2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "tcg/tcg-temp-internal.h"
23 #include "tcg/tcg-op-common.h"
24 #include "tcg/tcg-op-gvec-common.h"
25 #include "tcg/tcg-gvec-desc.h"
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty
[1] = { 0 };
32 #define vecop_list_empty NULL
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz
, uint32_t maxsz
, uint32_t ofs
)
46 tcg_debug_assert(oprsz
<= maxsz
);
49 tcg_debug_assert(oprsz
== maxsz
);
52 tcg_debug_assert(maxsz
<= (8 << SIMD_MAXSZ_BITS
));
54 max_align
= maxsz
>= 16 ? 15 : 7;
55 tcg_debug_assert((maxsz
& max_align
) == 0);
56 tcg_debug_assert((ofs
& max_align
) == 0);
59 /* Verify vector overlap rules for two operands. */
60 static void check_overlap_2(uint32_t d
, uint32_t a
, uint32_t s
)
62 tcg_debug_assert(d
== a
|| d
+ s
<= a
|| a
+ s
<= d
);
65 /* Verify vector overlap rules for three operands. */
66 static void check_overlap_3(uint32_t d
, uint32_t a
, uint32_t b
, uint32_t s
)
68 check_overlap_2(d
, a
, s
);
69 check_overlap_2(d
, b
, s
);
70 check_overlap_2(a
, b
, s
);
73 /* Verify vector overlap rules for four operands. */
74 static void check_overlap_4(uint32_t d
, uint32_t a
, uint32_t b
,
75 uint32_t c
, uint32_t s
)
77 check_overlap_2(d
, a
, s
);
78 check_overlap_2(d
, b
, s
);
79 check_overlap_2(d
, c
, s
);
80 check_overlap_2(a
, b
, s
);
81 check_overlap_2(a
, c
, s
);
82 check_overlap_2(b
, c
, s
);
85 /* Create a descriptor from components. */
86 uint32_t simd_desc(uint32_t oprsz
, uint32_t maxsz
, int32_t data
)
90 check_size_align(oprsz
, maxsz
, 0);
91 tcg_debug_assert(data
== sextract32(data
, 0, SIMD_DATA_BITS
));
93 oprsz
= (oprsz
/ 8) - 1;
94 maxsz
= (maxsz
/ 8) - 1;
97 * We have just asserted in check_size_align that either
98 * oprsz is {8,16,32} or matches maxsz. Encode the final
99 * case with '2', as that would otherwise map to 24.
101 if (oprsz
== maxsz
) {
105 desc
= deposit32(desc
, SIMD_OPRSZ_SHIFT
, SIMD_OPRSZ_BITS
, oprsz
);
106 desc
= deposit32(desc
, SIMD_MAXSZ_SHIFT
, SIMD_MAXSZ_BITS
, maxsz
);
107 desc
= deposit32(desc
, SIMD_DATA_SHIFT
, SIMD_DATA_BITS
, data
);
112 /* Generate a call to a gvec-style helper with two vector operands. */
113 void tcg_gen_gvec_2_ool(uint32_t dofs
, uint32_t aofs
,
114 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
115 gen_helper_gvec_2
*fn
)
118 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
120 a0
= tcg_temp_ebb_new_ptr();
121 a1
= tcg_temp_ebb_new_ptr();
123 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
124 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
128 tcg_temp_free_ptr(a0
);
129 tcg_temp_free_ptr(a1
);
132 /* Generate a call to a gvec-style helper with two vector operands
133 and one scalar operand. */
134 void tcg_gen_gvec_2i_ool(uint32_t dofs
, uint32_t aofs
, TCGv_i64 c
,
135 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
136 gen_helper_gvec_2i
*fn
)
139 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
141 a0
= tcg_temp_ebb_new_ptr();
142 a1
= tcg_temp_ebb_new_ptr();
144 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
145 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
149 tcg_temp_free_ptr(a0
);
150 tcg_temp_free_ptr(a1
);
153 /* Generate a call to a gvec-style helper with three vector operands. */
154 void tcg_gen_gvec_3_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
155 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
156 gen_helper_gvec_3
*fn
)
159 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
161 a0
= tcg_temp_ebb_new_ptr();
162 a1
= tcg_temp_ebb_new_ptr();
163 a2
= tcg_temp_ebb_new_ptr();
165 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
166 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
167 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
169 fn(a0
, a1
, a2
, desc
);
171 tcg_temp_free_ptr(a0
);
172 tcg_temp_free_ptr(a1
);
173 tcg_temp_free_ptr(a2
);
176 /* Generate a call to a gvec-style helper with four vector operands. */
177 void tcg_gen_gvec_4_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
178 uint32_t cofs
, uint32_t oprsz
, uint32_t maxsz
,
179 int32_t data
, gen_helper_gvec_4
*fn
)
181 TCGv_ptr a0
, a1
, a2
, a3
;
182 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
184 a0
= tcg_temp_ebb_new_ptr();
185 a1
= tcg_temp_ebb_new_ptr();
186 a2
= tcg_temp_ebb_new_ptr();
187 a3
= tcg_temp_ebb_new_ptr();
189 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
190 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
191 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
192 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
194 fn(a0
, a1
, a2
, a3
, desc
);
196 tcg_temp_free_ptr(a0
);
197 tcg_temp_free_ptr(a1
);
198 tcg_temp_free_ptr(a2
);
199 tcg_temp_free_ptr(a3
);
202 /* Generate a call to a gvec-style helper with five vector operands. */
203 void tcg_gen_gvec_5_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
204 uint32_t cofs
, uint32_t xofs
, uint32_t oprsz
,
205 uint32_t maxsz
, int32_t data
, gen_helper_gvec_5
*fn
)
207 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
208 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
210 a0
= tcg_temp_ebb_new_ptr();
211 a1
= tcg_temp_ebb_new_ptr();
212 a2
= tcg_temp_ebb_new_ptr();
213 a3
= tcg_temp_ebb_new_ptr();
214 a4
= tcg_temp_ebb_new_ptr();
216 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
217 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
218 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
219 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
220 tcg_gen_addi_ptr(a4
, cpu_env
, xofs
);
222 fn(a0
, a1
, a2
, a3
, a4
, desc
);
224 tcg_temp_free_ptr(a0
);
225 tcg_temp_free_ptr(a1
);
226 tcg_temp_free_ptr(a2
);
227 tcg_temp_free_ptr(a3
);
228 tcg_temp_free_ptr(a4
);
231 /* Generate a call to a gvec-style helper with three vector operands
232 and an extra pointer operand. */
233 void tcg_gen_gvec_2_ptr(uint32_t dofs
, uint32_t aofs
,
234 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
235 int32_t data
, gen_helper_gvec_2_ptr
*fn
)
238 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
240 a0
= tcg_temp_ebb_new_ptr();
241 a1
= tcg_temp_ebb_new_ptr();
243 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
244 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
246 fn(a0
, a1
, ptr
, desc
);
248 tcg_temp_free_ptr(a0
);
249 tcg_temp_free_ptr(a1
);
252 /* Generate a call to a gvec-style helper with three vector operands
253 and an extra pointer operand. */
254 void tcg_gen_gvec_3_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
255 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
256 int32_t data
, gen_helper_gvec_3_ptr
*fn
)
259 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
261 a0
= tcg_temp_ebb_new_ptr();
262 a1
= tcg_temp_ebb_new_ptr();
263 a2
= tcg_temp_ebb_new_ptr();
265 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
266 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
267 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
269 fn(a0
, a1
, a2
, ptr
, desc
);
271 tcg_temp_free_ptr(a0
);
272 tcg_temp_free_ptr(a1
);
273 tcg_temp_free_ptr(a2
);
276 /* Generate a call to a gvec-style helper with four vector operands
277 and an extra pointer operand. */
278 void tcg_gen_gvec_4_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
279 uint32_t cofs
, TCGv_ptr ptr
, uint32_t oprsz
,
280 uint32_t maxsz
, int32_t data
,
281 gen_helper_gvec_4_ptr
*fn
)
283 TCGv_ptr a0
, a1
, a2
, a3
;
284 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
286 a0
= tcg_temp_ebb_new_ptr();
287 a1
= tcg_temp_ebb_new_ptr();
288 a2
= tcg_temp_ebb_new_ptr();
289 a3
= tcg_temp_ebb_new_ptr();
291 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
292 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
293 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
294 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
296 fn(a0
, a1
, a2
, a3
, ptr
, desc
);
298 tcg_temp_free_ptr(a0
);
299 tcg_temp_free_ptr(a1
);
300 tcg_temp_free_ptr(a2
);
301 tcg_temp_free_ptr(a3
);
304 /* Generate a call to a gvec-style helper with five vector operands
305 and an extra pointer operand. */
306 void tcg_gen_gvec_5_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
307 uint32_t cofs
, uint32_t eofs
, TCGv_ptr ptr
,
308 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
309 gen_helper_gvec_5_ptr
*fn
)
311 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
312 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
314 a0
= tcg_temp_ebb_new_ptr();
315 a1
= tcg_temp_ebb_new_ptr();
316 a2
= tcg_temp_ebb_new_ptr();
317 a3
= tcg_temp_ebb_new_ptr();
318 a4
= tcg_temp_ebb_new_ptr();
320 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
321 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
322 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
323 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
324 tcg_gen_addi_ptr(a4
, cpu_env
, eofs
);
326 fn(a0
, a1
, a2
, a3
, a4
, ptr
, desc
);
328 tcg_temp_free_ptr(a0
);
329 tcg_temp_free_ptr(a1
);
330 tcg_temp_free_ptr(a2
);
331 tcg_temp_free_ptr(a3
);
332 tcg_temp_free_ptr(a4
);
335 /* Return true if we want to implement something of OPRSZ bytes
336 in units of LNSZ. This limits the expansion of inline code. */
337 static inline bool check_size_impl(uint32_t oprsz
, uint32_t lnsz
)
347 tcg_debug_assert((r
& 7) == 0);
350 /* For sizes below 16, accept no remainder. */
356 * Recall that ARM SVE allows vector sizes that are not a
357 * power of 2, but always a multiple of 16. The intent is
358 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
359 * In addition, expand_clr needs to handle a multiple of 8.
360 * Thus we can handle the tail with one more operation per
361 * diminishing power of 2.
366 return q
<= MAX_UNROLL
;
369 static void expand_clr(uint32_t dofs
, uint32_t maxsz
);
371 /* Duplicate C as per VECE. */
372 uint64_t (dup_const
)(unsigned vece
, uint64_t c
)
376 return 0x0101010101010101ull
* (uint8_t)c
;
378 return 0x0001000100010001ull
* (uint16_t)c
;
380 return 0x0000000100000001ull
* (uint32_t)c
;
384 g_assert_not_reached();
388 /* Duplicate IN into OUT as per VECE. */
389 void tcg_gen_dup_i32(unsigned vece
, TCGv_i32 out
, TCGv_i32 in
)
393 tcg_gen_ext8u_i32(out
, in
);
394 tcg_gen_muli_i32(out
, out
, 0x01010101);
397 tcg_gen_deposit_i32(out
, in
, in
, 16, 16);
400 tcg_gen_mov_i32(out
, in
);
403 g_assert_not_reached();
407 void tcg_gen_dup_i64(unsigned vece
, TCGv_i64 out
, TCGv_i64 in
)
411 tcg_gen_ext8u_i64(out
, in
);
412 tcg_gen_muli_i64(out
, out
, 0x0101010101010101ull
);
415 tcg_gen_ext16u_i64(out
, in
);
416 tcg_gen_muli_i64(out
, out
, 0x0001000100010001ull
);
419 tcg_gen_deposit_i64(out
, in
, in
, 32, 32);
422 tcg_gen_mov_i64(out
, in
);
425 g_assert_not_reached();
429 /* Select a supported vector type for implementing an operation on SIZE
430 * bytes. If OP is 0, assume that the real operation to be performed is
431 * required by all backends. Otherwise, make sure than OP can be performed
432 * on elements of size VECE in the selected type. Do not select V64 if
433 * PREFER_I64 is true. Return 0 if no vector type is selected.
435 static TCGType
choose_vector_type(const TCGOpcode
*list
, unsigned vece
,
436 uint32_t size
, bool prefer_i64
)
439 * Recall that ARM SVE allows vector sizes that are not a
440 * power of 2, but always a multiple of 16. The intent is
441 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
442 * It is hard to imagine a case in which v256 is supported
443 * but v128 is not, but check anyway.
444 * In addition, expand_clr needs to handle a multiple of 8.
446 if (TCG_TARGET_HAS_v256
&&
447 check_size_impl(size
, 32) &&
448 tcg_can_emit_vecop_list(list
, TCG_TYPE_V256
, vece
) &&
450 (TCG_TARGET_HAS_v128
&&
451 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
))) &&
453 (TCG_TARGET_HAS_v64
&&
454 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
455 return TCG_TYPE_V256
;
457 if (TCG_TARGET_HAS_v128
&&
458 check_size_impl(size
, 16) &&
459 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
) &&
461 (TCG_TARGET_HAS_v64
&&
462 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
463 return TCG_TYPE_V128
;
465 if (TCG_TARGET_HAS_v64
&& !prefer_i64
&& check_size_impl(size
, 8)
466 && tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)) {
472 static void do_dup_store(TCGType type
, uint32_t dofs
, uint32_t oprsz
,
473 uint32_t maxsz
, TCGv_vec t_vec
)
477 tcg_debug_assert(oprsz
>= 8);
480 * This may be expand_clr for the tail of an operation, e.g.
481 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
482 * are misaligned wrt the maximum vector size, so do that first.
485 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
492 * Recall that ARM SVE allows vector sizes that are not a
493 * power of 2, but always a multiple of 16. The intent is
494 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
496 for (; i
+ 32 <= oprsz
; i
+= 32) {
497 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V256
);
501 for (; i
+ 16 <= oprsz
; i
+= 16) {
502 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V128
);
506 for (; i
< oprsz
; i
+= 8) {
507 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
511 g_assert_not_reached();
515 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
519 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
520 * Only one of IN_32 or IN_64 may be set;
521 * IN_C is used if IN_32 and IN_64 are unset.
523 static void do_dup(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
524 uint32_t maxsz
, TCGv_i32 in_32
, TCGv_i64 in_64
,
529 TCGv_i32 t_32
, t_desc
;
533 assert(vece
<= (in_32
? MO_32
: MO_64
));
534 assert(in_32
== NULL
|| in_64
== NULL
);
536 /* If we're storing 0, expand oprsz to maxsz. */
537 if (in_32
== NULL
&& in_64
== NULL
) {
538 in_c
= dup_const(vece
, in_c
);
542 } else if (in_c
== dup_const(MO_8
, in_c
)) {
547 /* Implement inline with a vector type, if possible.
