Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / hw / i386 / intel_iommu.c
blobcc8e59674eb31dcde7ade2617b473bd13365f2de
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
54 * PCI bus number (or SID) is not reliable since the device is usaully
55 * initialized before guest can configure the PCI bridge
56 * (SECONDARY_BUS_NUMBER).
58 struct vtd_as_key {
59 PCIBus *bus;
60 uint8_t devfn;
61 uint32_t pasid;
64 struct vtd_iotlb_key {
65 uint64_t gfn;
66 uint32_t pasid;
67 uint16_t sid;
68 uint8_t level;
71 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
72 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
74 static void vtd_panic_require_caching_mode(void)
76 error_report("We need to set caching-mode=on for intel-iommu to enable "
77 "device assignment with IOMMU protection.");
78 exit(1);
81 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
82 uint64_t wmask, uint64_t w1cmask)
84 stq_le_p(&s->csr[addr], val);
85 stq_le_p(&s->wmask[addr], wmask);
86 stq_le_p(&s->w1cmask[addr], w1cmask);
89 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
91 stq_le_p(&s->womask[addr], mask);
94 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
95 uint32_t wmask, uint32_t w1cmask)
97 stl_le_p(&s->csr[addr], val);
98 stl_le_p(&s->wmask[addr], wmask);
99 stl_le_p(&s->w1cmask[addr], w1cmask);
102 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
104 stl_le_p(&s->womask[addr], mask);
107 /* "External" get/set operations */
108 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
110 uint64_t oldval = ldq_le_p(&s->csr[addr]);
111 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
112 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
113 stq_le_p(&s->csr[addr],
114 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
117 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
119 uint32_t oldval = ldl_le_p(&s->csr[addr]);
120 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
121 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
122 stl_le_p(&s->csr[addr],
123 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
126 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
128 uint64_t val = ldq_le_p(&s->csr[addr]);
129 uint64_t womask = ldq_le_p(&s->womask[addr]);
130 return val & ~womask;
133 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
135 uint32_t val = ldl_le_p(&s->csr[addr]);
136 uint32_t womask = ldl_le_p(&s->womask[addr]);
137 return val & ~womask;
140 /* "Internal" get/set operations */
141 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
143 return ldq_le_p(&s->csr[addr]);
146 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
148 return ldl_le_p(&s->csr[addr]);
151 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
153 stq_le_p(&s->csr[addr], val);
156 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
157 uint32_t clear, uint32_t mask)
159 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
160 stl_le_p(&s->csr[addr], new_val);
161 return new_val;
164 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
165 uint64_t clear, uint64_t mask)
167 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
168 stq_le_p(&s->csr[addr], new_val);
169 return new_val;
172 static inline void vtd_iommu_lock(IntelIOMMUState *s)
174 qemu_mutex_lock(&s->iommu_lock);
177 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
179 qemu_mutex_unlock(&s->iommu_lock);
182 static void vtd_update_scalable_state(IntelIOMMUState *s)
184 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
186 if (s->scalable_mode) {
187 s->root_scalable = val & VTD_RTADDR_SMT;
191 static void vtd_update_iq_dw(IntelIOMMUState *s)
193 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
195 if (s->ecap & VTD_ECAP_SMTS &&
196 val & VTD_IQA_DW_MASK) {
197 s->iq_dw = true;
198 } else {
199 s->iq_dw = false;
203 /* Whether the address space needs to notify new mappings */
204 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
206 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
209 /* GHashTable functions */
210 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
212 const struct vtd_iotlb_key *key1 = v1;
213 const struct vtd_iotlb_key *key2 = v2;
215 return key1->sid == key2->sid &&
216 key1->pasid == key2->pasid &&
217 key1->level == key2->level &&
218 key1->gfn == key2->gfn;
221 static guint vtd_iotlb_hash(gconstpointer v)
223 const struct vtd_iotlb_key *key = v;
224 uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) |
225 (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT |
226 (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT;
228 return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU));
231 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
233 const struct vtd_as_key *key1 = v1;
234 const struct vtd_as_key *key2 = v2;
236 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
237 (key1->pasid == key2->pasid);
241 * Note that we use pointer to PCIBus as the key, so hashing/shifting
242 * based on the pointer value is intended. Note that we deal with
243 * collisions through vtd_as_equal().
245 static guint vtd_as_hash(gconstpointer v)
247 const struct vtd_as_key *key = v;
248 guint value = (guint)(uintptr_t)key->bus;
250 return (guint)(value << 8 | key->devfn);
253 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
254 gpointer user_data)
256 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
257 uint16_t domain_id = *(uint16_t *)user_data;
258 return entry->domain_id == domain_id;
261 /* The shift of an addr for a certain level of paging structure */
262 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
264 assert(level != 0);
265 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
268 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
270 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
273 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
274 gpointer user_data)
276 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
277 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
278 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
279 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
280 return (entry->domain_id == info->domain_id) &&
281 (((entry->gfn & info->mask) == gfn) ||
282 (entry->gfn == gfn_tlb));
285 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
286 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
288 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
290 VTDAddressSpace *vtd_as;
291 GHashTableIter as_it;
293 trace_vtd_context_cache_reset();
295 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
297 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
298 vtd_as->context_cache_entry.context_cache_gen = 0;
300 s->context_cache_gen = 1;
303 /* Must be called with IOMMU lock held. */
304 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
306 assert(s->iotlb);
307 g_hash_table_remove_all(s->iotlb);
310 static void vtd_reset_iotlb(IntelIOMMUState *s)
312 vtd_iommu_lock(s);
313 vtd_reset_iotlb_locked(s);
314 vtd_iommu_unlock(s);
317 static void vtd_reset_caches(IntelIOMMUState *s)
319 vtd_iommu_lock(s);
320 vtd_reset_iotlb_locked(s);
321 vtd_reset_context_cache_locked(s);
322 vtd_iommu_unlock(s);
325 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
327 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
330 /* Must be called with IOMMU lock held */
331 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
332 uint32_t pasid, hwaddr addr)
334 struct vtd_iotlb_key key;
335 VTDIOTLBEntry *entry;
336 int level;
338 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
339 key.gfn = vtd_get_iotlb_gfn(addr, level);
340 key.level = level;
341 key.sid = source_id;
342 key.pasid = pasid;
343 entry = g_hash_table_lookup(s->iotlb, &key);
344 if (entry) {
345 goto out;
349 out:
350 return entry;
353 /* Must be with IOMMU lock held */
354 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
355 uint16_t domain_id, hwaddr addr, uint64_t slpte,
356 uint8_t access_flags, uint32_t level,
357 uint32_t pasid)
359 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
360 struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
361 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
363 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
364 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
365 trace_vtd_iotlb_reset("iotlb exceeds size limit");
366 vtd_reset_iotlb_locked(s);
369 entry->gfn = gfn;
370 entry->domain_id = domain_id;
371 entry->slpte = slpte;
372 entry->access_flags = access_flags;
373 entry->mask = vtd_slpt_level_page_mask(level);
374 entry->pasid = pasid;
376 key->gfn = gfn;
377 key->sid = source_id;
378 key->level = level;
379 key->pasid = pasid;
381 g_hash_table_replace(s->iotlb, key, entry);
384 /* Given the reg addr of both the message data and address, generate an
385 * interrupt via MSI.
