, tcg_env
, dofs
+ i
);
718 tcg_temp_free_i32(t0
);
719 tcg_temp_free_i32(t1
);
722 static void expand_2i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
723 int32_t c
, bool load_dest
,
724 void (*fni
)(TCGv_i32
, TCGv_i32
, int32_t))
726 TCGv_i32 t0
= tcg_temp_new_i32();
727 TCGv_i32 t1
= tcg_temp_new_i32();
730 for (i
= 0; i
< oprsz
; i
+= 4) {
731 tcg_gen_ld_i32(t0
, tcg_env
, aofs
+ i
);
733 tcg_gen_ld_i32(t1
, tcg_env
, dofs
+ i
);
736 tcg_gen_st_i32(t1
, tcg_env
, dofs
+ i
);
738 tcg_temp_free_i32(t0
);
739 tcg_temp_free_i32(t1
);
742 static void expand_2s_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
743 TCGv_i32 c
, bool scalar_first
,
744 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
746 TCGv_i32 t0
= tcg_temp_new_i32();
747 TCGv_i32 t1
= tcg_temp_new_i32();
750 for (i
= 0; i
< oprsz
; i
+= 4) {
751 tcg_gen_ld_i32(t0
, tcg_env
, aofs
+ i
);
757 tcg_gen_st_i32(t1
, tcg_env
, dofs
+ i
);
759 tcg_temp_free_i32(t0
);
760 tcg_temp_free_i32(t1
);
763 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
764 static void expand_3_i32(uint32_t dofs
, uint32_t aofs
,
765 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
766 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
768 TCGv_i32 t0
= tcg_temp_new_i32();
769 TCGv_i32 t1
= tcg_temp_new_i32();
770 TCGv_i32 t2
= tcg_temp_new_i32();
773 for (i
= 0; i
< oprsz
; i
+= 4) {
774 tcg_gen_ld_i32(t0
, tcg_env
, aofs
+ i
);
775 tcg_gen_ld_i32(t1
, tcg_env
, bofs
+ i
);
777 tcg_gen_ld_i32(t2
, tcg_env
, dofs
+ i
);
780 tcg_gen_st_i32(t2
, tcg_env
, dofs
+ i
);
782 tcg_temp_free_i32(t2
);
783 tcg_temp_free_i32(t1
);
784 tcg_temp_free_i32(t0
);
787 static void expand_3i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
788 uint32_t oprsz
, int32_t c
,
789 bool load_dest
, bool write_aofs
,
790 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, int32_t))
792 TCGv_i32 t0
= tcg_temp_new_i32();
793 TCGv_i32 t1
= tcg_temp_new_i32();
794 TCGv_i32 t2
= tcg_temp_new_i32();
797 for (i
= 0; i
< oprsz
; i
+= 4) {
798 tcg_gen_ld_i32(t0
, tcg_env
, aofs
+ i
);
799 tcg_gen_ld_i32(t1
, tcg_env
, bofs
+ i
);
801 tcg_gen_ld_i32(t2
, tcg_env
, dofs
+ i
);
804 tcg_gen_st_i32(t2
, tcg_env
, dofs
+ i
);
806 tcg_gen_st_i32(t0
, tcg_env
, aofs
+ i
);
809 tcg_temp_free_i32(t0
);
810 tcg_temp_free_i32(t1
);
811 tcg_temp_free_i32(t2
);
814 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
815 static void expand_4_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
816 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
817 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_i32
))
819 TCGv_i32 t0
= tcg_temp_new_i32();
820 TCGv_i32 t1
= tcg_temp_new_i32();
821 TCGv_i32 t2
= tcg_temp_new_i32();
822 TCGv_i32 t3
= tcg_temp_new_i32();
825 for (i
= 0; i
< oprsz
; i
+= 4) {
826 tcg_gen_ld_i32(t1
, tcg_env
, aofs
+ i
);
827 tcg_gen_ld_i32(t2
, tcg_env
, bofs
+ i
);
828 tcg_gen_ld_i32(t3
, tcg_env
, cofs
+ i
);
830 tcg_gen_st_i32(t0
, tcg_env
, dofs
+ i
);
832 tcg_gen_st_i32(t1
, tcg_env
, aofs
+ i
);
835 tcg_temp_free_i32(t3
);
836 tcg_temp_free_i32(t2
);
837 tcg_temp_free_i32(t1
);
838 tcg_temp_free_i32(t0
);
841 static void expand_4i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
842 uint32_t cofs
, uint32_t oprsz
, int32_t c
,
843 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_i32
,
846 TCGv_i32 t0
= tcg_temp_new_i32();
847 TCGv_i32 t1
= tcg_temp_new_i32();
848 TCGv_i32 t2
= tcg_temp_new_i32();
849 TCGv_i32 t3
= tcg_temp_new_i32();
852 for (i
= 0; i
< oprsz
; i
+= 4) {
853 tcg_gen_ld_i32(t1
, tcg_env
, aofs
+ i
);
854 tcg_gen_ld_i32(t2
, tcg_env
, bofs
+ i
);
855 tcg_gen_ld_i32(t3
, tcg_env
, cofs
+ i
);
856 fni(t0
, t1
, t2
, t3
, c
);
857 tcg_gen_st_i32(t0
, tcg_env
, dofs
+ i
);
859 tcg_temp_free_i32(t3
);
860 tcg_temp_free_i32(t2
);
861 tcg_temp_free_i32(t1
);
862 tcg_temp_free_i32(t0
);
865 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
866 static void expand_2_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
867 bool load_dest
, void (*fni
)(TCGv_i64
, TCGv_i64
))
869 TCGv_i64 t0
= tcg_temp_new_i64();
870 TCGv_i64 t1
= tcg_temp_new_i64();
873 for (i
= 0; i
< oprsz
; i
+= 8) {
874 tcg_gen_ld_i64(t0
, tcg_env
, aofs
+ i
);
876 tcg_gen_ld_i64(t1
, tcg_env
, dofs
+ i
);
879 tcg_gen_st_i64(t1
, tcg_env
, dofs
+ i
);
881 tcg_temp_free_i64(t0
);
882 tcg_temp_free_i64(t1
);
885 static void expand_2i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
886 int64_t c
, bool load_dest
,
887 void (*fni
)(TCGv_i64
, TCGv_i64
, int64_t))
889 TCGv_i64 t0
= tcg_temp_new_i64();
890 TCGv_i64 t1
= tcg_temp_new_i64();
893 for (i
= 0; i
< oprsz
; i
+= 8) {
894 tcg_gen_ld_i64(t0
, tcg_env
, aofs
+ i
);
896 tcg_gen_ld_i64(t1
, tcg_env
, dofs
+ i
);
899 tcg_gen_st_i64(t1
, tcg_env
, dofs
+ i
);
901 tcg_temp_free_i64(t0
);
902 tcg_temp_free_i64(t1
);
905 static void expand_2s_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
906 TCGv_i64 c
, bool scalar_first
,
907 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
909 TCGv_i64 t0
= tcg_temp_new_i64();
910 TCGv_i64 t1
= tcg_temp_new_i64();
913 for (i
= 0; i
< oprsz
; i
+= 8) {
914 tcg_gen_ld_i64(t0
, tcg_env
, aofs
+ i
);
920 tcg_gen_st_i64(t1
, tcg_env
, dofs
+ i
);
922 tcg_temp_free_i64(t0
);
923 tcg_temp_free_i64(t1
);
926 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
927 static void expand_3_i64(uint32_t dofs
, uint32_t aofs
,
928 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
929 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
931 TCGv_i64 t0
= tcg_temp_new_i64();
932 TCGv_i64 t1
= tcg_temp_new_i64();
933 TCGv_i64 t2
= tcg_temp_new_i64();
936 for (i
= 0; i
< oprsz
; i
+= 8) {
937 tcg_gen_ld_i64(t0
, tcg_env
, aofs
+ i
);
938 tcg_gen_ld_i64(t1
, tcg_env
, bofs
+ i
);
940 tcg_gen_ld_i64(t2
, tcg_env
, dofs
+ i
);
943 tcg_gen_st_i64(t2
, tcg_env
, dofs
+ i
);
945 tcg_temp_free_i64(t2
);
946 tcg_temp_free_i64(t1
);
947 tcg_temp_free_i64(t0
);
950 static void expand_3i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
951 uint32_t oprsz
, int64_t c
,
952 bool load_dest
, bool write_aofs
,
953 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, int64_t))
955 TCGv_i64 t0
= tcg_temp_new_i64();
956 TCGv_i64 t1
= tcg_temp_new_i64();
957 TCGv_i64 t2
= tcg_temp_new_i64();
960 for (i
= 0; i
< oprsz
; i
+= 8) {
961 tcg_gen_ld_i64(t0
, tcg_env
, aofs
+ i
);
962 tcg_gen_ld_i64(t1
, tcg_env
, bofs
+ i
);
964 tcg_gen_ld_i64(t2
, tcg_env
, dofs
+ i
);
967 tcg_gen_st_i64(t2
, tcg_env
, dofs
+ i
);
969 tcg_gen_st_i64(t0
, tcg_env
, aofs
+ i
);
972 tcg_temp_free_i64(t0
);
973 tcg_temp_free_i64(t1
);
974 tcg_temp_free_i64(t2
);
977 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
978 static void expand_4_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
979 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
980 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
))
982 TCGv_i64 t0
= tcg_temp_new_i64();
983 TCGv_i64 t1
= tcg_temp_new_i64();
984 TCGv_i64 t2
= tcg_temp_new_i64();
985 TCGv_i64 t3
= tcg_temp_new_i64();
988 for (i
= 0; i
< oprsz
; i
+= 8) {
989 tcg_gen_ld_i64(t1
, tcg_env
, aofs
+ i
);
990 tcg_gen_ld_i64(t2
, tcg_env
, bofs
+ i
);
991 tcg_gen_ld_i64(t3
, tcg_env
, cofs
+ i
);
993 tcg_gen_st_i64(t0
, tcg_env
, dofs
+ i
);
995 tcg_gen_st_i64(t1
, tcg_env
, aofs
+ i
);
998 tcg_temp_free_i64(t3
);
999 tcg_temp_free_i64(t2
);
1000 tcg_temp_free_i64(t1
);
1001 tcg_temp_free_i64(t0
);
1004 static void expand_4i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1005 uint32_t cofs
, uint32_t oprsz
, int64_t c
,
1006 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
,
1009 TCGv_i64 t0
= tcg_temp_new_i64();
1010 TCGv_i64 t1
= tcg_temp_new_i64();
1011 TCGv_i64 t2
= tcg_temp_new_i64();
1012 TCGv_i64 t3
= tcg_temp_new_i64();
1015 for (i
= 0; i
< oprsz
; i
+= 8) {
1016 tcg_gen_ld_i64(t1
, tcg_env
, aofs
+ i
);
1017 tcg_gen_ld_i64(t2
, tcg_env
, bofs
+ i
);
1018 tcg_gen_ld_i64(t3
, tcg_env
, cofs
+ i
);
1019 fni(t0
, t1
, t2
, t3
, c
);
1020 tcg_gen_st_i64(t0
, tcg_env
, dofs
+ i
);
1022 tcg_temp_free_i64(t3
);
1023 tcg_temp_free_i64(t2
);
1024 tcg_temp_free_i64(t1
);
1025 tcg_temp_free_i64(t0
);
1028 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
1029 static void expand_2_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1030 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1032 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
))
1034 for (uint32_t i
= 0; i
< oprsz
; i
+= tysz
) {
1035 TCGv_vec t0
= tcg_temp_new_vec(type
);
1036 TCGv_vec t1
= tcg_temp_new_vec(type
);
1038 tcg_gen_ld_vec(t0
, tcg_env
, aofs
+ i
);
1040 tcg_gen_ld_vec(t1
, tcg_env
, dofs
+ i
);
1043 tcg_gen_st_vec(t1
, tcg_env
, dofs
+ i
);
1047 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
1048 using host vectors. */
1049 static void expand_2i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1050 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1051 int64_t c
, bool load_dest
,
1052 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, int64_t))
1054 for (uint32_t i
= 0; i
< oprsz
; i
+= tysz
) {
1055 TCGv_vec t0
= tcg_temp_new_vec(type
);
1056 TCGv_vec t1
= tcg_temp_new_vec(type
);
1058 tcg_gen_ld_vec(t0
, tcg_env
, aofs
+ i
);
1060 tcg_gen_ld_vec(t1
, tcg_env
, dofs
+ i
);
1062 fni(vece
, t1
, t0
, c
);
1063 tcg_gen_st_vec(t1
, tcg_env
, dofs
+ i
);
1067 static void expand_2s_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1068 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1069 TCGv_vec c
, bool scalar_first
,
1070 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1072 for (uint32_t i
= 0; i
< oprsz
; i
+= tysz
) {
1073 TCGv_vec t0
= tcg_temp_new_vec(type
);
1074 TCGv_vec t1
= tcg_temp_new_vec(type
);
1076 tcg_gen_ld_vec(t0
, tcg_env
, aofs
+ i
);
1078 fni(vece
, t1
, c
, t0
);
1080 fni(vece
, t1
, t0
, c
);
1082 tcg_gen_st_vec(t1
, tcg_env
, dofs
+ i
);
1086 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1087 static void expand_3_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1088 uint32_t bofs
, uint32_t oprsz
,
1089 uint32_t tysz
, TCGType type
, bool load_dest
,
1090 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1092 for (uint32_t i
= 0; i
< oprsz
; i
+= tysz
) {
1093 TCGv_vec t0
= tcg_temp_new_vec(type
);
1094 TCGv_vec t1
= tcg_temp_new_vec(type
);
1095 TCGv_vec t2
= tcg_temp_new_vec(type
);
1097 tcg_gen_ld_vec(t0
, tcg_env
, aofs
+ i
);
1098 tcg_gen_ld_vec(t1
, tcg_env
, bofs
+ i
);
1100 tcg_gen_ld_vec(t2
, tcg_env
, dofs
+ i
);
1102 fni(vece
, t2
, t0
, t1
);
1103 tcg_gen_st_vec(t2
, tcg_env
, dofs
+ i
);
1108 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1109 * using host vectors.