548 * Prefer integer when 64-bit host and no variable dup.
550 type
= choose_vector_type(NULL
, vece
, oprsz
,
551 (TCG_TARGET_REG_BITS
== 64 && in_32
== NULL
552 && (in_64
== NULL
|| vece
== MO_64
)));
554 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
557 tcg_gen_dup_i32_vec(vece
, t_vec
, in_32
);
559 tcg_gen_dup_i64_vec(vece
, t_vec
, in_64
);
561 tcg_gen_dupi_vec(vece
, t_vec
, in_c
);
563 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
564 tcg_temp_free_vec(t_vec
);
568 /* Otherwise, inline with an integer type, unless "large". */
569 if (check_size_impl(oprsz
, TCG_TARGET_REG_BITS
/ 8)) {
574 /* We are given a 32-bit variable input. For a 64-bit host,
575 use a 64-bit operation unless the 32-bit operation would
577 if (TCG_TARGET_REG_BITS
== 64
578 && (vece
!= MO_32
|| !check_size_impl(oprsz
, 4))) {
579 t_64
= tcg_temp_ebb_new_i64();
580 tcg_gen_extu_i32_i64(t_64
, in_32
);
581 tcg_gen_dup_i64(vece
, t_64
, t_64
);
583 t_32
= tcg_temp_ebb_new_i32();
584 tcg_gen_dup_i32(vece
, t_32
, in_32
);
587 /* We are given a 64-bit variable input. */
588 t_64
= tcg_temp_ebb_new_i64();
589 tcg_gen_dup_i64(vece
, t_64
, in_64
);
591 /* We are given a constant input. */
592 /* For 64-bit hosts, use 64-bit constants for "simple" constants
593 or when we'd need too many 32-bit stores, or when a 64-bit
594 constant is really required. */
596 || (TCG_TARGET_REG_BITS
== 64
597 && (in_c
== 0 || in_c
== -1
598 || !check_size_impl(oprsz
, 4)))) {
599 t_64
= tcg_constant_i64(in_c
);
601 t_32
= tcg_constant_i32(in_c
);
605 /* Implement inline if we picked an implementation size above. */
607 for (i
= 0; i
< oprsz
; i
+= 4) {
608 tcg_gen_st_i32(t_32
, cpu_env
, dofs
+ i
);
610 tcg_temp_free_i32(t_32
);
614 for (i
= 0; i
< oprsz
; i
+= 8) {
615 tcg_gen_st_i64(t_64
, cpu_env
, dofs
+ i
);
617 tcg_temp_free_i64(t_64
);
622 /* Otherwise implement out of line. */
623 t_ptr
= tcg_temp_ebb_new_ptr();
624 tcg_gen_addi_ptr(t_ptr
, cpu_env
, dofs
);
627 * This may be expand_clr for the tail of an operation, e.g.
628 * oprsz == 8 && maxsz == 64. The size of the clear is misaligned
629 * wrt simd_desc and will assert. Simply pass all replicated byte
630 * stores through to memset.
632 if (oprsz
== maxsz
&& vece
== MO_8
) {
633 TCGv_ptr t_size
= tcg_constant_ptr(oprsz
);
639 t_val
= tcg_temp_ebb_new_i32();
640 tcg_gen_extrl_i64_i32(t_val
, in_64
);
642 t_val
= tcg_constant_i32(in_c
);
644 gen_helper_memset(t_ptr
, t_ptr
, t_val
, t_size
);
647 tcg_temp_free_i32(t_val
);
649 tcg_temp_free_ptr(t_ptr
);
653 t_desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, 0));
657 gen_helper_gvec_dup64(t_ptr
, t_desc
, in_64
);
659 t_64
= tcg_constant_i64(in_c
);
660 gen_helper_gvec_dup64(t_ptr
, t_desc
, t_64
);
663 typedef void dup_fn(TCGv_ptr
, TCGv_i32
, TCGv_i32
);
664 static dup_fn
* const fns
[3] = {
665 gen_helper_gvec_dup8
,
666 gen_helper_gvec_dup16
,
667 gen_helper_gvec_dup32
671 fns
[vece
](t_ptr
, t_desc
, in_32
);
673 t_32
= tcg_temp_ebb_new_i32();
674 tcg_gen_extrl_i64_i32(t_32
, in_64
);
675 fns
[vece
](t_ptr
, t_desc
, t_32
);
676 tcg_temp_free_i32(t_32
);
680 } else if (vece
== MO_16
) {
683 t_32
= tcg_constant_i32(in_c
);
684 fns
[vece
](t_ptr
, t_desc
, t_32
);
688 tcg_temp_free_ptr(t_ptr
);
693 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
697 /* Likewise, but with zero. */
698 static void expand_clr(uint32_t dofs
, uint32_t maxsz
)
700 do_dup(MO_8
, dofs
, maxsz
, maxsz
, NULL
, NULL
, 0);
703 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
704 static void expand_2_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
705 bool load_dest
, void (*fni
)(TCGv_i32
, TCGv_i32
))
707 TCGv_i32 t0
= tcg_temp_new_i32();
708 TCGv_i32 t1
= tcg_temp_new_i32();
711 for (i
= 0; i
< oprsz
; i
+= 4) {
712 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
714 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
717 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
719 tcg_temp_free_i32(t0
);
720 tcg_temp_free_i32(t1
);
723 static void expand_2i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
724 int32_t c
, bool load_dest
,
725 void (*fni
)(TCGv_i32
, TCGv_i32
, int32_t))
727 TCGv_i32 t0
= tcg_temp_new_i32();
728 TCGv_i32 t1
= tcg_temp_new_i32();
731 for (i
= 0; i
< oprsz
; i
+= 4) {
732 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
734 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
737 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
739 tcg_temp_free_i32(t0
);
740 tcg_temp_free_i32(t1
);
743 static void expand_2s_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
744 TCGv_i32 c
, bool scalar_first
,
745 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
747 TCGv_i32 t0
= tcg_temp_new_i32();
748 TCGv_i32 t1
= tcg_temp_new_i32();
751 for (i
= 0; i
< oprsz
; i
+= 4) {
752 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
758 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
760 tcg_temp_free_i32(t0
);
761 tcg_temp_free_i32(t1
);
764 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
765 static void expand_3_i32(uint32_t dofs
, uint32_t aofs
,
766 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
767 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
769 TCGv_i32 t0
= tcg_temp_new_i32();
770 TCGv_i32 t1
= tcg_temp_new_i32();
771 TCGv_i32 t2
= tcg_temp_new_i32();
774 for (i
= 0; i
< oprsz
; i
+= 4) {
775 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
776 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
778 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
781 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
783 tcg_temp_free_i32(t2
);
784 tcg_temp_free_i32(t1
);
785 tcg_temp_free_i32(t0
);
788 static void expand_3i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
789 uint32_t oprsz
, int32_t c
, bool load_dest
,
790 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, int32_t))
792 TCGv_i32 t0
= tcg_temp_new_i32();
793 TCGv_i32 t1
= tcg_temp_new_i32();
794 TCGv_i32 t2
= tcg_temp_new_i32();
797 for (i
= 0; i
< oprsz
; i
+= 4) {
798 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
799 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
801 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
804 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
806 tcg_temp_free_i32(t0
);
807 tcg_temp_free_i32(t1
);
808 tcg_temp_free_i32(t2
);
811 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
812 static void expand_4_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
813 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
814 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_i32
))
816 TCGv_i32 t0
= tcg_temp_new_i32();
817 TCGv_i32 t1
= tcg_temp_new_i32();
818 TCGv_i32 t2
= tcg_temp_new_i32();
819 TCGv_i32 t3
= tcg_temp_new_i32();
822 for (i
= 0; i
< oprsz
; i
+= 4) {
823 tcg_gen_ld_i32(t1
, cpu_env
, aofs
+ i
);
824 tcg_gen_ld_i32(t2
, cpu_env
, bofs
+ i
);
825 tcg_gen_ld_i32(t3
, cpu_env
, cofs
+ i
);
827 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
829 tcg_gen_st_i32(t1
, cpu_env
, aofs
+ i
);
832 tcg_temp_free_i32(t3
);
833 tcg_temp_free_i32(t2
);
834 tcg_temp_free_i32(t1
);
835 tcg_temp_free_i32(t0
);
838 static void expand_4i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
839 uint32_t cofs
, uint32_t oprsz
, int32_t c
,
840 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_i32
,
843 TCGv_i32 t0
= tcg_temp_new_i32();
844 TCGv_i32 t1
= tcg_temp_new_i32();
845 TCGv_i32 t2
= tcg_temp_new_i32();
846 TCGv_i32 t3
= tcg_temp_new_i32();
849 for (i
= 0; i
< oprsz
; i
+= 4) {
850 tcg_gen_ld_i32(t1
, cpu_env
, aofs
+ i
);
851 tcg_gen_ld_i32(t2
, cpu_env
, bofs
+ i
);
852 tcg_gen_ld_i32(t3
, cpu_env
, cofs
+ i
);
853 fni(t0
, t1
, t2
, t3
, c
);
854 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
856 tcg_temp_free_i32(t3
);
857 tcg_temp_free_i32(t2
);
858 tcg_temp_free_i32(t1
);
859 tcg_temp_free_i32(t0
);
862 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
863 static void expand_2_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
864 bool load_dest
, void (*fni
)(TCGv_i64
, TCGv_i64
))
866 TCGv_i64 t0
= tcg_temp_new_i64();
867 TCGv_i64 t1
= tcg_temp_new_i64();
870 for (i
= 0; i
< oprsz
; i
+= 8) {
871 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
873 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
876 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
878 tcg_temp_free_i64(t0
);
879 tcg_temp_free_i64(t1
);
882 static void expand_2i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
883 int64_t c
, bool load_dest
,
884 void (*fni
)(TCGv_i64
, TCGv_i64
, int64_t))
886 TCGv_i64 t0
= tcg_temp_new_i64();
887 TCGv_i64 t1
= tcg_temp_new_i64();
890 for (i
= 0; i
< oprsz
; i
+= 8) {
891 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
893 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
896 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
898 tcg_temp_free_i64(t0
);
899 tcg_temp_free_i64(t1
);
902 static void expand_2s_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
903 TCGv_i64 c
, bool scalar_first
,
904 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
906 TCGv_i64 t0
= tcg_temp_new_i64();
907 TCGv_i64 t1
= tcg_temp_new_i64();
910 for (i
= 0; i
< oprsz
; i
+= 8) {
911 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
917 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
919 tcg_temp_free_i64(t0
);
920 tcg_temp_free_i64(t1
);
923 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
924 static void expand_3_i64(uint32_t dofs
, uint32_t aofs
,
925 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
926 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
928 TCGv_i64 t0
= tcg_temp_new_i64();
929 TCGv_i64 t1
= tcg_temp_new_i64();
930 TCGv_i64 t2
= tcg_temp_new_i64();
933 for (i
= 0; i
< oprsz
; i
+= 8) {
934 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
935 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
937 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
940 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
942 tcg_temp_free_i64(t2
);
943 tcg_temp_free_i64(t1
);
944 tcg_temp_free_i64(t0
);
947 static void expand_3i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
948 uint32_t oprsz
, int64_t c
, bool load_dest
,
949 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, int64_t))
951 TCGv_i64 t0
= tcg_temp_new_i64();
952 TCGv_i64 t1
= tcg_temp_new_i64();
953 TCGv_i64 t2
= tcg_temp_new_i64();
956 for (i
= 0; i
< oprsz
; i
+= 8) {
957 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
958 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
960 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
963 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
965 tcg_temp_free_i64(t0
);
966 tcg_temp_free_i64(t1
);
967 tcg_temp_free_i64(t2
);
970 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
971 static void expand_4_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
972 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
973 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
))
975 TCGv_i64 t0
= tcg_temp_new_i64();
976 TCGv_i64 t1
= tcg_temp_new_i64();
977 TCGv_i64 t2
= tcg_temp_new_i64();
978 TCGv_i64 t3
= tcg_temp_new_i64();
981 for (i
= 0; i
< oprsz
; i
+= 8) {
982 tcg_gen_ld_i64(t1
, cpu_env
, aofs
+ i
);
983 tcg_gen_ld_i64(t2
, cpu_env
, bofs
+ i
);
984 tcg_gen_ld_i64(t3
, cpu_env
, cofs
+ i
);
986 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
988 tcg_gen_st_i64(t1
, cpu_env
, aofs
+ i
);
991 tcg_temp_free_i64(t3
);
992 tcg_temp_free_i64(t2
);
993 tcg_temp_free_i64(t1
);
994 tcg_temp_free_i64(t0
);
997 static void expand_4i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
998 uint32_t cofs
, uint32_t oprsz
, int64_t c
,
999 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
,
1002 TCGv_i64 t0
= tcg_temp_new_i64();
1003 TCGv_i64 t1
= tcg_temp_new_i64();
1004 TCGv_i64 t2
= tcg_temp_new_i64();
1005 TCGv_i64 t3
= tcg_temp_new_i64();
1008 for (i
= 0; i
< oprsz
; i
+= 8) {
1009 tcg_gen_ld_i64(t1
, cpu_env
, aofs
+ i
);
1010 tcg_gen_ld_i64(t2
, cpu_env
, bofs
+ i
);
1011 tcg_gen_ld_i64(t3
, cpu_env
, cofs
+ i
);
1012 fni(t0
, t1
, t2
, t3
, c
);
1013 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
1015 tcg_temp_free_i64(t3
);
1016 tcg_temp_free_i64(t2
);
1017 tcg_temp_free_i64(t1
);
1018 tcg_temp_free_i64(t0
);
1021 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
1022 static void expand_2_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1023 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1025 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
))
1027 TCGv_vec t0
= tcg_temp_new_vec(type
);
1028 TCGv_vec t1
= tcg_temp_new_vec(type
);
1031 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1032 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1034 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
1037 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
1039 tcg_temp_free_vec(t0
);
1040 tcg_temp_free_vec(t1
);
1043 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
1044 using host vectors. */
1045 static void expand_2i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1046 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1047 int64_t c
, bool load_dest
,
1048 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, int64_t))
1050 TCGv_vec t0
= tcg_temp_new_vec(type
);
1051 TCGv_vec t1
= tcg_temp_new_vec(type
);
1054 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1055 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1057 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
1059 fni(vece
, t1
, t0
, c
);
1060 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
1062 tcg_temp_free_vec(t0
);
1063 tcg_temp_free_vec(t1
);
1066 static void expand_2s_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1067 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1068 TCGv_vec c
, bool scalar_first
,
1069 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1071 TCGv_vec t0
= tcg_temp_new_vec(type
);
1072 TCGv_vec t1
= tcg_temp_new_vec(type
);
1075 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1076 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1078 fni(vece
, t1
, c
, t0
);
1080 fni(vece
, t1
, t0
, c
);
1082 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
1084 tcg_temp_free_vec(t0
);
1085 tcg_temp_free_vec(t1
);
1088 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1089 static void expand_3_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1090 uint32_t bofs
, uint32_t oprsz
,
1091 uint32_t tysz
, TCGType type
, bool load_dest
,
1092 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1094 TCGv_vec t0
= tcg_temp_new_vec(type
);
1095 TCGv_vec t1
= tcg_temp_new_vec(type
);
1096 TCGv_vec t2
= tcg_temp_new_vec(type
);
1099 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1100 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1101 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1103 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1105 fni(vece
, t2
, t0
, t1
);
1106 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1108 tcg_temp_free_vec(t2
);
1109 tcg_temp_free_vec(t1
);
1110 tcg_temp_free_vec(t0
);
1114 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1115 * using host vectors.