387 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
388 hwaddr mesg_data_reg)
390 MSIMessage msi;
392 assert(mesg_data_reg < DMAR_REG_SIZE);
393 assert(mesg_addr_reg < DMAR_REG_SIZE);
395 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
396 msi.data = vtd_get_long_raw(s, mesg_data_reg);
398 trace_vtd_irq_generate(msi.address, msi.data);
400 apic_get_class(NULL)->send_msi(&msi);
403 /* Generate a fault event to software via MSI if conditions are met.
404 * Notice that the value of FSTS_REG being passed to it should be the one
405 * before any update.
407 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
409 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
410 pre_fsts & VTD_FSTS_IQE) {
411 error_report_once("There are previous interrupt conditions "
412 "to be serviced by software, fault event "
413 "is not generated");
414 return;
416 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
417 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
418 error_report_once("Interrupt Mask set, irq is not generated");
419 } else {
420 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
421 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
425 /* Check if the Fault (F) field of the Fault Recording Register referenced by
426 * @index is Set.
428 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
430 /* Each reg is 128-bit */
431 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
432 addr += 8; /* Access the high 64-bit half */
434 assert(index < DMAR_FRCD_REG_NR);
436 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
439 /* Update the PPF field of Fault Status Register.
440 * Should be called whenever change the F field of any fault recording
441 * registers.
443 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
445 uint32_t i;
446 uint32_t ppf_mask = 0;
448 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
449 if (vtd_is_frcd_set(s, i)) {
450 ppf_mask = VTD_FSTS_PPF;
451 break;
454 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
455 trace_vtd_fsts_ppf(!!ppf_mask);
458 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
460 /* Each reg is 128-bit */
461 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
462 addr += 8; /* Access the high 64-bit half */
464 assert(index < DMAR_FRCD_REG_NR);
466 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
467 vtd_update_fsts_ppf(s);
470 /* Must not update F field now, should be done later */
471 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
472 uint64_t hi, uint64_t lo)
474 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
476 assert(index < DMAR_FRCD_REG_NR);
478 vtd_set_quad_raw(s, frcd_reg_addr, lo);
479 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
481 trace_vtd_frr_new(index, hi, lo);
484 /* Try to collapse multiple pending faults from the same requester */
485 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
487 uint32_t i;
488 uint64_t frcd_reg;
489 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
491 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
492 frcd_reg = vtd_get_quad_raw(s, addr);
493 if ((frcd_reg & VTD_FRCD_F) &&
494 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
495 return true;
497 addr += 16; /* 128-bit for each */
499 return false;
502 /* Log and report an DMAR (address translation) fault to software */
503 static void vtd_report_frcd_fault(IntelIOMMUState *s, uint64_t source_id,
504 uint64_t hi, uint64_t lo)
506 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
508 if (fsts_reg & VTD_FSTS_PFO) {
509 error_report_once("New fault is not recorded due to "
510 "Primary Fault Overflow");
511 return;
514 if (vtd_try_collapse_fault(s, source_id)) {
515 error_report_once("New fault is not recorded due to "
516 "compression of faults");
517 return;
520 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
521 error_report_once("Next Fault Recording Reg is used, "
522 "new fault is not recorded, set PFO field");
523 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
524 return;
527 vtd_record_frcd(s, s->next_frcd_reg, hi, lo);
529 if (fsts_reg & VTD_FSTS_PPF) {
530 error_report_once("There are pending faults already, "
531 "fault event is not generated");
532 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
533 s->next_frcd_reg++;
534 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
535 s->next_frcd_reg = 0;
537 } else {
538 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
539 VTD_FSTS_FRI(s->next_frcd_reg));
540 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
541 s->next_frcd_reg++;
542 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
543 s->next_frcd_reg = 0;
545 /* This case actually cause the PPF to be Set.
546 * So generate fault event (interrupt).
548 vtd_generate_fault_event(s, fsts_reg);
552 /* Log and report an DMAR (address translation) fault to software */
553 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
554 hwaddr addr, VTDFaultReason fault,
555 bool is_write, bool is_pasid,
556 uint32_t pasid)
558 uint64_t hi, lo;
560 assert(fault < VTD_FR_MAX);
562 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
564 lo = VTD_FRCD_FI(addr);
565 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
566 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
567 if (!is_write) {
568 hi |= VTD_FRCD_T;
571 vtd_report_frcd_fault(s, source_id, hi, lo);
575 static void vtd_report_ir_fault(IntelIOMMUState *s, uint64_t source_id,
576 VTDFaultReason fault, uint16_t index)
578 uint64_t hi, lo;
580 lo = VTD_FRCD_IR_IDX(index);
581 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
583 vtd_report_frcd_fault(s, source_id, hi, lo);
586 /* Handle Invalidation Queue Errors of queued invalidation interface error
587 * conditions.
589 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
591 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
593 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
594 vtd_generate_fault_event(s, fsts_reg);
597 /* Set the IWC field and try to generate an invalidation completion interrupt */
598 static void vtd_generate_completion_event(IntelIOMMUState *s)
600 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
601 trace_vtd_inv_desc_wait_irq("One pending, skip current");
602 return;
604 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
605 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
606 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
607 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
608 "new event not generated");
609 return;
610 } else {
611 /* Generate the interrupt event */
612 trace_vtd_inv_desc_wait_irq("Generating complete event");
613 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
614 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
618 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
619 VTDRootEntry *re,
620 uint8_t devfn)
622 if (s->root_scalable && devfn > UINT8_MAX / 2) {
623 return re->hi & VTD_ROOT_ENTRY_P;
626 return re->lo & VTD_ROOT_ENTRY_P;
629 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
630 VTDRootEntry *re)
632 dma_addr_t addr;
634 addr = s->root + index * sizeof(*re);
635 if (dma_memory_read(&address_space_memory, addr,
636 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
637 re->lo = 0;
638 return -VTD_FR_ROOT_TABLE_INV;
640 re->lo = le64_to_cpu(re->lo);
641 re->hi = le64_to_cpu(re->hi);
642 return 0;
645 static inline bool vtd_ce_present(VTDContextEntry *context)
647 return context->lo & VTD_CONTEXT_ENTRY_P;
650 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
651 VTDRootEntry *re,
652 uint8_t index,
653 VTDContextEntry *ce)
655 dma_addr_t addr, ce_size;
657 /* we have checked that root entry is present */
658 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
659 VTD_CTX_ENTRY_LEGACY_SIZE;
661 if (s->root_scalable && index > UINT8_MAX / 2) {
662 index = index & (~VTD_DEVFN_CHECK_MASK);
663 addr = re->hi & VTD_ROOT_ENTRY_CTP;
664 } else {
665 addr = re->lo & VTD_ROOT_ENTRY_CTP;
668 addr = addr + index * ce_size;
669 if (dma_memory_read(&address_space_memory, addr,
670 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
671 return -VTD_FR_CONTEXT_TABLE_INV;
674 ce->lo = le64_to_cpu(ce->lo);
675 ce->hi = le64_to_cpu(ce->hi);
676 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
677 ce->val[2] = le64_to_cpu(ce->val[2]);
678 ce->val[3] = le64_to_cpu(ce->val[3]);
680 return 0;
683 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
685 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
688 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
690 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
693 /* Whether the pte indicates the address of the page frame */
694 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
696 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
699 /* Get the content of a spte located in @base_addr[@index] */
700 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
702 uint64_t slpte;
704 assert(index < VTD_SL_PT_ENTRY_NR);
706 if (dma_memory_read(&address_space_memory,
707 base_addr + index * sizeof(slpte),
708 &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
709 slpte = (uint64_t)-1;
710 return slpte;
712 slpte = le64_to_cpu(slpte);
713 return slpte;
716 /* Given an iova and the level of paging structure, return the offset
717 * of current level.