1111 static void expand_3i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1112 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
1113 TCGType type
, int64_t c
,
1114 bool load_dest
, bool write_aofs
,
1115 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
,
1118 for (uint32_t i
= 0; i
< oprsz
; i
+= tysz
) {
1119 TCGv_vec t0
= tcg_temp_new_vec(type
);
1120 TCGv_vec t1
= tcg_temp_new_vec(type
);
1121 TCGv_vec t2
= tcg_temp_new_vec(type
);
1123 tcg_gen_ld_vec(t0
, tcg_env
, aofs
+ i
);
1124 tcg_gen_ld_vec(t1
, tcg_env
, bofs
+ i
);
1126 tcg_gen_ld_vec(t2
, tcg_env
, dofs
+ i
);
1128 fni(vece
, t2
, t0
, t1
, c
);
1129 tcg_gen_st_vec(t2
, tcg_env
, dofs
+ i
);
1131 tcg_gen_st_vec(t0
, tcg_env
, aofs
+ i
);
1136 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1137 static void expand_4_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1138 uint32_t bofs
, uint32_t cofs
, uint32_t oprsz
,
1139 uint32_t tysz
, TCGType type
, bool write_aofs
,
1140 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
,
1141 TCGv_vec
, TCGv_vec
))
1143 for (uint32_t i
= 0; i
< oprsz
; i
+= tysz
) {
1144 TCGv_vec t0
= tcg_temp_new_vec(type
);
1145 TCGv_vec t1
= tcg_temp_new_vec(type
);
1146 TCGv_vec t2
= tcg_temp_new_vec(type
);
1147 TCGv_vec t3
= tcg_temp_new_vec(type
);
1149 tcg_gen_ld_vec(t1
, tcg_env
, aofs
+ i
);
1150 tcg_gen_ld_vec(t2
, tcg_env
, bofs
+ i
);
1151 tcg_gen_ld_vec(t3
, tcg_env
, cofs
+ i
);
1152 fni(vece
, t0
, t1
, t2
, t3
);
1153 tcg_gen_st_vec(t0
, tcg_env
, dofs
+ i
);
1155 tcg_gen_st_vec(t1
, tcg_env
, aofs
+ i
);
1161 * Expand OPSZ bytes worth of four-vector operands and an immediate operand
1162 * using host vectors.
1164 static void expand_4i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1165 uint32_t bofs
, uint32_t cofs
, uint32_t oprsz
,
1166 uint32_t tysz
, TCGType type
, int64_t c
,
1167 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
,
1168 TCGv_vec
, TCGv_vec
, int64_t))
1170 for (uint32_t i
= 0; i
< oprsz
; i
+= tysz
) {
1171 TCGv_vec t0
= tcg_temp_new_vec(type
);
1172 TCGv_vec t1
= tcg_temp_new_vec(type
);
1173 TCGv_vec t2
= tcg_temp_new_vec(type
);
1174 TCGv_vec t3
= tcg_temp_new_vec(type
);
1176 tcg_gen_ld_vec(t1
, tcg_env
, aofs
+ i
);
1177 tcg_gen_ld_vec(t2
, tcg_env
, bofs
+ i
);
1178 tcg_gen_ld_vec(t3
, tcg_env
, cofs
+ i
);
1179 fni(vece
, t0
, t1
, t2
, t3
, c
);
1180 tcg_gen_st_vec(t0
, tcg_env
, dofs
+ i
);
1184 /* Expand a vector two-operand operation. */
1185 void tcg_gen_gvec_2(uint32_t dofs
, uint32_t aofs
,
1186 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2
*g
)
1188 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1189 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1193 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1194 check_overlap_2(dofs
, aofs
, maxsz
);
1198 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1202 /* Recall that ARM SVE allows vector sizes that are not a
1203 * power of 2, but always a multiple of 16. The intent is
1204 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1206 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1207 expand_2_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1208 g
->load_dest
, g
->fniv
);
1209 if (some
== oprsz
) {
1218 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1219 g
->load_dest
, g
->fniv
);
1222 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1223 g
->load_dest
, g
->fniv
);
1227 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1228 expand_2_i64(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni8
);
1229 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1230 expand_2_i32(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni4
);
1232 assert(g
->fno
!= NULL
);
1233 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, g
->data
, g
->fno
);
1239 g_assert_not_reached();
1241 tcg_swap_vecop_list(hold_list
);
1243 if (oprsz
< maxsz
) {
1244 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1248 /* Expand a vector operation with two vectors and an immediate. */
1249 void tcg_gen_gvec_2i(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1250 uint32_t maxsz
, int64_t c
, const GVecGen2i
*g
)
1252 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1253 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1257 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1258 check_overlap_2(dofs
, aofs
, maxsz
);
1262 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1266 /* Recall that ARM SVE allows vector sizes that are not a
1267 * power of 2, but always a multiple of 16. The intent is
1268 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1270 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1271 expand_2i_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1272 c
, g
->load_dest
, g
->fniv
);
1273 if (some
== oprsz
) {
1282 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1283 c
, g
->load_dest
, g
->fniv
);
1286 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1287 c
, g
->load_dest
, g
->fniv
);
1291 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1292 expand_2i_i64(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1293 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1294 expand_2i_i32(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1297 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, c
, g
->fno
);
1299 TCGv_i64 tcg_c
= tcg_constant_i64(c
);
1300 tcg_gen_gvec_2i_ool(dofs
, aofs
, tcg_c
, oprsz
,
1308 g_assert_not_reached();
1310 tcg_swap_vecop_list(hold_list
);
1312 if (oprsz
< maxsz
) {
1313 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1317 /* Expand a vector operation with two vectors and a scalar. */
1318 void tcg_gen_gvec_2s(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1319 uint32_t maxsz
, TCGv_i64 c
, const GVecGen2s
*g
)
1323 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1324 check_overlap_2(dofs
, aofs
, maxsz
);
1328 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1331 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1332 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1333 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1336 tcg_gen_dup_i64_vec(g
->vece
, t_vec
, c
);
1340 /* Recall that ARM SVE allows vector sizes that are not a
1341 * power of 2, but always a multiple of 16. The intent is
1342 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1344 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1345 expand_2s_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1346 t_vec
, g
->scalar_first
, g
->fniv
);
1347 if (some
== oprsz
) {
1357 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1358 t_vec
, g
->scalar_first
, g
->fniv
);
1362 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1363 t_vec
, g
->scalar_first
, g
->fniv
);
1367 g_assert_not_reached();
1369 tcg_temp_free_vec(t_vec
);
1370 tcg_swap_vecop_list(hold_list
);
1371 } else if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1372 TCGv_i64 t64
= tcg_temp_new_i64();
1374 tcg_gen_dup_i64(g
->vece
, t64
, c
);
1375 expand_2s_i64(dofs
, aofs
, oprsz
, t64
, g
->scalar_first
, g
->fni8
);
1376 tcg_temp_free_i64(t64
);
1377 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1378 TCGv_i32 t32
= tcg_temp_new_i32();
1380 tcg_gen_extrl_i64_i32(t32
, c
);
1381 tcg_gen_dup_i32(g
->vece
, t32
, t32
);
1382 expand_2s_i32(dofs
, aofs
, oprsz
, t32
, g
->scalar_first
, g
->fni4
);
1383 tcg_temp_free_i32(t32
);
1385 tcg_gen_gvec_2i_ool(dofs
, aofs
, c
, oprsz
, maxsz
, 0, g
->fno
);
1389 if (oprsz
< maxsz
) {
1390 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1394 /* Expand a vector three-operand operation. */
1395 void tcg_gen_gvec_3(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1396 uint32_t oprsz
, uint32_t maxsz
, const GVecGen3
*g
)
1398 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1399 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1403 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1404 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1408 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1412 /* Recall that ARM SVE allows vector sizes that are not a
1413 * power of 2, but always a multiple of 16. The intent is
1414 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1416 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1417 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1418 g
->load_dest
, g
->fniv
);
1419 if (some
== oprsz
) {
1429 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1430 g
->load_dest
, g
->fniv
);
1433 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1434 g
->load_dest
, g
->fniv
);
1438 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1439 expand_3_i64(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni8
);
1440 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1441 expand_3_i32(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni4
);
1443 assert(g
->fno
!= NULL
);
1444 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
,
1445 maxsz
, g
->data
, g
->fno
);
1451 g_assert_not_reached();
1453 tcg_swap_vecop_list(hold_list
);
1455 if (oprsz
< maxsz
) {
1456 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1460 /* Expand a vector operation with three vectors and an immediate. */
1461 void tcg_gen_gvec_3i(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1462 uint32_t oprsz
, uint32_t maxsz
, int64_t c
,
1465 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1466 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1470 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1471 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1475 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1480 * Recall that ARM SVE allows vector sizes that are not a
1481 * power of 2, but always a multiple of 16. The intent is
1482 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1484 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1485 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1486 c
, g
->load_dest
, g
->write_aofs
, g
->fniv
);
1487 if (some
== oprsz
) {
1497 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1498 c
, g
->load_dest
, g
->write_aofs
, g
->fniv
);
1501 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1502 c
, g
->load_dest
, g
->write_aofs
, g
->fniv
);
1506 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1507 expand_3i_i64(dofs
, aofs
, bofs
, oprsz
, c
,
1508 g
->load_dest
, g
->write_aofs
, g
->fni8
);
1509 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1510 expand_3i_i32(dofs
, aofs
, bofs
, oprsz
, c
,
1511 g
->load_dest
, g
->write_aofs
, g
->fni4
);
1513 assert(g
->fno
!= NULL
);
1514 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, c
, g
->fno
);
1520 g_assert_not_reached();
1522 tcg_swap_vecop_list(hold_list
);
1524 if (oprsz
< maxsz
) {
1525 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1529 /* Expand a vector four-operand operation. */
1530 void tcg_gen_gvec_4(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
, uint32_t cofs
,
1531 uint32_t oprsz
, uint32_t maxsz
, const GVecGen4
*g
)
1533 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1534 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1538 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
| cofs
);
1539 check_overlap_4(dofs
, aofs
, bofs
, cofs
, maxsz
);
1543 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1547 /* Recall that ARM SVE allows vector sizes that are not a
1548 * power of 2, but always a multiple of 16. The intent is
1549 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1551 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1552 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, some
,
1553 32, TCG_TYPE_V256
, g
->write_aofs
, g
->fniv
);
1554 if (some
== oprsz
) {
1565 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1566 16, TCG_TYPE_V128
, g
->write_aofs
, g
->fniv
);
1569 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1570 8, TCG_TYPE_V64
, g
->write_aofs
, g
->fniv
);
1574 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1575 expand_4_i64(dofs
, aofs
, bofs
, cofs
, oprsz
,
1576 g
->write_aofs
, g
->fni8
);
1577 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1578 expand_4_i32(dofs
, aofs
, bofs
, cofs
, oprsz
,
1579 g
->write_aofs
, g
->fni4
);
1581 assert(g
->fno
!= NULL
);
1582 tcg_gen_gvec_4_ool(dofs
, aofs
, bofs
, cofs
,
1583 oprsz
, maxsz
, g
->data
, g
->fno
);
1589 g_assert_not_reached();
1591 tcg_swap_vecop_list(hold_list
);
1593 if (oprsz
< maxsz
) {
1594 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1598 /* Expand a vector four-operand operation. */
1599 void tcg_gen_gvec_4i(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
, uint32_t cofs
,
1600 uint32_t oprsz
, uint32_t maxsz
, int64_t c
,
1603 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1604 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1608 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
| cofs
);
1609 check_overlap_4(dofs
, aofs
, bofs
, cofs
, maxsz
);
1613 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1618 * Recall that ARM SVE allows vector sizes that are not a
1619 * power of 2, but always a multiple of 16. The intent is
1620 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1622 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1623 expand_4i_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, some
,
1624 32, TCG_TYPE_V256
, c
, g
->fniv
);
1625 if (some
== oprsz
) {
1636 expand_4i_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1637 16, TCG_TYPE_V128
, c
, g
->fniv
);
1640 expand_4i_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1641 8, TCG_TYPE_V64
, c
, g
->fniv
);
1645 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1646 expand_4i_i64(dofs
, aofs
, bofs
, cofs
, oprsz
, c
, g
->fni8
);
1647 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1648 expand_4i_i32(dofs
, aofs
, bofs
, cofs
, oprsz
, c
, g
->fni4
);
1650 assert(g
->fno
!= NULL
);
1651 tcg_gen_gvec_4_ool(dofs
, aofs
, bofs
, cofs
,
1652 oprsz
, maxsz
, c
, g
->fno
);
1658 g_assert_not_reached();
1660 tcg_swap_vecop_list(hold_list
);
1662 if (oprsz
< maxsz
) {
1663 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1668 * Expand specific vector operations.