1117 static void expand_3i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1118 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
1119 TCGType type
, int64_t c
, bool load_dest
,
1120 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
,
1123 TCGv_vec t0
= tcg_temp_new_vec(type
);
1124 TCGv_vec t1
= tcg_temp_new_vec(type
);
1125 TCGv_vec t2
= tcg_temp_new_vec(type
);
1128 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1129 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1130 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1132 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1134 fni(vece
, t2
, t0
, t1
, c
);
1135 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1137 tcg_temp_free_vec(t0
);
1138 tcg_temp_free_vec(t1
);
1139 tcg_temp_free_vec(t2
);
1142 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1143 static void expand_4_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1144 uint32_t bofs
, uint32_t cofs
, uint32_t oprsz
,
1145 uint32_t tysz
, TCGType type
, bool write_aofs
,
1146 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
,
1147 TCGv_vec
, TCGv_vec
))
1149 TCGv_vec t0
= tcg_temp_new_vec(type
);
1150 TCGv_vec t1
= tcg_temp_new_vec(type
);
1151 TCGv_vec t2
= tcg_temp_new_vec(type
);
1152 TCGv_vec t3
= tcg_temp_new_vec(type
);
1155 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1156 tcg_gen_ld_vec(t1
, cpu_env
, aofs
+ i
);
1157 tcg_gen_ld_vec(t2
, cpu_env
, bofs
+ i
);
1158 tcg_gen_ld_vec(t3
, cpu_env
, cofs
+ i
);
1159 fni(vece
, t0
, t1
, t2
, t3
);
1160 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
1162 tcg_gen_st_vec(t1
, cpu_env
, aofs
+ i
);
1165 tcg_temp_free_vec(t3
);
1166 tcg_temp_free_vec(t2
);
1167 tcg_temp_free_vec(t1
);
1168 tcg_temp_free_vec(t0
);
1172 * Expand OPSZ bytes worth of four-vector operands and an immediate operand
1173 * using host vectors.
1175 static void expand_4i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1176 uint32_t bofs
, uint32_t cofs
, uint32_t oprsz
,
1177 uint32_t tysz
, TCGType type
, int64_t c
,
1178 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
,
1179 TCGv_vec
, TCGv_vec
, int64_t))
1181 TCGv_vec t0
= tcg_temp_new_vec(type
);
1182 TCGv_vec t1
= tcg_temp_new_vec(type
);
1183 TCGv_vec t2
= tcg_temp_new_vec(type
);
1184 TCGv_vec t3
= tcg_temp_new_vec(type
);
1187 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1188 tcg_gen_ld_vec(t1
, cpu_env
, aofs
+ i
);
1189 tcg_gen_ld_vec(t2
, cpu_env
, bofs
+ i
);
1190 tcg_gen_ld_vec(t3
, cpu_env
, cofs
+ i
);
1191 fni(vece
, t0
, t1
, t2
, t3
, c
);
1192 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
1194 tcg_temp_free_vec(t3
);
1195 tcg_temp_free_vec(t2
);
1196 tcg_temp_free_vec(t1
);
1197 tcg_temp_free_vec(t0
);
1200 /* Expand a vector two-operand operation. */
1201 void tcg_gen_gvec_2(uint32_t dofs
, uint32_t aofs
,
1202 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2
*g
)
1204 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1205 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1209 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1210 check_overlap_2(dofs
, aofs
, maxsz
);
1214 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1218 /* Recall that ARM SVE allows vector sizes that are not a
1219 * power of 2, but always a multiple of 16. The intent is
1220 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1222 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1223 expand_2_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1224 g
->load_dest
, g
->fniv
);
1225 if (some
== oprsz
) {
1234 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1235 g
->load_dest
, g
->fniv
);
1238 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1239 g
->load_dest
, g
->fniv
);
1243 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1244 expand_2_i64(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni8
);
1245 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1246 expand_2_i32(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni4
);
1248 assert(g
->fno
!= NULL
);
1249 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, g
->data
, g
->fno
);
1255 g_assert_not_reached();
1257 tcg_swap_vecop_list(hold_list
);
1259 if (oprsz
< maxsz
) {
1260 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1264 /* Expand a vector operation with two vectors and an immediate. */
1265 void tcg_gen_gvec_2i(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1266 uint32_t maxsz
, int64_t c
, const GVecGen2i
*g
)
1268 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1269 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1273 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1274 check_overlap_2(dofs
, aofs
, maxsz
);
1278 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1282 /* Recall that ARM SVE allows vector sizes that are not a
1283 * power of 2, but always a multiple of 16. The intent is
1284 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1286 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1287 expand_2i_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1288 c
, g
->load_dest
, g
->fniv
);
1289 if (some
== oprsz
) {
1298 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1299 c
, g
->load_dest
, g
->fniv
);
1302 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1303 c
, g
->load_dest
, g
->fniv
);
1307 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1308 expand_2i_i64(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1309 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1310 expand_2i_i32(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1313 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, c
, g
->fno
);
1315 TCGv_i64 tcg_c
= tcg_constant_i64(c
);
1316 tcg_gen_gvec_2i_ool(dofs
, aofs
, tcg_c
, oprsz
,
1324 g_assert_not_reached();
1326 tcg_swap_vecop_list(hold_list
);
1328 if (oprsz
< maxsz
) {
1329 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1333 /* Expand a vector operation with two vectors and a scalar. */
1334 void tcg_gen_gvec_2s(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1335 uint32_t maxsz
, TCGv_i64 c
, const GVecGen2s
*g
)
1339 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1340 check_overlap_2(dofs
, aofs
, maxsz
);
1344 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1347 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1348 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1349 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1352 tcg_gen_dup_i64_vec(g
->vece
, t_vec
, c
);
1356 /* Recall that ARM SVE allows vector sizes that are not a
1357 * power of 2, but always a multiple of 16. The intent is
1358 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1360 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1361 expand_2s_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1362 t_vec
, g
->scalar_first
, g
->fniv
);
1363 if (some
== oprsz
) {
1373 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1374 t_vec
, g
->scalar_first
, g
->fniv
);
1378 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1379 t_vec
, g
->scalar_first
, g
->fniv
);
1383 g_assert_not_reached();
1385 tcg_temp_free_vec(t_vec
);
1386 tcg_swap_vecop_list(hold_list
);
1387 } else if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1388 TCGv_i64 t64
= tcg_temp_new_i64();
1390 tcg_gen_dup_i64(g
->vece
, t64
, c
);
1391 expand_2s_i64(dofs
, aofs
, oprsz
, t64
, g
->scalar_first
, g
->fni8
);
1392 tcg_temp_free_i64(t64
);
1393 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1394 TCGv_i32 t32
= tcg_temp_new_i32();
1396 tcg_gen_extrl_i64_i32(t32
, c
);
1397 tcg_gen_dup_i32(g
->vece
, t32
, t32
);
1398 expand_2s_i32(dofs
, aofs
, oprsz
, t32
, g
->scalar_first
, g
->fni4
);
1399 tcg_temp_free_i32(t32
);
1401 tcg_gen_gvec_2i_ool(dofs
, aofs
, c
, oprsz
, maxsz
, 0, g
->fno
);
1405 if (oprsz
< maxsz
) {
1406 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1410 /* Expand a vector three-operand operation. */
1411 void tcg_gen_gvec_3(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1412 uint32_t oprsz
, uint32_t maxsz
, const GVecGen3
*g
)
1414 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1415 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1419 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1420 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1424 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1428 /* Recall that ARM SVE allows vector sizes that are not a
1429 * power of 2, but always a multiple of 16. The intent is
1430 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1432 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1433 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1434 g
->load_dest
, g
->fniv
);
1435 if (some
== oprsz
) {
1445 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1446 g
->load_dest
, g
->fniv
);
1449 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1450 g
->load_dest
, g
->fniv
);
1454 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1455 expand_3_i64(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni8
);
1456 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1457 expand_3_i32(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni4
);
1459 assert(g
->fno
!= NULL
);
1460 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
,
1461 maxsz
, g
->data
, g
->fno
);
1467 g_assert_not_reached();
1469 tcg_swap_vecop_list(hold_list
);
1471 if (oprsz
< maxsz
) {
1472 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1476 /* Expand a vector operation with three vectors and an immediate. */
1477 void tcg_gen_gvec_3i(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1478 uint32_t oprsz
, uint32_t maxsz
, int64_t c
,
1481 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1482 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1486 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1487 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1491 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1496 * Recall that ARM SVE allows vector sizes that are not a
1497 * power of 2, but always a multiple of 16. The intent is
1498 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1500 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1501 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1502 c
, g
->load_dest
, g
->fniv
);
1503 if (some
== oprsz
) {
1513 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1514 c
, g
->load_dest
, g
->fniv
);
1517 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1518 c
, g
->load_dest
, g
->fniv
);
1522 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1523 expand_3i_i64(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1524 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1525 expand_3i_i32(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1527 assert(g
->fno
!= NULL
);
1528 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, c
, g
->fno
);
1534 g_assert_not_reached();
1536 tcg_swap_vecop_list(hold_list
);
1538 if (oprsz
< maxsz
) {
1539 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1543 /* Expand a vector four-operand operation. */
1544 void tcg_gen_gvec_4(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
, uint32_t cofs
,
1545 uint32_t oprsz
, uint32_t maxsz
, const GVecGen4
*g
)
1547 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1548 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1552 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
| cofs
);
1553 check_overlap_4(dofs
, aofs
, bofs
, cofs
, maxsz
);
1557 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1561 /* Recall that ARM SVE allows vector sizes that are not a
1562 * power of 2, but always a multiple of 16. The intent is
1563 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1565 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1566 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, some
,
1567 32, TCG_TYPE_V256
, g
->write_aofs
, g
->fniv
);
1568 if (some
== oprsz
) {
1579 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1580 16, TCG_TYPE_V128
, g
->write_aofs
, g
->fniv
);
1583 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1584 8, TCG_TYPE_V64
, g
->write_aofs
, g
->fniv
);
1588 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1589 expand_4_i64(dofs
, aofs
, bofs
, cofs
, oprsz
,
1590 g
->write_aofs
, g
->fni8
);
1591 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1592 expand_4_i32(dofs
, aofs
, bofs
, cofs
, oprsz
,
1593 g
->write_aofs
, g
->fni4
);
1595 assert(g
->fno
!= NULL
);
1596 tcg_gen_gvec_4_ool(dofs
, aofs
, bofs
, cofs
,
1597 oprsz
, maxsz
, g
->data
, g
->fno
);
1603 g_assert_not_reached();
1605 tcg_swap_vecop_list(hold_list
);
1607 if (oprsz
< maxsz
) {
1608 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1612 /* Expand a vector four-operand operation. */
1613 void tcg_gen_gvec_4i(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
, uint32_t cofs
,
1614 uint32_t oprsz
, uint32_t maxsz
, int64_t c
,
1617 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1618 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1622 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
| cofs
);
1623 check_overlap_4(dofs
, aofs
, bofs
, cofs
, maxsz
);
1627 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1632 * Recall that ARM SVE allows vector sizes that are not a
1633 * power of 2, but always a multiple of 16. The intent is
1634 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1636 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1637 expand_4i_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, some
,
1638 32, TCG_TYPE_V256
, c
, g
->fniv
);
1639 if (some
== oprsz
) {
1650 expand_4i_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1651 16, TCG_TYPE_V128
, c
, g
->fniv
);
1654 expand_4i_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1655 8, TCG_TYPE_V64
, c
, g
->fniv
);
1659 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1660 expand_4i_i64(dofs
, aofs
, bofs
, cofs
, oprsz
, c
, g
->fni8
);
1661 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1662 expand_4i_i32(dofs
, aofs
, bofs
, cofs
, oprsz
, c
, g
->fni4
);
1664 assert(g
->fno
!= NULL
);
1665 tcg_gen_gvec_4_ool(dofs
, aofs
, bofs
, cofs
,
1666 oprsz
, maxsz
, c
, g
->fno
);
1672 g_assert_not_reached();
1674 tcg_swap_vecop_list(hold_list
);
1676 if (oprsz
< maxsz
) {
1677 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1682 * Expand specific vector operations.