719 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
721 return (iova >> vtd_slpt_level_shift(level)) &
722 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
725 /* Check Capability Register to see if the @level of page-table is supported */
726 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
728 return VTD_CAP_SAGAW_MASK & s->cap &
729 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
732 /* Return true if check passed, otherwise false */
733 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
734 VTDPASIDEntry *pe)
736 switch (VTD_PE_GET_TYPE(pe)) {
737 case VTD_SM_PASID_ENTRY_FLT:
738 case VTD_SM_PASID_ENTRY_SLT:
739 case VTD_SM_PASID_ENTRY_NESTED:
740 break;
741 case VTD_SM_PASID_ENTRY_PT:
742 if (!x86_iommu->pt_supported) {
743 return false;
745 break;
746 default:
747 /* Unknown type */
748 return false;
750 return true;
753 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
755 return pdire->val & 1;
759 * Caller of this function should check present bit if wants
760 * to use pdir entry for further usage except for fpd bit check.
762 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
763 uint32_t pasid,
764 VTDPASIDDirEntry *pdire)
766 uint32_t index;
767 dma_addr_t addr, entry_size;
769 index = VTD_PASID_DIR_INDEX(pasid);
770 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
771 addr = pasid_dir_base + index * entry_size;
772 if (dma_memory_read(&address_space_memory, addr,
773 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
774 return -VTD_FR_PASID_TABLE_INV;
777 pdire->val = le64_to_cpu(pdire->val);
779 return 0;
782 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
784 return pe->val[0] & VTD_PASID_ENTRY_P;
787 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
788 uint32_t pasid,
789 dma_addr_t addr,
790 VTDPASIDEntry *pe)
792 uint32_t index;
793 dma_addr_t entry_size;
794 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
796 index = VTD_PASID_TABLE_INDEX(pasid);
797 entry_size = VTD_PASID_ENTRY_SIZE;
798 addr = addr + index * entry_size;
799 if (dma_memory_read(&address_space_memory, addr,
800 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
801 return -VTD_FR_PASID_TABLE_INV;
803 for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) {
804 pe->val[i] = le64_to_cpu(pe->val[i]);
807 /* Do translation type check */
808 if (!vtd_pe_type_check(x86_iommu, pe)) {
809 return -VTD_FR_PASID_TABLE_INV;
812 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
813 return -VTD_FR_PASID_TABLE_INV;
816 return 0;
820 * Caller of this function should check present bit if wants
821 * to use pasid entry for further usage except for fpd bit check.
823 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
824 uint32_t pasid,
825 VTDPASIDDirEntry *pdire,
826 VTDPASIDEntry *pe)
828 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
830 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
834 * This function gets a pasid entry from a specified pasid
835 * table (includes dir and leaf table) with a specified pasid.
836 * Sanity check should be done to ensure return a present
837 * pasid entry to caller.
839 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
840 dma_addr_t pasid_dir_base,
841 uint32_t pasid,
842 VTDPASIDEntry *pe)
844 int ret;
845 VTDPASIDDirEntry pdire;
847 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
848 pasid, &pdire);
849 if (ret) {
850 return ret;
853 if (!vtd_pdire_present(&pdire)) {
854 return -VTD_FR_PASID_TABLE_INV;
857 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
858 if (ret) {
859 return ret;
862 if (!vtd_pe_present(pe)) {
863 return -VTD_FR_PASID_TABLE_INV;
866 return 0;
869 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
870 VTDContextEntry *ce,
871 VTDPASIDEntry *pe,
872 uint32_t pasid)
874 dma_addr_t pasid_dir_base;
875 int ret = 0;
877 if (pasid == PCI_NO_PASID) {
878 pasid = VTD_CE_GET_RID2PASID(ce);
880 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
881 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
883 return ret;
886 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
887 VTDContextEntry *ce,
888 bool *pe_fpd_set,
889 uint32_t pasid)
891 int ret;
892 dma_addr_t pasid_dir_base;
893 VTDPASIDDirEntry pdire;
894 VTDPASIDEntry pe;
896 if (pasid == PCI_NO_PASID) {
897 pasid = VTD_CE_GET_RID2PASID(ce);
899 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
902 * No present bit check since fpd is meaningful even
903 * if the present bit is clear.
905 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
906 if (ret) {
907 return ret;
910 if (pdire.val & VTD_PASID_DIR_FPD) {
911 *pe_fpd_set = true;
912 return 0;
915 if (!vtd_pdire_present(&pdire)) {
916 return -VTD_FR_PASID_TABLE_INV;
920 * No present bit check since fpd is meaningful even
921 * if the present bit is clear.
923 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
924 if (ret) {
925 return ret;
928 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
929 *pe_fpd_set = true;
932 return 0;
935 /* Get the page-table level that hardware should use for the second-level
936 * page-table walk from the Address Width field of context-entry.
938 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
940 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
943 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
944 VTDContextEntry *ce,
945 uint32_t pasid)
947 VTDPASIDEntry pe;
949 if (s->root_scalable) {
950 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
951 return VTD_PE_GET_LEVEL(&pe);
954 return vtd_ce_get_level(ce);
957 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
959 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
962 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
963 VTDContextEntry *ce,
964 uint32_t pasid)
966 VTDPASIDEntry pe;
968 if (s->root_scalable) {
969 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
970 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
973 return vtd_ce_get_agaw(ce);
976 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
978 return ce->lo & VTD_CONTEXT_ENTRY_TT;
981 /* Only for Legacy Mode. Return true if check passed, otherwise false */
982 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
983 VTDContextEntry *ce)
985 switch (vtd_ce_get_type(ce)) {
986 case VTD_CONTEXT_TT_MULTI_LEVEL:
987 /* Always supported */
988 break;
989 case VTD_CONTEXT_TT_DEV_IOTLB:
990 if (!x86_iommu->dt_supported) {
991 error_report_once("%s: DT specified but not supported", __func__);
992 return false;
994 break;
995 case VTD_CONTEXT_TT_PASS_THROUGH:
996 if (!x86_iommu->pt_supported) {
997 error_report_once("%s: PT specified but not supported", __func__);
998 return false;
1000 break;
1001 default:
1002 /* Unknown type */
1003 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
1004 vtd_ce_get_type(ce));
1005 return false;
1007 return true;
1010 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
1011 VTDContextEntry *ce, uint8_t aw,
1012 uint32_t pasid)
1014 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
1015 return 1ULL << MIN(ce_agaw, aw);
1018 /* Return true if IOVA passes range check, otherwise false. */
1019 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
1020 uint64_t iova, VTDContextEntry *ce,
1021 uint8_t aw, uint32_t pasid)
1024 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1025 * in CAP_REG and AW in context-entry.
1027 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1030 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1031 VTDContextEntry *ce,
1032 uint32_t pasid)
1034 VTDPASIDEntry pe;
1036 if (s->root_scalable) {
1037 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1038 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1041 return vtd_ce_get_slpt_base(ce);
1045 * Rsvd field masks for spte:
1046 * vtd_spte_rsvd 4k pages
1047 * vtd_spte_rsvd_large large pages
1049 * We support only 3-level and 4-level page tables (see vtd_init() which
1050 * sets only VTD_CAP_SAGAW_39bit and maybe VTD_CAP_SAGAW_48bit bits in s->cap).
