intel-iommu: introduce vtd_page_walk_info
[qemu/ar7.git] / hw / i386 / intel_iommu.c
blobe2472696599db880eee93cfbcde77aa43159782b
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
40 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
41 uint64_t wmask, uint64_t w1cmask)
43 stq_le_p(&s->csr[addr], val);
44 stq_le_p(&s->wmask[addr], wmask);
45 stq_le_p(&s->w1cmask[addr], w1cmask);
48 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
50 stq_le_p(&s->womask[addr], mask);
53 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
54 uint32_t wmask, uint32_t w1cmask)
56 stl_le_p(&s->csr[addr], val);
57 stl_le_p(&s->wmask[addr], wmask);
58 stl_le_p(&s->w1cmask[addr], w1cmask);
61 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
63 stl_le_p(&s->womask[addr], mask);
66 /* "External" get/set operations */
67 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
69 uint64_t oldval = ldq_le_p(&s->csr[addr]);
70 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
71 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
72 stq_le_p(&s->csr[addr],
73 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
76 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
78 uint32_t oldval = ldl_le_p(&s->csr[addr]);
79 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
80 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
81 stl_le_p(&s->csr[addr],
82 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
85 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
87 uint64_t val = ldq_le_p(&s->csr[addr]);
88 uint64_t womask = ldq_le_p(&s->womask[addr]);
89 return val & ~womask;
92 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
94 uint32_t val = ldl_le_p(&s->csr[addr]);
95 uint32_t womask = ldl_le_p(&s->womask[addr]);
96 return val & ~womask;
99 /* "Internal" get/set operations */
100 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
102 return ldq_le_p(&s->csr[addr]);
105 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
107 return ldl_le_p(&s->csr[addr]);
110 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
112 stq_le_p(&s->csr[addr], val);
115 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
116 uint32_t clear, uint32_t mask)
118 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
119 stl_le_p(&s->csr[addr], new_val);
120 return new_val;
123 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
124 uint64_t clear, uint64_t mask)
126 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
127 stq_le_p(&s->csr[addr], new_val);
128 return new_val;
131 static inline void vtd_iommu_lock(IntelIOMMUState *s)
133 qemu_mutex_lock(&s->iommu_lock);
136 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
138 qemu_mutex_unlock(&s->iommu_lock);
141 /* Whether the address space needs to notify new mappings */
142 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
144 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
147 /* GHashTable functions */
148 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
150 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
153 static guint vtd_uint64_hash(gconstpointer v)
155 return (guint)*(const uint64_t *)v;
158 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
159 gpointer user_data)
161 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
162 uint16_t domain_id = *(uint16_t *)user_data;
163 return entry->domain_id == domain_id;
166 /* The shift of an addr for a certain level of paging structure */
167 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
169 assert(level != 0);
170 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
173 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
175 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
178 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
179 gpointer user_data)
181 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
182 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
183 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
184 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
185 return (entry->domain_id == info->domain_id) &&
186 (((entry->gfn & info->mask) == gfn) ||
187 (entry->gfn == gfn_tlb));
190 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
191 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
193 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
195 VTDAddressSpace *vtd_as;
196 VTDBus *vtd_bus;
197 GHashTableIter bus_it;
198 uint32_t devfn_it;
200 trace_vtd_context_cache_reset();
202 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
204 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
205 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
206 vtd_as = vtd_bus->dev_as[devfn_it];
207 if (!vtd_as) {
208 continue;
210 vtd_as->context_cache_entry.context_cache_gen = 0;
213 s->context_cache_gen = 1;
216 /* Must be called with IOMMU lock held. */
217 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
219 assert(s->iotlb);
220 g_hash_table_remove_all(s->iotlb);
223 static void vtd_reset_iotlb(IntelIOMMUState *s)
225 vtd_iommu_lock(s);
226 vtd_reset_iotlb_locked(s);
227 vtd_iommu_unlock(s);
230 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
231 uint32_t level)
233 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
234 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
237 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
239 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
242 /* Must be called with IOMMU lock held */
243 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
244 hwaddr addr)
246 VTDIOTLBEntry *entry;
247 uint64_t key;
248 int level;
250 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
251 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
252 source_id, level);
253 entry = g_hash_table_lookup(s->iotlb, &key);
254 if (entry) {
255 goto out;
259 out:
260 return entry;
263 /* Must be with IOMMU lock held */
264 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
265 uint16_t domain_id, hwaddr addr, uint64_t slpte,
266 uint8_t access_flags, uint32_t level)
268 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
269 uint64_t *key = g_malloc(sizeof(*key));
270 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
272 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
273 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
274 trace_vtd_iotlb_reset("iotlb exceeds size limit");
275 vtd_reset_iotlb_locked(s);
278 entry->gfn = gfn;
279 entry->domain_id = domain_id;
280 entry->slpte = slpte;
281 entry->access_flags = access_flags;
282 entry->mask = vtd_slpt_level_page_mask(level);
283 *key = vtd_get_iotlb_key(gfn, source_id, level);
284 g_hash_table_replace(s->iotlb, key, entry);
287 /* Given the reg addr of both the message data and address, generate an
288 * interrupt via MSI.
290 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
291 hwaddr mesg_data_reg)
293 MSIMessage msi;
295 assert(mesg_data_reg < DMAR_REG_SIZE);
296 assert(mesg_addr_reg < DMAR_REG_SIZE);
298 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
299 msi.data = vtd_get_long_raw(s, mesg_data_reg);
301 trace_vtd_irq_generate(msi.address, msi.data);
303 apic_get_class()->send_msi(&msi);
306 /* Generate a fault event to software via MSI if conditions are met.
307 * Notice that the value of FSTS_REG being passed to it should be the one
308 * before any update.
310 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
312 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
313 pre_fsts & VTD_FSTS_IQE) {
314 trace_vtd_err("There are previous interrupt conditions "
315 "to be serviced by software, fault event "
316 "is not generated.");
317 return;
319 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
320 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
321 trace_vtd_err("Interrupt Mask set, irq is not generated.");
322 } else {
323 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
324 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
328 /* Check if the Fault (F) field of the Fault Recording Register referenced by
329 * @index is Set.
331 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
333 /* Each reg is 128-bit */
334 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
335 addr += 8; /* Access the high 64-bit half */
337 assert(index < DMAR_FRCD_REG_NR);
339 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
342 /* Update the PPF field of Fault Status Register.
343 * Should be called whenever change the F field of any fault recording
344 * registers.
346 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
348 uint32_t i;
349 uint32_t ppf_mask = 0;
351 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
352 if (vtd_is_frcd_set(s, i)) {
353 ppf_mask = VTD_FSTS_PPF;
354 break;
357 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
358 trace_vtd_fsts_ppf(!!ppf_mask);
361 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
363 /* Each reg is 128-bit */
364 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
365 addr += 8; /* Access the high 64-bit half */
367 assert(index < DMAR_FRCD_REG_NR);
369 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
370 vtd_update_fsts_ppf(s);
373 /* Must not update F field now, should be done later */
374 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
375 uint16_t source_id, hwaddr addr,
376 VTDFaultReason fault, bool is_write)
378 uint64_t hi = 0, lo;
379 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
381 assert(index < DMAR_FRCD_REG_NR);
383 lo = VTD_FRCD_FI(addr);
384 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
385 if (!is_write) {
386 hi |= VTD_FRCD_T;
388 vtd_set_quad_raw(s, frcd_reg_addr, lo);
389 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
391 trace_vtd_frr_new(index, hi, lo);
394 /* Try to collapse multiple pending faults from the same requester */
395 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
397 uint32_t i;
398 uint64_t frcd_reg;
399 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
401 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
402 frcd_reg = vtd_get_quad_raw(s, addr);
403 if ((frcd_reg & VTD_FRCD_F) &&
404 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
405 return true;
407 addr += 16; /* 128-bit for each */
409 return false;
412 /* Log and report an DMAR (address translation) fault to software */
413 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
414 hwaddr addr, VTDFaultReason fault,
415 bool is_write)
417 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
419 assert(fault < VTD_FR_MAX);
421 if (fault == VTD_FR_RESERVED_ERR) {
422 /* This is not a normal fault reason case. Drop it. */
423 return;
426 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
428 if (fsts_reg & VTD_FSTS_PFO) {
429 trace_vtd_err("New fault is not recorded due to "
430 "Primary Fault Overflow.");
431 return;
434 if (vtd_try_collapse_fault(s, source_id)) {
435 trace_vtd_err("New fault is not recorded due to "
436 "compression of faults.");
437 return;
440 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
441 trace_vtd_err("Next Fault Recording Reg is used, "
442 "new fault is not recorded, set PFO field.");
443 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
444 return;
447 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
449 if (fsts_reg & VTD_FSTS_PPF) {
450 trace_vtd_err("There are pending faults already, "
451 "fault event is not generated.");
452 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
453 s->next_frcd_reg++;
454 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
455 s->next_frcd_reg = 0;
457 } else {
458 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
459 VTD_FSTS_FRI(s->next_frcd_reg));
460 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
461 s->next_frcd_reg++;
462 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
463 s->next_frcd_reg = 0;
465 /* This case actually cause the PPF to be Set.
466 * So generate fault event (interrupt).
468 vtd_generate_fault_event(s, fsts_reg);
472 /* Handle Invalidation Queue Errors of queued invalidation interface error
473 * conditions.