1685 static void vec_mov2(unsigned vece
, TCGv_vec a
, TCGv_vec b
)
1687 tcg_gen_mov_vec(a
, b
);
1690 void tcg_gen_gvec_mov(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1691 uint32_t oprsz
, uint32_t maxsz
)
1693 static const GVecGen2 g
= {
1694 .fni8
= tcg_gen_mov_i64
,
1696 .fno
= gen_helper_gvec_mov
,
1697 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1700 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1702 check_size_align(oprsz
, maxsz
, dofs
);
1703 if (oprsz
< maxsz
) {
1704 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1709 void tcg_gen_gvec_dup_i32(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1710 uint32_t maxsz
, TCGv_i32 in
)
1712 check_size_align(oprsz
, maxsz
, dofs
);
1713 tcg_debug_assert(vece
<= MO_32
);
1714 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1717 void tcg_gen_gvec_dup_i64(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1718 uint32_t maxsz
, TCGv_i64 in
)
1720 check_size_align(oprsz
, maxsz
, dofs
);
1721 tcg_debug_assert(vece
<= MO_64
);
1722 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1725 void tcg_gen_gvec_dup_mem(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1726 uint32_t oprsz
, uint32_t maxsz
)
1728 check_size_align(oprsz
, maxsz
, dofs
);
1729 if (vece
<= MO_64
) {
1730 TCGType type
= choose_vector_type(NULL
, vece
, oprsz
, 0);
1732 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1733 tcg_gen_dup_mem_vec(vece
, t_vec
, cpu_env
, aofs
);
1734 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
1735 tcg_temp_free_vec(t_vec
);
1736 } else if (vece
<= MO_32
) {
1737 TCGv_i32 in
= tcg_temp_ebb_new_i32();
1740 tcg_gen_ld8u_i32(in
, cpu_env
, aofs
);
1743 tcg_gen_ld16u_i32(in
, cpu_env
, aofs
);
1746 tcg_gen_ld_i32(in
, cpu_env
, aofs
);
1749 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1750 tcg_temp_free_i32(in
);
1752 TCGv_i64 in
= tcg_temp_ebb_new_i64();
1753 tcg_gen_ld_i64(in
, cpu_env
, aofs
);
1754 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1755 tcg_temp_free_i64(in
);
1757 } else if (vece
== 4) {
1758 /* 128-bit duplicate. */
1761 tcg_debug_assert(oprsz
>= 16);
1762 if (TCG_TARGET_HAS_v128
) {
1763 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V128
);
1765 tcg_gen_ld_vec(in
, cpu_env
, aofs
);
1766 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1767 tcg_gen_st_vec(in
, cpu_env
, dofs
+ i
);
1769 tcg_temp_free_vec(in
);
1771 TCGv_i64 in0
= tcg_temp_ebb_new_i64();
1772 TCGv_i64 in1
= tcg_temp_ebb_new_i64();
1774 tcg_gen_ld_i64(in0
, cpu_env
, aofs
);
1775 tcg_gen_ld_i64(in1
, cpu_env
, aofs
+ 8);
1776 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1777 tcg_gen_st_i64(in0
, cpu_env
, dofs
+ i
);
1778 tcg_gen_st_i64(in1
, cpu_env
, dofs
+ i
+ 8);
1780 tcg_temp_free_i64(in0
);
1781 tcg_temp_free_i64(in1
);
1783 if (oprsz
< maxsz
) {
1784 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1786 } else if (vece
== 5) {
1787 /* 256-bit duplicate. */
1790 tcg_debug_assert(oprsz
>= 32);
1791 tcg_debug_assert(oprsz
% 32 == 0);
1792 if (TCG_TARGET_HAS_v256
) {
1793 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V256
);
1795 tcg_gen_ld_vec(in
, cpu_env
, aofs
);
1796 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1797 tcg_gen_st_vec(in
, cpu_env
, dofs
+ i
);
1799 tcg_temp_free_vec(in
);
1800 } else if (TCG_TARGET_HAS_v128
) {
1801 TCGv_vec in0
= tcg_temp_new_vec(TCG_TYPE_V128
);
1802 TCGv_vec in1
= tcg_temp_new_vec(TCG_TYPE_V128
);
1804 tcg_gen_ld_vec(in0
, cpu_env
, aofs
);
1805 tcg_gen_ld_vec(in1
, cpu_env
, aofs
+ 16);
1806 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1807 tcg_gen_st_vec(in0
, cpu_env
, dofs
+ i
);
1808 tcg_gen_st_vec(in1
, cpu_env
, dofs
+ i
+ 16);
1810 tcg_temp_free_vec(in0
);
1811 tcg_temp_free_vec(in1
);
1816 for (j
= 0; j
< 4; ++j
) {
1817 in
[j
] = tcg_temp_ebb_new_i64();
1818 tcg_gen_ld_i64(in
[j
], cpu_env
, aofs
+ j
* 8);
1820 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1821 for (j
= 0; j
< 4; ++j
) {
1822 tcg_gen_st_i64(in
[j
], cpu_env
, dofs
+ i
+ j
* 8);
1825 for (j
= 0; j
< 4; ++j
) {
1826 tcg_temp_free_i64(in
[j
]);
1829 if (oprsz
< maxsz
) {
1830 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1833 g_assert_not_reached();
1837 void tcg_gen_gvec_dup_imm(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1838 uint32_t maxsz
, uint64_t x
)
1840 check_size_align(oprsz
, maxsz
, dofs
);
1841 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, NULL
, x
);
1844 void tcg_gen_gvec_not(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1845 uint32_t oprsz
, uint32_t maxsz
)
1847 static const GVecGen2 g
= {
1848 .fni8
= tcg_gen_not_i64
,
1849 .fniv
= tcg_gen_not_vec
,
1850 .fno
= gen_helper_gvec_not
,
1851 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1853 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1856 /* Perform a vector addition using normal addition and a mask. The mask
1857 should be the sign bit of each lane. This 6-operation form is more
1858 efficient than separate additions when there are 4 or more lanes in
1859 the 64-bit operation. */
1860 static void gen_addv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
1862 TCGv_i64 t1
= tcg_temp_ebb_new_i64();
1863 TCGv_i64 t2
= tcg_temp_ebb_new_i64();
1864 TCGv_i64 t3
= tcg_temp_ebb_new_i64();
1866 tcg_gen_andc_i64(t1
, a
, m
);
1867 tcg_gen_andc_i64(t2
, b
, m
);
1868 tcg_gen_xor_i64(t3
, a
, b
);
1869 tcg_gen_add_i64(d
, t1
, t2
);
1870 tcg_gen_and_i64(t3
, t3
, m
);
1871 tcg_gen_xor_i64(d
, d
, t3
);
1873 tcg_temp_free_i64(t1
);
1874 tcg_temp_free_i64(t2
);
1875 tcg_temp_free_i64(t3
);
1878 void tcg_gen_vec_add8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1880 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
1881 gen_addv_mask(d
, a
, b
, m
);
1884 void tcg_gen_vec_add8_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
1886 TCGv_i32 m
= tcg_constant_i32((int32_t)dup_const(MO_8
, 0x80));
1887 TCGv_i32 t1
= tcg_temp_ebb_new_i32();
1888 TCGv_i32 t2
= tcg_temp_ebb_new_i32();
1889 TCGv_i32 t3
= tcg_temp_ebb_new_i32();
1891 tcg_gen_andc_i32(t1
, a
, m
);
1892 tcg_gen_andc_i32(t2
, b
, m
);
1893 tcg_gen_xor_i32(t3
, a
, b
);
1894 tcg_gen_add_i32(d
, t1
, t2
);
1895 tcg_gen_and_i32(t3
, t3
, m
);
1896 tcg_gen_xor_i32(d
, d
, t3
);
1898 tcg_temp_free_i32(t1
);
1899 tcg_temp_free_i32(t2
);
1900 tcg_temp_free_i32(t3
);
1903 void tcg_gen_vec_add16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1905 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
1906 gen_addv_mask(d
, a
, b
, m
);
1909 void tcg_gen_vec_add16_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
1911 TCGv_i32 t1
= tcg_temp_ebb_new_i32();
1912 TCGv_i32 t2
= tcg_temp_ebb_new_i32();
1914 tcg_gen_andi_i32(t1
, a
, ~0xffff);
1915 tcg_gen_add_i32(t2
, a
, b
);
1916 tcg_gen_add_i32(t1
, t1
, b
);
1917 tcg_gen_deposit_i32(d
, t1
, t2
, 0, 16);
1919 tcg_temp_free_i32(t1
);
1920 tcg_temp_free_i32(t2
);
1923 void tcg_gen_vec_add32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1925 TCGv_i64 t1
= tcg_temp_ebb_new_i64();
1926 TCGv_i64 t2
= tcg_temp_ebb_new_i64();
1928 tcg_gen_andi_i64(t1
, a
, ~0xffffffffull
);
1929 tcg_gen_add_i64(t2
, a
, b
);
1930 tcg_gen_add_i64(t1
, t1
, b
);
1931 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
1933 tcg_temp_free_i64(t1
);
1934 tcg_temp_free_i64(t2
);
1937 static const TCGOpcode vecop_list_add
[] = { INDEX_op_add_vec
, 0 };
1939 void tcg_gen_gvec_add(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1940 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1942 static const GVecGen3 g
[4] = {
1943 { .fni8
= tcg_gen_vec_add8_i64
,
1944 .fniv
= tcg_gen_add_vec
,
1945 .fno
= gen_helper_gvec_add8
,
1946 .opt_opc
= vecop_list_add
,
1948 { .fni8
= tcg_gen_vec_add16_i64
,
1949 .fniv
= tcg_gen_add_vec
,
1950 .fno
= gen_helper_gvec_add16
,
1951 .opt_opc
= vecop_list_add
,
1953 { .fni4
= tcg_gen_add_i32
,
1954 .fniv
= tcg_gen_add_vec
,
1955 .fno
= gen_helper_gvec_add32
,
1956 .opt_opc
= vecop_list_add
,
1958 { .fni8
= tcg_gen_add_i64
,
1959 .fniv
= tcg_gen_add_vec
,
1960 .fno
= gen_helper_gvec_add64
,
1961 .opt_opc
= vecop_list_add
,
1962 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1966 tcg_debug_assert(vece
<= MO_64
);
1967 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1970 void tcg_gen_gvec_adds(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1971 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1973 static const GVecGen2s g
[4] = {
1974 { .fni8
= tcg_gen_vec_add8_i64
,
1975 .fniv
= tcg_gen_add_vec
,
1976 .fno
= gen_helper_gvec_adds8
,
1977 .opt_opc
= vecop_list_add
,
1979 { .fni8
= tcg_gen_vec_add16_i64
,
1980 .fniv
= tcg_gen_add_vec
,
1981 .fno
= gen_helper_gvec_adds16
,
1982 .opt_opc
= vecop_list_add
,
1984 { .fni4
= tcg_gen_add_i32
,
1985 .fniv
= tcg_gen_add_vec
,
1986 .fno
= gen_helper_gvec_adds32
,
1987 .opt_opc
= vecop_list_add
,
1989 { .fni8
= tcg_gen_add_i64
,
1990 .fniv
= tcg_gen_add_vec
,
1991 .fno
= gen_helper_gvec_adds64
,
1992 .opt_opc
= vecop_list_add
,
1993 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1997 tcg_debug_assert(vece
<= MO_64
);
1998 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
2001 void tcg_gen_gvec_addi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2002 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2004 TCGv_i64 tmp
= tcg_constant_i64(c
);
2005 tcg_gen_gvec_adds(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
2008 static const TCGOpcode vecop_list_sub
[] = { INDEX_op_sub_vec
, 0 };
2010 void tcg_gen_gvec_subs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2011 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2013 static const GVecGen2s g
[4] = {
2014 { .fni8
= tcg_gen_vec_sub8_i64
,
2015 .fniv
= tcg_gen_sub_vec
,
2016 .fno
= gen_helper_gvec_subs8
,
2017 .opt_opc
= vecop_list_sub
,
2019 { .fni8
= tcg_gen_vec_sub16_i64
,
2020 .fniv
= tcg_gen_sub_vec
,
2021 .fno
= gen_helper_gvec_subs16
,
2022 .opt_opc
= vecop_list_sub
,
2024 { .fni4
= tcg_gen_sub_i32
,
2025 .fniv
= tcg_gen_sub_vec
,
2026 .fno
= gen_helper_gvec_subs32
,
2027 .opt_opc
= vecop_list_sub
,
2029 { .fni8
= tcg_gen_sub_i64
,
2030 .fniv
= tcg_gen_sub_vec
,
2031 .fno
= gen_helper_gvec_subs64
,
2032 .opt_opc
= vecop_list_sub
,
2033 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2037 tcg_debug_assert(vece
<= MO_64
);
2038 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
2041 /* Perform a vector subtraction using normal subtraction and a mask.