1052 #define VTD_SPTE_RSVD_LEN 5
1053 static uint64_t vtd_spte_rsvd[VTD_SPTE_RSVD_LEN];
1054 static uint64_t vtd_spte_rsvd_large[VTD_SPTE_RSVD_LEN];
1056 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1058 uint64_t rsvd_mask;
1061 * We should have caught a guest-mis-programmed level earlier,
1062 * via vtd_is_level_supported.
1064 assert(level < VTD_SPTE_RSVD_LEN);
1066 * Zero level doesn't exist. The smallest level is VTD_SL_PT_LEVEL=1 and
1067 * checked by vtd_is_last_slpte().
1069 assert(level);
1071 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
1072 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
1073 /* large page */
1074 rsvd_mask = vtd_spte_rsvd_large[level];
1075 } else {
1076 rsvd_mask = vtd_spte_rsvd[level];
1079 return slpte & rsvd_mask;
1082 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1083 * of the translation, can be used for deciding the size of large page.
1085 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1086 uint64_t iova, bool is_write,
1087 uint64_t *slptep, uint32_t *slpte_level,
1088 bool *reads, bool *writes, uint8_t aw_bits,
1089 uint32_t pasid)
1091 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1092 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1093 uint32_t offset;
1094 uint64_t slpte;
1095 uint64_t access_right_check;
1096 uint64_t xlat, size;
1098 if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
1099 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1100 "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1101 return -VTD_FR_ADDR_BEYOND_MGAW;
1104 /* FIXME: what is the Atomics request here? */
1105 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1107 while (true) {
1108 offset = vtd_iova_level_offset(iova, level);
1109 slpte = vtd_get_slpte(addr, offset);
1111 if (slpte == (uint64_t)-1) {
1112 error_report_once("%s: detected read error on DMAR slpte "
1113 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1114 __func__, iova, pasid);
1115 if (level == vtd_get_iova_level(s, ce, pasid)) {
1116 /* Invalid programming of context-entry */
1117 return -VTD_FR_CONTEXT_ENTRY_INV;
1118 } else {
1119 return -VTD_FR_PAGING_ENTRY_INV;
1122 *reads = (*reads) && (slpte & VTD_SL_R);
1123 *writes = (*writes) && (slpte & VTD_SL_W);
1124 if (!(slpte & access_right_check)) {
1125 error_report_once("%s: detected slpte permission error "
1126 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1127 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1128 PRIx32 ")", __func__, iova, level,
1129 slpte, is_write, pasid);
1130 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1132 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1133 error_report_once("%s: detected splte reserve non-zero "
1134 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1135 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1136 __func__, iova, level, slpte, pasid);
1137 return -VTD_FR_PAGING_ENTRY_RSVD;
1140 if (vtd_is_last_slpte(slpte, level)) {
1141 *slptep = slpte;
1142 *slpte_level = level;
1143 break;
1145 addr = vtd_get_slpte_addr(slpte, aw_bits);
1146 level--;
1149 xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1150 size = ~vtd_slpt_level_page_mask(level) + 1;
1153 * From VT-d spec 3.14: Untranslated requests and translation
1154 * requests that result in an address in the interrupt range will be
1155 * blocked with condition code LGN.4 or SGN.8.
1157 if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1158 xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1159 return 0;
1160 } else {
1161 error_report_once("%s: xlat address is in interrupt range "
1162 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1163 "slpte=0x%" PRIx64 ", write=%d, "
1164 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
1165 "pasid=0x%" PRIx32 ")",
1166 __func__, iova, level, slpte, is_write,
1167 xlat, size, pasid);
1168 return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1169 -VTD_FR_INTERRUPT_ADDR;
1173 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1176 * Constant information used during page walking
1178 * @hook_fn: hook func to be called when detected page
1179 * @private: private data to be passed into hook func
1180 * @notify_unmap: whether we should notify invalid entries
1181 * @as: VT-d address space of the device
1182 * @aw: maximum address width
1183 * @domain: domain ID of the page walk
1185 typedef struct {
1186 VTDAddressSpace *as;
1187 vtd_page_walk_hook hook_fn;
1188 void *private;
1189 bool notify_unmap;
1190 uint8_t aw;
1191 uint16_t domain_id;
1192 } vtd_page_walk_info;
1194 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1196 VTDAddressSpace *as = info->as;
1197 vtd_page_walk_hook hook_fn = info->hook_fn;
1198 void *private = info->private;
1199 IOMMUTLBEntry *entry = &event->entry;
1200 DMAMap target = {
1201 .iova = entry->iova,
1202 .size = entry->addr_mask,
1203 .translated_addr = entry->translated_addr,
1204 .perm = entry->perm,
1206 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1208 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1209 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1210 return 0;
1213 assert(hook_fn);
1215 /* Update local IOVA mapped ranges */
1216 if (event->type == IOMMU_NOTIFIER_MAP) {
1217 if (mapped) {
1218 /* If it's exactly the same translation, skip */
1219 if (!memcmp(mapped, &target, sizeof(target))) {
1220 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1221 entry->translated_addr);
1222 return 0;
1223 } else {
1225 * Translation changed. Normally this should not
1226 * happen, but it can happen when with buggy guest
1227 * OSes. Note that there will be a small window that
1228 * we don't have map at all. But that's the best
1229 * effort we can do. The ideal way to emulate this is
1230 * atomically modify the PTE to follow what has
1231 * changed, but we can't. One example is that vfio
1232 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1233 * interface to modify a mapping (meanwhile it seems
1234 * meaningless to even provide one). Anyway, let's
1235 * mark this as a TODO in case one day we'll have
1236 * a better solution.
1238 IOMMUAccessFlags cache_perm = entry->perm;
1239 int ret;
1241 /* Emulate an UNMAP */
1242 event->type = IOMMU_NOTIFIER_UNMAP;
1243 entry->perm = IOMMU_NONE;
1244 trace_vtd_page_walk_one(info->domain_id,
1245 entry->iova,
1246 entry->translated_addr,
1247 entry->addr_mask,
1248 entry->perm);
1249 ret = hook_fn(event, private);
1250 if (ret) {
1251 return ret;
1253 /* Drop any existing mapping */
1254 iova_tree_remove(as->iova_tree, target);
1255 /* Recover the correct type */
1256 event->type = IOMMU_NOTIFIER_MAP;
1257 entry->perm = cache_perm;
1260 iova_tree_insert(as->iova_tree, &target);
1261 } else {
1262 if (!mapped) {
1263 /* Skip since we didn't map this range at all */
1264 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1265 return 0;
1267 iova_tree_remove(as->iova_tree, target);
1270 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1271 entry->translated_addr, entry->addr_mask,
1272 entry->perm);
1273 return hook_fn(event, private);
1277 * vtd_page_walk_level - walk over specific level for IOVA range
1279 * @addr: base GPA addr to start the walk
1280 * @start: IOVA range start address
1281 * @end: IOVA range end address (start <= addr < end)
1282 * @read: whether parent level has read permission
1283 * @write: whether parent level has write permission
1284 * @info: constant information for the page walk
1286 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1287 uint64_t end, uint32_t level, bool read,
1288 bool write, vtd_page_walk_info *info)
1290 bool read_cur, write_cur, entry_valid;
1291 uint32_t offset;
1292 uint64_t slpte;
1293 uint64_t subpage_size, subpage_mask;
1294 IOMMUTLBEvent event;
1295 uint64_t iova = start;
1296 uint64_t iova_next;
1297 int ret = 0;
1299 trace_vtd_page_walk_level(addr, level, start, end);
1301 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1302 subpage_mask = vtd_slpt_level_page_mask(level);
1304 while (iova < end) {
1305 iova_next = (iova & subpage_mask) + subpage_size;
1307 offset = vtd_iova_level_offset(iova, level);
1308 slpte = vtd_get_slpte(addr, offset);
1310 if (slpte == (uint64_t)-1) {
1311 trace_vtd_page_walk_skip_read(iova, iova_next);
1312 goto next;
1315 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1316 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1317 goto next;
1320 /* Permissions are stacked with parents' */
1321 read_cur = read && (slpte & VTD_SL_R);
1322 write_cur = write && (slpte & VTD_SL_W);
1325 * As long as we have either read/write permission, this is a
1326 * valid entry. The rule works for both page entries and page
1327 * table entries.