1671 static void vec_mov2(unsigned vece
, TCGv_vec a
, TCGv_vec b
)
1673 tcg_gen_mov_vec(a
, b
);
1676 void tcg_gen_gvec_mov(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1677 uint32_t oprsz
, uint32_t maxsz
)
1679 static const GVecGen2 g
= {
1680 .fni8
= tcg_gen_mov_i64
,
1682 .fno
= gen_helper_gvec_mov
,
1683 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1686 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1688 check_size_align(oprsz
, maxsz
, dofs
);
1689 if (oprsz
< maxsz
) {
1690 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1695 void tcg_gen_gvec_dup_i32(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1696 uint32_t maxsz
, TCGv_i32 in
)
1698 check_size_align(oprsz
, maxsz
, dofs
);
1699 tcg_debug_assert(vece
<= MO_32
);
1700 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1703 void tcg_gen_gvec_dup_i64(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1704 uint32_t maxsz
, TCGv_i64 in
)
1706 check_size_align(oprsz
, maxsz
, dofs
);
1707 tcg_debug_assert(vece
<= MO_64
);
1708 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1711 void tcg_gen_gvec_dup_mem(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1712 uint32_t oprsz
, uint32_t maxsz
)
1714 check_size_align(oprsz
, maxsz
, dofs
);
1715 if (vece
<= MO_64
) {
1716 TCGType type
= choose_vector_type(NULL
, vece
, oprsz
, 0);
1718 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1719 tcg_gen_dup_mem_vec(vece
, t_vec
, tcg_env
, aofs
);
1720 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
1721 } else if (vece
<= MO_32
) {
1722 TCGv_i32 in
= tcg_temp_ebb_new_i32();
1725 tcg_gen_ld8u_i32(in
, tcg_env
, aofs
);
1728 tcg_gen_ld16u_i32(in
, tcg_env
, aofs
);
1731 tcg_gen_ld_i32(in
, tcg_env
, aofs
);
1734 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1735 tcg_temp_free_i32(in
);
1737 TCGv_i64 in
= tcg_temp_ebb_new_i64();
1738 tcg_gen_ld_i64(in
, tcg_env
, aofs
);
1739 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1740 tcg_temp_free_i64(in
);
1742 } else if (vece
== 4) {
1743 /* 128-bit duplicate. */
1746 tcg_debug_assert(oprsz
>= 16);
1747 if (TCG_TARGET_HAS_v128
) {
1748 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V128
);
1750 tcg_gen_ld_vec(in
, tcg_env
, aofs
);
1751 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1752 tcg_gen_st_vec(in
, tcg_env
, dofs
+ i
);
1755 TCGv_i64 in0
= tcg_temp_ebb_new_i64();
1756 TCGv_i64 in1
= tcg_temp_ebb_new_i64();
1758 tcg_gen_ld_i64(in0
, tcg_env
, aofs
);
1759 tcg_gen_ld_i64(in1
, tcg_env
, aofs
+ 8);
1760 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1761 tcg_gen_st_i64(in0
, tcg_env
, dofs
+ i
);
1762 tcg_gen_st_i64(in1
, tcg_env
, dofs
+ i
+ 8);
1764 tcg_temp_free_i64(in0
);
1765 tcg_temp_free_i64(in1
);
1767 if (oprsz
< maxsz
) {
1768 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1770 } else if (vece
== 5) {
1771 /* 256-bit duplicate. */
1774 tcg_debug_assert(oprsz
>= 32);
1775 tcg_debug_assert(oprsz
% 32 == 0);
1776 if (TCG_TARGET_HAS_v256
) {
1777 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V256
);
1779 tcg_gen_ld_vec(in
, tcg_env
, aofs
);
1780 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1781 tcg_gen_st_vec(in
, tcg_env
, dofs
+ i
);
1783 } else if (TCG_TARGET_HAS_v128
) {
1784 TCGv_vec in0
= tcg_temp_new_vec(TCG_TYPE_V128
);
1785 TCGv_vec in1
= tcg_temp_new_vec(TCG_TYPE_V128
);
1787 tcg_gen_ld_vec(in0
, tcg_env
, aofs
);
1788 tcg_gen_ld_vec(in1
, tcg_env
, aofs
+ 16);
1789 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1790 tcg_gen_st_vec(in0
, tcg_env
, dofs
+ i
);
1791 tcg_gen_st_vec(in1
, tcg_env
, dofs
+ i
+ 16);
1797 for (j
= 0; j
< 4; ++j
) {
1798 in
[j
] = tcg_temp_ebb_new_i64();
1799 tcg_gen_ld_i64(in
[j
], tcg_env
, aofs
+ j
* 8);
1801 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1802 for (j
= 0; j
< 4; ++j
) {
1803 tcg_gen_st_i64(in
[j
], tcg_env
, dofs
+ i
+ j
* 8);
1806 for (j
= 0; j
< 4; ++j
) {
1807 tcg_temp_free_i64(in
[j
]);
1810 if (oprsz
< maxsz
) {
1811 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1814 g_assert_not_reached();
1818 void tcg_gen_gvec_dup_imm(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1819 uint32_t maxsz
, uint64_t x
)
1821 check_size_align(oprsz
, maxsz
, dofs
);
1822 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, NULL
, x
);
1825 void tcg_gen_gvec_not(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1826 uint32_t oprsz
, uint32_t maxsz
)
1828 static const GVecGen2 g
= {
1829 .fni8
= tcg_gen_not_i64
,
1830 .fniv
= tcg_gen_not_vec
,
1831 .fno
= gen_helper_gvec_not
,
1832 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1834 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1837 /* Perform a vector addition using normal addition and a mask. The mask
1838 should be the sign bit of each lane. This 6-operation form is more
1839 efficient than separate additions when there are 4 or more lanes in
1840 the 64-bit operation. */
1841 static void gen_addv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
1843 TCGv_i64 t1
= tcg_temp_ebb_new_i64();
1844 TCGv_i64 t2
= tcg_temp_ebb_new_i64();
1845 TCGv_i64 t3
= tcg_temp_ebb_new_i64();
1847 tcg_gen_andc_i64(t1
, a
, m
);
1848 tcg_gen_andc_i64(t2
, b
, m
);
1849 tcg_gen_xor_i64(t3
, a
, b
);
1850 tcg_gen_add_i64(d
, t1
, t2
);
1851 tcg_gen_and_i64(t3
, t3
, m
);
1852 tcg_gen_xor_i64(d
, d
, t3
);
1854 tcg_temp_free_i64(t1
);
1855 tcg_temp_free_i64(t2
);
1856 tcg_temp_free_i64(t3
);
1859 void tcg_gen_vec_add8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1861 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
1862 gen_addv_mask(d
, a
, b
, m
);
1865 void tcg_gen_vec_add8_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
1867 TCGv_i32 m
= tcg_constant_i32((int32_t)dup_const(MO_8
, 0x80));
1868 TCGv_i32 t1
= tcg_temp_ebb_new_i32();
1869 TCGv_i32 t2
= tcg_temp_ebb_new_i32();
1870 TCGv_i32 t3
= tcg_temp_ebb_new_i32();
1872 tcg_gen_andc_i32(t1
, a
, m
);
1873 tcg_gen_andc_i32(t2
, b
, m
);
1874 tcg_gen_xor_i32(t3
, a
, b
);
1875 tcg_gen_add_i32(d
, t1
, t2
);
1876 tcg_gen_and_i32(t3
, t3
, m
);
1877 tcg_gen_xor_i32(d
, d
, t3
);
1879 tcg_temp_free_i32(t1
);
1880 tcg_temp_free_i32(t2
);
1881 tcg_temp_free_i32(t3
);
1884 void tcg_gen_vec_add16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1886 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
1887 gen_addv_mask(d
, a
, b
, m
);
1890 void tcg_gen_vec_add16_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
1892 TCGv_i32 t1
= tcg_temp_ebb_new_i32();
1893 TCGv_i32 t2
= tcg_temp_ebb_new_i32();
1895 tcg_gen_andi_i32(t1
, a
, ~0xffff);
1896 tcg_gen_add_i32(t2
, a
, b
);
1897 tcg_gen_add_i32(t1
, t1
, b
);
1898 tcg_gen_deposit_i32(d
, t1
, t2
, 0, 16);
1900 tcg_temp_free_i32(t1
);
1901 tcg_temp_free_i32(t2
);
1904 void tcg_gen_vec_add32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1906 TCGv_i64 t1
= tcg_temp_ebb_new_i64();
1907 TCGv_i64 t2
= tcg_temp_ebb_new_i64();
1909 tcg_gen_andi_i64(t1
, a
, ~0xffffffffull
);
1910 tcg_gen_add_i64(t2
, a
, b
);
1911 tcg_gen_add_i64(t1
, t1
, b
);
1912 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
1914 tcg_temp_free_i64(t1
);
1915 tcg_temp_free_i64(t2
);
1918 static const TCGOpcode vecop_list_add
[] = { INDEX_op_add_vec
, 0 };
1920 void tcg_gen_gvec_add(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1921 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1923 static const GVecGen3 g
[4] = {
1924 { .fni8
= tcg_gen_vec_add8_i64
,
1925 .fniv
= tcg_gen_add_vec
,
1926 .fno
= gen_helper_gvec_add8
,
1927 .opt_opc
= vecop_list_add
,
1929 { .fni8
= tcg_gen_vec_add16_i64
,
1930 .fniv
= tcg_gen_add_vec
,
1931 .fno
= gen_helper_gvec_add16
,
1932 .opt_opc
= vecop_list_add
,
1934 { .fni4
= tcg_gen_add_i32
,
1935 .fniv
= tcg_gen_add_vec
,
1936 .fno
= gen_helper_gvec_add32
,
1937 .opt_opc
= vecop_list_add
,
1939 { .fni8
= tcg_gen_add_i64
,
1940 .fniv
= tcg_gen_add_vec
,
1941 .fno
= gen_helper_gvec_add64
,
1942 .opt_opc
= vecop_list_add
,
1943 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1947 tcg_debug_assert(vece
<= MO_64
);
1948 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1951 void tcg_gen_gvec_adds(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1952 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1954 static const GVecGen2s g
[4] = {
1955 { .fni8
= tcg_gen_vec_add8_i64
,
1956 .fniv
= tcg_gen_add_vec
,
1957 .fno
= gen_helper_gvec_adds8
,
1958 .opt_opc
= vecop_list_add
,
1960 { .fni8
= tcg_gen_vec_add16_i64
,
1961 .fniv
= tcg_gen_add_vec
,
1962 .fno
= gen_helper_gvec_adds16
,
1963 .opt_opc
= vecop_list_add
,
1965 { .fni4
= tcg_gen_add_i32
,
1966 .fniv
= tcg_gen_add_vec
,
1967 .fno
= gen_helper_gvec_adds32
,
1968 .opt_opc
= vecop_list_add
,
1970 { .fni8
= tcg_gen_add_i64
,
1971 .fniv
= tcg_gen_add_vec
,
1972 .fno
= gen_helper_gvec_adds64
,
1973 .opt_opc
= vecop_list_add
,
1974 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1978 tcg_debug_assert(vece
<= MO_64
);
1979 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1982 void tcg_gen_gvec_addi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1983 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
1985 TCGv_i64 tmp
= tcg_constant_i64(c
);
1986 tcg_gen_gvec_adds(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
1989 static const TCGOpcode vecop_list_sub
[] = { INDEX_op_sub_vec
, 0 };
1991 void tcg_gen_gvec_subs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1992 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1994 static const GVecGen2s g
[4] = {
1995 { .fni8
= tcg_gen_vec_sub8_i64
,
1996 .fniv
= tcg_gen_sub_vec
,
1997 .fno
= gen_helper_gvec_subs8
,
1998 .opt_opc
= vecop_list_sub
,
2000 { .fni8
= tcg_gen_vec_sub16_i64
,
2001 .fniv
= tcg_gen_sub_vec
,
2002 .fno
= gen_helper_gvec_subs16
,
2003 .opt_opc
= vecop_list_sub
,
2005 { .fni4
= tcg_gen_sub_i32
,
2006 .fniv
= tcg_gen_sub_vec
,
2007 .fno
= gen_helper_gvec_subs32
,
2008 .opt_opc
= vecop_list_sub
,
2010 { .fni8
= tcg_gen_sub_i64
,
2011 .fniv
= tcg_gen_sub_vec
,
2012 .fno
= gen_helper_gvec_subs64
,
2013 .opt_opc
= vecop_list_sub
,
2014 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2018 tcg_debug_assert(vece
<= MO_64
);
2019 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
2022 /* Perform a vector subtraction using normal subtraction and a mask.