2042 Compare gen_addv_mask above. */
2043 static void gen_subv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
2045 TCGv_i64 t1
= tcg_temp_ebb_new_i64();
2046 TCGv_i64 t2
= tcg_temp_ebb_new_i64();
2047 TCGv_i64 t3
= tcg_temp_ebb_new_i64();
2049 tcg_gen_or_i64(t1
, a
, m
);
2050 tcg_gen_andc_i64(t2
, b
, m
);
2051 tcg_gen_eqv_i64(t3
, a
, b
);
2052 tcg_gen_sub_i64(d
, t1
, t2
);
2053 tcg_gen_and_i64(t3
, t3
, m
);
2054 tcg_gen_xor_i64(d
, d
, t3
);
2056 tcg_temp_free_i64(t1
);
2057 tcg_temp_free_i64(t2
);
2058 tcg_temp_free_i64(t3
);
2061 void tcg_gen_vec_sub8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2063 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
2064 gen_subv_mask(d
, a
, b
, m
);
2067 void tcg_gen_vec_sub8_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2069 TCGv_i32 m
= tcg_constant_i32((int32_t)dup_const(MO_8
, 0x80));
2070 TCGv_i32 t1
= tcg_temp_ebb_new_i32();
2071 TCGv_i32 t2
= tcg_temp_ebb_new_i32();
2072 TCGv_i32 t3
= tcg_temp_ebb_new_i32();
2074 tcg_gen_or_i32(t1
, a
, m
);
2075 tcg_gen_andc_i32(t2
, b
, m
);
2076 tcg_gen_eqv_i32(t3
, a
, b
);
2077 tcg_gen_sub_i32(d
, t1
, t2
);
2078 tcg_gen_and_i32(t3
, t3
, m
);
2079 tcg_gen_xor_i32(d
, d
, t3
);
2081 tcg_temp_free_i32(t1
);
2082 tcg_temp_free_i32(t2
);
2083 tcg_temp_free_i32(t3
);
2086 void tcg_gen_vec_sub16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2088 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
2089 gen_subv_mask(d
, a
, b
, m
);
2092 void tcg_gen_vec_sub16_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2094 TCGv_i32 t1
= tcg_temp_ebb_new_i32();
2095 TCGv_i32 t2
= tcg_temp_ebb_new_i32();
2097 tcg_gen_andi_i32(t1
, b
, ~0xffff);
2098 tcg_gen_sub_i32(t2
, a
, b
);
2099 tcg_gen_sub_i32(t1
, a
, t1
);
2100 tcg_gen_deposit_i32(d
, t1
, t2
, 0, 16);
2102 tcg_temp_free_i32(t1
);
2103 tcg_temp_free_i32(t2
);
2106 void tcg_gen_vec_sub32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2108 TCGv_i64 t1
= tcg_temp_ebb_new_i64();
2109 TCGv_i64 t2
= tcg_temp_ebb_new_i64();
2111 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
2112 tcg_gen_sub_i64(t2
, a
, b
);
2113 tcg_gen_sub_i64(t1
, a
, t1
);
2114 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
2116 tcg_temp_free_i64(t1
);
2117 tcg_temp_free_i64(t2
);
2120 void tcg_gen_gvec_sub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2121 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2123 static const GVecGen3 g
[4] = {
2124 { .fni8
= tcg_gen_vec_sub8_i64
,
2125 .fniv
= tcg_gen_sub_vec
,
2126 .fno
= gen_helper_gvec_sub8
,
2127 .opt_opc
= vecop_list_sub
,
2129 { .fni8
= tcg_gen_vec_sub16_i64
,
2130 .fniv
= tcg_gen_sub_vec
,
2131 .fno
= gen_helper_gvec_sub16
,
2132 .opt_opc
= vecop_list_sub
,
2134 { .fni4
= tcg_gen_sub_i32
,
2135 .fniv
= tcg_gen_sub_vec
,
2136 .fno
= gen_helper_gvec_sub32
,
2137 .opt_opc
= vecop_list_sub
,
2139 { .fni8
= tcg_gen_sub_i64
,
2140 .fniv
= tcg_gen_sub_vec
,
2141 .fno
= gen_helper_gvec_sub64
,
2142 .opt_opc
= vecop_list_sub
,
2143 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2147 tcg_debug_assert(vece
<= MO_64
);
2148 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2151 static const TCGOpcode vecop_list_mul
[] = { INDEX_op_mul_vec
, 0 };
2153 void tcg_gen_gvec_mul(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2154 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2156 static const GVecGen3 g
[4] = {
2157 { .fniv
= tcg_gen_mul_vec
,
2158 .fno
= gen_helper_gvec_mul8
,
2159 .opt_opc
= vecop_list_mul
,
2161 { .fniv
= tcg_gen_mul_vec
,
2162 .fno
= gen_helper_gvec_mul16
,
2163 .opt_opc
= vecop_list_mul
,
2165 { .fni4
= tcg_gen_mul_i32
,
2166 .fniv
= tcg_gen_mul_vec
,
2167 .fno
= gen_helper_gvec_mul32
,
2168 .opt_opc
= vecop_list_mul
,
2170 { .fni8
= tcg_gen_mul_i64
,
2171 .fniv
= tcg_gen_mul_vec
,
2172 .fno
= gen_helper_gvec_mul64
,
2173 .opt_opc
= vecop_list_mul
,
2174 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2178 tcg_debug_assert(vece
<= MO_64
);
2179 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2182 void tcg_gen_gvec_muls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2183 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2185 static const GVecGen2s g
[4] = {
2186 { .fniv
= tcg_gen_mul_vec
,
2187 .fno
= gen_helper_gvec_muls8
,
2188 .opt_opc
= vecop_list_mul
,
2190 { .fniv
= tcg_gen_mul_vec
,
2191 .fno
= gen_helper_gvec_muls16
,
2192 .opt_opc
= vecop_list_mul
,
2194 { .fni4
= tcg_gen_mul_i32
,
2195 .fniv
= tcg_gen_mul_vec
,
2196 .fno
= gen_helper_gvec_muls32
,
2197 .opt_opc
= vecop_list_mul
,
2199 { .fni8
= tcg_gen_mul_i64
,
2200 .fniv
= tcg_gen_mul_vec
,
2201 .fno
= gen_helper_gvec_muls64
,
2202 .opt_opc
= vecop_list_mul
,
2203 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2207 tcg_debug_assert(vece
<= MO_64
);
2208 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
2211 void tcg_gen_gvec_muli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2212 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2214 TCGv_i64 tmp
= tcg_constant_i64(c
);
2215 tcg_gen_gvec_muls(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
2218 void tcg_gen_gvec_ssadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2219 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2221 static const TCGOpcode vecop_list
[] = { INDEX_op_ssadd_vec
, 0 };
2222 static const GVecGen3 g
[4] = {
2223 { .fniv
= tcg_gen_ssadd_vec
,
2224 .fno
= gen_helper_gvec_ssadd8
,
2225 .opt_opc
= vecop_list
,
2227 { .fniv
= tcg_gen_ssadd_vec
,
2228 .fno
= gen_helper_gvec_ssadd16
,
2229 .opt_opc
= vecop_list
,
2231 { .fniv
= tcg_gen_ssadd_vec
,
2232 .fno
= gen_helper_gvec_ssadd32
,
2233 .opt_opc
= vecop_list
,
2235 { .fniv
= tcg_gen_ssadd_vec
,
2236 .fno
= gen_helper_gvec_ssadd64
,
2237 .opt_opc
= vecop_list
,
2240 tcg_debug_assert(vece
<= MO_64
);
2241 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2244 void tcg_gen_gvec_sssub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2245 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2247 static const TCGOpcode vecop_list
[] = { INDEX_op_sssub_vec
, 0 };
2248 static const GVecGen3 g
[4] = {
2249 { .fniv
= tcg_gen_sssub_vec
,
2250 .fno
= gen_helper_gvec_sssub8
,
2251 .opt_opc
= vecop_list
,
2253 { .fniv
= tcg_gen_sssub_vec
,
2254 .fno
= gen_helper_gvec_sssub16
,
2255 .opt_opc
= vecop_list
,
2257 { .fniv
= tcg_gen_sssub_vec
,
2258 .fno
= gen_helper_gvec_sssub32
,
2259 .opt_opc
= vecop_list
,
2261 { .fniv
= tcg_gen_sssub_vec
,
2262 .fno
= gen_helper_gvec_sssub64
,
2263 .opt_opc
= vecop_list
,
2266 tcg_debug_assert(vece
<= MO_64
);
2267 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2270 static void tcg_gen_usadd_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2272 TCGv_i32 max
= tcg_constant_i32(-1);
2273 tcg_gen_add_i32(d
, a
, b
);
2274 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2277 static void tcg_gen_usadd_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2279 TCGv_i64 max
= tcg_constant_i64(-1);
2280 tcg_gen_add_i64(d
, a
, b
);
2281 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2284 void tcg_gen_gvec_usadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2285 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2287 static const TCGOpcode vecop_list
[] = { INDEX_op_usadd_vec
, 0 };
2288 static const GVecGen3 g
[4] = {
2289 { .fniv
= tcg_gen_usadd_vec
,
2290 .fno
= gen_helper_gvec_usadd8
,
2291 .opt_opc
= vecop_list
,
2293 { .fniv
= tcg_gen_usadd_vec
,
2294 .fno
= gen_helper_gvec_usadd16
,
2295 .opt_opc
= vecop_list
,
2297 { .fni4
= tcg_gen_usadd_i32
,
2298 .fniv
= tcg_gen_usadd_vec
,
2299 .fno
= gen_helper_gvec_usadd32
,
2300 .opt_opc
= vecop_list
,
2302 { .fni8
= tcg_gen_usadd_i64
,
2303 .fniv
= tcg_gen_usadd_vec
,
2304 .fno
= gen_helper_gvec_usadd64
,
2305 .opt_opc
= vecop_list
,
2308 tcg_debug_assert(vece
<= MO_64
);
2309 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2312 static void tcg_gen_ussub_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2314 TCGv_i32 min
= tcg_constant_i32(0);
2315 tcg_gen_sub_i32(d
, a
, b
);
2316 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2319 static void tcg_gen_ussub_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2321 TCGv_i64 min
= tcg_constant_i64(0);
2322 tcg_gen_sub_i64(d
, a
, b
);
2323 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2326 void tcg_gen_gvec_ussub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2327 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2329 static const TCGOpcode vecop_list
[] = { INDEX_op_ussub_vec
, 0 };
2330 static const GVecGen3 g
[4] = {
2331 { .fniv
= tcg_gen_ussub_vec
,
2332 .fno
= gen_helper_gvec_ussub8
,
2333 .opt_opc
= vecop_list
,
2335 { .fniv
= tcg_gen_ussub_vec
,
2336 .fno
= gen_helper_gvec_ussub16
,
2337 .opt_opc
= vecop_list
,
2339 { .fni4
= tcg_gen_ussub_i32
,
2340 .fniv
= tcg_gen_ussub_vec
,
2341 .fno
= gen_helper_gvec_ussub32
,
2342 .opt_opc
= vecop_list
,
2344 { .fni8
= tcg_gen_ussub_i64
,
2345 .fniv
= tcg_gen_ussub_vec
,
2346 .fno
= gen_helper_gvec_ussub64
,
2347 .opt_opc
= vecop_list
,
2350 tcg_debug_assert(vece
<= MO_64
);
2351 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2354 void tcg_gen_gvec_smin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2355 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2357 static const TCGOpcode vecop_list
[] = { INDEX_op_smin_vec
, 0 };
2358 static const GVecGen3 g
[4] = {
2359 { .fniv
= tcg_gen_smin_vec
,
2360 .fno
= gen_helper_gvec_smin8
,
2361 .opt_opc
= vecop_list
,
2363 { .fniv
= tcg_gen_smin_vec
,
2364 .fno
= gen_helper_gvec_smin16
,
2365 .opt_opc
= vecop_list
,
2367 { .fni4
= tcg_gen_smin_i32
,
2368 .fniv
= tcg_gen_smin_vec
,
2369 .fno
= gen_helper_gvec_smin32
,
2370 .opt_opc
= vecop_list
,
2372 { .fni8
= tcg_gen_smin_i64
,
2373 .fniv
= tcg_gen_smin_vec
,
2374 .fno
= gen_helper_gvec_smin64
,
2375 .opt_opc
= vecop_list
,
2378 tcg_debug_assert(vece
<= MO_64
);
2379 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2382 void tcg_gen_gvec_umin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2383 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2385 static const TCGOpcode vecop_list
[] = { INDEX_op_umin_vec
, 0 };
2386 static const GVecGen3 g
[4] = {
2387 { .fniv
= tcg_gen_umin_vec
,
2388 .fno
= gen_helper_gvec_umin8
,
2389 .opt_opc
= vecop_list
,
2391 { .fniv
= tcg_gen_umin_vec
,
2392 .fno
= gen_helper_gvec_umin16
,
2393 .opt_opc
= vecop_list
,
2395 { .fni4
= tcg_gen_umin_i32
,
2396 .fniv
= tcg_gen_umin_vec
,
2397 .fno
= gen_helper_gvec_umin32
,
2398 .opt_opc
= vecop_list
,
2400 { .fni8
= tcg_gen_umin_i64
,
2401 .fniv
= tcg_gen_umin_vec
,
2402 .fno
= gen_helper_gvec_umin64
,
2403 .opt_opc
= vecop_list
,
2406 tcg_debug_assert(vece
<= MO_64
);
2407 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2410 void tcg_gen_gvec_smax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2411 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2413 static const TCGOpcode vecop_list
[] = { INDEX_op_smax_vec
, 0 };
2414 static const GVecGen3 g
[4] = {
2415 { .fniv
= tcg_gen_smax_vec
,
2416 .fno
= gen_helper_gvec_smax8
,
2417 .opt_opc
= vecop_list
,
2419 { .fniv
= tcg_gen_smax_vec
,
2420 .fno
= gen_helper_gvec_smax16
,
2421 .opt_opc
= vecop_list
,
2423 { .fni4
= tcg_gen_smax_i32
,
2424 .fniv
= tcg_gen_smax_vec
,
2425 .fno
= gen_helper_gvec_smax32
,
2426 .opt_opc
= vecop_list
,
2428 { .fni8
= tcg_gen_smax_i64
,
2429 .fniv
= tcg_gen_smax_vec
,
2430 .fno
= gen_helper_gvec_smax64
,
2431 .opt_opc
= vecop_list
,
2434 tcg_debug_assert(vece
<= MO_64
);
2435 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2438 void tcg_gen_gvec_umax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2439 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2441 static const TCGOpcode vecop_list
[] = { INDEX_op_umax_vec
, 0 };
2442 static const GVecGen3 g
[4] = {
2443 { .fniv
= tcg_gen_umax_vec
,
2444 .fno
= gen_helper_gvec_umax8
,
2445 .opt_opc
= vecop_list
,
2447 { .fniv
= tcg_gen_umax_vec
,
2448 .fno
= gen_helper_gvec_umax16
,
2449 .opt_opc
= vecop_list
,
2451 { .fni4
= tcg_gen_umax_i32
,
2452 .fniv
= tcg_gen_umax_vec
,
2453 .fno
= gen_helper_gvec_umax32
,
2454 .opt_opc
= vecop_list
,
2456 { .fni8
= tcg_gen_umax_i64
,
2457 .fniv
= tcg_gen_umax_vec
,
2458 .fno
= gen_helper_gvec_umax64
,
2459 .opt_opc
= vecop_list
,
2462 tcg_debug_assert(vece
<= MO_64
);
2463 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2466 /* Perform a vector negation using normal negation and a mask.