475 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
477 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
479 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
480 vtd_generate_fault_event(s, fsts_reg);
483 /* Set the IWC field and try to generate an invalidation completion interrupt */
484 static void vtd_generate_completion_event(IntelIOMMUState *s)
486 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
487 trace_vtd_inv_desc_wait_irq("One pending, skip current");
488 return;
490 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
491 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
492 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
493 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
494 "new event not generated");
495 return;
496 } else {
497 /* Generate the interrupt event */
498 trace_vtd_inv_desc_wait_irq("Generating complete event");
499 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
500 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
504 static inline bool vtd_root_entry_present(VTDRootEntry *root)
506 return root->val & VTD_ROOT_ENTRY_P;
509 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
510 VTDRootEntry *re)
512 dma_addr_t addr;
514 addr = s->root + index * sizeof(*re);
515 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
516 trace_vtd_re_invalid(re->rsvd, re->val);
517 re->val = 0;
518 return -VTD_FR_ROOT_TABLE_INV;
520 re->val = le64_to_cpu(re->val);
521 return 0;
524 static inline bool vtd_ce_present(VTDContextEntry *context)
526 return context->lo & VTD_CONTEXT_ENTRY_P;
529 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
530 VTDContextEntry *ce)
532 dma_addr_t addr;
534 /* we have checked that root entry is present */
535 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
536 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
537 trace_vtd_re_invalid(root->rsvd, root->val);
538 return -VTD_FR_CONTEXT_TABLE_INV;
540 ce->lo = le64_to_cpu(ce->lo);
541 ce->hi = le64_to_cpu(ce->hi);
542 return 0;
545 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
547 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
550 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
552 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
555 /* Whether the pte indicates the address of the page frame */
556 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
558 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
561 /* Get the content of a spte located in @base_addr[@index] */
562 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
564 uint64_t slpte;
566 assert(index < VTD_SL_PT_ENTRY_NR);
568 if (dma_memory_read(&address_space_memory,
569 base_addr + index * sizeof(slpte), &slpte,
570 sizeof(slpte))) {
571 slpte = (uint64_t)-1;
572 return slpte;
574 slpte = le64_to_cpu(slpte);
575 return slpte;
578 /* Given an iova and the level of paging structure, return the offset
579 * of current level.
581 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
583 return (iova >> vtd_slpt_level_shift(level)) &
584 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
587 /* Check Capability Register to see if the @level of page-table is supported */
588 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
590 return VTD_CAP_SAGAW_MASK & s->cap &
591 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
594 /* Get the page-table level that hardware should use for the second-level
595 * page-table walk from the Address Width field of context-entry.
597 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
599 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
602 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
604 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
607 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
609 return ce->lo & VTD_CONTEXT_ENTRY_TT;
612 /* Return true if check passed, otherwise false */
613 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
614 VTDContextEntry *ce)
616 switch (vtd_ce_get_type(ce)) {
617 case VTD_CONTEXT_TT_MULTI_LEVEL:
618 /* Always supported */
619 break;
620 case VTD_CONTEXT_TT_DEV_IOTLB:
621 if (!x86_iommu->dt_supported) {
622 return false;
624 break;
625 case VTD_CONTEXT_TT_PASS_THROUGH:
626 if (!x86_iommu->pt_supported) {
627 return false;
629 break;
630 default:
631 /* Unknwon type */
632 return false;
634 return true;
637 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
639 uint32_t ce_agaw = vtd_ce_get_agaw(ce);
640 return 1ULL << MIN(ce_agaw, aw);
643 /* Return true if IOVA passes range check, otherwise false. */
644 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
645 uint8_t aw)
648 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
649 * in CAP_REG and AW in context-entry.
651 return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
655 * Rsvd field masks for spte:
656 * Index [1] to [4] 4k pages
657 * Index [5] to [8] large pages
659 static uint64_t vtd_paging_entry_rsvd_field[9];
661 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
663 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
664 /* Maybe large page */
665 return slpte & vtd_paging_entry_rsvd_field[level + 4];
666 } else {
667 return slpte & vtd_paging_entry_rsvd_field[level];
671 /* Find the VTD address space associated with a given bus number */
672 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
674 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
675 if (!vtd_bus) {
677 * Iterate over the registered buses to find the one which
678 * currently hold this bus number, and update the bus_num
679 * lookup table:
681 GHashTableIter iter;
683 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
684 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
685 if (pci_bus_num(vtd_bus->bus) == bus_num) {
686 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
687 return vtd_bus;
691 return vtd_bus;
694 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
695 * of the translation, can be used for deciding the size of large page.
697 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
698 uint64_t *slptep, uint32_t *slpte_level,
699 bool *reads, bool *writes, uint8_t aw_bits)
701 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
702 uint32_t level = vtd_ce_get_level(ce);
703 uint32_t offset;
704 uint64_t slpte;
705 uint64_t access_right_check;
707 if (!vtd_iova_range_check(iova, ce, aw_bits)) {
708 trace_vtd_err_dmar_iova_overflow(iova);
709 return -VTD_FR_ADDR_BEYOND_MGAW;
712 /* FIXME: what is the Atomics request here? */
713 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
715 while (true) {
716 offset = vtd_iova_level_offset(iova, level);
717 slpte = vtd_get_slpte(addr, offset);
719 if (slpte == (uint64_t)-1) {
720 trace_vtd_err_dmar_slpte_read_error(iova, level);
721 if (level == vtd_ce_get_level(ce)) {
722 /* Invalid programming of context-entry */
723 return -VTD_FR_CONTEXT_ENTRY_INV;
724 } else {
725 return -VTD_FR_PAGING_ENTRY_INV;
728 *reads = (*reads) && (slpte & VTD_SL_R);
729 *writes = (*writes) && (slpte & VTD_SL_W);
730 if (!(slpte & access_right_check)) {
731 trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
732 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
734 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
735 trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
736 return -VTD_FR_PAGING_ENTRY_RSVD;
739 if (vtd_is_last_slpte(slpte, level)) {
740 *slptep = slpte;
741 *slpte_level = level;
742 return 0;
744 addr = vtd_get_slpte_addr(slpte, aw_bits);
745 level--;
749 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
752 * Constant information used during page walking
754 * @hook_fn: hook func to be called when detected page
755 * @private: private data to be passed into hook func
756 * @notify_unmap: whether we should notify invalid entries
757 * @aw: maximum address width
759 typedef struct {
760 vtd_page_walk_hook hook_fn;
761 void *private;
762 bool notify_unmap;
763 uint8_t aw;
764 } vtd_page_walk_info;
766 static int vtd_page_walk_one(IOMMUTLBEntry *entry, int level,
767 vtd_page_walk_info *info)
769 vtd_page_walk_hook hook_fn = info->hook_fn;
770 void *private = info->private;
772 assert(hook_fn);
773 trace_vtd_page_walk_one(level, entry->iova, entry->translated_addr,
774 entry->addr_mask, entry->perm);
775 return hook_fn(entry, private);
779 * vtd_page_walk_level - walk over specific level for IOVA range
781 * @addr: base GPA addr to start the walk
782 * @start: IOVA range start address
783 * @end: IOVA range end address (start <= addr < end)
784 * @read: whether parent level has read permission
785 * @write: whether parent level has write permission
786 * @info: constant information for the page walk
788 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
789 uint64_t end, uint32_t level, bool read,
790 bool write, vtd_page_walk_info *info)
792 bool read_cur, write_cur, entry_valid;
793 uint32_t offset;
794 uint64_t slpte;
795 uint64_t subpage_size, subpage_mask;
796 IOMMUTLBEntry entry;
797 uint64_t iova = start;
798 uint64_t iova_next;
799 int ret = 0;
801 trace_vtd_page_walk_level(addr, level, start, end);
803 subpage_size = 1ULL << vtd_slpt_level_shift(level);
804 subpage_mask = vtd_slpt_level_page_mask(level);
806 while (iova < end) {
807 iova_next = (iova & subpage_mask) + subpage_size;
809 offset = vtd_iova_level_offset(iova, level);
810 slpte = vtd_get_slpte(addr, offset);
812 if (slpte == (uint64_t)-1) {
813 trace_vtd_page_walk_skip_read(iova, iova_next);
814 goto next;
817 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
818 trace_vtd_page_walk_skip_reserve(iova, iova_next);
819 goto next;
822 /* Permissions are stacked with parents' */
823 read_cur = read && (slpte & VTD_SL_R);
824 write_cur = write && (slpte & VTD_SL_W);
827 * As long as we have either read/write permission, this is a
828 * valid entry. The rule works for both page entries and page
829 * table entries.
831 entry_valid = read_cur | write_cur;
833 entry.target_as = &address_space_memory;
834 entry.iova = iova & subpage_mask;
835 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
836 entry.addr_mask = ~subpage_mask;
838 if (vtd_is_last_slpte(slpte, level)) {
839 /* NOTE: this is only meaningful if entry_valid == true */
840 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
841 if (!entry_valid && !info->notify_unmap) {
842 trace_vtd_page_walk_skip_perm(iova, iova_next);
843 goto next;
845 ret = vtd_page_walk_one(&entry, level, info);
846 if (ret < 0) {
847 return ret;
849 } else {
850 if (!entry_valid) {
851 if (info->notify_unmap) {
853 * The whole entry is invalid; unmap it all.
854 * Translated address is meaningless, zero it.