1329 entry_valid = read_cur | write_cur;
1331 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1333 * This is a valid PDE (or even bigger than PDE). We need
1334 * to walk one further level.
1336 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1337 iova, MIN(iova_next, end), level - 1,
1338 read_cur, write_cur, info);
1339 } else {
1341 * This means we are either:
1343 * (1) the real page entry (either 4K page, or huge page)
1344 * (2) the whole range is invalid
1346 * In either case, we send an IOTLB notification down.
1348 event.entry.target_as = &address_space_memory;
1349 event.entry.iova = iova & subpage_mask;
1350 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1351 event.entry.addr_mask = ~subpage_mask;
1352 /* NOTE: this is only meaningful if entry_valid == true */
1353 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1354 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1355 IOMMU_NOTIFIER_UNMAP;
1356 ret = vtd_page_walk_one(&event, info);
1359 if (ret < 0) {
1360 return ret;
1363 next:
1364 iova = iova_next;
1367 return 0;
1371 * vtd_page_walk - walk specific IOVA range, and call the hook
1373 * @s: intel iommu state
1374 * @ce: context entry to walk upon
1375 * @start: IOVA address to start the walk
1376 * @end: IOVA range end address (start <= addr < end)
1377 * @info: page walking information struct
1379 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1380 uint64_t start, uint64_t end,
1381 vtd_page_walk_info *info,
1382 uint32_t pasid)
1384 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1385 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1387 if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
1388 return -VTD_FR_ADDR_BEYOND_MGAW;
1391 if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
1392 /* Fix end so that it reaches the maximum */
1393 end = vtd_iova_limit(s, ce, info->aw, pasid);
1396 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1399 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1400 VTDRootEntry *re)
1402 /* Legacy Mode reserved bits check */
1403 if (!s->root_scalable &&
1404 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1405 goto rsvd_err;
1407 /* Scalable Mode reserved bits check */
1408 if (s->root_scalable &&
1409 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1410 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1411 goto rsvd_err;
1413 return 0;
1415 rsvd_err:
1416 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1417 ", lo=0x%"PRIx64,
1418 __func__, re->hi, re->lo);
1419 return -VTD_FR_ROOT_ENTRY_RSVD;
1422 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1423 VTDContextEntry *ce)
1425 if (!s->root_scalable &&
1426 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1427 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1428 error_report_once("%s: invalid context entry: hi=%"PRIx64
1429 ", lo=%"PRIx64" (reserved nonzero)",
1430 __func__, ce->hi, ce->lo);
1431 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1434 if (s->root_scalable &&
1435 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1436 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1437 ce->val[2] ||
1438 ce->val[3])) {
1439 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1440 ", val[2]=%"PRIx64
1441 ", val[1]=%"PRIx64
1442 ", val[0]=%"PRIx64" (reserved nonzero)",
1443 __func__, ce->val[3], ce->val[2],
1444 ce->val[1], ce->val[0]);
1445 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1448 return 0;
1451 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1452 VTDContextEntry *ce)
1454 VTDPASIDEntry pe;
1457 * Make sure in Scalable Mode, a present context entry
1458 * has valid rid2pasid setting, which includes valid
1459 * rid2pasid field and corresponding pasid entry setting
1461 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1464 /* Map a device to its corresponding domain (context-entry) */
1465 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1466 uint8_t devfn, VTDContextEntry *ce)
1468 VTDRootEntry re;
1469 int ret_fr;
1470 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1472 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1473 if (ret_fr) {
1474 return ret_fr;
1477 if (!vtd_root_entry_present(s, &re, devfn)) {
1478 /* Not error - it's okay we don't have root entry. */
1479 trace_vtd_re_not_present(bus_num);
1480 return -VTD_FR_ROOT_ENTRY_P;
1483 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1484 if (ret_fr) {
1485 return ret_fr;
1488 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1489 if (ret_fr) {
1490 return ret_fr;
1493 if (!vtd_ce_present(ce)) {
1494 /* Not error - it's okay we don't have context entry. */
1495 trace_vtd_ce_not_present(bus_num, devfn);
1496 return -VTD_FR_CONTEXT_ENTRY_P;
1499 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1500 if (ret_fr) {
1501 return ret_fr;
1504 /* Check if the programming of context-entry is valid */
1505 if (!s->root_scalable &&
1506 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1507 error_report_once("%s: invalid context entry: hi=%"PRIx64
1508 ", lo=%"PRIx64" (level %d not supported)",
1509 __func__, ce->hi, ce->lo,
1510 vtd_ce_get_level(ce));
1511 return -VTD_FR_CONTEXT_ENTRY_INV;
1514 if (!s->root_scalable) {
1515 /* Do translation type check */
1516 if (!vtd_ce_type_check(x86_iommu, ce)) {
1517 /* Errors dumped in vtd_ce_type_check() */
1518 return -VTD_FR_CONTEXT_ENTRY_INV;
1520 } else {
1522 * Check if the programming of context-entry.rid2pasid
1523 * and corresponding pasid setting is valid, and thus
1524 * avoids to check pasid entry fetching result in future
1525 * helper function calling.
1527 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1528 if (ret_fr) {
1529 return ret_fr;
1533 return 0;
1536 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1537 void *private)
1539 memory_region_notify_iommu(private, 0, *event);
1540 return 0;
1543 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1544 VTDContextEntry *ce,
1545 uint32_t pasid)
1547 VTDPASIDEntry pe;
1549 if (s->root_scalable) {
1550 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1551 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1554 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1557 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1558 VTDContextEntry *ce,
1559 hwaddr addr, hwaddr size)
1561 IntelIOMMUState *s = vtd_as->iommu_state;
1562 vtd_page_walk_info info = {
1563 .hook_fn = vtd_sync_shadow_page_hook,
1564 .private = (void *)&vtd_as->iommu,
1565 .notify_unmap = true,
1566 .aw = s->aw_bits,
1567 .as = vtd_as,
1568 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1571 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1574 static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1576 int ret;
1577 VTDContextEntry ce;
1578 IOMMUNotifier *n;
1580 /* If no MAP notifier registered, we simply invalidate all the cache */
1581 if (!vtd_as_has_map_notifier(vtd_as)) {
1582 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1583 memory_region_unmap_iommu_notifier_range(n);
1585 return 0;
1588 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1589 pci_bus_num(vtd_as->bus),
1590 vtd_as->devfn, &ce);
1591 if (ret) {
1592 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1594 * It's a valid scenario to have a context entry that is
1595 * not present. For example, when a device is removed
1596 * from an existing domain then the context entry will be
1597 * zeroed by the guest before it was put into another
1598 * domain. When this happens, instead of synchronizing
1599 * the shadow pages we should invalidate all existing
1600 * mappings and notify the backends.