2467 Compare gen_subv_mask above. */
2468 static void gen_negv_mask(TCGv_i64 d
, TCGv_i64 b
, TCGv_i64 m
)
2470 TCGv_i64 t2
= tcg_temp_ebb_new_i64();
2471 TCGv_i64 t3
= tcg_temp_ebb_new_i64();
2473 tcg_gen_andc_i64(t3
, m
, b
);
2474 tcg_gen_andc_i64(t2
, b
, m
);
2475 tcg_gen_sub_i64(d
, m
, t2
);
2476 tcg_gen_xor_i64(d
, d
, t3
);
2478 tcg_temp_free_i64(t2
);
2479 tcg_temp_free_i64(t3
);
2482 void tcg_gen_vec_neg8_i64(TCGv_i64 d
, TCGv_i64 b
)
2484 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
2485 gen_negv_mask(d
, b
, m
);
2488 void tcg_gen_vec_neg16_i64(TCGv_i64 d
, TCGv_i64 b
)
2490 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
2491 gen_negv_mask(d
, b
, m
);
2494 void tcg_gen_vec_neg32_i64(TCGv_i64 d
, TCGv_i64 b
)
2496 TCGv_i64 t1
= tcg_temp_ebb_new_i64();
2497 TCGv_i64 t2
= tcg_temp_ebb_new_i64();
2499 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
2500 tcg_gen_neg_i64(t2
, b
);
2501 tcg_gen_neg_i64(t1
, t1
);
2502 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
2504 tcg_temp_free_i64(t1
);
2505 tcg_temp_free_i64(t2
);
2508 void tcg_gen_gvec_neg(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2509 uint32_t oprsz
, uint32_t maxsz
)
2511 static const TCGOpcode vecop_list
[] = { INDEX_op_neg_vec
, 0 };
2512 static const GVecGen2 g
[4] = {
2513 { .fni8
= tcg_gen_vec_neg8_i64
,
2514 .fniv
= tcg_gen_neg_vec
,
2515 .fno
= gen_helper_gvec_neg8
,
2516 .opt_opc
= vecop_list
,
2518 { .fni8
= tcg_gen_vec_neg16_i64
,
2519 .fniv
= tcg_gen_neg_vec
,
2520 .fno
= gen_helper_gvec_neg16
,
2521 .opt_opc
= vecop_list
,
2523 { .fni4
= tcg_gen_neg_i32
,
2524 .fniv
= tcg_gen_neg_vec
,
2525 .fno
= gen_helper_gvec_neg32
,
2526 .opt_opc
= vecop_list
,
2528 { .fni8
= tcg_gen_neg_i64
,
2529 .fniv
= tcg_gen_neg_vec
,
2530 .fno
= gen_helper_gvec_neg64
,
2531 .opt_opc
= vecop_list
,
2532 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2536 tcg_debug_assert(vece
<= MO_64
);
2537 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2540 static void gen_absv_mask(TCGv_i64 d
, TCGv_i64 b
, unsigned vece
)
2542 TCGv_i64 t
= tcg_temp_ebb_new_i64();
2543 int nbit
= 8 << vece
;
2545 /* Create -1 for each negative element. */
2546 tcg_gen_shri_i64(t
, b
, nbit
- 1);
2547 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2548 tcg_gen_muli_i64(t
, t
, (1 << nbit
) - 1);
2551 * Invert (via xor -1) and add one.
2552 * Because of the ordering the msb is cleared,
2553 * so we never have carry into the next element.
2555 tcg_gen_xor_i64(d
, b
, t
);
2556 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2557 tcg_gen_add_i64(d
, d
, t
);
2559 tcg_temp_free_i64(t
);
2562 static void tcg_gen_vec_abs8_i64(TCGv_i64 d
, TCGv_i64 b
)
2564 gen_absv_mask(d
, b
, MO_8
);
2567 static void tcg_gen_vec_abs16_i64(TCGv_i64 d
, TCGv_i64 b
)
2569 gen_absv_mask(d
, b
, MO_16
);
2572 void tcg_gen_gvec_abs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2573 uint32_t oprsz
, uint32_t maxsz
)
2575 static const TCGOpcode vecop_list
[] = { INDEX_op_abs_vec
, 0 };
2576 static const GVecGen2 g
[4] = {
2577 { .fni8
= tcg_gen_vec_abs8_i64
,
2578 .fniv
= tcg_gen_abs_vec
,
2579 .fno
= gen_helper_gvec_abs8
,
2580 .opt_opc
= vecop_list
,
2582 { .fni8
= tcg_gen_vec_abs16_i64
,
2583 .fniv
= tcg_gen_abs_vec
,
2584 .fno
= gen_helper_gvec_abs16
,
2585 .opt_opc
= vecop_list
,
2587 { .fni4
= tcg_gen_abs_i32
,
2588 .fniv
= tcg_gen_abs_vec
,
2589 .fno
= gen_helper_gvec_abs32
,
2590 .opt_opc
= vecop_list
,
2592 { .fni8
= tcg_gen_abs_i64
,
2593 .fniv
= tcg_gen_abs_vec
,
2594 .fno
= gen_helper_gvec_abs64
,
2595 .opt_opc
= vecop_list
,
2596 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2600 tcg_debug_assert(vece
<= MO_64
);
2601 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2604 void tcg_gen_gvec_and(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2605 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2607 static const GVecGen3 g
= {
2608 .fni8
= tcg_gen_and_i64
,
2609 .fniv
= tcg_gen_and_vec
,
2610 .fno
= gen_helper_gvec_and
,
2611 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2615 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2617 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2621 void tcg_gen_gvec_or(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2622 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2624 static const GVecGen3 g
= {
2625 .fni8
= tcg_gen_or_i64
,
2626 .fniv
= tcg_gen_or_vec
,
2627 .fno
= gen_helper_gvec_or
,
2628 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2632 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2634 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2638 void tcg_gen_gvec_xor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2639 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2641 static const GVecGen3 g
= {
2642 .fni8
= tcg_gen_xor_i64
,
2643 .fniv
= tcg_gen_xor_vec
,
2644 .fno
= gen_helper_gvec_xor
,
2645 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2649 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2651 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2655 void tcg_gen_gvec_andc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2656 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2658 static const GVecGen3 g
= {
2659 .fni8
= tcg_gen_andc_i64
,
2660 .fniv
= tcg_gen_andc_vec
,
2661 .fno
= gen_helper_gvec_andc
,
2662 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2666 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2668 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2672 void tcg_gen_gvec_orc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2673 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2675 static const GVecGen3 g
= {
2676 .fni8
= tcg_gen_orc_i64
,
2677 .fniv
= tcg_gen_orc_vec
,
2678 .fno
= gen_helper_gvec_orc
,
2679 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2683 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2685 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2689 void tcg_gen_gvec_nand(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2690 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2692 static const GVecGen3 g
= {
2693 .fni8
= tcg_gen_nand_i64
,
2694 .fniv
= tcg_gen_nand_vec
,
2695 .fno
= gen_helper_gvec_nand
,
2696 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2700 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2702 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2706 void tcg_gen_gvec_nor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2707 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2709 static const GVecGen3 g
= {
2710 .fni8
= tcg_gen_nor_i64
,
2711 .fniv
= tcg_gen_nor_vec
,
2712 .fno
= gen_helper_gvec_nor
,
2713 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2717 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2719 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2723 void tcg_gen_gvec_eqv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2724 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2726 static const GVecGen3 g
= {
2727 .fni8
= tcg_gen_eqv_i64
,
2728 .fniv
= tcg_gen_eqv_vec
,
2729 .fno
= gen_helper_gvec_eqv
,
2730 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2734 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2736 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2740 static const GVecGen2s gop_ands
= {
2741 .fni8
= tcg_gen_and_i64
,
2742 .fniv
= tcg_gen_and_vec
,
2743 .fno
= gen_helper_gvec_ands
,
2744 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2748 void tcg_gen_gvec_ands(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2749 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2751 TCGv_i64 tmp
= tcg_temp_ebb_new_i64();
2752 tcg_gen_dup_i64(vece
, tmp
, c
);
2753 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2754 tcg_temp_free_i64(tmp
);
2757 void tcg_gen_gvec_andi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2758 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2760 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2761 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2764 void tcg_gen_gvec_andcs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2765 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2767 static GVecGen2s g
= {
2768 .fni8
= tcg_gen_andc_i64
,
2769 .fniv
= tcg_gen_andc_vec
,
2770 .fno
= gen_helper_gvec_andcs
,
2771 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2775 TCGv_i64 tmp
= tcg_temp_ebb_new_i64();
2776 tcg_gen_dup_i64(vece
, tmp
, c
);
2777 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &g
);
2778 tcg_temp_free_i64(tmp
);
2781 static const GVecGen2s gop_xors
= {
2782 .fni8
= tcg_gen_xor_i64
,
2783 .fniv
= tcg_gen_xor_vec
,
2784 .fno
= gen_helper_gvec_xors
,
2785 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2789 void tcg_gen_gvec_xors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2790 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2792 TCGv_i64 tmp
= tcg_temp_ebb_new_i64();
2793 tcg_gen_dup_i64(vece
, tmp
, c
);
2794 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2795 tcg_temp_free_i64(tmp
);
2798 void tcg_gen_gvec_xori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2799 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2801 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2802 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2805 static const GVecGen2s gop_ors
= {
2806 .fni8
= tcg_gen_or_i64
,
2807 .fniv
= tcg_gen_or_vec
,
2808 .fno
= gen_helper_gvec_ors
,
2809 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2813 void tcg_gen_gvec_ors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2814 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2816 TCGv_i64 tmp
= tcg_temp_ebb_new_i64();
2817 tcg_gen_dup_i64(vece
, tmp
, c
);
2818 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2819 tcg_temp_free_i64(tmp
);
2822 void tcg_gen_gvec_ori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2823 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2825 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2826 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2829 void tcg_gen_vec_shl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2831 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
2832 tcg_gen_shli_i64(d
, a
, c
);
2833 tcg_gen_andi_i64(d
, d
, mask
);
2836 void tcg_gen_vec_shl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2838 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
2839 tcg_gen_shli_i64(d
, a
, c
);
2840 tcg_gen_andi_i64(d
, d
, mask
);
2843 void tcg_gen_vec_shl8i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2845 uint32_t mask
= dup_const(MO_8
, 0xff << c
);
2846 tcg_gen_shli_i32(d
, a
, c
);
2847 tcg_gen_andi_i32(d
, d
, mask
);
2850 void tcg_gen_vec_shl16i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2852 uint32_t mask
= dup_const(MO_16
, 0xffff << c
);
2853 tcg_gen_shli_i32(d
, a
, c
);
2854 tcg_gen_andi_i32(d
, d
, mask
);
2857 void tcg_gen_gvec_shli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2858 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2860 static const TCGOpcode vecop_list
[] = { INDEX_op_shli_vec
, 0 };
2861 static const GVecGen2i g
[4] = {
2862 { .fni8
= tcg_gen_vec_shl8i_i64
,
2863 .fniv
= tcg_gen_shli_vec
,
2864 .fno
= gen_helper_gvec_shl8i
,
2865 .opt_opc
= vecop_list
,
2867 { .fni8
= tcg_gen_vec_shl16i_i64
,
2868 .fniv
= tcg_gen_shli_vec
,
2869 .fno
= gen_helper_gvec_shl16i
,
2870 .opt_opc
= vecop_list
,
2872 { .fni4
= tcg_gen_shli_i32
,
2873 .fniv
= tcg_gen_shli_vec
,
2874 .fno
= gen_helper_gvec_shl32i
,
2875 .opt_opc
= vecop_list
,
2877 { .fni8
= tcg_gen_shli_i64
,
2878 .fniv
= tcg_gen_shli_vec
,
2879 .fno
= gen_helper_gvec_shl64i
,
2880 .opt_opc
= vecop_list
,
2881 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2885 tcg_debug_assert(vece
<= MO_64
);
2886 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2888 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2890 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2894 void tcg_gen_vec_shr8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2896 uint64_t mask
= dup_const(MO_8
, 0xff >> c
);
2897 tcg_gen_shri_i64(d
, a
, c
);
2898 tcg_gen_andi_i64(d
, d
, mask
);
2901 void tcg_gen_vec_shr16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2903 uint64_t mask
= dup_const(MO_16
, 0xffff >> c
);
2904 tcg_gen_shri_i64(d
, a
, c
);
2905 tcg_gen_andi_i64(d
, d
, mask
);
2908 void tcg_gen_vec_shr8i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2910 uint32_t mask
= dup_const(MO_8
, 0xff >> c
);
2911 tcg_gen_shri_i32(d
, a
, c
);
2912 tcg_gen_andi_i32(d
, d
, mask
);
2915 void tcg_gen_vec_shr16i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2917 uint32_t mask
= dup_const(MO_16
, 0xffff >> c
);
2918 tcg_gen_shri_i32(d
, a
, c
);
2919 tcg_gen_andi_i32(d
, d
, mask
);
2922 void tcg_gen_gvec_shri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2923 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2925 static const TCGOpcode vecop_list
[] = { INDEX_op_shri_vec
, 0 };
2926 static const GVecGen2i g
[4] = {
2927 { .fni8
= tcg_gen_vec_shr8i_i64
,
2928 .fniv
= tcg_gen_shri_vec
,
2929 .fno
= gen_helper_gvec_shr8i
,
2930 .opt_opc
= vecop_list
,
2932 { .fni8
= tcg_gen_vec_shr16i_i64
,
2933 .fniv
= tcg_gen_shri_vec
,
2934 .fno
= gen_helper_gvec_shr16i
,
2935 .opt_opc
= vecop_list
,
2937 { .fni4
= tcg_gen_shri_i32
,
2938 .fniv
= tcg_gen_shri_vec
,
2939 .fno
= gen_helper_gvec_shr32i
,
2940 .opt_opc
= vecop_list
,
2942 { .fni8
= tcg_gen_shri_i64
,
2943 .fniv
= tcg_gen_shri_vec
,
2944 .fno
= gen_helper_gvec_shr64i
,
2945 .opt_opc
= vecop_list
,
2946 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2950 tcg_debug_assert(vece
<= MO_64
);
2951 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2953 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2955 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2959 void tcg_gen_vec_sar8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2961 uint64_t s_mask
= dup_const(MO_8
, 0x80 >> c
);
2962 uint64_t c_mask
= dup_const(MO_8
, 0xff >> c
);
2963 TCGv_i64 s
= tcg_temp_ebb_new_i64();
2965 tcg_gen_shri_i64(d
, a
, c
);
2966 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2967 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2968 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2969 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2970 tcg_temp_free_i64(s
);
2973 void tcg_gen_vec_sar16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2975 uint64_t s_mask
= dup_const(MO_16
, 0x8000 >> c
);
2976 uint64_t c_mask
= dup_const(MO_16
, 0xffff >> c
);
2977 TCGv_i64 s
= tcg_temp_ebb_new_i64();
2979 tcg_gen_shri_i64(d
, a
, c
);
2980 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2981 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2982 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2983 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2984 tcg_temp_free_i64(s
);
2987 void tcg_gen_vec_sar8i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2989 uint32_t s_mask
= dup_const(MO_8
, 0x80 >> c
);
2990 uint32_t c_mask
= dup_const(MO_8
, 0xff >> c
);
2991 TCGv_i32 s
= tcg_temp_ebb_new_i32();
2993 tcg_gen_shri_i32(d
, a
, c
);
2994 tcg_gen_andi_i32(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2995 tcg_gen_muli_i32(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2996 tcg_gen_andi_i32(d
, d
, c_mask
); /* clear out bits above sign */
2997 tcg_gen_or_i32(d
, d
, s
); /* include sign extension */
2998 tcg_temp_free_i32(s
);
3001 void tcg_gen_vec_sar16i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
3003 uint32_t s_mask
= dup_const(MO_16
, 0x8000 >> c
);
3004 uint32_t c_mask
= dup_const(MO_16
, 0xffff >> c
);
3005 TCGv_i32 s
= tcg_temp_ebb_new_i32();
3007 tcg_gen_shri_i32(d
, a
, c
);
3008 tcg_gen_andi_i32(s
, d
, s_mask
); /* isolate (shifted) sign bit */
3009 tcg_gen_andi_i32(d
, d
, c_mask
); /* clear out bits above sign */
3010 tcg_gen_muli_i32(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
3011 tcg_gen_or_i32(d
, d
, s
); /* include sign extension */
3012 tcg_temp_free_i32(s
);
3015 void tcg_gen_gvec_sari(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3016 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
3018 static const TCGOpcode vecop_list
[] = { INDEX_op_sari_vec
, 0 };
3019 static const GVecGen2i g
[4] = {
3020 { .fni8
= tcg_gen_vec_sar8i_i64
,
3021 .fniv
= tcg_gen_sari_vec
,
3022 .fno
= gen_helper_gvec_sar8i
,
3023 .opt_opc
= vecop_list
,
3025 { .fni8
= tcg_gen_vec_sar16i_i64
,
3026 .fniv
= tcg_gen_sari_vec
,
3027 .fno
= gen_helper_gvec_sar16i
,
3028 .opt_opc
= vecop_list
,
3030 { .fni4
= tcg_gen_sari_i32
,
3031 .fniv
= tcg_gen_sari_vec
,
3032 .fno
= gen_helper_gvec_sar32i
,
3033 .opt_opc
= vecop_list
,
3035 { .fni8
= tcg_gen_sari_i64
,
3036 .fniv
= tcg_gen_sari_vec
,
3037 .fno
= gen_helper_gvec_sar64i
,
3038 .opt_opc
= vecop_list
,
3039 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3043 tcg_debug_assert(vece
<= MO_64
);
3044 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
3046 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
3048 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
3052 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
3054 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
3056 tcg_gen_shli_i64(d
, a
, c
);
3057 tcg_gen_shri_i64(a
, a
, 8 - c
);
3058 tcg_gen_andi_i64(d
, d
, mask
);
3059 tcg_gen_andi_i64(a
, a
, ~mask
);
3060 tcg_gen_or_i64(d
, d
, a
);
3063 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
3065 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
3067 tcg_gen_shli_i64(d
, a
, c
);
3068 tcg_gen_shri_i64(a
, a
, 16 - c
);
3069 tcg_gen_andi_i64(d
, d
, mask
);
3070 tcg_gen_andi_i64(a
, a
, ~mask
);
3071 tcg_gen_or_i64(d
, d
, a
);
3074 void tcg_gen_gvec_rotli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3075 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
3077 static const TCGOpcode vecop_list
[] = { INDEX_op_rotli_vec
, 0 };
3078 static const GVecGen2i g
[4] = {
3079 { .fni8
= tcg_gen_vec_rotl8i_i64
,
3080 .fniv
= tcg_gen_rotli_vec
,
3081 .fno
= gen_helper_gvec_rotl8i
,
3082 .opt_opc
= vecop_list
,
3084 { .fni8
= tcg_gen_vec_rotl16i_i64
,
3085 .fniv
= tcg_gen_rotli_vec
,
3086 .fno
= gen_helper_gvec_rotl16i
,
3087 .opt_opc
= vecop_list
,
3089 { .fni4
= tcg_gen_rotli_i32
,
3090 .fniv
= tcg_gen_rotli_vec
,
3091 .fno
= gen_helper_gvec_rotl32i
,
3092 .opt_opc
= vecop_list
,
3094 { .fni8
= tcg_gen_rotli_i64
,
3095 .fniv
= tcg_gen_rotli_vec
,
3096 .fno
= gen_helper_gvec_rotl64i
,
3097 .opt_opc
= vecop_list
,
3098 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3102 tcg_debug_assert(vece
<= MO_64
);
3103 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
3105 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
3107 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
3111 void tcg_gen_gvec_rotri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3112 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
3114 tcg_debug_assert(vece
<= MO_64
);
3115 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
3116 tcg_gen_gvec_rotli(vece
, dofs
, aofs
, -shift
& ((8 << vece
) - 1),
3121 * Specialized generation vector shifts by a non-constant scalar.