856 entry.translated_addr = 0x0;
857 ret = vtd_page_walk_one(&entry, level, info);
858 if (ret < 0) {
859 return ret;
861 } else {
862 trace_vtd_page_walk_skip_perm(iova, iova_next);
864 goto next;
866 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
867 iova, MIN(iova_next, end), level - 1,
868 read_cur, write_cur, info);
869 if (ret < 0) {
870 return ret;
874 next:
875 iova = iova_next;
878 return 0;
882 * vtd_page_walk - walk specific IOVA range, and call the hook
884 * @ce: context entry to walk upon
885 * @start: IOVA address to start the walk
886 * @end: IOVA range end address (start <= addr < end)
887 * @info: page walking information struct
889 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
890 vtd_page_walk_info *info)
892 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
893 uint32_t level = vtd_ce_get_level(ce);
895 if (!vtd_iova_range_check(start, ce, info->aw)) {
896 return -VTD_FR_ADDR_BEYOND_MGAW;
899 if (!vtd_iova_range_check(end, ce, info->aw)) {
900 /* Fix end so that it reaches the maximum */
901 end = vtd_iova_limit(ce, info->aw);
904 return vtd_page_walk_level(addr, start, end, level, true, true, info);
907 /* Map a device to its corresponding domain (context-entry) */
908 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
909 uint8_t devfn, VTDContextEntry *ce)
911 VTDRootEntry re;
912 int ret_fr;
913 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
915 ret_fr = vtd_get_root_entry(s, bus_num, &re);
916 if (ret_fr) {
917 return ret_fr;
920 if (!vtd_root_entry_present(&re)) {
921 /* Not error - it's okay we don't have root entry. */
922 trace_vtd_re_not_present(bus_num);
923 return -VTD_FR_ROOT_ENTRY_P;
926 if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
927 trace_vtd_re_invalid(re.rsvd, re.val);
928 return -VTD_FR_ROOT_ENTRY_RSVD;
931 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
932 if (ret_fr) {
933 return ret_fr;
936 if (!vtd_ce_present(ce)) {
937 /* Not error - it's okay we don't have context entry. */
938 trace_vtd_ce_not_present(bus_num, devfn);
939 return -VTD_FR_CONTEXT_ENTRY_P;
942 if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
943 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
944 trace_vtd_ce_invalid(ce->hi, ce->lo);
945 return -VTD_FR_CONTEXT_ENTRY_RSVD;
948 /* Check if the programming of context-entry is valid */
949 if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
950 trace_vtd_ce_invalid(ce->hi, ce->lo);
951 return -VTD_FR_CONTEXT_ENTRY_INV;
954 /* Do translation type check */
955 if (!vtd_ce_type_check(x86_iommu, ce)) {
956 trace_vtd_ce_invalid(ce->hi, ce->lo);
957 return -VTD_FR_CONTEXT_ENTRY_INV;
960 return 0;
964 * Fetch translation type for specific device. Returns <0 if error
965 * happens, otherwise return the shifted type to check against
966 * VTD_CONTEXT_TT_*.
968 static int vtd_dev_get_trans_type(VTDAddressSpace *as)
970 IntelIOMMUState *s;
971 VTDContextEntry ce;
972 int ret;
974 s = as->iommu_state;
976 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
977 as->devfn, &ce);
978 if (ret) {
979 return ret;
982 return vtd_ce_get_type(&ce);
985 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
987 int ret;
989 assert(as);
991 ret = vtd_dev_get_trans_type(as);
992 if (ret < 0) {
994 * Possibly failed to parse the context entry for some reason
995 * (e.g., during init, or any guest configuration errors on
996 * context entries). We should assume PT not enabled for
997 * safety.
999 return false;
1002 return ret == VTD_CONTEXT_TT_PASS_THROUGH;
1005 /* Return whether the device is using IOMMU translation. */
1006 static bool vtd_switch_address_space(VTDAddressSpace *as)
1008 bool use_iommu;
1009 /* Whether we need to take the BQL on our own */
1010 bool take_bql = !qemu_mutex_iothread_locked();
1012 assert(as);
1014 use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
1016 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1017 VTD_PCI_SLOT(as->devfn),
1018 VTD_PCI_FUNC(as->devfn),
1019 use_iommu);
1022 * It's possible that we reach here without BQL, e.g., when called
1023 * from vtd_pt_enable_fast_path(). However the memory APIs need
1024 * it. We'd better make sure we have had it already, or, take it.
1026 if (take_bql) {
1027 qemu_mutex_lock_iothread();
1030 /* Turn off first then on the other */
1031 if (use_iommu) {
1032 memory_region_set_enabled(&as->sys_alias, false);
1033 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1034 } else {
1035 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1036 memory_region_set_enabled(&as->sys_alias, true);
1039 if (take_bql) {
1040 qemu_mutex_unlock_iothread();
1043 return use_iommu;
1046 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1048 GHashTableIter iter;
1049 VTDBus *vtd_bus;
1050 int i;
1052 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1053 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1054 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1055 if (!vtd_bus->dev_as[i]) {
1056 continue;
1058 vtd_switch_address_space(vtd_bus->dev_as[i]);
1063 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1065 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1068 static const bool vtd_qualified_faults[] = {
1069 [VTD_FR_RESERVED] = false,
1070 [VTD_FR_ROOT_ENTRY_P] = false,
1071 [VTD_FR_CONTEXT_ENTRY_P] = true,
1072 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1073 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1074 [VTD_FR_WRITE] = true,
1075 [VTD_FR_READ] = true,
1076 [VTD_FR_PAGING_ENTRY_INV] = true,
1077 [VTD_FR_ROOT_TABLE_INV] = false,
1078 [VTD_FR_CONTEXT_TABLE_INV] = false,
1079 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1080 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1081 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1082 [VTD_FR_RESERVED_ERR] = false,
1083 [VTD_FR_MAX] = false,
1086 /* To see if a fault condition is "qualified", which is reported to software
1087 * only if the FPD field in the context-entry used to process the faulting
1088 * request is 0.
1090 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1092 return vtd_qualified_faults[fault];
1095 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1097 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1100 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1102 VTDBus *vtd_bus;
1103 VTDAddressSpace *vtd_as;
1104 bool success = false;
1106 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1107 if (!vtd_bus) {
1108 goto out;
1111 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1112 if (!vtd_as) {
1113 goto out;
1116 if (vtd_switch_address_space(vtd_as) == false) {
1117 /* We switched off IOMMU region successfully. */
1118 success = true;
1121 out:
1122 trace_vtd_pt_enable_fast_path(source_id, success);
1125 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1126 * translation.
1128 * Called from RCU critical section.
1130 * @bus_num: The bus number
1131 * @devfn: The devfn, which is the combined of device and function number
1132 * @is_write: The access is a write operation
1133 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1135 * Returns true if translation is successful, otherwise false.
1137 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1138 uint8_t devfn, hwaddr addr, bool is_write,
1139 IOMMUTLBEntry *entry)
1141 IntelIOMMUState *s = vtd_as->iommu_state;
1142 VTDContextEntry ce;
1143 uint8_t bus_num = pci_bus_num(bus);
1144 VTDContextCacheEntry *cc_entry;
1145 uint64_t slpte, page_mask;
1146 uint32_t level;
1147 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1148 int ret_fr;
1149 bool is_fpd_set = false;
1150 bool reads = true;
1151 bool writes = true;
1152 uint8_t access_flags;
1153 VTDIOTLBEntry *iotlb_entry;
1156 * We have standalone memory region for interrupt addresses, we
1157 * should never receive translation requests in this region.
1159 assert(!vtd_is_interrupt_addr(addr));
1161 vtd_iommu_lock(s);
1163 cc_entry = &vtd_as->context_cache_entry;
1165 /* Try to fetch slpte form IOTLB */
1166 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1167 if (iotlb_entry) {
1168 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1169 iotlb_entry->domain_id);
1170 slpte = iotlb_entry->slpte;
1171 access_flags = iotlb_entry->access_flags;
1172 page_mask = iotlb_entry->mask;
1173 goto out;
1176 /* Try to fetch context-entry from cache first */
1177 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1178 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1179 cc_entry->context_entry.lo,
1180 cc_entry->context_cache_gen);
1181 ce = cc_entry->context_entry;
1182 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1183 } else {
1184 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1185 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1186 if (ret_fr) {
1187 ret_fr = -ret_fr;
1188 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1189 trace_vtd_fault_disabled();
1190 } else {
1191 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1193 goto error;
1195 /* Update context-cache */
1196 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1197 cc_entry->context_cache_gen,
1198 s->context_cache_gen);
1199 cc_entry->context_entry = ce;
1200 cc_entry->context_cache_gen = s->context_cache_gen;
1204 * We don't need to translate for pass-through context entries.
1205 * Also, let's ignore IOTLB caching as well for PT devices.
1207 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1208 entry->iova = addr & VTD_PAGE_MASK_4K;
1209 entry->translated_addr = entry->iova;
1210 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1211 entry->perm = IOMMU_RW;
1212 trace_vtd_translate_pt(source_id, entry->iova);
1215 * When this happens, it means firstly caching-mode is not
1216 * enabled, and this is the first passthrough translation for
1217 * the device. Let's enable the fast path for passthrough.
1219 * When passthrough is disabled again for the device, we can
1220 * capture it via the context entry invalidation, then the
1221 * IOMMU region can be swapped back.
1223 vtd_pt_enable_fast_path(s, source_id);
1224 vtd_iommu_unlock(s);
1225 return true;
1228 ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1229 &reads, &writes, s->aw_bits);
1230 if (ret_fr) {
1231 ret_fr = -ret_fr;
1232 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1233 trace_vtd_fault_disabled();
1234 } else {
1235 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1237 goto error;
1240 page_mask = vtd_slpt_level_page_mask(level);
1241 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1242 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1243 access_flags, level);
1244 out:
1245 vtd_iommu_unlock(s);
1246 entry->iova = addr & page_mask;
1247 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1248 entry->addr_mask = ~page_mask;
1249 entry->perm = access_flags;
1250 return true;
1252 error:
1253 vtd_iommu_unlock(s);
1254 entry->iova = 0;
1255 entry->translated_addr = 0;
1256 entry->addr_mask = 0;
1257 entry->perm = IOMMU_NONE;
1258 return false;
1261 static void vtd_root_table_setup(IntelIOMMUState *s)
1263 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1264 s->root_extended = s->root & VTD_RTADDR_RTT;
1265 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1267 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1270 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1271 uint32_t index, uint32_t mask)
1273 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1276 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1278 uint64_t value = 0;
1279 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1280 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1281 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1282 s->intr_eime = value & VTD_IRTA_EIME;
1284 /* Notify global invalidation */
1285 vtd_iec_notify_all(s, true, 0, 0);
1287 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1290 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1292 VTDAddressSpace *vtd_as;
1294 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1295 memory_region_iommu_replay_all(&vtd_as->iommu);
1299 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1301 trace_vtd_inv_desc_cc_global();
1302 /* Protects context cache */
1303 vtd_iommu_lock(s);
1304 s->context_cache_gen++;
1305 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1306 vtd_reset_context_cache_locked(s);
1308 vtd_iommu_unlock(s);
1309 vtd_switch_address_space_all(s);
1311 * From VT-d spec 6.5.2.1, a global context entry invalidation
1312 * should be followed by a IOTLB global invalidation, so we should
1313 * be safe even without this. Hoewever, let's replay the region as
1314 * well to be safer, and go back here when we need finer tunes for
1315 * VT-d emulation codes.