1602 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1603 vtd_address_space_unmap(vtd_as, n);
1605 ret = 0;
1607 return ret;
1610 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1614 * Check if specific device is configured to bypass address
1615 * translation for DMA requests. In Scalable Mode, bypass
1616 * 1st-level translation or 2nd-level translation, it depends
1617 * on PGTT setting.
1619 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1620 uint32_t pasid)
1622 VTDPASIDEntry pe;
1623 int ret;
1625 if (s->root_scalable) {
1626 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1627 if (ret) {
1629 * This error is guest triggerable. We should assumt PT
1630 * not enabled for safety.
1632 return false;
1634 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1637 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1641 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1643 IntelIOMMUState *s;
1644 VTDContextEntry ce;
1646 assert(as);
1648 s = as->iommu_state;
1649 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1650 &ce)) {
1652 * Possibly failed to parse the context entry for some reason
1653 * (e.g., during init, or any guest configuration errors on
1654 * context entries). We should assume PT not enabled for
1655 * safety.
1657 return false;
1660 return vtd_dev_pt_enabled(s, &ce, as->pasid);
1663 /* Return whether the device is using IOMMU translation. */
1664 static bool vtd_switch_address_space(VTDAddressSpace *as)
1666 bool use_iommu, pt;
1667 /* Whether we need to take the BQL on our own */
1668 bool take_bql = !bql_locked();
1670 assert(as);
1672 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1673 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1675 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1676 VTD_PCI_SLOT(as->devfn),
1677 VTD_PCI_FUNC(as->devfn),
1678 use_iommu);
1681 * It's possible that we reach here without BQL, e.g., when called
1682 * from vtd_pt_enable_fast_path(). However the memory APIs need
1683 * it. We'd better make sure we have had it already, or, take it.
1685 if (take_bql) {
1686 bql_lock();
1689 /* Turn off first then on the other */
1690 if (use_iommu) {
1691 memory_region_set_enabled(&as->nodmar, false);
1692 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1694 * vt-d spec v3.4 3.14:
1696 * """
1697 * Requests-with-PASID with input address in range 0xFEEx_xxxx
1698 * are translated normally like any other request-with-PASID
1699 * through DMA-remapping hardware.
1700 * """
1702 * Need to disable ir for as with PASID.
1704 if (as->pasid != PCI_NO_PASID) {
1705 memory_region_set_enabled(&as->iommu_ir, false);
1706 } else {
1707 memory_region_set_enabled(&as->iommu_ir, true);
1709 } else {
1710 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1711 memory_region_set_enabled(&as->nodmar, true);
1715 * vtd-spec v3.4 3.14:
1717 * """
1718 * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1719 * translated normally like any other request-with-PASID through
1720 * DMA-remapping hardware. However, if such a request is processed
1721 * using pass-through translation, it will be blocked as described
1722 * in the paragraph below.
1724 * Software must not program paging-structure entries to remap any
1725 * address to the interrupt address range. Untranslated requests
1726 * and translation requests that result in an address in the
1727 * interrupt range will be blocked with condition code LGN.4 or
1728 * SGN.8.
1729 * """
1731 * We enable per as memory region (iommu_ir_fault) for catching
1732 * the translation for interrupt range through PASID + PT.
1734 if (pt && as->pasid != PCI_NO_PASID) {
1735 memory_region_set_enabled(&as->iommu_ir_fault, true);
1736 } else {
1737 memory_region_set_enabled(&as->iommu_ir_fault, false);
1740 if (take_bql) {
1741 bql_unlock();
1744 return use_iommu;
1747 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1749 VTDAddressSpace *vtd_as;
1750 GHashTableIter iter;
1752 g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1753 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1754 vtd_switch_address_space(vtd_as);
1758 static const bool vtd_qualified_faults[] = {
1759 [VTD_FR_RESERVED] = false,
1760 [VTD_FR_ROOT_ENTRY_P] = false,
1761 [VTD_FR_CONTEXT_ENTRY_P] = true,
1762 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1763 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1764 [VTD_FR_WRITE] = true,
1765 [VTD_FR_READ] = true,
1766 [VTD_FR_PAGING_ENTRY_INV] = true,
1767 [VTD_FR_ROOT_TABLE_INV] = false,
1768 [VTD_FR_CONTEXT_TABLE_INV] = false,
1769 [VTD_FR_INTERRUPT_ADDR] = true,
1770 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1771 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1772 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1773 [VTD_FR_PASID_TABLE_INV] = false,
1774 [VTD_FR_SM_INTERRUPT_ADDR] = true,
1775 [VTD_FR_MAX] = false,
1778 /* To see if a fault condition is "qualified", which is reported to software
1779 * only if the FPD field in the context-entry used to process the faulting
1780 * request is 0.
1782 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1784 return vtd_qualified_faults[fault];
1787 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1789 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1792 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
1793 gpointer user_data)
1795 struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1796 uint16_t target_sid = *(uint16_t *)user_data;
1797 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1798 return sid == target_sid;
1801 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1803 uint8_t bus_num = PCI_BUS_NUM(sid);
1804 VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
1806 if (vtd_as &&
1807 (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
1808 return vtd_as;
1811 vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
1812 s->vtd_as_cache[bus_num] = vtd_as;
1814 return vtd_as;
1817 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1819 VTDAddressSpace *vtd_as;
1820 bool success = false;
1822 vtd_as = vtd_get_as_by_sid(s, source_id);
1823 if (!vtd_as) {
1824 goto out;
1827 if (vtd_switch_address_space(vtd_as) == false) {
1828 /* We switched off IOMMU region successfully. */
1829 success = true;
1832 out:
1833 trace_vtd_pt_enable_fast_path(source_id, success);
1836 static void vtd_report_fault(IntelIOMMUState *s,
1837 int err, bool is_fpd_set,
1838 uint16_t source_id,
1839 hwaddr addr,
1840 bool is_write,
1841 bool is_pasid,
1842 uint32_t pasid)
1844 if (is_fpd_set && vtd_is_qualified_fault(err)) {
1845 trace_vtd_fault_disabled();
1846 } else {
1847 vtd_report_dmar_fault(s, source_id, addr, err, is_write,
1848 is_pasid, pasid);
1852 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1853 * translation.
1855 * Called from RCU critical section.
1857 * @bus_num: The bus number
1858 * @devfn: The devfn, which is the combined of device and function number
1859 * @is_write: The access is a write operation
1860 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1862 * Returns true if translation is successful, otherwise false.
1864 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1865 uint8_t devfn, hwaddr addr, bool is_write,
1866 IOMMUTLBEntry *entry)
1868 IntelIOMMUState *s = vtd_as->iommu_state;
1869 VTDContextEntry ce;
1870 uint8_t bus_num = pci_bus_num(bus);
1871 VTDContextCacheEntry *cc_entry;
1872 uint64_t slpte, page_mask;
1873 uint32_t level, pasid = vtd_as->pasid;
1874 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
1875 int ret_fr;
1876 bool is_fpd_set = false;
1877 bool reads = true;
1878 bool writes = true;
1879 uint8_t access_flags;
1880 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
1881 VTDIOTLBEntry *iotlb_entry;
1884 * We have standalone memory region for interrupt addresses, we
1885 * should never receive translation requests in this region.