3125 void (*fni4
)(TCGv_i32
, TCGv_i32
, TCGv_i32
);
3126 void (*fni8
)(TCGv_i64
, TCGv_i64
, TCGv_i64
);
3127 void (*fniv_s
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
);
3128 void (*fniv_v
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
);
3129 gen_helper_gvec_2
*fno
[4];
3130 TCGOpcode s_list
[2];
3131 TCGOpcode v_list
[2];
3134 static void expand_2sh_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3135 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
3137 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
))
3139 TCGv_vec t0
= tcg_temp_new_vec(type
);
3142 for (i
= 0; i
< oprsz
; i
+= tysz
) {
3143 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
3144 fni(vece
, t0
, t0
, shift
);
3145 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
3147 tcg_temp_free_vec(t0
);
3151 do_gvec_shifts(unsigned vece
, uint32_t dofs
, uint32_t aofs
, TCGv_i32 shift
,
3152 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2sh
*g
)
3157 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
3158 check_overlap_2(dofs
, aofs
, maxsz
);
3160 /* If the backend has a scalar expansion, great. */
3161 type
= choose_vector_type(g
->s_list
, vece
, oprsz
, vece
== MO_64
);
3163 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
3166 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3167 expand_2sh_vec(vece
, dofs
, aofs
, some
, 32,
3168 TCG_TYPE_V256
, shift
, g
->fniv_s
);
3169 if (some
== oprsz
) {
3178 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 16,
3179 TCG_TYPE_V128
, shift
, g
->fniv_s
);
3182 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 8,
3183 TCG_TYPE_V64
, shift
, g
->fniv_s
);
3186 g_assert_not_reached();
3188 tcg_swap_vecop_list(hold_list
);
3192 /* If the backend supports variable vector shifts, also cool. */
3193 type
= choose_vector_type(g
->v_list
, vece
, oprsz
, vece
== MO_64
);
3195 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
3196 TCGv_vec v_shift
= tcg_temp_new_vec(type
);
3198 if (vece
== MO_64
) {
3199 TCGv_i64 sh64
= tcg_temp_ebb_new_i64();
3200 tcg_gen_extu_i32_i64(sh64
, shift
);
3201 tcg_gen_dup_i64_vec(MO_64
, v_shift
, sh64
);
3202 tcg_temp_free_i64(sh64
);
3204 tcg_gen_dup_i32_vec(vece
, v_shift
, shift
);
3209 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3210 expand_2s_vec(vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
3211 v_shift
, false, g
->fniv_v
);
3212 if (some
== oprsz
) {
3221 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
3222 v_shift
, false, g
->fniv_v
);
3225 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
3226 v_shift
, false, g
->fniv_v
);
3229 g_assert_not_reached();
3231 tcg_temp_free_vec(v_shift
);
3232 tcg_swap_vecop_list(hold_list
);
3236 /* Otherwise fall back to integral... */
3237 if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
3238 expand_2s_i32(dofs
, aofs
, oprsz
, shift
, false, g
->fni4
);
3239 } else if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
3240 TCGv_i64 sh64
= tcg_temp_ebb_new_i64();
3241 tcg_gen_extu_i32_i64(sh64
, shift
);
3242 expand_2s_i64(dofs
, aofs
, oprsz
, sh64
, false, g
->fni8
);
3243 tcg_temp_free_i64(sh64
);
3245 TCGv_ptr a0
= tcg_temp_ebb_new_ptr();
3246 TCGv_ptr a1
= tcg_temp_ebb_new_ptr();
3247 TCGv_i32 desc
= tcg_temp_ebb_new_i32();
3249 tcg_gen_shli_i32(desc
, shift
, SIMD_DATA_SHIFT
);
3250 tcg_gen_ori_i32(desc
, desc
, simd_desc(oprsz
, maxsz
, 0));
3251 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
3252 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
3254 g
->fno
[vece
](a0
, a1
, desc
);
3256 tcg_temp_free_ptr(a0
);
3257 tcg_temp_free_ptr(a1
);
3258 tcg_temp_free_i32(desc
);
3263 if (oprsz
< maxsz
) {
3264 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
3268 void tcg_gen_gvec_shls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3269 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3271 static const GVecGen2sh g
= {
3272 .fni4
= tcg_gen_shl_i32
,
3273 .fni8
= tcg_gen_shl_i64
,
3274 .fniv_s
= tcg_gen_shls_vec
,
3275 .fniv_v
= tcg_gen_shlv_vec
,
3277 gen_helper_gvec_shl8i
,
3278 gen_helper_gvec_shl16i
,
3279 gen_helper_gvec_shl32i
,
3280 gen_helper_gvec_shl64i
,
3282 .s_list
= { INDEX_op_shls_vec
, 0 },
3283 .v_list
= { INDEX_op_shlv_vec
, 0 },
3286 tcg_debug_assert(vece
<= MO_64
);
3287 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3290 void tcg_gen_gvec_shrs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3291 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3293 static const GVecGen2sh g
= {
3294 .fni4
= tcg_gen_shr_i32
,
3295 .fni8
= tcg_gen_shr_i64
,
3296 .fniv_s
= tcg_gen_shrs_vec
,
3297 .fniv_v
= tcg_gen_shrv_vec
,
3299 gen_helper_gvec_shr8i
,
3300 gen_helper_gvec_shr16i
,
3301 gen_helper_gvec_shr32i
,
3302 gen_helper_gvec_shr64i
,
3304 .s_list
= { INDEX_op_shrs_vec
, 0 },
3305 .v_list
= { INDEX_op_shrv_vec
, 0 },
3308 tcg_debug_assert(vece
<= MO_64
);
3309 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3312 void tcg_gen_gvec_sars(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3313 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3315 static const GVecGen2sh g
= {
3316 .fni4
= tcg_gen_sar_i32
,
3317 .fni8
= tcg_gen_sar_i64
,
3318 .fniv_s
= tcg_gen_sars_vec
,
3319 .fniv_v
= tcg_gen_sarv_vec
,
3321 gen_helper_gvec_sar8i
,
3322 gen_helper_gvec_sar16i
,
3323 gen_helper_gvec_sar32i
,
3324 gen_helper_gvec_sar64i
,
3326 .s_list
= { INDEX_op_sars_vec
, 0 },
3327 .v_list
= { INDEX_op_sarv_vec
, 0 },
3330 tcg_debug_assert(vece
<= MO_64
);
3331 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3334 void tcg_gen_gvec_rotls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3335 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3337 static const GVecGen2sh g
= {
3338 .fni4
= tcg_gen_rotl_i32
,
3339 .fni8
= tcg_gen_rotl_i64
,
3340 .fniv_s
= tcg_gen_rotls_vec
,
3341 .fniv_v
= tcg_gen_rotlv_vec
,
3343 gen_helper_gvec_rotl8i
,
3344 gen_helper_gvec_rotl16i
,
3345 gen_helper_gvec_rotl32i
,
3346 gen_helper_gvec_rotl64i
,
3348 .s_list
= { INDEX_op_rotls_vec
, 0 },
3349 .v_list
= { INDEX_op_rotlv_vec
, 0 },
3352 tcg_debug_assert(vece
<= MO_64
);
3353 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3356 void tcg_gen_gvec_rotrs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3357 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3359 TCGv_i32 tmp
= tcg_temp_ebb_new_i32();
3361 tcg_gen_neg_i32(tmp
, shift
);
3362 tcg_gen_andi_i32(tmp
, tmp
, (8 << vece
) - 1);
3363 tcg_gen_gvec_rotls(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
3364 tcg_temp_free_i32(tmp
);
3368 * Expand D = A << (B % element bits)
3370 * Unlike scalar shifts, where it is easy for the target front end
3371 * to include the modulo as part of the expansion. If the target
3372 * naturally includes the modulo as part of the operation, great!
3373 * If the target has some other behaviour from out-of-range shifts,
3374 * then it could not use this function anyway, and would need to
3375 * do it's own expansion with custom functions.
3377 static void tcg_gen_shlv_mod_vec(unsigned vece
, TCGv_vec d
,
3378 TCGv_vec a
, TCGv_vec b
)
3380 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3381 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3383 tcg_gen_and_vec(vece
, t
, b
, m
);
3384 tcg_gen_shlv_vec(vece
, d
, a
, t
);
3385 tcg_temp_free_vec(t
);
3388 static void tcg_gen_shl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3390 TCGv_i32 t
= tcg_temp_ebb_new_i32();
3392 tcg_gen_andi_i32(t
, b
, 31);
3393 tcg_gen_shl_i32(d
, a
, t
);
3394 tcg_temp_free_i32(t
);
3397 static void tcg_gen_shl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3399 TCGv_i64 t
= tcg_temp_ebb_new_i64();
3401 tcg_gen_andi_i64(t
, b
, 63);
3402 tcg_gen_shl_i64(d
, a
, t
);
3403 tcg_temp_free_i64(t
);
3406 void tcg_gen_gvec_shlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3407 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3409 static const TCGOpcode vecop_list
[] = { INDEX_op_shlv_vec
, 0 };
3410 static const GVecGen3 g
[4] = {
3411 { .fniv
= tcg_gen_shlv_mod_vec
,
3412 .fno
= gen_helper_gvec_shl8v
,
3413 .opt_opc
= vecop_list
,
3415 { .fniv
= tcg_gen_shlv_mod_vec
,
3416 .fno
= gen_helper_gvec_shl16v
,
3417 .opt_opc
= vecop_list
,
3419 { .fni4
= tcg_gen_shl_mod_i32
,
3420 .fniv
= tcg_gen_shlv_mod_vec
,
3421 .fno
= gen_helper_gvec_shl32v
,
3422 .opt_opc
= vecop_list
,
3424 { .fni8
= tcg_gen_shl_mod_i64
,
3425 .fniv
= tcg_gen_shlv_mod_vec
,
3426 .fno
= gen_helper_gvec_shl64v
,
3427 .opt_opc
= vecop_list
,
3428 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3432 tcg_debug_assert(vece
<= MO_64
);
3433 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3437 * Similarly for logical right shifts.