1317 vtd_iommu_replay_all(s);
1320 /* Do a context-cache device-selective invalidation.
1321 * @func_mask: FM field after shifting
1323 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1324 uint16_t source_id,
1325 uint16_t func_mask)
1327 uint16_t mask;
1328 VTDBus *vtd_bus;
1329 VTDAddressSpace *vtd_as;
1330 uint8_t bus_n, devfn;
1331 uint16_t devfn_it;
1333 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1335 switch (func_mask & 3) {
1336 case 0:
1337 mask = 0; /* No bits in the SID field masked */
1338 break;
1339 case 1:
1340 mask = 4; /* Mask bit 2 in the SID field */
1341 break;
1342 case 2:
1343 mask = 6; /* Mask bit 2:1 in the SID field */
1344 break;
1345 case 3:
1346 mask = 7; /* Mask bit 2:0 in the SID field */
1347 break;
1349 mask = ~mask;
1351 bus_n = VTD_SID_TO_BUS(source_id);
1352 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1353 if (vtd_bus) {
1354 devfn = VTD_SID_TO_DEVFN(source_id);
1355 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1356 vtd_as = vtd_bus->dev_as[devfn_it];
1357 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1358 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1359 VTD_PCI_FUNC(devfn_it));
1360 vtd_iommu_lock(s);
1361 vtd_as->context_cache_entry.context_cache_gen = 0;
1362 vtd_iommu_unlock(s);
1364 * Do switch address space when needed, in case if the
1365 * device passthrough bit is switched.
1367 vtd_switch_address_space(vtd_as);
1369 * So a device is moving out of (or moving into) a
1370 * domain, a replay() suites here to notify all the
1371 * IOMMU_NOTIFIER_MAP registers about this change.
1372 * This won't bring bad even if we have no such
1373 * notifier registered - the IOMMU notification
1374 * framework will skip MAP notifications if that
1375 * happened.
1377 memory_region_iommu_replay_all(&vtd_as->iommu);
1383 /* Context-cache invalidation
1384 * Returns the Context Actual Invalidation Granularity.
1385 * @val: the content of the CCMD_REG
1387 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1389 uint64_t caig;
1390 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1392 switch (type) {
1393 case VTD_CCMD_DOMAIN_INVL:
1394 /* Fall through */
1395 case VTD_CCMD_GLOBAL_INVL:
1396 caig = VTD_CCMD_GLOBAL_INVL_A;
1397 vtd_context_global_invalidate(s);
1398 break;
1400 case VTD_CCMD_DEVICE_INVL:
1401 caig = VTD_CCMD_DEVICE_INVL_A;
1402 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1403 break;
1405 default:
1406 trace_vtd_err("Context cache invalidate type error.");
1407 caig = 0;
1409 return caig;
1412 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1414 trace_vtd_inv_desc_iotlb_global();
1415 vtd_reset_iotlb(s);
1416 vtd_iommu_replay_all(s);
1419 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1421 VTDContextEntry ce;
1422 VTDAddressSpace *vtd_as;
1424 trace_vtd_inv_desc_iotlb_domain(domain_id);
1426 vtd_iommu_lock(s);
1427 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1428 &domain_id);
1429 vtd_iommu_unlock(s);
1431 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1432 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1433 vtd_as->devfn, &ce) &&
1434 domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1435 memory_region_iommu_replay_all(&vtd_as->iommu);
1440 static int vtd_page_invalidate_notify_hook(IOMMUTLBEntry *entry,
1441 void *private)
1443 memory_region_notify_iommu((IOMMUMemoryRegion *)private, *entry);
1444 return 0;
1447 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1448 uint16_t domain_id, hwaddr addr,
1449 uint8_t am)
1451 VTDAddressSpace *vtd_as;
1452 VTDContextEntry ce;
1453 int ret;
1454 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1456 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1457 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1458 vtd_as->devfn, &ce);
1459 if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1460 if (vtd_as_has_map_notifier(vtd_as)) {
1461 vtd_page_walk_info info = {
1462 .hook_fn = vtd_page_invalidate_notify_hook,
1463 .private = (void *)&vtd_as->iommu,
1464 .notify_unmap = true,
1465 .aw = s->aw_bits,
1469 * As long as we have MAP notifications registered in
1470 * any of our IOMMU notifiers, we need to sync the
1471 * shadow page table.
1473 vtd_page_walk(&ce, addr, addr + size, &info);
1474 } else {
1476 * For UNMAP-only notifiers, we don't need to walk the
1477 * page tables. We just deliver the PSI down to
1478 * invalidate caches.
1480 IOMMUTLBEntry entry = {
1481 .target_as = &address_space_memory,
1482 .iova = addr,
1483 .translated_addr = 0,
1484 .addr_mask = size - 1,
1485 .perm = IOMMU_NONE,
1487 memory_region_notify_iommu(&vtd_as->iommu, entry);
1493 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1494 hwaddr addr, uint8_t am)
1496 VTDIOTLBPageInvInfo info;
1498 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1500 assert(am <= VTD_MAMV);
1501 info.domain_id = domain_id;
1502 info.addr = addr;
1503 info.mask = ~((1 << am) - 1);
1504 vtd_iommu_lock(s);
1505 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1506 vtd_iommu_unlock(s);
1507 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1510 /* Flush IOTLB
1511 * Returns the IOTLB Actual Invalidation Granularity.
1512 * @val: the content of the IOTLB_REG
1514 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1516 uint64_t iaig;
1517 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1518 uint16_t domain_id;
1519 hwaddr addr;
1520 uint8_t am;
1522 switch (type) {
1523 case VTD_TLB_GLOBAL_FLUSH:
1524 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1525 vtd_iotlb_global_invalidate(s);
1526 break;
1528 case VTD_TLB_DSI_FLUSH:
1529 domain_id = VTD_TLB_DID(val);
1530 iaig = VTD_TLB_DSI_FLUSH_A;
1531 vtd_iotlb_domain_invalidate(s, domain_id);
1532 break;
1534 case VTD_TLB_PSI_FLUSH:
1535 domain_id = VTD_TLB_DID(val);
1536 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1537 am = VTD_IVA_AM(addr);
1538 addr = VTD_IVA_ADDR(addr);
1539 if (am > VTD_MAMV) {
1540 trace_vtd_err("IOTLB PSI flush: address mask overflow.");
1541 iaig = 0;
1542 break;
1544 iaig = VTD_TLB_PSI_FLUSH_A;
1545 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1546 break;
1548 default:
1549 trace_vtd_err("IOTLB flush: invalid granularity.");
1550 iaig = 0;
1552 return iaig;
1555 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1557 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1559 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1560 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1563 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1565 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1567 trace_vtd_inv_qi_enable(en);
1569 if (en) {
1570 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
1571 /* 2^(x+8) entries */
1572 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1573 s->qi_enabled = true;
1574 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1575 /* Ok - report back to driver */
1576 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1578 if (s->iq_tail != 0) {
1580 * This is a spec violation but Windows guests are known to set up
1581 * Queued Invalidation this way so we allow the write and process
1582 * Invalidation Descriptors right away.