2023 Compare gen_addv_mask above. */
2024 static void gen_subv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
2026 TCGv_i64 t1
= tcg_temp_ebb_new_i64();
2027 TCGv_i64 t2
= tcg_temp_ebb_new_i64();
2028 TCGv_i64 t3
= tcg_temp_ebb_new_i64();
2030 tcg_gen_or_i64(t1
, a
, m
);
2031 tcg_gen_andc_i64(t2
, b
, m
);
2032 tcg_gen_eqv_i64(t3
, a
, b
);
2033 tcg_gen_sub_i64(d
, t1
, t2
);
2034 tcg_gen_and_i64(t3
, t3
, m
);
2035 tcg_gen_xor_i64(d
, d
, t3
);
2037 tcg_temp_free_i64(t1
);
2038 tcg_temp_free_i64(t2
);
2039 tcg_temp_free_i64(t3
);
2042 void tcg_gen_vec_sub8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2044 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
2045 gen_subv_mask(d
, a
, b
, m
);
2048 void tcg_gen_vec_sub8_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2050 TCGv_i32 m
= tcg_constant_i32((int32_t)dup_const(MO_8
, 0x80));
2051 TCGv_i32 t1
= tcg_temp_ebb_new_i32();
2052 TCGv_i32 t2
= tcg_temp_ebb_new_i32();
2053 TCGv_i32 t3
= tcg_temp_ebb_new_i32();
2055 tcg_gen_or_i32(t1
, a
, m
);
2056 tcg_gen_andc_i32(t2
, b
, m
);
2057 tcg_gen_eqv_i32(t3
, a
, b
);
2058 tcg_gen_sub_i32(d
, t1
, t2
);
2059 tcg_gen_and_i32(t3
, t3
, m
);
2060 tcg_gen_xor_i32(d
, d
, t3
);
2062 tcg_temp_free_i32(t1
);
2063 tcg_temp_free_i32(t2
);
2064 tcg_temp_free_i32(t3
);
2067 void tcg_gen_vec_sub16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2069 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
2070 gen_subv_mask(d
, a
, b
, m
);
2073 void tcg_gen_vec_sub16_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2075 TCGv_i32 t1
= tcg_temp_ebb_new_i32();
2076 TCGv_i32 t2
= tcg_temp_ebb_new_i32();
2078 tcg_gen_andi_i32(t1
, b
, ~0xffff);
2079 tcg_gen_sub_i32(t2
, a
, b
);
2080 tcg_gen_sub_i32(t1
, a
, t1
);
2081 tcg_gen_deposit_i32(d
, t1
, t2
, 0, 16);
2083 tcg_temp_free_i32(t1
);
2084 tcg_temp_free_i32(t2
);
2087 void tcg_gen_vec_sub32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2089 TCGv_i64 t1
= tcg_temp_ebb_new_i64();
2090 TCGv_i64 t2
= tcg_temp_ebb_new_i64();
2092 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
2093 tcg_gen_sub_i64(t2
, a
, b
);
2094 tcg_gen_sub_i64(t1
, a
, t1
);
2095 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
2097 tcg_temp_free_i64(t1
);
2098 tcg_temp_free_i64(t2
);
2101 void tcg_gen_gvec_sub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2102 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2104 static const GVecGen3 g
[4] = {
2105 { .fni8
= tcg_gen_vec_sub8_i64
,
2106 .fniv
= tcg_gen_sub_vec
,
2107 .fno
= gen_helper_gvec_sub8
,
2108 .opt_opc
= vecop_list_sub
,
2110 { .fni8
= tcg_gen_vec_sub16_i64
,
2111 .fniv
= tcg_gen_sub_vec
,
2112 .fno
= gen_helper_gvec_sub16
,
2113 .opt_opc
= vecop_list_sub
,
2115 { .fni4
= tcg_gen_sub_i32
,
2116 .fniv
= tcg_gen_sub_vec
,
2117 .fno
= gen_helper_gvec_sub32
,
2118 .opt_opc
= vecop_list_sub
,
2120 { .fni8
= tcg_gen_sub_i64
,
2121 .fniv
= tcg_gen_sub_vec
,
2122 .fno
= gen_helper_gvec_sub64
,
2123 .opt_opc
= vecop_list_sub
,
2124 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2128 tcg_debug_assert(vece
<= MO_64
);
2129 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2132 static const TCGOpcode vecop_list_mul
[] = { INDEX_op_mul_vec
, 0 };
2134 void tcg_gen_gvec_mul(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2135 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2137 static const GVecGen3 g
[4] = {
2138 { .fniv
= tcg_gen_mul_vec
,
2139 .fno
= gen_helper_gvec_mul8
,
2140 .opt_opc
= vecop_list_mul
,
2142 { .fniv
= tcg_gen_mul_vec
,
2143 .fno
= gen_helper_gvec_mul16
,
2144 .opt_opc
= vecop_list_mul
,
2146 { .fni4
= tcg_gen_mul_i32
,
2147 .fniv
= tcg_gen_mul_vec
,
2148 .fno
= gen_helper_gvec_mul32
,
2149 .opt_opc
= vecop_list_mul
,
2151 { .fni8
= tcg_gen_mul_i64
,
2152 .fniv
= tcg_gen_mul_vec
,
2153 .fno
= gen_helper_gvec_mul64
,
2154 .opt_opc
= vecop_list_mul
,
2155 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2159 tcg_debug_assert(vece
<= MO_64
);
2160 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2163 void tcg_gen_gvec_muls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2164 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2166 static const GVecGen2s g
[4] = {
2167 { .fniv
= tcg_gen_mul_vec
,
2168 .fno
= gen_helper_gvec_muls8
,
2169 .opt_opc
= vecop_list_mul
,
2171 { .fniv
= tcg_gen_mul_vec
,
2172 .fno
= gen_helper_gvec_muls16
,
2173 .opt_opc
= vecop_list_mul
,
2175 { .fni4
= tcg_gen_mul_i32
,
2176 .fniv
= tcg_gen_mul_vec
,
2177 .fno
= gen_helper_gvec_muls32
,
2178 .opt_opc
= vecop_list_mul
,
2180 { .fni8
= tcg_gen_mul_i64
,
2181 .fniv
= tcg_gen_mul_vec
,
2182 .fno
= gen_helper_gvec_muls64
,
2183 .opt_opc
= vecop_list_mul
,
2184 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2188 tcg_debug_assert(vece
<= MO_64
);
2189 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
2192 void tcg_gen_gvec_muli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2193 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2195 TCGv_i64 tmp
= tcg_constant_i64(c
);
2196 tcg_gen_gvec_muls(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
2199 void tcg_gen_gvec_ssadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2200 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2202 static const TCGOpcode vecop_list
[] = { INDEX_op_ssadd_vec
, 0 };
2203 static const GVecGen3 g
[4] = {
2204 { .fniv
= tcg_gen_ssadd_vec
,
2205 .fno
= gen_helper_gvec_ssadd8
,
2206 .opt_opc
= vecop_list
,
2208 { .fniv
= tcg_gen_ssadd_vec
,
2209 .fno
= gen_helper_gvec_ssadd16
,
2210 .opt_opc
= vecop_list
,
2212 { .fniv
= tcg_gen_ssadd_vec
,
2213 .fno
= gen_helper_gvec_ssadd32
,
2214 .opt_opc
= vecop_list
,
2216 { .fniv
= tcg_gen_ssadd_vec
,
2217 .fno
= gen_helper_gvec_ssadd64
,
2218 .opt_opc
= vecop_list
,
2221 tcg_debug_assert(vece
<= MO_64
);
2222 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2225 void tcg_gen_gvec_sssub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2226 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2228 static const TCGOpcode vecop_list
[] = { INDEX_op_sssub_vec
, 0 };
2229 static const GVecGen3 g
[4] = {
2230 { .fniv
= tcg_gen_sssub_vec
,
2231 .fno
= gen_helper_gvec_sssub8
,
2232 .opt_opc
= vecop_list
,
2234 { .fniv
= tcg_gen_sssub_vec
,
2235 .fno
= gen_helper_gvec_sssub16
,
2236 .opt_opc
= vecop_list
,
2238 { .fniv
= tcg_gen_sssub_vec
,
2239 .fno
= gen_helper_gvec_sssub32
,
2240 .opt_opc
= vecop_list
,
2242 { .fniv
= tcg_gen_sssub_vec
,
2243 .fno
= gen_helper_gvec_sssub64
,
2244 .opt_opc
= vecop_list
,
2247 tcg_debug_assert(vece
<= MO_64
);
2248 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2251 static void tcg_gen_usadd_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2253 TCGv_i32 max
= tcg_constant_i32(-1);
2254 tcg_gen_add_i32(d
, a
, b
);
2255 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2258 static void tcg_gen_usadd_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2260 TCGv_i64 max
= tcg_constant_i64(-1);
2261 tcg_gen_add_i64(d
, a
, b
);
2262 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2265 void tcg_gen_gvec_usadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2266 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2268 static const TCGOpcode vecop_list
[] = { INDEX_op_usadd_vec
, 0 };
2269 static const GVecGen3 g
[4] = {
2270 { .fniv
= tcg_gen_usadd_vec
,
2271 .fno
= gen_helper_gvec_usadd8
,
2272 .opt_opc
= vecop_list
,
2274 { .fniv
= tcg_gen_usadd_vec
,
2275 .fno
= gen_helper_gvec_usadd16
,
2276 .opt_opc
= vecop_list
,
2278 { .fni4
= tcg_gen_usadd_i32
,
2279 .fniv
= tcg_gen_usadd_vec
,
2280 .fno
= gen_helper_gvec_usadd32
,
2281 .opt_opc
= vecop_list
,
2283 { .fni8
= tcg_gen_usadd_i64
,
2284 .fniv
= tcg_gen_usadd_vec
,
2285 .fno
= gen_helper_gvec_usadd64
,
2286 .opt_opc
= vecop_list
,
2289 tcg_debug_assert(vece
<= MO_64
);
2290 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2293 static void tcg_gen_ussub_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2295 TCGv_i32 min
= tcg_constant_i32(0);
2296 tcg_gen_sub_i32(d
, a
, b
);
2297 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2300 static void tcg_gen_ussub_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2302 TCGv_i64 min
= tcg_constant_i64(0);
2303 tcg_gen_sub_i64(d
, a
, b
);
2304 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2307 void tcg_gen_gvec_ussub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2308 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2310 static const TCGOpcode vecop_list
[] = { INDEX_op_ussub_vec
, 0 };
2311 static const GVecGen3 g
[4] = {
2312 { .fniv
= tcg_gen_ussub_vec
,
2313 .fno
= gen_helper_gvec_ussub8
,
2314 .opt_opc
= vecop_list
,
2316 { .fniv
= tcg_gen_ussub_vec
,
2317 .fno
= gen_helper_gvec_ussub16
,
2318 .opt_opc
= vecop_list
,
2320 { .fni4
= tcg_gen_ussub_i32
,
2321 .fniv
= tcg_gen_ussub_vec
,
2322 .fno
= gen_helper_gvec_ussub32
,
2323 .opt_opc
= vecop_list
,
2325 { .fni8
= tcg_gen_ussub_i64
,
2326 .fniv
= tcg_gen_ussub_vec
,
2327 .fno
= gen_helper_gvec_ussub64
,
2328 .opt_opc
= vecop_list
,
2331 tcg_debug_assert(vece
<= MO_64
);
2332 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2335 void tcg_gen_gvec_smin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2336 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2338 static const TCGOpcode vecop_list
[] = { INDEX_op_smin_vec
, 0 };
2339 static const GVecGen3 g
[4] = {
2340 { .fniv
= tcg_gen_smin_vec
,
2341 .fno
= gen_helper_gvec_smin8
,
2342 .opt_opc
= vecop_list
,
2344 { .fniv
= tcg_gen_smin_vec
,
2345 .fno
= gen_helper_gvec_smin16
,
2346 .opt_opc
= vecop_list
,
2348 { .fni4
= tcg_gen_smin_i32
,
2349 .fniv
= tcg_gen_smin_vec
,
2350 .fno
= gen_helper_gvec_smin32
,
2351 .opt_opc
= vecop_list
,
2353 { .fni8
= tcg_gen_smin_i64
,
2354 .fniv
= tcg_gen_smin_vec
,
2355 .fno
= gen_helper_gvec_smin64
,
2356 .opt_opc
= vecop_list
,
2359 tcg_debug_assert(vece
<= MO_64
);
2360 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2363 void tcg_gen_gvec_umin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2364 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2366 static const TCGOpcode vecop_list
[] = { INDEX_op_umin_vec
, 0 };
2367 static const GVecGen3 g
[4] = {
2368 { .fniv
= tcg_gen_umin_vec
,
2369 .fno
= gen_helper_gvec_umin8
,
2370 .opt_opc
= vecop_list
,
2372 { .fniv
= tcg_gen_umin_vec
,
2373 .fno
= gen_helper_gvec_umin16
,
2374 .opt_opc
= vecop_list
,
2376 { .fni4
= tcg_gen_umin_i32
,
2377 .fniv
= tcg_gen_umin_vec
,
2378 .fno
= gen_helper_gvec_umin32
,
2379 .opt_opc
= vecop_list
,
2381 { .fni8
= tcg_gen_umin_i64
,
2382 .fniv
= tcg_gen_umin_vec
,
2383 .fno
= gen_helper_gvec_umin64
,
2384 .opt_opc
= vecop_list
,
2387 tcg_debug_assert(vece
<= MO_64
);
2388 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2391 void tcg_gen_gvec_smax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2392 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2394 static const TCGOpcode vecop_list
[] = { INDEX_op_smax_vec
, 0 };
2395 static const GVecGen3 g
[4] = {
2396 { .fniv
= tcg_gen_smax_vec
,
2397 .fno
= gen_helper_gvec_smax8
,
2398 .opt_opc
= vecop_list
,
2400 { .fniv
= tcg_gen_smax_vec
,
2401 .fno
= gen_helper_gvec_smax16
,
2402 .opt_opc
= vecop_list
,
2404 { .fni4
= tcg_gen_smax_i32
,
2405 .fniv
= tcg_gen_smax_vec
,
2406 .fno
= gen_helper_gvec_smax32
,
2407 .opt_opc
= vecop_list
,
2409 { .fni8
= tcg_gen_smax_i64
,
2410 .fniv
= tcg_gen_smax_vec
,
2411 .fno
= gen_helper_gvec_smax64
,
2412 .opt_opc
= vecop_list
,
2415 tcg_debug_assert(vece
<= MO_64
);
2416 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2419 void tcg_gen_gvec_umax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2420 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2422 static const TCGOpcode vecop_list
[] = { INDEX_op_umax_vec
, 0 };
2423 static const GVecGen3 g
[4] = {
2424 { .fniv
= tcg_gen_umax_vec
,
2425 .fno
= gen_helper_gvec_umax8
,
2426 .opt_opc
= vecop_list
,
2428 { .fniv
= tcg_gen_umax_vec
,
2429 .fno
= gen_helper_gvec_umax16
,
2430 .opt_opc
= vecop_list
,
2432 { .fni4
= tcg_gen_umax_i32
,
2433 .fniv
= tcg_gen_umax_vec
,
2434 .fno
= gen_helper_gvec_umax32
,
2435 .opt_opc
= vecop_list
,
2437 { .fni8
= tcg_gen_umax_i64
,
2438 .fniv
= tcg_gen_umax_vec
,
2439 .fno
= gen_helper_gvec_umax64
,
2440 .opt_opc
= vecop_list
,
2443 tcg_debug_assert(vece
<= MO_64
);
2444 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2447 /* Perform a vector negation using normal negation and a mask.