3440 static void tcg_gen_shrv_mod_vec(unsigned vece
, TCGv_vec d
,
3441 TCGv_vec a
, TCGv_vec b
)
3443 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3444 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3446 tcg_gen_and_vec(vece
, t
, b
, m
);
3447 tcg_gen_shrv_vec(vece
, d
, a
, t
);
3448 tcg_temp_free_vec(t
);
3451 static void tcg_gen_shr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3453 TCGv_i32 t
= tcg_temp_ebb_new_i32();
3455 tcg_gen_andi_i32(t
, b
, 31);
3456 tcg_gen_shr_i32(d
, a
, t
);
3457 tcg_temp_free_i32(t
);
3460 static void tcg_gen_shr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3462 TCGv_i64 t
= tcg_temp_ebb_new_i64();
3464 tcg_gen_andi_i64(t
, b
, 63);
3465 tcg_gen_shr_i64(d
, a
, t
);
3466 tcg_temp_free_i64(t
);
3469 void tcg_gen_gvec_shrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3470 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3472 static const TCGOpcode vecop_list
[] = { INDEX_op_shrv_vec
, 0 };
3473 static const GVecGen3 g
[4] = {
3474 { .fniv
= tcg_gen_shrv_mod_vec
,
3475 .fno
= gen_helper_gvec_shr8v
,
3476 .opt_opc
= vecop_list
,
3478 { .fniv
= tcg_gen_shrv_mod_vec
,
3479 .fno
= gen_helper_gvec_shr16v
,
3480 .opt_opc
= vecop_list
,
3482 { .fni4
= tcg_gen_shr_mod_i32
,
3483 .fniv
= tcg_gen_shrv_mod_vec
,
3484 .fno
= gen_helper_gvec_shr32v
,
3485 .opt_opc
= vecop_list
,
3487 { .fni8
= tcg_gen_shr_mod_i64
,
3488 .fniv
= tcg_gen_shrv_mod_vec
,
3489 .fno
= gen_helper_gvec_shr64v
,
3490 .opt_opc
= vecop_list
,
3491 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3495 tcg_debug_assert(vece
<= MO_64
);
3496 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3500 * Similarly for arithmetic right shifts.
3503 static void tcg_gen_sarv_mod_vec(unsigned vece
, TCGv_vec d
,
3504 TCGv_vec a
, TCGv_vec b
)
3506 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3507 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3509 tcg_gen_and_vec(vece
, t
, b
, m
);
3510 tcg_gen_sarv_vec(vece
, d
, a
, t
);
3511 tcg_temp_free_vec(t
);
3514 static void tcg_gen_sar_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3516 TCGv_i32 t
= tcg_temp_ebb_new_i32();
3518 tcg_gen_andi_i32(t
, b
, 31);
3519 tcg_gen_sar_i32(d
, a
, t
);
3520 tcg_temp_free_i32(t
);
3523 static void tcg_gen_sar_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3525 TCGv_i64 t
= tcg_temp_ebb_new_i64();
3527 tcg_gen_andi_i64(t
, b
, 63);
3528 tcg_gen_sar_i64(d
, a
, t
);
3529 tcg_temp_free_i64(t
);
3532 void tcg_gen_gvec_sarv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3533 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3535 static const TCGOpcode vecop_list
[] = { INDEX_op_sarv_vec
, 0 };
3536 static const GVecGen3 g
[4] = {
3537 { .fniv
= tcg_gen_sarv_mod_vec
,
3538 .fno
= gen_helper_gvec_sar8v
,
3539 .opt_opc
= vecop_list
,
3541 { .fniv
= tcg_gen_sarv_mod_vec
,
3542 .fno
= gen_helper_gvec_sar16v
,
3543 .opt_opc
= vecop_list
,
3545 { .fni4
= tcg_gen_sar_mod_i32
,
3546 .fniv
= tcg_gen_sarv_mod_vec
,
3547 .fno
= gen_helper_gvec_sar32v
,
3548 .opt_opc
= vecop_list
,
3550 { .fni8
= tcg_gen_sar_mod_i64
,
3551 .fniv
= tcg_gen_sarv_mod_vec
,
3552 .fno
= gen_helper_gvec_sar64v
,
3553 .opt_opc
= vecop_list
,
3554 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3558 tcg_debug_assert(vece
<= MO_64
);
3559 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3563 * Similarly for rotates.
3566 static void tcg_gen_rotlv_mod_vec(unsigned vece
, TCGv_vec d
,
3567 TCGv_vec a
, TCGv_vec b
)
3569 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3570 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3572 tcg_gen_and_vec(vece
, t
, b
, m
);
3573 tcg_gen_rotlv_vec(vece
, d
, a
, t
);
3574 tcg_temp_free_vec(t
);
3577 static void tcg_gen_rotl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3579 TCGv_i32 t
= tcg_temp_ebb_new_i32();
3581 tcg_gen_andi_i32(t
, b
, 31);
3582 tcg_gen_rotl_i32(d
, a
, t
);
3583 tcg_temp_free_i32(t
);
3586 static void tcg_gen_rotl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3588 TCGv_i64 t
= tcg_temp_ebb_new_i64();
3590 tcg_gen_andi_i64(t
, b
, 63);
3591 tcg_gen_rotl_i64(d
, a
, t
);
3592 tcg_temp_free_i64(t
);
3595 void tcg_gen_gvec_rotlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3596 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3598 static const TCGOpcode vecop_list
[] = { INDEX_op_rotlv_vec
, 0 };
3599 static const GVecGen3 g
[4] = {
3600 { .fniv
= tcg_gen_rotlv_mod_vec
,
3601 .fno
= gen_helper_gvec_rotl8v
,
3602 .opt_opc
= vecop_list
,
3604 { .fniv
= tcg_gen_rotlv_mod_vec
,
3605 .fno
= gen_helper_gvec_rotl16v
,
3606 .opt_opc
= vecop_list
,
3608 { .fni4
= tcg_gen_rotl_mod_i32
,
3609 .fniv
= tcg_gen_rotlv_mod_vec
,
3610 .fno
= gen_helper_gvec_rotl32v
,
3611 .opt_opc
= vecop_list
,
3613 { .fni8
= tcg_gen_rotl_mod_i64
,
3614 .fniv
= tcg_gen_rotlv_mod_vec
,
3615 .fno
= gen_helper_gvec_rotl64v
,
3616 .opt_opc
= vecop_list
,
3617 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3621 tcg_debug_assert(vece
<= MO_64
);
3622 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3625 static void tcg_gen_rotrv_mod_vec(unsigned vece
, TCGv_vec d
,
3626 TCGv_vec a
, TCGv_vec b
)
3628 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3629 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3631 tcg_gen_and_vec(vece
, t
, b
, m
);
3632 tcg_gen_rotrv_vec(vece
, d
, a
, t
);
3633 tcg_temp_free_vec(t
);
3636 static void tcg_gen_rotr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3638 TCGv_i32 t
= tcg_temp_ebb_new_i32();
3640 tcg_gen_andi_i32(t
, b
, 31);
3641 tcg_gen_rotr_i32(d
, a
, t
);
3642 tcg_temp_free_i32(t
);
3645 static void tcg_gen_rotr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3647 TCGv_i64 t
= tcg_temp_ebb_new_i64();
3649 tcg_gen_andi_i64(t
, b
, 63);
3650 tcg_gen_rotr_i64(d
, a
, t
);
3651 tcg_temp_free_i64(t
);
3654 void tcg_gen_gvec_rotrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3655 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3657 static const TCGOpcode vecop_list
[] = { INDEX_op_rotrv_vec
, 0 };
3658 static const GVecGen3 g
[4] = {
3659 { .fniv
= tcg_gen_rotrv_mod_vec
,
3660 .fno
= gen_helper_gvec_rotr8v
,
3661 .opt_opc
= vecop_list
,
3663 { .fniv
= tcg_gen_rotrv_mod_vec
,
3664 .fno
= gen_helper_gvec_rotr16v
,
3665 .opt_opc
= vecop_list
,
3667 { .fni4
= tcg_gen_rotr_mod_i32
,
3668 .fniv
= tcg_gen_rotrv_mod_vec
,
3669 .fno
= gen_helper_gvec_rotr32v
,
3670 .opt_opc
= vecop_list
,
3672 { .fni8
= tcg_gen_rotr_mod_i64
,
3673 .fniv
= tcg_gen_rotrv_mod_vec
,
3674 .fno
= gen_helper_gvec_rotr64v
,
3675 .opt_opc
= vecop_list
,
3676 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3680 tcg_debug_assert(vece
<= MO_64
);
3681 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3684 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3685 static void expand_cmp_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3686 uint32_t oprsz
, TCGCond cond
)
3688 TCGv_i32 t0
= tcg_temp_ebb_new_i32();
3689 TCGv_i32 t1
= tcg_temp_ebb_new_i32();
3692 for (i
= 0; i
< oprsz
; i
+= 4) {
3693 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
3694 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
3695 tcg_gen_negsetcond_i32(cond
, t0
, t0
, t1
);
3696 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
3698 tcg_temp_free_i32(t1
);
3699 tcg_temp_free_i32(t0
);
3702 static void expand_cmp_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3703 uint32_t oprsz
, TCGCond cond
)
3705 TCGv_i64 t0
= tcg_temp_ebb_new_i64();
3706 TCGv_i64 t1
= tcg_temp_ebb_new_i64();
3709 for (i
= 0; i
< oprsz
; i
+= 8) {
3710 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
3711 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
3712 tcg_gen_negsetcond_i64(cond
, t0
, t0
, t1
);
3713 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
3715 tcg_temp_free_i64(t1
);
3716 tcg_temp_free_i64(t0
);
3719 static void expand_cmp_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3720 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
3721 TCGType type
, TCGCond cond
)
3723 TCGv_vec t0
= tcg_temp_new_vec(type
);
3724 TCGv_vec t1
= tcg_temp_new_vec(type
);
3727 for (i
= 0; i
< oprsz
; i
+= tysz
) {
3728 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
3729 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
3730 tcg_gen_cmp_vec(cond
, vece
, t0
, t0
, t1
);
3731 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
3733 tcg_temp_free_vec(t1
);
3734 tcg_temp_free_vec(t0
);
3737 void tcg_gen_gvec_cmp(TCGCond cond
, unsigned vece
, uint32_t dofs
,
3738 uint32_t aofs
, uint32_t bofs
,
3739 uint32_t oprsz
, uint32_t maxsz
)
3741 static const TCGOpcode cmp_list
[] = { INDEX_op_cmp_vec
, 0 };
3742 static gen_helper_gvec_3
* const eq_fn
[4] = {
3743 gen_helper_gvec_eq8
, gen_helper_gvec_eq16
,
3744 gen_helper_gvec_eq32
, gen_helper_gvec_eq64
3746 static gen_helper_gvec_3
* const ne_fn
[4] = {
3747 gen_helper_gvec_ne8
, gen_helper_gvec_ne16
,
3748 gen_helper_gvec_ne32
, gen_helper_gvec_ne64
3750 static gen_helper_gvec_3
* const lt_fn
[4] = {
3751 gen_helper_gvec_lt8
, gen_helper_gvec_lt16
,
3752 gen_helper_gvec_lt32
, gen_helper_gvec_lt64
3754 static gen_helper_gvec_3
* const le_fn
[4] = {
3755 gen_helper_gvec_le8
, gen_helper_gvec_le16
,
3756 gen_helper_gvec_le32
, gen_helper_gvec_le64
3758 static gen_helper_gvec_3
* const ltu_fn
[4] = {
3759 gen_helper_gvec_ltu8
, gen_helper_gvec_ltu16
,
3760 gen_helper_gvec_ltu32
, gen_helper_gvec_ltu64
3762 static gen_helper_gvec_3
* const leu_fn
[4] = {
3763 gen_helper_gvec_leu8
, gen_helper_gvec_leu16
,
3764 gen_helper_gvec_leu32
, gen_helper_gvec_leu64
3766 static gen_helper_gvec_3
* const * const fns
[16] = {
3767 [TCG_COND_EQ
] = eq_fn
,
3768 [TCG_COND_NE
] = ne_fn
,
3769 [TCG_COND_LT
] = lt_fn
,
3770 [TCG_COND_LE
] = le_fn
,
3771 [TCG_COND_LTU
] = ltu_fn
,
3772 [TCG_COND_LEU
] = leu_fn
,
3775 const TCGOpcode
*hold_list
;
3779 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
3780 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
3782 if (cond
== TCG_COND_NEVER
|| cond
== TCG_COND_ALWAYS
) {
3783 do_dup(MO_8
, dofs
, oprsz
, maxsz
,
3784 NULL
, NULL
, -(cond
== TCG_COND_ALWAYS
));
3789 * Implement inline with a vector type, if possible.
3790 * Prefer integer when 64-bit host and 64-bit comparison.
3792 hold_list
= tcg_swap_vecop_list(cmp_list
);
3793 type
= choose_vector_type(cmp_list
, vece
, oprsz
,
3794 TCG_TARGET_REG_BITS
== 64 && vece
== MO_64
);
3797 /* Recall that ARM SVE allows vector sizes that are not a
3798 * power of 2, but always a multiple of 16. The intent is
3799 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3801 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3802 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
, cond
);
3803 if (some
== oprsz
) {
3813 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
, cond
);
3816 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
, cond
);
3820 if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
3821 expand_cmp_i64(dofs
, aofs
, bofs
, oprsz
, cond
);
3822 } else if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
3823 expand_cmp_i32(dofs
, aofs
, bofs
, oprsz
, cond
);
3825 gen_helper_gvec_3
* const *fn
= fns
[cond
];
3829 tmp
= aofs
, aofs
= bofs
, bofs
= tmp
;
3830 cond
= tcg_swap_cond(cond
);
3834 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, 0, fn
[vece
]);
3840 g_assert_not_reached();
3842 tcg_swap_vecop_list(hold_list
);
3844 if (oprsz
< maxsz
) {
3845 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
3849 static void tcg_gen_bitsel_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 c
)
3851 TCGv_i64 t
= tcg_temp_ebb_new_i64();
3853 tcg_gen_and_i64(t
, b
, a
);
3854 tcg_gen_andc_i64(d
, c
, a
);
3855 tcg_gen_or_i64(d
, d
, t
);
3856 tcg_temp_free_i64(t
);
3859 void tcg_gen_gvec_bitsel(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3860 uint32_t bofs
, uint32_t cofs
,
3861 uint32_t oprsz
, uint32_t maxsz
)
3863 static const GVecGen4 g
= {
3864 .fni8
= tcg_gen_bitsel_i64
,
3865 .fniv
= tcg_gen_bitsel_vec
,
3866 .fno
= gen_helper_gvec_bitsel
,
3869 tcg_gen_gvec_4(dofs
, aofs
, bofs
, cofs
, oprsz
, maxsz
, &g
);