1584 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1585 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1586 vtd_fetch_inv_desc(s);
1589 } else {
1590 if (vtd_queued_inv_disable_check(s)) {
1591 /* disable Queued Invalidation */
1592 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1593 s->iq_head = 0;
1594 s->qi_enabled = false;
1595 /* Ok - report back to driver */
1596 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1597 } else {
1598 trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
1603 /* Set Root Table Pointer */
1604 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1606 vtd_root_table_setup(s);
1607 /* Ok - report back to driver */
1608 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1611 /* Set Interrupt Remap Table Pointer */
1612 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1614 vtd_interrupt_remap_table_setup(s);
1615 /* Ok - report back to driver */
1616 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1619 /* Handle Translation Enable/Disable */
1620 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1622 if (s->dmar_enabled == en) {
1623 return;
1626 trace_vtd_dmar_enable(en);
1628 if (en) {
1629 s->dmar_enabled = true;
1630 /* Ok - report back to driver */
1631 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1632 } else {
1633 s->dmar_enabled = false;
1635 /* Clear the index of Fault Recording Register */
1636 s->next_frcd_reg = 0;
1637 /* Ok - report back to driver */
1638 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1641 vtd_switch_address_space_all(s);
1644 /* Handle Interrupt Remap Enable/Disable */
1645 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1647 trace_vtd_ir_enable(en);
1649 if (en) {
1650 s->intr_enabled = true;
1651 /* Ok - report back to driver */
1652 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1653 } else {
1654 s->intr_enabled = false;
1655 /* Ok - report back to driver */
1656 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1660 /* Handle write to Global Command Register */
1661 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1663 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1664 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1665 uint32_t changed = status ^ val;
1667 trace_vtd_reg_write_gcmd(status, val);
1668 if (changed & VTD_GCMD_TE) {
1669 /* Translation enable/disable */
1670 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1672 if (val & VTD_GCMD_SRTP) {
1673 /* Set/update the root-table pointer */
1674 vtd_handle_gcmd_srtp(s);
1676 if (changed & VTD_GCMD_QIE) {
1677 /* Queued Invalidation Enable */
1678 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1680 if (val & VTD_GCMD_SIRTP) {
1681 /* Set/update the interrupt remapping root-table pointer */
1682 vtd_handle_gcmd_sirtp(s);
1684 if (changed & VTD_GCMD_IRE) {
1685 /* Interrupt remap enable/disable */
1686 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1690 /* Handle write to Context Command Register */
1691 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1693 uint64_t ret;
1694 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1696 /* Context-cache invalidation request */
1697 if (val & VTD_CCMD_ICC) {
1698 if (s->qi_enabled) {
1699 trace_vtd_err("Queued Invalidation enabled, "
1700 "should not use register-based invalidation");
1701 return;
1703 ret = vtd_context_cache_invalidate(s, val);
1704 /* Invalidation completed. Change something to show */
1705 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1706 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1707 ret);
1711 /* Handle write to IOTLB Invalidation Register */
1712 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1714 uint64_t ret;
1715 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1717 /* IOTLB invalidation request */
1718 if (val & VTD_TLB_IVT) {
1719 if (s->qi_enabled) {
1720 trace_vtd_err("Queued Invalidation enabled, "
1721 "should not use register-based invalidation.");
1722 return;
1724 ret = vtd_iotlb_flush(s, val);
1725 /* Invalidation completed. Change something to show */
1726 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1727 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1728 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1732 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1733 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1734 VTDInvDesc *inv_desc)
1736 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1737 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1738 sizeof(*inv_desc))) {
1739 trace_vtd_err("Read INV DESC failed.");
1740 inv_desc->lo = 0;
1741 inv_desc->hi = 0;
1742 return false;
1744 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1745 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1746 return true;
1749 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1751 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1752 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1753 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1754 return false;
1756 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1757 /* Status Write */
1758 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1759 VTD_INV_DESC_WAIT_DATA_SHIFT);
1761 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1763 /* FIXME: need to be masked with HAW? */
1764 dma_addr_t status_addr = inv_desc->hi;
1765 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1766 status_data = cpu_to_le32(status_data);
1767 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1768 sizeof(status_data))) {
1769 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1770 return false;
1772 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1773 /* Interrupt flag */
1774 vtd_generate_completion_event(s);
1775 } else {
1776 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1777 return false;
1779 return true;
1782 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1783 VTDInvDesc *inv_desc)
1785 uint16_t sid, fmask;
1787 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1788 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1789 return false;
1791 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1792 case VTD_INV_DESC_CC_DOMAIN:
1793 trace_vtd_inv_desc_cc_domain(
1794 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1795 /* Fall through */
1796 case VTD_INV_DESC_CC_GLOBAL:
1797 vtd_context_global_invalidate(s);
1798 break;
1800 case VTD_INV_DESC_CC_DEVICE:
1801 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1802 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1803 vtd_context_device_invalidate(s, sid, fmask);
1804 break;
1806 default:
1807 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1808 return false;
1810 return true;
1813 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1815 uint16_t domain_id;
1816 uint8_t am;
1817 hwaddr addr;
1819 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1820 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1821 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1822 return false;
1825 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1826 case VTD_INV_DESC_IOTLB_GLOBAL:
1827 vtd_iotlb_global_invalidate(s);
1828 break;
1830 case VTD_INV_DESC_IOTLB_DOMAIN:
1831 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1832 vtd_iotlb_domain_invalidate(s, domain_id);
1833 break;
1835 case VTD_INV_DESC_IOTLB_PAGE:
1836 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1837 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1838 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1839 if (am > VTD_MAMV) {
1840 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1841 return false;
1843 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1844 break;
1846 default:
1847 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1848 return false;
1850 return true;
1853 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1854 VTDInvDesc *inv_desc)
1856 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1857 inv_desc->iec.index,
1858 inv_desc->iec.index_mask);
1860 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1861 inv_desc->iec.index,
1862 inv_desc->iec.index_mask);
1863 return true;
1866 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1867 VTDInvDesc *inv_desc)
1869 VTDAddressSpace *vtd_dev_as;
1870 IOMMUTLBEntry entry;
1871 struct VTDBus *vtd_bus;
1872 hwaddr addr;
1873 uint64_t sz;
1874 uint16_t sid;
1875 uint8_t devfn;
1876 bool size;
1877 uint8_t bus_num;
1879 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1880 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1881 devfn = sid & 0xff;
1882 bus_num = sid >> 8;
1883 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1885 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1886 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
1887 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1888 return false;
1891 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1892 if (!vtd_bus) {
1893 goto done;
1896 vtd_dev_as = vtd_bus->dev_as[devfn];
1897 if (!vtd_dev_as) {
1898 goto done;
1901 /* According to ATS spec table 2.4:
1902 * S = 0, bits 15:12 = xxxx range size: 4K
1903 * S = 1, bits 15:12 = xxx0 range size: 8K
1904 * S = 1, bits 15:12 = xx01 range size: 16K
1905 * S = 1, bits 15:12 = x011 range size: 32K
1906 * S = 1, bits 15:12 = 0111 range size: 64K
1907 * ...
1909 if (size) {
1910 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
1911 addr &= ~(sz - 1);
1912 } else {
1913 sz = VTD_PAGE_SIZE;
1916 entry.target_as = &vtd_dev_as->as;
1917 entry.addr_mask = sz - 1;
1918 entry.iova = addr;
1919 entry.perm = IOMMU_NONE;
1920 entry.translated_addr = 0;
1921 memory_region_notify_iommu(&vtd_dev_as->iommu, entry);
1923 done:
1924 return true;
1927 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1929 VTDInvDesc inv_desc;
1930 uint8_t desc_type;
1932 trace_vtd_inv_qi_head(s->iq_head);
1933 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1934 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1935 return false;
1937 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1938 /* FIXME: should update at first or at last? */
1939 s->iq_last_desc_type = desc_type;
1941 switch (desc_type) {
1942 case VTD_INV_DESC_CC:
1943 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
1944 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1945 return false;
1947 break;
1949 case VTD_INV_DESC_IOTLB:
1950 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
1951 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1952 return false;
1954 break;
1956 case VTD_INV_DESC_WAIT:
1957 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
1958 if (!vtd_process_wait_desc(s, &inv_desc)) {
1959 return false;
1961 break;
1963 case VTD_INV_DESC_IEC:
1964 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
1965 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1966 return false;
1968 break;
1970 case VTD_INV_DESC_DEVICE:
1971 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
1972 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
1973 return false;
1975 break;
1977 default:
1978 trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
1979 return false;
1981 s->iq_head++;
1982 if (s->iq_head == s->iq_size) {
1983 s->iq_head = 0;
1985 return true;
1988 /* Try to fetch and process more Invalidation Descriptors */
1989 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1991 trace_vtd_inv_qi_fetch();
1993 if (s->iq_tail >= s->iq_size) {
1994 /* Detects an invalid Tail pointer */
1995 trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
1996 vtd_handle_inv_queue_error(s);
1997 return;
1999 while (s->iq_head != s->iq_tail) {
2000 if (!vtd_process_inv_desc(s)) {
2001 /* Invalidation Queue Errors */
2002 vtd_handle_inv_queue_error(s);
2003 break;
2005 /* Must update the IQH_REG in time */
2006 vtd_set_quad_raw(s, DMAR_IQH_REG,
2007 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2008 VTD_IQH_QH_MASK);
2012 /* Handle write to Invalidation Queue Tail Register */
2013 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2015 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2017 s->iq_tail = VTD_IQT_QT(val);
2018 trace_vtd_inv_qi_tail(s->iq_tail);
2020 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2021 /* Process Invalidation Queue here */
2022 vtd_fetch_inv_desc(s);
2026 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2028 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2029 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2030 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2032 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2033 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2034 trace_vtd_fsts_clear_ip();
2036 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2037 * Descriptors if there are any when Queued Invalidation is enabled?
2041 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2043 uint32_t fectl_reg;
2044 /* FIXME: when software clears the IM field, check the IP field. But do we
2045 * need to compare the old value and the new value to conclude that
2046 * software clears the IM field? Or just check if the IM field is zero?
2048 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2050 trace_vtd_reg_write_fectl(fectl_reg);
2052 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2053 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2054 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2058 static void vtd_handle_ics_write(IntelIOMMUState *s)
2060 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2061 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2063 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2064 trace_vtd_reg_ics_clear_ip();
2065 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2069 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2071 uint32_t iectl_reg;
2072 /* FIXME: when software clears the IM field, check the IP field. But do we
2073 * need to compare the old value and the new value to conclude that
2074 * software clears the IM field? Or just check if the IM field is zero?