2448 Compare gen_subv_mask above. */
2449 static void gen_negv_mask(TCGv_i64 d
, TCGv_i64 b
, TCGv_i64 m
)
2451 TCGv_i64 t2
= tcg_temp_ebb_new_i64();
2452 TCGv_i64 t3
= tcg_temp_ebb_new_i64();
2454 tcg_gen_andc_i64(t3
, m
, b
);
2455 tcg_gen_andc_i64(t2
, b
, m
);
2456 tcg_gen_sub_i64(d
, m
, t2
);
2457 tcg_gen_xor_i64(d
, d
, t3
);
2459 tcg_temp_free_i64(t2
);
2460 tcg_temp_free_i64(t3
);
2463 void tcg_gen_vec_neg8_i64(TCGv_i64 d
, TCGv_i64 b
)
2465 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
2466 gen_negv_mask(d
, b
, m
);
2469 void tcg_gen_vec_neg16_i64(TCGv_i64 d
, TCGv_i64 b
)
2471 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
2472 gen_negv_mask(d
, b
, m
);
2475 void tcg_gen_vec_neg32_i64(TCGv_i64 d
, TCGv_i64 b
)
2477 TCGv_i64 t1
= tcg_temp_ebb_new_i64();
2478 TCGv_i64 t2
= tcg_temp_ebb_new_i64();
2480 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
2481 tcg_gen_neg_i64(t2
, b
);
2482 tcg_gen_neg_i64(t1
, t1
);
2483 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
2485 tcg_temp_free_i64(t1
);
2486 tcg_temp_free_i64(t2
);
2489 void tcg_gen_gvec_neg(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2490 uint32_t oprsz
, uint32_t maxsz
)
2492 static const TCGOpcode vecop_list
[] = { INDEX_op_neg_vec
, 0 };
2493 static const GVecGen2 g
[4] = {
2494 { .fni8
= tcg_gen_vec_neg8_i64
,
2495 .fniv
= tcg_gen_neg_vec
,
2496 .fno
= gen_helper_gvec_neg8
,
2497 .opt_opc
= vecop_list
,
2499 { .fni8
= tcg_gen_vec_neg16_i64
,
2500 .fniv
= tcg_gen_neg_vec
,
2501 .fno
= gen_helper_gvec_neg16
,
2502 .opt_opc
= vecop_list
,
2504 { .fni4
= tcg_gen_neg_i32
,
2505 .fniv
= tcg_gen_neg_vec
,
2506 .fno
= gen_helper_gvec_neg32
,
2507 .opt_opc
= vecop_list
,
2509 { .fni8
= tcg_gen_neg_i64
,
2510 .fniv
= tcg_gen_neg_vec
,
2511 .fno
= gen_helper_gvec_neg64
,
2512 .opt_opc
= vecop_list
,
2513 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2517 tcg_debug_assert(vece
<= MO_64
);
2518 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2521 static void gen_absv_mask(TCGv_i64 d
, TCGv_i64 b
, unsigned vece
)
2523 TCGv_i64 t
= tcg_temp_ebb_new_i64();
2524 int nbit
= 8 << vece
;
2526 /* Create -1 for each negative element. */
2527 tcg_gen_shri_i64(t
, b
, nbit
- 1);
2528 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2529 tcg_gen_muli_i64(t
, t
, (1 << nbit
) - 1);
2532 * Invert (via xor -1) and add one.
2533 * Because of the ordering the msb is cleared,
2534 * so we never have carry into the next element.
2536 tcg_gen_xor_i64(d
, b
, t
);
2537 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2538 tcg_gen_add_i64(d
, d
, t
);
2540 tcg_temp_free_i64(t
);
2543 static void tcg_gen_vec_abs8_i64(TCGv_i64 d
, TCGv_i64 b
)
2545 gen_absv_mask(d
, b
, MO_8
);
2548 static void tcg_gen_vec_abs16_i64(TCGv_i64 d
, TCGv_i64 b
)
2550 gen_absv_mask(d
, b
, MO_16
);
2553 void tcg_gen_gvec_abs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2554 uint32_t oprsz
, uint32_t maxsz
)
2556 static const TCGOpcode vecop_list
[] = { INDEX_op_abs_vec
, 0 };
2557 static const GVecGen2 g
[4] = {
2558 { .fni8
= tcg_gen_vec_abs8_i64
,
2559 .fniv
= tcg_gen_abs_vec
,
2560 .fno
= gen_helper_gvec_abs8
,
2561 .opt_opc
= vecop_list
,
2563 { .fni8
= tcg_gen_vec_abs16_i64
,
2564 .fniv
= tcg_gen_abs_vec
,
2565 .fno
= gen_helper_gvec_abs16
,
2566 .opt_opc
= vecop_list
,
2568 { .fni4
= tcg_gen_abs_i32
,
2569 .fniv
= tcg_gen_abs_vec
,
2570 .fno
= gen_helper_gvec_abs32
,
2571 .opt_opc
= vecop_list
,
2573 { .fni8
= tcg_gen_abs_i64
,
2574 .fniv
= tcg_gen_abs_vec
,
2575 .fno
= gen_helper_gvec_abs64
,
2576 .opt_opc
= vecop_list
,
2577 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2581 tcg_debug_assert(vece
<= MO_64
);
2582 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2585 void tcg_gen_gvec_and(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2586 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2588 static const GVecGen3 g
= {
2589 .fni8
= tcg_gen_and_i64
,
2590 .fniv
= tcg_gen_and_vec
,
2591 .fno
= gen_helper_gvec_and
,
2592 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2596 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2598 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2602 void tcg_gen_gvec_or(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2603 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2605 static const GVecGen3 g
= {
2606 .fni8
= tcg_gen_or_i64
,
2607 .fniv
= tcg_gen_or_vec
,
2608 .fno
= gen_helper_gvec_or
,
2609 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2613 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2615 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2619 void tcg_gen_gvec_xor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2620 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2622 static const GVecGen3 g
= {
2623 .fni8
= tcg_gen_xor_i64
,
2624 .fniv
= tcg_gen_xor_vec
,
2625 .fno
= gen_helper_gvec_xor
,
2626 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2630 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2632 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2636 void tcg_gen_gvec_andc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2637 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2639 static const GVecGen3 g
= {
2640 .fni8
= tcg_gen_andc_i64
,
2641 .fniv
= tcg_gen_andc_vec
,
2642 .fno
= gen_helper_gvec_andc
,
2643 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2647 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2649 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2653 void tcg_gen_gvec_orc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2654 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2656 static const GVecGen3 g
= {
2657 .fni8
= tcg_gen_orc_i64
,
2658 .fniv
= tcg_gen_orc_vec
,
2659 .fno
= gen_helper_gvec_orc
,
2660 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2664 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2666 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2670 void tcg_gen_gvec_nand(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2671 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2673 static const GVecGen3 g
= {
2674 .fni8
= tcg_gen_nand_i64
,
2675 .fniv
= tcg_gen_nand_vec
,
2676 .fno
= gen_helper_gvec_nand
,
2677 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2681 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2683 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2687 void tcg_gen_gvec_nor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2688 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2690 static const GVecGen3 g
= {
2691 .fni8
= tcg_gen_nor_i64
,
2692 .fniv
= tcg_gen_nor_vec
,
2693 .fno
= gen_helper_gvec_nor
,
2694 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2698 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2700 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2704 void tcg_gen_gvec_eqv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2705 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2707 static const GVecGen3 g
= {
2708 .fni8
= tcg_gen_eqv_i64
,
2709 .fniv
= tcg_gen_eqv_vec
,
2710 .fno
= gen_helper_gvec_eqv
,
2711 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2715 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2717 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2721 static const GVecGen2s gop_ands
= {
2722 .fni8
= tcg_gen_and_i64
,
2723 .fniv
= tcg_gen_and_vec
,
2724 .fno
= gen_helper_gvec_ands
,
2725 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2729 void tcg_gen_gvec_ands(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2730 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2732 TCGv_i64 tmp
= tcg_temp_ebb_new_i64();
2733 tcg_gen_dup_i64(vece
, tmp
, c
);
2734 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2735 tcg_temp_free_i64(tmp
);
2738 void tcg_gen_gvec_andi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2739 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2741 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2742 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2745 void tcg_gen_gvec_andcs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2746 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2748 static GVecGen2s g
= {
2749 .fni8
= tcg_gen_andc_i64
,
2750 .fniv
= tcg_gen_andc_vec
,
2751 .fno
= gen_helper_gvec_andcs
,
2752 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2756 TCGv_i64 tmp
= tcg_temp_ebb_new_i64();
2757 tcg_gen_dup_i64(vece
, tmp
, c
);
2758 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &g
);
2759 tcg_temp_free_i64(tmp
);
2762 static const GVecGen2s gop_xors
= {
2763 .fni8
= tcg_gen_xor_i64
,
2764 .fniv
= tcg_gen_xor_vec
,
2765 .fno
= gen_helper_gvec_xors
,
2766 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2770 void tcg_gen_gvec_xors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2771 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2773 TCGv_i64 tmp
= tcg_temp_ebb_new_i64();
2774 tcg_gen_dup_i64(vece
, tmp
, c
);
2775 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2776 tcg_temp_free_i64(tmp
);
2779 void tcg_gen_gvec_xori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2780 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2782 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2783 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2786 static const GVecGen2s gop_ors
= {
2787 .fni8
= tcg_gen_or_i64
,
2788 .fniv
= tcg_gen_or_vec
,
2789 .fno
= gen_helper_gvec_ors
,
2790 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2794 void tcg_gen_gvec_ors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2795 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2797 TCGv_i64 tmp
= tcg_temp_ebb_new_i64();
2798 tcg_gen_dup_i64(vece
, tmp
, c
);
2799 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2800 tcg_temp_free_i64(tmp
);
2803 void tcg_gen_gvec_ori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2804 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2806 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2807 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2810 void tcg_gen_vec_shl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2812 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
2813 tcg_gen_shli_i64(d
, a
, c
);
2814 tcg_gen_andi_i64(d
, d
, mask
);
2817 void tcg_gen_vec_shl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2819 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
2820 tcg_gen_shli_i64(d
, a
, c
);
2821 tcg_gen_andi_i64(d
, d
, mask
);
2824 void tcg_gen_vec_shl8i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2826 uint32_t mask
= dup_const(MO_8
, 0xff << c
);
2827 tcg_gen_shli_i32(d
, a
, c
);
2828 tcg_gen_andi_i32(d
, d
, mask
);
2831 void tcg_gen_vec_shl16i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2833 uint32_t mask
= dup_const(MO_16
, 0xffff << c
);
2834 tcg_gen_shli_i32(d
, a
, c
);
2835 tcg_gen_andi_i32(d
, d
, mask
);
2838 void tcg_gen_gvec_shli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2839 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2841 static const TCGOpcode vecop_list
[] = { INDEX_op_shli_vec
, 0 };
2842 static const GVecGen2i g
[4] = {
2843 { .fni8
= tcg_gen_vec_shl8i_i64
,
2844 .fniv
= tcg_gen_shli_vec
,
2845 .fno
= gen_helper_gvec_shl8i
,
2846 .opt_opc
= vecop_list
,
2848 { .fni8
= tcg_gen_vec_shl16i_i64
,
2849 .fniv
= tcg_gen_shli_vec
,
2850 .fno
= gen_helper_gvec_shl16i
,
2851 .opt_opc
= vecop_list
,
2853 { .fni4
= tcg_gen_shli_i32
,
2854 .fniv
= tcg_gen_shli_vec
,
2855 .fno
= gen_helper_gvec_shl32i
,
2856 .opt_opc
= vecop_list
,
2858 { .fni8
= tcg_gen_shli_i64
,
2859 .fniv
= tcg_gen_shli_vec
,
2860 .fno
= gen_helper_gvec_shl64i
,
2861 .opt_opc
= vecop_list
,
2862 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2866 tcg_debug_assert(vece
<= MO_64
);
2867 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2869 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2871 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2875 void tcg_gen_vec_shr8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2877 uint64_t mask
= dup_const(MO_8
, 0xff >> c
);
2878 tcg_gen_shri_i64(d
, a
, c
);
2879 tcg_gen_andi_i64(d
, d
, mask
);
2882 void tcg_gen_vec_shr16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2884 uint64_t mask
= dup_const(MO_16
, 0xffff >> c
);
2885 tcg_gen_shri_i64(d
, a
, c
);
2886 tcg_gen_andi_i64(d
, d
, mask
);
2889 void tcg_gen_vec_shr8i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2891 uint32_t mask
= dup_const(MO_8
, 0xff >> c
);
2892 tcg_gen_shri_i32(d
, a
, c
);
2893 tcg_gen_andi_i32(d
, d
, mask
);
2896 void tcg_gen_vec_shr16i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2898 uint32_t mask
= dup_const(MO_16
, 0xffff >> c
);
2899 tcg_gen_shri_i32(d
, a
, c
);
2900 tcg_gen_andi_i32(d
, d
, mask
);
2903 void tcg_gen_gvec_shri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2904 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2906 static const TCGOpcode vecop_list
[] = { INDEX_op_shri_vec