1887 assert(!vtd_is_interrupt_addr(addr));
1889 vtd_iommu_lock(s);
1891 cc_entry = &vtd_as->context_cache_entry;
1893 /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
1894 if (!rid2pasid) {
1895 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1896 if (iotlb_entry) {
1897 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1898 iotlb_entry->domain_id);
1899 slpte = iotlb_entry->slpte;
1900 access_flags = iotlb_entry->access_flags;
1901 page_mask = iotlb_entry->mask;
1902 goto out;
1906 /* Try to fetch context-entry from cache first */
1907 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1908 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1909 cc_entry->context_entry.lo,
1910 cc_entry->context_cache_gen);
1911 ce = cc_entry->context_entry;
1912 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1913 if (!is_fpd_set && s->root_scalable) {
1914 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1915 if (ret_fr) {
1916 vtd_report_fault(s, -ret_fr, is_fpd_set,
1917 source_id, addr, is_write,
1918 false, 0);
1919 goto error;
1922 } else {
1923 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1924 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1925 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1926 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1928 if (ret_fr) {
1929 vtd_report_fault(s, -ret_fr, is_fpd_set,
1930 source_id, addr, is_write,
1931 false, 0);
1932 goto error;
1934 /* Update context-cache */
1935 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1936 cc_entry->context_cache_gen,
1937 s->context_cache_gen);
1938 cc_entry->context_entry = ce;
1939 cc_entry->context_cache_gen = s->context_cache_gen;
1942 if (rid2pasid) {
1943 pasid = VTD_CE_GET_RID2PASID(&ce);
1947 * We don't need to translate for pass-through context entries.
1948 * Also, let's ignore IOTLB caching as well for PT devices.
1950 if (vtd_dev_pt_enabled(s, &ce, pasid)) {
1951 entry->iova = addr & VTD_PAGE_MASK_4K;
1952 entry->translated_addr = entry->iova;
1953 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1954 entry->perm = IOMMU_RW;
1955 trace_vtd_translate_pt(source_id, entry->iova);
1958 * When this happens, it means firstly caching-mode is not
1959 * enabled, and this is the first passthrough translation for
1960 * the device. Let's enable the fast path for passthrough.
1962 * When passthrough is disabled again for the device, we can
1963 * capture it via the context entry invalidation, then the
1964 * IOMMU region can be swapped back.
1966 vtd_pt_enable_fast_path(s, source_id);
1967 vtd_iommu_unlock(s);
1968 return true;
1971 /* Try to fetch slpte form IOTLB for RID2PASID slow path */
1972 if (rid2pasid) {
1973 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1974 if (iotlb_entry) {
1975 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1976 iotlb_entry->domain_id);
1977 slpte = iotlb_entry->slpte;
1978 access_flags = iotlb_entry->access_flags;
1979 page_mask = iotlb_entry->mask;
1980 goto out;
1984 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1985 &reads, &writes, s->aw_bits, pasid);
1986 if (ret_fr) {
1987 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
1988 addr, is_write, pasid != PCI_NO_PASID, pasid);
1989 goto error;
1992 page_mask = vtd_slpt_level_page_mask(level);
1993 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1994 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
1995 addr, slpte, access_flags, level, pasid);
1996 out:
1997 vtd_iommu_unlock(s);
1998 entry->iova = addr & page_mask;
1999 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
2000 entry->addr_mask = ~page_mask;
2001 entry->perm = access_flags;
2002 return true;
2004 error:
2005 vtd_iommu_unlock(s);
2006 entry->iova = 0;
2007 entry->translated_addr = 0;
2008 entry->addr_mask = 0;
2009 entry->perm = IOMMU_NONE;
2010 return false;
2013 static void vtd_root_table_setup(IntelIOMMUState *s)
2015 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2016 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
2018 vtd_update_scalable_state(s);
2020 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
2023 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
2024 uint32_t index, uint32_t mask)
2026 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
2029 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
2031 uint64_t value = 0;
2032 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
2033 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
2034 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
2035 s->intr_eime = value & VTD_IRTA_EIME;
2037 /* Notify global invalidation */
2038 vtd_iec_notify_all(s, true, 0, 0);
2040 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2043 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2045 VTDAddressSpace *vtd_as;
2047 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2048 vtd_address_space_sync(vtd_as);
2052 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2054 trace_vtd_inv_desc_cc_global();
2055 /* Protects context cache */
2056 vtd_iommu_lock(s);
2057 s->context_cache_gen++;
2058 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2059 vtd_reset_context_cache_locked(s);
2061 vtd_iommu_unlock(s);
2062 vtd_address_space_refresh_all(s);
2064 * From VT-d spec 6.5.2.1, a global context entry invalidation
2065 * should be followed by a IOTLB global invalidation, so we should
2066 * be safe even without this. Hoewever, let's replay the region as
2067 * well to be safer, and go back here when we need finer tunes for
2068 * VT-d emulation codes.
2070 vtd_iommu_replay_all(s);
2073 /* Do a context-cache device-selective invalidation.
2074 * @func_mask: FM field after shifting
2076 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2077 uint16_t source_id,
2078 uint16_t func_mask)
2080 GHashTableIter as_it;
2081 uint16_t mask;
2082 VTDAddressSpace *vtd_as;
2083 uint8_t bus_n, devfn;
2085 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2087 switch (func_mask & 3) {
2088 case 0:
2089 mask = 0; /* No bits in the SID field masked */
2090 break;
2091 case 1:
2092 mask = 4; /* Mask bit 2 in the SID field */
2093 break;
2094 case 2:
2095 mask = 6; /* Mask bit 2:1 in the SID field */
2096 break;
2097 case 3:
2098 mask = 7; /* Mask bit 2:0 in the SID field */
2099 break;
2100 default:
2101 g_assert_not_reached();
2103 mask = ~mask;
2105 bus_n = VTD_SID_TO_BUS(source_id);
2106 devfn = VTD_SID_TO_DEVFN(source_id);
2108 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2109 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2110 if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2111 (vtd_as->devfn & mask) == (devfn & mask)) {
2112 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2113 VTD_PCI_FUNC(vtd_as->devfn));
2114 vtd_iommu_lock(s);
2115 vtd_as->context_cache_entry.context_cache_gen = 0;
2116 vtd_iommu_unlock(s);
2118 * Do switch address space when needed, in case if the
2119 * device passthrough bit is switched.
2121 vtd_switch_address_space(vtd_as);
2123 * So a device is moving out of (or moving into) a
2124 * domain, resync the shadow page table.
2125 * This won't bring bad even if we have no such
2126 * notifier registered - the IOMMU notification
2127 * framework will skip MAP notifications if that
2128 * happened.
2130 vtd_address_space_sync(vtd_as);
2135 /* Context-cache invalidation
2136 * Returns the Context Actual Invalidation Granularity.