2076 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2078 trace_vtd_reg_write_iectl(iectl_reg);
2080 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2081 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2082 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2086 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2088 IntelIOMMUState *s = opaque;
2089 uint64_t val;
2091 trace_vtd_reg_read(addr, size);
2093 if (addr + size > DMAR_REG_SIZE) {
2094 trace_vtd_err("Read MMIO over range.");
2095 return (uint64_t)-1;
2098 switch (addr) {
2099 /* Root Table Address Register, 64-bit */
2100 case DMAR_RTADDR_REG:
2101 if (size == 4) {
2102 val = s->root & ((1ULL << 32) - 1);
2103 } else {
2104 val = s->root;
2106 break;
2108 case DMAR_RTADDR_REG_HI:
2109 assert(size == 4);
2110 val = s->root >> 32;
2111 break;
2113 /* Invalidation Queue Address Register, 64-bit */
2114 case DMAR_IQA_REG:
2115 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2116 if (size == 4) {
2117 val = val & ((1ULL << 32) - 1);
2119 break;
2121 case DMAR_IQA_REG_HI:
2122 assert(size == 4);
2123 val = s->iq >> 32;
2124 break;
2126 default:
2127 if (size == 4) {
2128 val = vtd_get_long(s, addr);
2129 } else {
2130 val = vtd_get_quad(s, addr);
2134 return val;
2137 static void vtd_mem_write(void *opaque, hwaddr addr,
2138 uint64_t val, unsigned size)
2140 IntelIOMMUState *s = opaque;
2142 trace_vtd_reg_write(addr, size, val);
2144 if (addr + size > DMAR_REG_SIZE) {
2145 trace_vtd_err("Write MMIO over range.");
2146 return;
2149 switch (addr) {
2150 /* Global Command Register, 32-bit */
2151 case DMAR_GCMD_REG:
2152 vtd_set_long(s, addr, val);
2153 vtd_handle_gcmd_write(s);
2154 break;
2156 /* Context Command Register, 64-bit */
2157 case DMAR_CCMD_REG:
2158 if (size == 4) {
2159 vtd_set_long(s, addr, val);
2160 } else {
2161 vtd_set_quad(s, addr, val);
2162 vtd_handle_ccmd_write(s);
2164 break;
2166 case DMAR_CCMD_REG_HI:
2167 assert(size == 4);
2168 vtd_set_long(s, addr, val);
2169 vtd_handle_ccmd_write(s);
2170 break;
2172 /* IOTLB Invalidation Register, 64-bit */
2173 case DMAR_IOTLB_REG:
2174 if (size == 4) {
2175 vtd_set_long(s, addr, val);
2176 } else {
2177 vtd_set_quad(s, addr, val);
2178 vtd_handle_iotlb_write(s);
2180 break;
2182 case DMAR_IOTLB_REG_HI:
2183 assert(size == 4);
2184 vtd_set_long(s, addr, val);
2185 vtd_handle_iotlb_write(s);
2186 break;
2188 /* Invalidate Address Register, 64-bit */
2189 case DMAR_IVA_REG:
2190 if (size == 4) {
2191 vtd_set_long(s, addr, val);
2192 } else {
2193 vtd_set_quad(s, addr, val);
2195 break;
2197 case DMAR_IVA_REG_HI:
2198 assert(size == 4);
2199 vtd_set_long(s, addr, val);
2200 break;
2202 /* Fault Status Register, 32-bit */
2203 case DMAR_FSTS_REG:
2204 assert(size == 4);
2205 vtd_set_long(s, addr, val);
2206 vtd_handle_fsts_write(s);
2207 break;
2209 /* Fault Event Control Register, 32-bit */
2210 case DMAR_FECTL_REG:
2211 assert(size == 4);
2212 vtd_set_long(s, addr, val);
2213 vtd_handle_fectl_write(s);
2214 break;
2216 /* Fault Event Data Register, 32-bit */
2217 case DMAR_FEDATA_REG:
2218 assert(size == 4);
2219 vtd_set_long(s, addr, val);
2220 break;
2222 /* Fault Event Address Register, 32-bit */
2223 case DMAR_FEADDR_REG:
2224 if (size == 4) {
2225 vtd_set_long(s, addr, val);
2226 } else {
2228 * While the register is 32-bit only, some guests (Xen...) write to
2229 * it with 64-bit.
2231 vtd_set_quad(s, addr, val);
2233 break;
2235 /* Fault Event Upper Address Register, 32-bit */
2236 case DMAR_FEUADDR_REG:
2237 assert(size == 4);
2238 vtd_set_long(s, addr, val);
2239 break;
2241 /* Protected Memory Enable Register, 32-bit */
2242 case DMAR_PMEN_REG:
2243 assert(size == 4);
2244 vtd_set_long(s, addr, val);
2245 break;
2247 /* Root Table Address Register, 64-bit */
2248 case DMAR_RTADDR_REG:
2249 if (size == 4) {
2250 vtd_set_long(s, addr, val);
2251 } else {
2252 vtd_set_quad(s, addr, val);
2254 break;
2256 case DMAR_RTADDR_REG_HI:
2257 assert(size == 4);
2258 vtd_set_long(s, addr, val);
2259 break;
2261 /* Invalidation Queue Tail Register, 64-bit */
2262 case DMAR_IQT_REG:
2263 if (size == 4) {
2264 vtd_set_long(s, addr, val);
2265 } else {
2266 vtd_set_quad(s, addr, val);
2268 vtd_handle_iqt_write(s);
2269 break;
2271 case DMAR_IQT_REG_HI:
2272 assert(size == 4);
2273 vtd_set_long(s, addr, val);
2274 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2275 break;
2277 /* Invalidation Queue Address Register, 64-bit */
2278 case DMAR_IQA_REG:
2279 if (size == 4) {
2280 vtd_set_long(s, addr, val);
2281 } else {
2282 vtd_set_quad(s, addr, val);
2284 break;
2286 case DMAR_IQA_REG_HI:
2287 assert(size == 4);
2288 vtd_set_long(s, addr, val);
2289 break;
2291 /* Invalidation Completion Status Register, 32-bit */
2292 case DMAR_ICS_REG:
2293 assert(size == 4);
2294 vtd_set_long(s, addr, val);
2295 vtd_handle_ics_write(s);
2296 break;
2298 /* Invalidation Event Control Register, 32-bit */
2299 case DMAR_IECTL_REG:
2300 assert(size == 4);
2301 vtd_set_long(s, addr, val);
2302 vtd_handle_iectl_write(s);
2303 break;
2305 /* Invalidation Event Data Register, 32-bit */
2306 case DMAR_IEDATA_REG:
2307 assert(size == 4);
2308 vtd_set_long(s, addr, val);
2309 break;
2311 /* Invalidation Event Address Register, 32-bit */
2312 case DMAR_IEADDR_REG:
2313 assert(size == 4);
2314 vtd_set_long(s, addr, val);
2315 break;
2317 /* Invalidation Event Upper Address Register, 32-bit */
2318 case DMAR_IEUADDR_REG:
2319 assert(size == 4);
2320 vtd_set_long(s, addr, val);
2321 break;
2323 /* Fault Recording Registers, 128-bit */
2324 case DMAR_FRCD_REG_0_0:
2325 if (size == 4) {
2326 vtd_set_long(s, addr, val);
2327 } else {
2328 vtd_set_quad(s, addr, val);
2330 break;
2332 case DMAR_FRCD_REG_0_1:
2333 assert(size == 4);
2334 vtd_set_long(s, addr, val);
2335 break;
2337 case DMAR_FRCD_REG_0_2:
2338 if (size == 4) {
2339 vtd_set_long(s, addr, val);
2340 } else {
2341 vtd_set_quad(s, addr, val);
2342 /* May clear bit 127 (Fault), update PPF */
2343 vtd_update_fsts_ppf(s);
2345 break;
2347 case DMAR_FRCD_REG_0_3:
2348 assert(size == 4);
2349 vtd_set_long(s, addr, val);
2350 /* May clear bit 127 (Fault), update PPF */
2351 vtd_update_fsts_ppf(s);
2352 break;
2354 case DMAR_IRTA_REG:
2355 if (size == 4) {
2356 vtd_set_long(s, addr, val);
2357 } else {
2358 vtd_set_quad(s, addr, val);
2360 break;
2362 case DMAR_IRTA_REG_HI:
2363 assert(size == 4);
2364 vtd_set_long(s, addr, val);
2365 break;
2367 default:
2368 if (size == 4) {
2369 vtd_set_long(s, addr, val);
2370 } else {
2371 vtd_set_quad(s, addr, val);
2376 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2377 IOMMUAccessFlags flag)
2379 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2380 IntelIOMMUState *s = vtd_as->iommu_state;
2381 IOMMUTLBEntry iotlb = {
2382 /* We'll fill in the rest later. */
2383 .target_as = &address_space_memory,
2385 bool success;
2387 if (likely(s->dmar_enabled)) {
2388 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2389 addr, flag & IOMMU_WO, &iotlb);
2390 } else {
2391 /* DMAR disabled, passthrough, use 4k-page*/
2392 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2393 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2394 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2395 iotlb.perm = IOMMU_RW;
2396 success = true;
2399 if (likely(success)) {
2400 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2401 VTD_PCI_SLOT(vtd_as->devfn),
2402 VTD_PCI_FUNC(vtd_as->devfn),
2403 iotlb.iova, iotlb.translated_addr,
2404 iotlb.addr_mask);
2405 } else {
2406 trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
2407 VTD_PCI_SLOT(vtd_as->devfn),
2408 VTD_PCI_FUNC(vtd_as->devfn),
2409 iotlb.iova);
2412 return iotlb;
2415 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2416 IOMMUNotifierFlag old,
2417 IOMMUNotifierFlag new)
2419 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2420 IntelIOMMUState *s = vtd_as->iommu_state;
2422 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2423 error_report("We need to set caching-mode=1 for intel-iommu to enable "
2424 "device assignment with IOMMU protection.");
2425 exit(1);
2428 /* Update per-address-space notifier flags */
2429 vtd_as->notifier_flags = new;
2431 if (old == IOMMU_NOTIFIER_NONE) {
2432 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2433 } else if (new == IOMMU_NOTIFIER_NONE) {
2434 QLIST_REMOVE(vtd_as, next);
2438 static int vtd_post_load(void *opaque, int version_id)
2440 IntelIOMMUState *iommu = opaque;
2443 * Memory regions are dynamically turned on/off depending on
2444 * context entry configurations from the guest. After migration,
2445 * we need to make sure the memory regions are still correct.