, 0 };
2907 static const GVecGen2i g
[4] = {
2908 { .fni8
= tcg_gen_vec_shr8i_i64
,
2909 .fniv
= tcg_gen_shri_vec
,
2910 .fno
= gen_helper_gvec_shr8i
,
2911 .opt_opc
= vecop_list
,
2913 { .fni8
= tcg_gen_vec_shr16i_i64
,
2914 .fniv
= tcg_gen_shri_vec
,
2915 .fno
= gen_helper_gvec_shr16i
,
2916 .opt_opc
= vecop_list
,
2918 { .fni4
= tcg_gen_shri_i32
,
2919 .fniv
= tcg_gen_shri_vec
,
2920 .fno
= gen_helper_gvec_shr32i
,
2921 .opt_opc
= vecop_list
,
2923 { .fni8
= tcg_gen_shri_i64
,
2924 .fniv
= tcg_gen_shri_vec
,
2925 .fno
= gen_helper_gvec_shr64i
,
2926 .opt_opc
= vecop_list
,
2927 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2931 tcg_debug_assert(vece
<= MO_64
);
2932 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2934 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2936 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2940 void tcg_gen_vec_sar8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2942 uint64_t s_mask
= dup_const(MO_8
, 0x80 >> c
);
2943 uint64_t c_mask
= dup_const(MO_8
, 0xff >> c
);
2944 TCGv_i64 s
= tcg_temp_ebb_new_i64();
2946 tcg_gen_shri_i64(d
, a
, c
);
2947 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2948 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2949 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2950 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2951 tcg_temp_free_i64(s
);
2954 void tcg_gen_vec_sar16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2956 uint64_t s_mask
= dup_const(MO_16
, 0x8000 >> c
);
2957 uint64_t c_mask
= dup_const(MO_16
, 0xffff >> c
);
2958 TCGv_i64 s
= tcg_temp_ebb_new_i64();
2960 tcg_gen_shri_i64(d
, a
, c
);
2961 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2962 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2963 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2964 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2965 tcg_temp_free_i64(s
);
2968 void tcg_gen_vec_sar8i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2970 uint32_t s_mask
= dup_const(MO_8
, 0x80 >> c
);
2971 uint32_t c_mask
= dup_const(MO_8
, 0xff >> c
);
2972 TCGv_i32 s
= tcg_temp_ebb_new_i32();
2974 tcg_gen_shri_i32(d
, a
, c
);
2975 tcg_gen_andi_i32(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2976 tcg_gen_muli_i32(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2977 tcg_gen_andi_i32(d
, d
, c_mask
); /* clear out bits above sign */
2978 tcg_gen_or_i32(d
, d
, s
); /* include sign extension */
2979 tcg_temp_free_i32(s
);
2982 void tcg_gen_vec_sar16i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2984 uint32_t s_mask
= dup_const(MO_16
, 0x8000 >> c
);
2985 uint32_t c_mask
= dup_const(MO_16
, 0xffff >> c
);
2986 TCGv_i32 s
= tcg_temp_ebb_new_i32();
2988 tcg_gen_shri_i32(d
, a
, c
);
2989 tcg_gen_andi_i32(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2990 tcg_gen_andi_i32(d
, d
, c_mask
); /* clear out bits above sign */
2991 tcg_gen_muli_i32(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2992 tcg_gen_or_i32(d
, d
, s
); /* include sign extension */
2993 tcg_temp_free_i32(s
);
2996 void tcg_gen_gvec_sari(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2997 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2999 static const TCGOpcode vecop_list
[] = { INDEX_op_sari_vec
, 0 };
3000 static const GVecGen2i g
[4] = {
3001 { .fni8
= tcg_gen_vec_sar8i_i64
,
3002 .fniv
= tcg_gen_sari_vec
,
3003 .fno
= gen_helper_gvec_sar8i
,
3004 .opt_opc
= vecop_list
,
3006 { .fni8
= tcg_gen_vec_sar16i_i64
,
3007 .fniv
= tcg_gen_sari_vec
,
3008 .fno
= gen_helper_gvec_sar16i
,
3009 .opt_opc
= vecop_list
,
3011 { .fni4
= tcg_gen_sari_i32
,
3012 .fniv
= tcg_gen_sari_vec
,
3013 .fno
= gen_helper_gvec_sar32i
,
3014 .opt_opc
= vecop_list
,
3016 { .fni8
= tcg_gen_sari_i64
,
3017 .fniv
= tcg_gen_sari_vec
,
3018 .fno
= gen_helper_gvec_sar64i
,
3019 .opt_opc
= vecop_list
,
3020 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3024 tcg_debug_assert(vece
<= MO_64
);
3025 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
3027 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
3029 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
3033 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
3035 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
3037 tcg_gen_shli_i64(d
, a
, c
);
3038 tcg_gen_shri_i64(a
, a
, 8 - c
);
3039 tcg_gen_andi_i64(d
, d
, mask
);
3040 tcg_gen_andi_i64(a
, a
, ~mask
);
3041 tcg_gen_or_i64(d
, d
, a
);
3044 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
3046 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
3048 tcg_gen_shli_i64(d
, a
, c
);
3049 tcg_gen_shri_i64(a
, a
, 16 - c
);
3050 tcg_gen_andi_i64(d
, d
, mask
);
3051 tcg_gen_andi_i64(a
, a
, ~mask
);
3052 tcg_gen_or_i64(d
, d
, a
);
3055 void tcg_gen_gvec_rotli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3056 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
3058 static const TCGOpcode vecop_list
[] = { INDEX_op_rotli_vec
, 0 };
3059 static const GVecGen2i g
[4] = {
3060 { .fni8
= tcg_gen_vec_rotl8i_i64
,
3061 .fniv
= tcg_gen_rotli_vec
,
3062 .fno
= gen_helper_gvec_rotl8i
,
3063 .opt_opc
= vecop_list
,
3065 { .fni8
= tcg_gen_vec_rotl16i_i64
,
3066 .fniv
= tcg_gen_rotli_vec
,
3067 .fno
= gen_helper_gvec_rotl16i
,
3068 .opt_opc
= vecop_list
,
3070 { .fni4
= tcg_gen_rotli_i32
,
3071 .fniv
= tcg_gen_rotli_vec
,
3072 .fno
= gen_helper_gvec_rotl32i
,
3073 .opt_opc
= vecop_list
,
3075 { .fni8
= tcg_gen_rotli_i64
,
3076 .fniv
= tcg_gen_rotli_vec
,
3077 .fno
= gen_helper_gvec_rotl64i
,
3078 .opt_opc
= vecop_list
,
3079 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3083 tcg_debug_assert(vece
<= MO_64
);
3084 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
3086 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
3088 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
3092 void tcg_gen_gvec_rotri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3093 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
3095 tcg_debug_assert(vece
<= MO_64
);
3096 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
3097 tcg_gen_gvec_rotli(vece
, dofs
, aofs
, -shift
& ((8 << vece
) - 1),
3102 * Specialized generation vector shifts by a non-constant scalar.
3106 void (*fni4
)(TCGv_i32
, TCGv_i32
, TCGv_i32
);
3107 void (*fni8
)(TCGv_i64
, TCGv_i64
, TCGv_i64
);
3108 void (*fniv_s
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
);
3109 void (*fniv_v
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
);
3110 gen_helper_gvec_2
*fno
[4];
3111 TCGOpcode s_list
[2];
3112 TCGOpcode v_list
[2];
3115 static void expand_2sh_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3116 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
3118 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
))
3120 for (uint32_t i
= 0; i
< oprsz
; i
+= tysz
) {
3121 TCGv_vec t0
= tcg_temp_new_vec(type
);
3122 TCGv_vec t1
= tcg_temp_new_vec(type
);
3124 tcg_gen_ld_vec(t0
, tcg_env
, aofs
+ i
);
3125 fni(vece
, t1
, t0
, shift
);
3126 tcg_gen_st_vec(t1
, tcg_env
, dofs
+ i
);
3131 do_gvec_shifts(unsigned vece
, uint32_t dofs
, uint32_t aofs
, TCGv_i32 shift
,
3132 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2sh
*g
)
3137 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
3138 check_overlap_2(dofs
, aofs
, maxsz
);
3140 /* If the backend has a scalar expansion, great. */
3141 type
= choose_vector_type(g
->s_list
, vece
, oprsz
, vece
== MO_64
);
3143 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
3146 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3147 expand_2sh_vec(vece
, dofs
, aofs
, some
, 32,
3148 TCG_TYPE_V256
, shift
, g
->fniv_s
);
3149 if (some
== oprsz
) {
3158 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 16,
3159 TCG_TYPE_V128
, shift
, g
->fniv_s
);
3162 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 8,
3163 TCG_TYPE_V64
, shift
, g
->fniv_s
);
3166 g_assert_not_reached();
3168 tcg_swap_vecop_list(hold_list
);
3172 /* If the backend supports variable vector shifts, also cool. */
3173 type
= choose_vector_type(g
->v_list
, vece
, oprsz
, vece
== MO_64
);
3175 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
3176 TCGv_vec v_shift
= tcg_temp_new_vec(type
);
3178 if (vece
== MO_64
) {
3179 TCGv_i64 sh64
= tcg_temp_ebb_new_i64();
3180 tcg_gen_extu_i32_i64(sh64
, shift
);
3181 tcg_gen_dup_i64_vec(MO_64
, v_shift
, sh64
);
3182 tcg_temp_free_i64(sh64
);
3184 tcg_gen_dup_i32_vec(vece
, v_shift
, shift
);
3189 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3190 expand_2s_vec(vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
3191 v_shift
, false, g
->fniv_v
);
3192 if (some
== oprsz
) {
3201 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
3202 v_shift
, false, g
->fniv_v
);
3205 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
3206 v_shift
, false, g
->fniv_v
);
3209 g_assert_not_reached();
3211 tcg_temp_free_vec(v_shift
);
3212 tcg_swap_vecop_list(hold_list
);
3216 /* Otherwise fall back to integral... */
3217 if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
3218 expand_2s_i32(dofs
, aofs
, oprsz
, shift
, false, g
->fni4
);
3219 } else if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
3220 TCGv_i64 sh64
= tcg_temp_ebb_new_i64();
3221 tcg_gen_extu_i32_i64(sh64
, shift
);
3222 expand_2s_i64(dofs
, aofs
, oprsz
, sh64
, false, g
->fni8
);
3223 tcg_temp_free_i64(sh64
);
3225 TCGv_ptr a0
= tcg_temp_ebb_new_ptr();
3226 TCGv_ptr a1
= tcg_temp_ebb_new_ptr();
3227 TCGv_i32 desc
= tcg_temp_ebb_new_i32();
3229 tcg_gen_shli_i32(desc
, shift
, SIMD_DATA_SHIFT
);
3230 tcg_gen_ori_i32(desc
, desc
, simd_desc(oprsz
, maxsz
, 0));
3231 tcg_gen_addi_ptr(a0
, tcg_env
, dofs
);
3232 tcg_gen_addi_ptr(a1
, tcg_env
, aofs
);
3234 g
->fno
[vece
](a0
, a1
, desc
);
3236 tcg_temp_free_ptr(a0
);
3237 tcg_temp_free_ptr(a1
);
3238 tcg_temp_free_i32(desc
);
3243 if (oprsz
< maxsz
) {
3244 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
3248 void tcg_gen_gvec_shls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3249 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3251 static const GVecGen2sh g
= {
3252 .fni4
= tcg_gen_shl_i32
,
3253 .fni8
= tcg_gen_shl_i64
,
3254 .fniv_s
= tcg_gen_shls_vec
,
3255 .fniv_v
= tcg_gen_shlv_vec
,
3257 gen_helper_gvec_shl8i
,
3258 gen_helper_gvec_shl16i
,
3259 gen_helper_gvec_shl32i
,
3260 gen_helper_gvec_shl64i
,
3262 .s_list
= { INDEX_op_shls_vec
, 0 },
3263 .v_list
= { INDEX_op_shlv_vec
, 0 },
3266 tcg_debug_assert(vece
<= MO_64
);
3267 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3270 void tcg_gen_gvec_shrs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3271 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3273 static const GVecGen2sh g
= {
3274 .fni4
= tcg_gen_shr_i32
,
3275 .fni8
= tcg_gen_shr_i64
,
3276 .fniv_s
= tcg_gen_shrs_vec
,
3277 .fniv_v
= tcg_gen_shrv_vec
,
3279 gen_helper_gvec_shr8i
,
3280 gen_helper_gvec_shr16i
,
3281 gen_helper_gvec_shr32i
,
3282 gen_helper_gvec_shr64i
,
3284 .s_list
= { INDEX_op_shrs_vec
, 0 },
3285 .v_list
= { INDEX_op_shrv_vec
, 0 },
3288 tcg_debug_assert(vece
<= MO_64
);
3289 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3292 void tcg_gen_gvec_sars(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3293 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3295 static const GVecGen2sh g
= {
3296 .fni4
= tcg_gen_sar_i32
,
3297 .fni8
= tcg_gen_sar_i64
,
3298 .fniv_s
= tcg_gen_sars_vec
,
3299 .fniv_v
= tcg_gen_sarv_vec
,
3301 gen_helper_gvec_sar8i
,
3302 gen_helper_gvec_sar16i
,
3303 gen_helper_gvec_sar32i
,
3304 gen_helper_gvec_sar64i
,
3306 .s_list
= { INDEX_op_sars_vec
, 0 },
3307 .v_list
= { INDEX_op_sarv_vec
, 0 },
3310 tcg_debug_assert(vece
<= MO_64
);
3311 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3314 void tcg_gen_gvec_rotls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3315 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3317 static const GVecGen2sh g
= {
3318 .fni4
= tcg_gen_rotl_i32
,
3319 .fni8
= tcg_gen_rotl_i64
,
3320 .fniv_s
= tcg_gen_rotls_vec
,
3321 .fniv_v
= tcg_gen_rotlv_vec
,
3323 gen_helper_gvec_rotl8i
,
3324 gen_helper_gvec_rotl16i
,
3325 gen_helper_gvec_rotl32i
,
3326 gen_helper_gvec_rotl64i
,
3328 .s_list
= { INDEX_op_rotls_vec
, 0 },
3329 .v_list
= { INDEX_op_rotlv_vec
, 0 },
3332 tcg_debug_assert(vece
<= MO_64
);
3333 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3336 void tcg_gen_gvec_rotrs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3337 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3339 TCGv_i32 tmp
= tcg_temp_ebb_new_i32();
3341 tcg_gen_neg_i32(tmp
, shift
);
3342 tcg_gen_andi_i32(tmp
, tmp
, (8 << vece
) - 1);
3343 tcg_gen_gvec_rotls(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
3344 tcg_temp_free_i32(tmp
);
3348 * Expand D = A << (B % element bits)
3350 * Unlike scalar shifts, where it is easy for the target front end
3351 * to include the modulo as part of the expansion. If the target
3352 * naturally includes the modulo as part of the operation, great!