2447 vtd_switch_address_space_all(iommu);
2449 return 0;
2452 static const VMStateDescription vtd_vmstate = {
2453 .name = "iommu-intel",
2454 .version_id = 1,
2455 .minimum_version_id = 1,
2456 .priority = MIG_PRI_IOMMU,
2457 .post_load = vtd_post_load,
2458 .fields = (VMStateField[]) {
2459 VMSTATE_UINT64(root, IntelIOMMUState),
2460 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2461 VMSTATE_UINT64(iq, IntelIOMMUState),
2462 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2463 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2464 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2465 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2466 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2467 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2468 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2469 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2470 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2471 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2472 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2473 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2474 VMSTATE_END_OF_LIST()
2478 static const MemoryRegionOps vtd_mem_ops = {
2479 .read = vtd_mem_read,
2480 .write = vtd_mem_write,
2481 .endianness = DEVICE_LITTLE_ENDIAN,
2482 .impl = {
2483 .min_access_size = 4,
2484 .max_access_size = 8,
2486 .valid = {
2487 .min_access_size = 4,
2488 .max_access_size = 8,
2492 static Property vtd_properties[] = {
2493 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2494 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2495 ON_OFF_AUTO_AUTO),
2496 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2497 DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
2498 VTD_HOST_ADDRESS_WIDTH),
2499 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2500 DEFINE_PROP_END_OF_LIST(),
2503 /* Read IRTE entry with specific index */
2504 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2505 VTD_IR_TableEntry *entry, uint16_t sid)
2507 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2508 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2509 dma_addr_t addr = 0x00;
2510 uint16_t mask, source_id;
2511 uint8_t bus, bus_max, bus_min;
2513 addr = iommu->intr_root + index * sizeof(*entry);
2514 if (dma_memory_read(&address_space_memory, addr, entry,
2515 sizeof(*entry))) {
2516 trace_vtd_err("Memory read failed for IRTE.");
2517 return -VTD_FR_IR_ROOT_INVAL;
2520 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2521 le64_to_cpu(entry->data[0]));
2523 if (!entry->irte.present) {
2524 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2525 le64_to_cpu(entry->data[0]));
2526 return -VTD_FR_IR_ENTRY_P;
2529 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2530 entry->irte.__reserved_2) {
2531 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2532 le64_to_cpu(entry->data[0]));
2533 return -VTD_FR_IR_IRTE_RSVD;
2536 if (sid != X86_IOMMU_SID_INVALID) {
2537 /* Validate IRTE SID */
2538 source_id = le32_to_cpu(entry->irte.source_id);
2539 switch (entry->irte.sid_vtype) {
2540 case VTD_SVT_NONE:
2541 break;
2543 case VTD_SVT_ALL:
2544 mask = vtd_svt_mask[entry->irte.sid_q];
2545 if ((source_id & mask) != (sid & mask)) {
2546 trace_vtd_err_irte_sid(index, sid, source_id);
2547 return -VTD_FR_IR_SID_ERR;
2549 break;
2551 case VTD_SVT_BUS:
2552 bus_max = source_id >> 8;
2553 bus_min = source_id & 0xff;
2554 bus = sid >> 8;
2555 if (bus > bus_max || bus < bus_min) {
2556 trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
2557 return -VTD_FR_IR_SID_ERR;
2559 break;
2561 default:
2562 trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
2563 /* Take this as verification failure. */
2564 return -VTD_FR_IR_SID_ERR;
2565 break;
2569 return 0;
2572 /* Fetch IRQ information of specific IR index */
2573 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2574 VTDIrq *irq, uint16_t sid)
2576 VTD_IR_TableEntry irte = {};
2577 int ret = 0;
2579 ret = vtd_irte_get(iommu, index, &irte, sid);
2580 if (ret) {
2581 return ret;
2584 irq->trigger_mode = irte.irte.trigger_mode;
2585 irq->vector = irte.irte.vector;
2586 irq->delivery_mode = irte.irte.delivery_mode;
2587 irq->dest = le32_to_cpu(irte.irte.dest_id);
2588 if (!iommu->intr_eime) {
2589 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2590 #define VTD_IR_APIC_DEST_SHIFT (8)
2591 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2592 VTD_IR_APIC_DEST_SHIFT;
2594 irq->dest_mode = irte.irte.dest_mode;
2595 irq->redir_hint = irte.irte.redir_hint;
2597 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2598 irq->delivery_mode, irq->dest, irq->dest_mode);
2600 return 0;
2603 /* Generate one MSI message from VTDIrq info */
2604 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2606 VTD_MSIMessage msg = {};
2608 /* Generate address bits */
2609 msg.dest_mode = irq->dest_mode;
2610 msg.redir_hint = irq->redir_hint;
2611 msg.dest = irq->dest;
2612 msg.__addr_hi = irq->dest & 0xffffff00;
2613 msg.__addr_head = cpu_to_le32(0xfee);
2614 /* Keep this from original MSI address bits */
2615 msg.__not_used = irq->msi_addr_last_bits;
2617 /* Generate data bits */
2618 msg.vector = irq->vector;
2619 msg.delivery_mode = irq->delivery_mode;
2620 msg.level = 1;
2621 msg.trigger_mode = irq->trigger_mode;
2623 msg_out->address = msg.msi_addr;
2624 msg_out->data = msg.msi_data;
2627 /* Interrupt remapping for MSI/MSI-X entry */
2628 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2629 MSIMessage *origin,
2630 MSIMessage *translated,
2631 uint16_t sid)
2633 int ret = 0;
2634 VTD_IR_MSIAddress addr;
2635 uint16_t index;
2636 VTDIrq irq = {};
2638 assert(origin && translated);
2640 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2642 if (!iommu || !iommu->intr_enabled) {
2643 memcpy(translated, origin, sizeof(*origin));
2644 goto out;
2647 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2648 trace_vtd_err("MSI address high 32 bits non-zero when "
2649 "Interrupt Remapping enabled.");
2650 return -VTD_FR_IR_REQ_RSVD;
2653 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2654 if (addr.addr.__head != 0xfee) {
2655 trace_vtd_err("MSI addr low 32 bit invalid.");
2656 return -VTD_FR_IR_REQ_RSVD;
2659 /* This is compatible mode. */
2660 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2661 memcpy(translated, origin, sizeof(*origin));
2662 goto out;
2665 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2667 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2668 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2670 if (addr.addr.sub_valid) {
2671 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2672 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2675 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2676 if (ret) {
2677 return ret;
2680 if (addr.addr.sub_valid) {
2681 trace_vtd_ir_remap_type("MSI");
2682 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2683 trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
2684 return -VTD_FR_IR_REQ_RSVD;
2686 } else {
2687 uint8_t vector = origin->data & 0xff;
2688 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2690 trace_vtd_ir_remap_type("IOAPIC");
2691 /* IOAPIC entry vector should be aligned with IRTE vector
2692 * (see vt-d spec 5.1.5.1). */
2693 if (vector != irq.vector) {
2694 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2697 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2698 * (see vt-d spec 5.1.5.1). */
2699 if (trigger_mode != irq.trigger_mode) {
2700 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2701 irq.trigger_mode);
2706 * We'd better keep the last two bits, assuming that guest OS
2707 * might modify it. Keep it does not hurt after all.
2709 irq.msi_addr_last_bits = addr.addr.__not_care;
2711 /* Translate VTDIrq to MSI message */
2712 vtd_generate_msi_message(&irq, translated);
2714 out:
2715 trace_vtd_ir_remap_msi(origin->address, origin->data,
2716 translated->address, translated->data);
2717 return 0;
2720 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2721 MSIMessage *dst, uint16_t sid)
2723 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2724 src, dst, sid);
2727 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2728 uint64_t *data, unsigned size,
2729 MemTxAttrs attrs)
2731 return MEMTX_OK;
2734 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2735 uint64_t value, unsigned size,
2736 MemTxAttrs attrs)
2738 int ret = 0;
2739 MSIMessage from = {}, to = {};
2740 uint16_t sid = X86_IOMMU_SID_INVALID;
2742 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2743 from.data = (uint32_t) value;
2745 if (!attrs.unspecified) {
2746 /* We have explicit Source ID */
2747 sid = attrs.requester_id;
2750 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2751 if (ret) {
2752 /* TODO: report error */
2753 /* Drop this interrupt */
2754 return MEMTX_ERROR;
2757 apic_get_class()->send_msi(&to);
2759 return MEMTX_OK;
2762 static const MemoryRegionOps vtd_mem_ir_ops = {
2763 .read_with_attrs = vtd_mem_ir_read,
2764 .write_with_attrs = vtd_mem_ir_write,
2765 .endianness = DEVICE_LITTLE_ENDIAN,
2766 .impl = {
2767 .min_access_size = 4,
2768 .max_access_size = 4,
2770 .valid = {
2771 .min_access_size = 4,
2772 .max_access_size = 4,
2776 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2778 uintptr_t key = (uintptr_t)bus;
2779 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2780 VTDAddressSpace *vtd_dev_as;
2781 char name[128];
2783 if (!vtd_bus) {
2784 uintptr_t *new_key = g_malloc(sizeof(*new_key));
2785 *new_key = (uintptr_t)bus;
2786 /* No corresponding free() */
2787 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2788 PCI_DEVFN_MAX);
2789 vtd_bus->bus = bus;
2790 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2793 vtd_dev_as = vtd_bus->dev_as[devfn];
2795 if (!vtd_dev_as) {
2796 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2797 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2799 vtd_dev_as->bus = bus;
2800 vtd_dev_as->devfn = (uint8_t)devfn;
2801 vtd_dev_as->iommu_state = s;
2802 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2805 * Memory region relationships looks like (Address range shows
2806 * only lower 32 bits to make it short in length...):
2808 * |-----------------+-------------------+----------|
2809 * | Name | Address range | Priority |
2810 * |-----------------+-------------------+----------+
2811 * | vtd_root | 00000000-ffffffff | 0 |
2812 * | intel_iommu | 00000000-ffffffff | 1 |
2813 * | vtd_sys_alias | 00000000-ffffffff | 1 |
2814 * | intel_iommu_ir | fee00000-feefffff | 64 |
2815 * |-----------------+-------------------+----------|
2817 * We enable/disable DMAR by switching enablement for
2818 * vtd_sys_alias and intel_iommu regions. IR region is always
2819 * enabled.
2821 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2822 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2823 "intel_iommu_dmar",
2824 UINT64_MAX);
2825 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2826 "vtd_sys_alias", get_system_memory(),
2827 0, memory_region_size(get_system_memory()));
2828 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2829 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2830 VTD_INTERRUPT_ADDR_SIZE);
2831 memory_region_init(&vtd_dev_as->root, OBJECT(s),
2832 "vtd_root", UINT64_MAX);
2833 memory_region_add_subregion_overlap(&vtd_dev_as->root,
2834 VTD_INTERRUPT_ADDR_FIRST,
2835 &vtd_dev_as->iommu_ir, 64);
2836 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2837 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2838 &vtd_dev_as->sys_alias, 1);
2839 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2840 MEMORY_REGION(&vtd_dev_as->iommu),
2842 vtd_switch_address_space(vtd_dev_as);
2844 return vtd_dev_as;
2847 /* Unmap the whole range in the notifier's scope. */
2848 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2850 IOMMUTLBEntry entry;
2851 hwaddr size;
2852 hwaddr start = n->start;
2853 hwaddr end = n->end;
2854 IntelIOMMUState *s = as->iommu_state;
2857 * Note: all the codes in this function has a assumption that IOVA
2858 * bits are no more than VTD_MGAW bits (which is restricted by
2859 * VT-d spec), otherwise we need to consider overflow of 64 bits.
2862 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
2864 * Don't need to unmap regions that is bigger than the whole
2865 * VT-d supported address space size
2867 end = VTD_ADDRESS_SIZE(s->aw_bits);
2870 assert(start <= end);
2871 size = end - start;
2873 if (ctpop64(size) != 1) {
2875 * This size cannot format a correct mask. Let's enlarge it to
2876 * suite the minimum available mask.
2878 int n = 64 - clz64(size);
2879 if (n > s->aw_bits) {
2880 /* should not happen, but in case it happens, limit it */
2881 n = s->aw_bits;
2883 size = 1ULL << n;
2886 entry.target_as = &address_space_memory;
2887 /* Adjust iova for the size */
2888 entry.iova = n->start & ~(size - 1);
2889 /* This field is meaningless for unmap */
2890 entry.translated_addr = 0;
2891 entry.perm = IOMMU_NONE;
2892 entry.addr_mask = size - 1;
2894 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
2895 VTD_PCI_SLOT(as->devfn),
2896 VTD_PCI_FUNC(as->devfn),
2897 entry.iova, size);
2899 memory_region_notify_one(n, &entry);
2902 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
2904 VTDAddressSpace *vtd_as;
2905 IOMMUNotifier *n;
2907 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2908 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
2909 vtd_address_space_unmap(vtd_as, n);
2914 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
2916 memory_region_notify_one((IOMMUNotifier *)private, entry);
2917 return 0;
2920 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
2922 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
2923 IntelIOMMUState *s = vtd_as->iommu_state;
2924 uint8_t bus_n = pci_bus_num(vtd_as->bus);
2925 VTDContextEntry ce;
2928 * The replay can be triggered by either a invalidation or a newly
2929 * created entry. No matter what, we release existing mappings
2930 * (it means flushing caches for UNMAP-only registers).
2932 vtd_address_space_unmap(vtd_as, n);
2934 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
2935 trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
2936 PCI_FUNC(vtd_as->devfn),
2937 VTD_CONTEXT_ENTRY_DID(ce.hi),
2938 ce.hi, ce.lo);
2939 if (vtd_as_has_map_notifier(vtd_as)) {
2940 /* This is required only for MAP typed notifiers */
2941 vtd_page_walk_info info = {
2942 .hook_fn = vtd_replay_hook,
2943 .private = (void *)n,
2944 .notify_unmap = false,
2945 .aw = s->aw_bits,
2948 vtd_page_walk(&ce, 0, ~0ULL, &info);
2950 } else {
2951 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
2952 PCI_FUNC(vtd_as->devfn));
2955 return;
2958 /* Do the initialization. It will also be called when reset, so pay
2959 * attention when adding new initialization stuff.
2961 static void vtd_init(IntelIOMMUState *s)
2963 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2965 memset(s->csr, 0, DMAR_REG_SIZE);
2966 memset(s->wmask, 0, DMAR_REG_SIZE);
2967 memset(s->w1cmask, 0, DMAR_REG_SIZE);
2968 memset(s->womask, 0, DMAR_REG_SIZE);
2970 s->root = 0;
2971 s->root_extended = false;
2972 s->dmar_enabled = false;
2973 s->iq_head = 0;
2974 s->iq_tail = 0;
2975 s->iq = 0;
2976 s->iq_size = 0;
2977 s->qi_enabled = false;
2978 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2979 s->next_frcd_reg = 0;
2980 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
2981 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
2982 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
2983 if (s->aw_bits == VTD_HOST_AW_48BIT) {
2984 s->cap |= VTD_CAP_SAGAW_48bit;
2986 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2989 * Rsvd field masks for spte
2991 vtd_paging_entry_rsvd_field[0] = ~0ULL;
2992 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
2993 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
2994 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
2995 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
2996 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
2997 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
2998 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
2999 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3001 if (x86_iommu->intr_supported) {
3002 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3003 if (s->intr_eim == ON_OFF_AUTO_ON) {
3004 s->ecap |= VTD_ECAP_EIM;
3006 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3009 if (x86_iommu->dt_supported) {
3010 s->ecap |= VTD_ECAP_DT;
3013 if (x86_iommu->pt_supported) {
3014 s->ecap |= VTD_ECAP_PT;
3017 if (s->caching_mode) {
3018 s->cap |= VTD_CAP_CM;
3021 vtd_iommu_lock(s);
3022 vtd_reset_context_cache_locked(s);
3023 vtd_reset_iotlb_locked(s);
3024 vtd_iommu_unlock(s);
3026 /* Define registers with default values and bit semantics */
3027 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3028 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3029 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3030 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3031 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3032 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3033 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
3034 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3035 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3037 /* Advanced Fault Logging not supported */
3038 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3039 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3040 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3041 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3043 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3044 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3046 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3048 /* Treated as RO for implementations that PLMR and PHMR fields reported
3049 * as Clear in the CAP_REG.
3050 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3052 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3054 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3055 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3056 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
3057 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3058 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3059 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3060 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3061 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3062 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3064 /* IOTLB registers */
3065 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3066 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3067 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3069 /* Fault Recording Registers, 128-bit */
3070 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3071 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3074 * Interrupt remapping registers.
3076 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3079 /* Should not reset address_spaces when reset because devices will still use
3080 * the address space they got at first (won't ask the bus again).
3082 static void vtd_reset(DeviceState *dev)
3084 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3086 vtd_init(s);
3089 * When device reset, throw away all mappings and external caches
3091 vtd_address_space_unmap_all(s);
3094 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3096 IntelIOMMUState *s = opaque;
3097 VTDAddressSpace *vtd_as;
3099 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3101 vtd_as = vtd_find_add_as(s, bus, devfn);
3102 return &vtd_as->as;
3105 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3107 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3109 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
3110 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
3111 !kvm_irqchip_is_split()) {
3112 error_setg(errp, "Intel Interrupt Remapping cannot work with "
3113 "kernel-irqchip=on, please use 'split|off'.");
3114 return false;
3116 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3117 error_setg(errp, "eim=on cannot be selected without intremap=on");
3118 return false;
3121 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3122 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3123 && x86_iommu->intr_supported ?
3124 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3126 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3127 if (!kvm_irqchip_in_kernel()) {
3128 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3129 return false;
3131 if (!kvm_enable_x2apic()) {
3132 error_setg(errp, "eim=on requires support on the KVM side"
3133 "(X2APIC_API, first shipped in v4.7)");
3134 return false;
3138 /* Currently only address widths supported are 39 and 48 bits */
3139 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3140 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3141 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3142 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3143 return false;
3146 return true;
3149 static void vtd_realize(DeviceState *dev, Error **errp)
3151 MachineState *ms = MACHINE(qdev_get_machine());
3152 PCMachineState *pcms = PC_MACHINE(ms);
3153 PCIBus *bus = pcms->bus;
3154 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3155 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3157 x86_iommu->type = TYPE_INTEL;
3159 if (!vtd_decide_config(s, errp)) {
3160 return;
3163 QLIST_INIT(&s->vtd_as_with_notifiers);
3164 qemu_mutex_init(&s->iommu_lock);
3165 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3166 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3167 "intel_iommu", DMAR_REG_SIZE);
3168 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3169 /* No corresponding destroy */
3170 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3171 g_free, g_free);
3172 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3173 g_free, g_free);
3174 vtd_init(s);
3175 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3176 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3177 /* Pseudo address space under root PCI bus. */
3178 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3181 static void vtd_class_init(ObjectClass *klass, void *data)
3183 DeviceClass *dc = DEVICE_CLASS(klass);
3184 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3186 dc->reset = vtd_reset;
3187 dc->vmsd = &vtd_vmstate;
3188 dc->props = vtd_properties;
3189 dc->hotpluggable = false;
3190 x86_class->realize = vtd_realize;
3191 x86_class->int_remap = vtd_int_remap;
3192 /* Supported by the pc-q35-* machine types */
3193 dc->user_creatable = true;
3196 static const TypeInfo vtd_info = {
3197 .name = TYPE_INTEL_IOMMU_DEVICE,
3198 .parent = TYPE_X86_IOMMU_DEVICE,
3199 .instance_size = sizeof(IntelIOMMUState),
3200 .class_init = vtd_class_init,
3203 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3204 void *data)
3206 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3208 imrc->translate = vtd_iommu_translate;
3209 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3210 imrc->replay = vtd_iommu_replay;
3213 static const TypeInfo vtd_iommu_memory_region_info = {
3214 .parent = TYPE_IOMMU_MEMORY_REGION,
3215 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3216 .class_init = vtd_iommu_memory_region_class_init,
3219 static void vtd_register_types(void)
3221 type_register_static(&vtd_info);
3222 type_register_static(&vtd_iommu_memory_region_info);
3225 type_init(vtd_register_types)