3353 * If the target has some other behaviour from out-of-range shifts,
3354 * then it could not use this function anyway, and would need to
3355 * do it's own expansion with custom functions.
3357 static void tcg_gen_shlv_mod_vec(unsigned vece
, TCGv_vec d
,
3358 TCGv_vec a
, TCGv_vec b
)
3360 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3361 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3363 tcg_gen_and_vec(vece
, t
, b
, m
);
3364 tcg_gen_shlv_vec(vece
, d
, a
, t
);
3365 tcg_temp_free_vec(t
);
3368 static void tcg_gen_shl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3370 TCGv_i32 t
= tcg_temp_ebb_new_i32();
3372 tcg_gen_andi_i32(t
, b
, 31);
3373 tcg_gen_shl_i32(d
, a
, t
);
3374 tcg_temp_free_i32(t
);
3377 static void tcg_gen_shl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3379 TCGv_i64 t
= tcg_temp_ebb_new_i64();
3381 tcg_gen_andi_i64(t
, b
, 63);
3382 tcg_gen_shl_i64(d
, a
, t
);
3383 tcg_temp_free_i64(t
);
3386 void tcg_gen_gvec_shlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3387 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3389 static const TCGOpcode vecop_list
[] = { INDEX_op_shlv_vec
, 0 };
3390 static const GVecGen3 g
[4] = {
3391 { .fniv
= tcg_gen_shlv_mod_vec
,
3392 .fno
= gen_helper_gvec_shl8v
,
3393 .opt_opc
= vecop_list
,
3395 { .fniv
= tcg_gen_shlv_mod_vec
,
3396 .fno
= gen_helper_gvec_shl16v
,
3397 .opt_opc
= vecop_list
,
3399 { .fni4
= tcg_gen_shl_mod_i32
,
3400 .fniv
= tcg_gen_shlv_mod_vec
,
3401 .fno
= gen_helper_gvec_shl32v
,
3402 .opt_opc
= vecop_list
,
3404 { .fni8
= tcg_gen_shl_mod_i64
,
3405 .fniv
= tcg_gen_shlv_mod_vec
,
3406 .fno
= gen_helper_gvec_shl64v
,
3407 .opt_opc
= vecop_list
,
3408 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3412 tcg_debug_assert(vece
<= MO_64
);
3413 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3417 * Similarly for logical right shifts.
3420 static void tcg_gen_shrv_mod_vec(unsigned vece
, TCGv_vec d
,
3421 TCGv_vec a
, TCGv_vec b
)
3423 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3424 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3426 tcg_gen_and_vec(vece
, t
, b
, m
);
3427 tcg_gen_shrv_vec(vece
, d
, a
, t
);
3428 tcg_temp_free_vec(t
);
3431 static void tcg_gen_shr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3433 TCGv_i32 t
= tcg_temp_ebb_new_i32();
3435 tcg_gen_andi_i32(t
, b
, 31);
3436 tcg_gen_shr_i32(d
, a
, t
);
3437 tcg_temp_free_i32(t
);
3440 static void tcg_gen_shr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3442 TCGv_i64 t
= tcg_temp_ebb_new_i64();
3444 tcg_gen_andi_i64(t
, b
, 63);
3445 tcg_gen_shr_i64(d
, a
, t
);
3446 tcg_temp_free_i64(t
);
3449 void tcg_gen_gvec_shrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3450 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3452 static const TCGOpcode vecop_list
[] = { INDEX_op_shrv_vec
, 0 };
3453 static const GVecGen3 g
[4] = {
3454 { .fniv
= tcg_gen_shrv_mod_vec
,
3455 .fno
= gen_helper_gvec_shr8v
,
3456 .opt_opc
= vecop_list
,
3458 { .fniv
= tcg_gen_shrv_mod_vec
,
3459 .fno
= gen_helper_gvec_shr16v
,
3460 .opt_opc
= vecop_list
,
3462 { .fni4
= tcg_gen_shr_mod_i32
,
3463 .fniv
= tcg_gen_shrv_mod_vec
,
3464 .fno
= gen_helper_gvec_shr32v
,
3465 .opt_opc
= vecop_list
,
3467 { .fni8
= tcg_gen_shr_mod_i64
,
3468 .fniv
= tcg_gen_shrv_mod_vec
,
3469 .fno
= gen_helper_gvec_shr64v
,
3470 .opt_opc
= vecop_list
,
3471 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3475 tcg_debug_assert(vece
<= MO_64
);
3476 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3480 * Similarly for arithmetic right shifts.
3483 static void tcg_gen_sarv_mod_vec(unsigned vece
, TCGv_vec d
,
3484 TCGv_vec a
, TCGv_vec b
)
3486 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3487 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3489 tcg_gen_and_vec(vece
, t
, b
, m
);
3490 tcg_gen_sarv_vec(vece
, d
, a
, t
);
3491 tcg_temp_free_vec(t
);
3494 static void tcg_gen_sar_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3496 TCGv_i32 t
= tcg_temp_ebb_new_i32();
3498 tcg_gen_andi_i32(t
, b
, 31);
3499 tcg_gen_sar_i32(d
, a
, t
);
3500 tcg_temp_free_i32(t
);
3503 static void tcg_gen_sar_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3505 TCGv_i64 t
= tcg_temp_ebb_new_i64();
3507 tcg_gen_andi_i64(t
, b
, 63);
3508 tcg_gen_sar_i64(d
, a
, t
);
3509 tcg_temp_free_i64(t
);
3512 void tcg_gen_gvec_sarv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3513 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3515 static const TCGOpcode vecop_list
[] = { INDEX_op_sarv_vec
, 0 };
3516 static const GVecGen3 g
[4] = {
3517 { .fniv
= tcg_gen_sarv_mod_vec
,
3518 .fno
= gen_helper_gvec_sar8v
,
3519 .opt_opc
= vecop_list
,
3521 { .fniv
= tcg_gen_sarv_mod_vec
,
3522 .fno
= gen_helper_gvec_sar16v
,
3523 .opt_opc
= vecop_list
,
3525 { .fni4
= tcg_gen_sar_mod_i32
,
3526 .fniv
= tcg_gen_sarv_mod_vec
,
3527 .fno
= gen_helper_gvec_sar32v
,
3528 .opt_opc
= vecop_list
,
3530 { .fni8
= tcg_gen_sar_mod_i64
,
3531 .fniv
= tcg_gen_sarv_mod_vec
,
3532 .fno
= gen_helper_gvec_sar64v
,
3533 .opt_opc
= vecop_list
,
3534 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3538 tcg_debug_assert(vece
<= MO_64
);
3539 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3543 * Similarly for rotates.
3546 static void tcg_gen_rotlv_mod_vec(unsigned vece
, TCGv_vec d
,
3547 TCGv_vec a
, TCGv_vec b
)
3549 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3550 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3552 tcg_gen_and_vec(vece
, t
, b
, m
);
3553 tcg_gen_rotlv_vec(vece
, d
, a
, t
);
3554 tcg_temp_free_vec(t
);
3557 static void tcg_gen_rotl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3559 TCGv_i32 t
= tcg_temp_ebb_new_i32();
3561 tcg_gen_andi_i32(t
, b
, 31);
3562 tcg_gen_rotl_i32(d
, a
, t
);
3563 tcg_temp_free_i32(t
);
3566 static void tcg_gen_rotl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3568 TCGv_i64 t
= tcg_temp_ebb_new_i64();
3570 tcg_gen_andi_i64(t
, b
, 63);
3571 tcg_gen_rotl_i64(d
, a
, t
);
3572 tcg_temp_free_i64(t
);
3575 void tcg_gen_gvec_rotlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3576 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3578 static const TCGOpcode vecop_list
[] = { INDEX_op_rotlv_vec
, 0 };
3579 static const GVecGen3 g
[4] = {
3580 { .fniv
= tcg_gen_rotlv_mod_vec
,
3581 .fno
= gen_helper_gvec_rotl8v
,
3582 .opt_opc
= vecop_list
,
3584 { .fniv
= tcg_gen_rotlv_mod_vec
,
3585 .fno
= gen_helper_gvec_rotl16v
,
3586 .opt_opc
= vecop_list
,
3588 { .fni4
= tcg_gen_rotl_mod_i32
,
3589 .fniv
= tcg_gen_rotlv_mod_vec
,
3590 .fno
= gen_helper_gvec_rotl32v
,
3591 .opt_opc
= vecop_list
,
3593 { .fni8
= tcg_gen_rotl_mod_i64
,
3594 .fniv
= tcg_gen_rotlv_mod_vec
,
3595 .fno
= gen_helper_gvec_rotl64v
,
3596 .opt_opc
= vecop_list
,
3597 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3601 tcg_debug_assert(vece
<= MO_64
);
3602 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3605 static void tcg_gen_rotrv_mod_vec(unsigned vece
, TCGv_vec d
,
3606 TCGv_vec a
, TCGv_vec b
)
3608 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3609 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3611 tcg_gen_and_vec(vece
, t
, b
, m
);
3612 tcg_gen_rotrv_vec(vece
, d
, a
, t
);
3613 tcg_temp_free_vec(t
);
3616 static void tcg_gen_rotr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3618 TCGv_i32 t
= tcg_temp_ebb_new_i32();
3620 tcg_gen_andi_i32(t
, b
, 31);
3621 tcg_gen_rotr_i32(d
, a
, t
);
3622 tcg_temp_free_i32(t
);
3625 static void tcg_gen_rotr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3627 TCGv_i64 t
= tcg_temp_ebb_new_i64();
3629 tcg_gen_andi_i64(t
, b
, 63);
3630 tcg_gen_rotr_i64(d
, a
, t
);
3631 tcg_temp_free_i64(t
);
3634 void tcg_gen_gvec_rotrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3635 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3637 static const TCGOpcode vecop_list
[] = { INDEX_op_rotrv_vec
, 0 };
3638 static const GVecGen3 g
[4] = {
3639 { .fniv
= tcg_gen_rotrv_mod_vec
,
3640 .fno
= gen_helper_gvec_rotr8v
,
3641 .opt_opc
= vecop_list
,
3643 { .fniv
= tcg_gen_rotrv_mod_vec
,
3644 .fno
= gen_helper_gvec_rotr16v
,
3645 .opt_opc
= vecop_list
,
3647 { .fni4
= tcg_gen_rotr_mod_i32
,
3648 .fniv
= tcg_gen_rotrv_mod_vec
,
3649 .fno
= gen_helper_gvec_rotr32v
,
3650 .opt_opc
= vecop_list
,
3652 { .fni8
= tcg_gen_rotr_mod_i64
,
3653 .fniv
= tcg_gen_rotrv_mod_vec
,
3654 .fno
= gen_helper_gvec_rotr64v
,
3655 .opt_opc
= vecop_list
,
3656 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3660 tcg_debug_assert(vece
<= MO_64
);
3661 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3664 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3665 static void expand_cmp_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3666 uint32_t oprsz
, TCGCond cond
)
3668 TCGv_i32 t0
= tcg_temp_ebb_new_i32();
3669 TCGv_i32 t1
= tcg_temp_ebb_new_i32();
3672 for (i
= 0; i
< oprsz
; i
+= 4) {
3673 tcg_gen_ld_i32(t0
, tcg_env
, aofs
+ i
);
3674 tcg_gen_ld_i32(t1
, tcg_env
, bofs
+ i
);
3675 tcg_gen_negsetcond_i32(cond
, t0
, t0
, t1
);
3676 tcg_gen_st_i32(t0
, tcg_env
, dofs
+ i
);
3678 tcg_temp_free_i32(t1
);
3679 tcg_temp_free_i32(t0
);
3682 static void expand_cmp_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3683 uint32_t oprsz
, TCGCond cond
)
3685 TCGv_i64 t0
= tcg_temp_ebb_new_i64();
3686 TCGv_i64 t1
= tcg_temp_ebb_new_i64();
3689 for (i
= 0; i
< oprsz
; i
+= 8) {
3690 tcg_gen_ld_i64(t0
, tcg_env
, aofs
+ i
);
3691 tcg_gen_ld_i64(t1
, tcg_env
, bofs
+ i
);
3692 tcg_gen_negsetcond_i64(cond
, t0
, t0
, t1
);
3693 tcg_gen_st_i64(t0
, tcg_env
, dofs
+ i
);
3695 tcg_temp_free_i64(t1
);
3696 tcg_temp_free_i64(t0
);
3699 static void expand_cmp_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3700 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
3701 TCGType type
, TCGCond cond
)
3703 for (uint32_t i
= 0; i
< oprsz
; i
+= tysz
) {
3704 TCGv_vec t0
= tcg_temp_new_vec(type
);
3705 TCGv_vec t1
= tcg_temp_new_vec(type
);
3706 TCGv_vec t2
= tcg_temp_new_vec(type
);
3708 tcg_gen_ld_vec(t0
, tcg_env
, aofs
+ i
);
3709 tcg_gen_ld_vec(t1
, tcg_env
, bofs
+ i
);
3710 tcg_gen_cmp_vec(cond
, vece
, t2
, t0
, t1
);
3711 tcg_gen_st_vec(t2
, tcg_env
, dofs
+ i
);
3715 void tcg_gen_gvec_cmp(TCGCond cond
, unsigned vece
, uint32_t dofs
,
3716 uint32_t aofs
, uint32_t bofs
,
3717 uint32_t oprsz
, uint32_t maxsz
)
3719 static const TCGOpcode cmp_list
[] = { INDEX_op_cmp_vec
, 0 };
3720 static gen_helper_gvec_3
* const eq_fn
[4] = {
3721 gen_helper_gvec_eq8
, gen_helper_gvec_eq16
,
3722 gen_helper_gvec_eq32
, gen_helper_gvec_eq64
3724 static gen_helper_gvec_3
* const ne_fn
[4] = {
3725 gen_helper_gvec_ne8
, gen_helper_gvec_ne16
,
3726 gen_helper_gvec_ne32
, gen_helper_gvec_ne64
3728 static gen_helper_gvec_3
* const lt_fn
[4] = {
3729 gen_helper_gvec_lt8
, gen_helper_gvec_lt16
,
3730 gen_helper_gvec_lt32
, gen_helper_gvec_lt64
3732 static gen_helper_gvec_3
* const le_fn
[4] = {
3733 gen_helper_gvec_le8
, gen_helper_gvec_le16
,
3734 gen_helper_gvec_le32
, gen_helper_gvec_le64
3736 static gen_helper_gvec_3
* const ltu_fn
[4] = {
3737 gen_helper_gvec_ltu8
, gen_helper_gvec_ltu16
,
3738 gen_helper_gvec_ltu32
, gen_helper_gvec_ltu64
3740 static gen_helper_gvec_3
* const leu_fn
[4] = {
3741 gen_helper_gvec_leu8
, gen_helper_gvec_leu16
,
3742 gen_helper_gvec_leu32
, gen_helper_gvec_leu64
3744 static gen_helper_gvec_3
* const * const fns
[16] = {
3745 [TCG_COND_EQ
] = eq_fn
,
3746 [TCG_COND_NE
] = ne_fn
,
3747 [TCG_COND_LT
] = lt_fn
,
3748 [TCG_COND_LE
] = le_fn
,
3749 [TCG_COND_LTU
] = ltu_fn
,
3750 [TCG_COND_LEU
] = leu_fn
,
3753 const TCGOpcode
*hold_list
;
3757 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
3758 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
3760 if (cond
== TCG_COND_NEVER
|| cond
== TCG_COND_ALWAYS
) {
3761 do_dup(MO_8
, dofs
, oprsz
, maxsz
,
3762 NULL
, NULL
, -(cond
== TCG_COND_ALWAYS
));
3767 * Implement inline with a vector type, if possible.
3768 * Prefer integer when 64-bit host and 64-bit comparison.
3770 hold_list
= tcg_swap_vecop_list(cmp_list
);
3771 type
= choose_vector_type(cmp_list
, vece
, oprsz
,
3772 TCG_TARGET_REG_BITS
== 64 && vece
== MO_64
);
3775 /* Recall that ARM SVE allows vector sizes that are not a
3776 * power of 2, but always a multiple of 16. The intent is
3777 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3779 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3780 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
, cond
);
3781 if (some
== oprsz
) {
3791 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
, cond
);
3794 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
, cond
);
3798 if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
3799 expand_cmp_i64(dofs
, aofs
, bofs
, oprsz
, cond
);
3800 } else if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
3801 expand_cmp_i32(dofs
, aofs
, bofs
, oprsz
, cond
);
3803 gen_helper_gvec_3
* const *fn
= fns
[cond
];
3807 tmp
= aofs
, aofs
= bofs
, bofs
= tmp
;
3808 cond
= tcg_swap_cond(cond
);
3812 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, 0, fn
[vece
]);
3818 g_assert_not_reached();
3820 tcg_swap_vecop_list(hold_list
);
3822 if (oprsz
< maxsz
) {
3823 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
3827 static void expand_cmps_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3828 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
3829 TCGCond cond
, TCGv_vec c
)
3831 TCGv_vec t0
= tcg_temp_new_vec(type
);
3832 TCGv_vec t1
= tcg_temp_new_vec(type
);
3835 for (i
= 0; i
< oprsz
; i
+= tysz
) {
3836 tcg_gen_ld_vec(t1
, tcg_env
, aofs
+ i
);
3837 tcg_gen_cmp_vec(cond
, vece
, t0
, t1
, c
);
3838 tcg_gen_st_vec(t0
, tcg_env
, dofs
+ i
);
3842 void tcg_gen_gvec_cmps(TCGCond cond
, unsigned vece
, uint32_t dofs
,
3843 uint32_t aofs
, TCGv_i64 c
,
3844 uint32_t oprsz
, uint32_t maxsz
)
3846 static const TCGOpcode cmp_list
[] = { INDEX_op_cmp_vec
, 0 };
3847 static gen_helper_gvec_2i
* const eq_fn
[4] = {
3848 gen_helper_gvec_eqs8
, gen_helper_gvec_eqs16
,
3849 gen_helper_gvec_eqs32
, gen_helper_gvec_eqs64
3851 static gen_helper_gvec_2i
* const lt_fn
[4] = {
3852 gen_helper_gvec_lts8
, gen_helper_gvec_lts16
,
3853 gen_helper_gvec_lts32
, gen_helper_gvec_lts64
3855 static gen_helper_gvec_2i
* const le_fn
[4] = {
3856 gen_helper_gvec_les8
, gen_helper_gvec_les16
,
3857 gen_helper_gvec_les32
, gen_helper_gvec_les64
3859 static gen_helper_gvec_2i
* const ltu_fn
[4] = {
3860 gen_helper_gvec_ltus8
, gen_helper_gvec_ltus16
,
3861 gen_helper_gvec_ltus32
, gen_helper_gvec_ltus64
3863 static gen_helper_gvec_2i
* const leu_fn
[4] = {
3864 gen_helper_gvec_leus8
, gen_helper_gvec_leus16
,
3865 gen_helper_gvec_leus32
, gen_helper_gvec_leus64
3867 static gen_helper_gvec_2i
* const * const fns
[16] = {
3868 [TCG_COND_EQ
] = eq_fn
,
3869 [TCG_COND_LT
] = lt_fn
,
3870 [TCG_COND_LE
] = le_fn
,
3871 [TCG_COND_LTU
] = ltu_fn
,
3872 [TCG_COND_LEU
] = leu_fn
,
3877 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
3878 check_overlap_2(dofs
, aofs
, maxsz
);
3880 if (cond
== TCG_COND_NEVER
|| cond
== TCG_COND_ALWAYS
) {
3881 do_dup(MO_8
, dofs
, oprsz
, maxsz
,
3882 NULL
, NULL
, -(cond
== TCG_COND_ALWAYS
));
3887 * Implement inline with a vector type, if possible.
3888 * Prefer integer when 64-bit host and 64-bit comparison.
3890 type
= choose_vector_type(cmp_list
, vece
, oprsz
,
3891 TCG_TARGET_REG_BITS
== 64 && vece
== MO_64
);
3893 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(cmp_list
);
3894 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
3897 tcg_gen_dup_i64_vec(vece
, t_vec
, c
);
3900 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3901 expand_cmps_vec(vece
, dofs
, aofs
, some
, 32,
3902 TCG_TYPE_V256
, cond
, t_vec
);
3910 some
= QEMU_ALIGN_DOWN(oprsz
, 16);
3911 expand_cmps_vec(vece
, dofs
, aofs
, some
, 16,
3912 TCG_TYPE_V128
, cond
, t_vec
);
3916 some
= QEMU_ALIGN_DOWN(oprsz
, 8);
3917 expand_cmps_vec(vece
, dofs
, aofs
, some
, 8,
3918 TCG_TYPE_V64
, cond
, t_vec
);
3922 g_assert_not_reached();
3924 tcg_temp_free_vec(t_vec
);
3925 tcg_swap_vecop_list(hold_list
);
3926 } else if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
3927 TCGv_i64 t0
= tcg_temp_ebb_new_i64();
3930 for (i
= 0; i
< oprsz
; i
+= 8) {
3931 tcg_gen_ld_i64(t0
, tcg_env
, aofs
+ i
);
3932 tcg_gen_negsetcond_i64(cond
, t0
, t0
, c
);
3933 tcg_gen_st_i64(t0
, tcg_env
, dofs
+ i
);
3935 tcg_temp_free_i64(t0
);
3936 } else if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
3937 TCGv_i32 t0
= tcg_temp_ebb_new_i32();
3938 TCGv_i32 t1
= tcg_temp_ebb_new_i32();
3941 tcg_gen_extrl_i64_i32(t1
, c
);
3942 for (i
= 0; i
< oprsz
; i
+= 4) {
3943 tcg_gen_ld_i32(t0
, tcg_env
, aofs
+ i
);
3944 tcg_gen_negsetcond_i32(cond
, t0
, t0
, t1
);
3945 tcg_gen_st_i32(t0
, tcg_env
, dofs
+ i
);
3947 tcg_temp_free_i32(t0
);
3948 tcg_temp_free_i32(t1
);
3950 gen_helper_gvec_2i
* const *fn
= fns
[cond
];
3954 cond
= tcg_invert_cond(cond
);
3959 tcg_gen_gvec_2i_ool(dofs
, aofs
, c
, oprsz
, maxsz
, inv
, fn
[vece
]);
3963 if (oprsz
< maxsz
) {
3964 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
3968 void tcg_gen_gvec_cmpi(TCGCond cond
, unsigned vece
, uint32_t dofs
,
3969 uint32_t aofs
, int64_t c
,
3970 uint32_t oprsz
, uint32_t maxsz
)
3972 TCGv_i64 tmp
= tcg_constant_i64(c
);
3973 tcg_gen_gvec_cmps(cond
, vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
3976 static void tcg_gen_bitsel_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 c
)
3978 TCGv_i64 t
= tcg_temp_ebb_new_i64();
3980 tcg_gen_and_i64(t
, b
, a
);
3981 tcg_gen_andc_i64(d
, c
, a
);
3982 tcg_gen_or_i64(d
, d
, t
);
3983 tcg_temp_free_i64(t
);
3986 void tcg_gen_gvec_bitsel(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3987 uint32_t bofs
, uint32_t cofs
,
3988 uint32_t oprsz
, uint32_t maxsz
)
3990 static const GVecGen4 g
= {
3991 .fni8
= tcg_gen_bitsel_i64
,
3992 .fniv
= tcg_gen_bitsel_vec
,
3993 .fno
= gen_helper_gvec_bitsel
,
3996 tcg_gen_gvec_4(dofs
, aofs
, bofs
, cofs
, oprsz
, maxsz
, &g
);