2137 * @val: the content of the CCMD_REG
2139 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2141 uint64_t caig;
2142 uint64_t type = val & VTD_CCMD_CIRG_MASK;
2144 switch (type) {
2145 case VTD_CCMD_DOMAIN_INVL:
2146 /* Fall through */
2147 case VTD_CCMD_GLOBAL_INVL:
2148 caig = VTD_CCMD_GLOBAL_INVL_A;
2149 vtd_context_global_invalidate(s);
2150 break;
2152 case VTD_CCMD_DEVICE_INVL:
2153 caig = VTD_CCMD_DEVICE_INVL_A;
2154 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2155 break;
2157 default:
2158 error_report_once("%s: invalid context: 0x%" PRIx64,
2159 __func__, val);
2160 caig = 0;
2162 return caig;
2165 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2167 trace_vtd_inv_desc_iotlb_global();
2168 vtd_reset_iotlb(s);
2169 vtd_iommu_replay_all(s);
2172 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2174 VTDContextEntry ce;
2175 VTDAddressSpace *vtd_as;
2177 trace_vtd_inv_desc_iotlb_domain(domain_id);
2179 vtd_iommu_lock(s);
2180 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2181 &domain_id);
2182 vtd_iommu_unlock(s);
2184 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2185 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2186 vtd_as->devfn, &ce) &&
2187 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2188 vtd_address_space_sync(vtd_as);
2193 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2194 uint16_t domain_id, hwaddr addr,
2195 uint8_t am, uint32_t pasid)
2197 VTDAddressSpace *vtd_as;
2198 VTDContextEntry ce;
2199 int ret;
2200 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2202 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2203 if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
2204 continue;
2206 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2207 vtd_as->devfn, &ce);
2208 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2209 if (vtd_as_has_map_notifier(vtd_as)) {
2211 * As long as we have MAP notifications registered in
2212 * any of our IOMMU notifiers, we need to sync the
2213 * shadow page table.
2215 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2216 } else {
2218 * For UNMAP-only notifiers, we don't need to walk the
2219 * page tables. We just deliver the PSI down to
2220 * invalidate caches.
2222 IOMMUTLBEvent event = {
2223 .type = IOMMU_NOTIFIER_UNMAP,
2224 .entry = {
2225 .target_as = &address_space_memory,
2226 .iova = addr,
2227 .translated_addr = 0,
2228 .addr_mask = size - 1,
2229 .perm = IOMMU_NONE,
2232 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2238 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2239 hwaddr addr, uint8_t am)
2241 VTDIOTLBPageInvInfo info;
2243 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2245 assert(am <= VTD_MAMV);
2246 info.domain_id = domain_id;
2247 info.addr = addr;
2248 info.mask = ~((1 << am) - 1);
2249 vtd_iommu_lock(s);
2250 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2251 vtd_iommu_unlock(s);
2252 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2255 /* Flush IOTLB
2256 * Returns the IOTLB Actual Invalidation Granularity.
2257 * @val: the content of the IOTLB_REG
2259 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2261 uint64_t iaig;
2262 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2263 uint16_t domain_id;
2264 hwaddr addr;
2265 uint8_t am;
2267 switch (type) {
2268 case VTD_TLB_GLOBAL_FLUSH:
2269 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2270 vtd_iotlb_global_invalidate(s);
2271 break;
2273 case VTD_TLB_DSI_FLUSH:
2274 domain_id = VTD_TLB_DID(val);
2275 iaig = VTD_TLB_DSI_FLUSH_A;
2276 vtd_iotlb_domain_invalidate(s, domain_id);
2277 break;
2279 case VTD_TLB_PSI_FLUSH:
2280 domain_id = VTD_TLB_DID(val);
2281 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2282 am = VTD_IVA_AM(addr);
2283 addr = VTD_IVA_ADDR(addr);
2284 if (am > VTD_MAMV) {
2285 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2286 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2287 iaig = 0;
2288 break;
2290 iaig = VTD_TLB_PSI_FLUSH_A;
2291 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2292 break;
2294 default:
2295 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2296 __func__, val);
2297 iaig = 0;
2299 return iaig;
2302 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2304 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2306 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2307 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2310 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2312 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2314 trace_vtd_inv_qi_enable(en);
2316 if (en) {
2317 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2318 /* 2^(x+8) entries */
2319 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2320 s->qi_enabled = true;
2321 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2322 /* Ok - report back to driver */
2323 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2325 if (s->iq_tail != 0) {
2327 * This is a spec violation but Windows guests are known to set up
2328 * Queued Invalidation this way so we allow the write and process
2329 * Invalidation Descriptors right away.
2331 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2332 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2333 vtd_fetch_inv_desc(s);
2336 } else {
2337 if (vtd_queued_inv_disable_check(s)) {
2338 /* disable Queued Invalidation */
2339 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2340 s->iq_head = 0;
2341 s->qi_enabled = false;
2342 /* Ok - report back to driver */
2343 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2344 } else {
2345 error_report_once("%s: detected improper state when disable QI "
2346 "(head=0x%x, tail=0x%x, last_type=%d)",
2347 __func__,
2348 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2353 /* Set Root Table Pointer */
2354 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2356 vtd_root_table_setup(s);
2357 /* Ok - report back to driver */
2358 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2359 vtd_reset_caches(s);
2360 vtd_address_space_refresh_all(s);
2363 /* Set Interrupt Remap Table Pointer */
2364 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2366 vtd_interrupt_remap_table_setup(s);
2367 /* Ok - report back to driver */
2368 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2371 /* Handle Translation Enable/Disable */
2372 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2374 if (s->dmar_enabled == en) {
2375 return;
2378 trace_vtd_dmar_enable(en);
2380 if (en) {
2381 s->dmar_enabled = true;
2382 /* Ok - report back to driver */
2383 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2384 } else {
2385 s->dmar_enabled = false;
2387 /* Clear the index of Fault Recording Register */
2388 s->next_frcd_reg = 0;
2389 /* Ok - report back to driver */
2390 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2393 vtd_reset_caches(s);
2394 vtd_address_space_refresh_all(s);
2397 /* Handle Interrupt Remap Enable/Disable */
2398 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2400 trace_vtd_ir_enable(en);
2402 if (en) {
2403 s->intr_enabled = true;
2404 /* Ok - report back to driver */
2405 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2406 } else {
2407 s->intr_enabled = false;
2408 /* Ok - report back to driver */
2409 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2413 /* Handle write to Global Command Register */
2414 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2416 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2417 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2418 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2419 uint32_t changed = status ^ val;
2421 trace_vtd_reg_write_gcmd(status, val);
2422 if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2423 /* Translation enable/disable */
2424 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2426 if (val & VTD_GCMD_SRTP) {
2427 /* Set/update the root-table pointer */
2428 vtd_handle_gcmd_srtp(s);
2430 if (changed & VTD_GCMD_QIE) {
2431 /* Queued Invalidation Enable */
2432 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2434 if (val & VTD_GCMD_SIRTP) {
2435 /* Set/update the interrupt remapping root-table pointer */
2436 vtd_handle_gcmd_sirtp(s);
2438 if ((changed & VTD_GCMD_IRE) &&
2439 x86_iommu_ir_supported(x86_iommu)) {
2440 /* Interrupt remap enable/disable */
2441 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2445 /* Handle write to Context Command Register */
2446 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2448 uint64_t ret;
2449 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2451 /* Context-cache invalidation request */
2452 if (val & VTD_CCMD_ICC) {
2453 if (s->qi_enabled) {
2454 error_report_once("Queued Invalidation enabled, "
2455 "should not use register-based invalidation");
2456 return;
2458 ret = vtd_context_cache_invalidate(s, val);
2459 /* Invalidation completed. Change something to show */
2460 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2461 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2462 ret);
2466 /* Handle write to IOTLB Invalidation Register */
2467 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2469 uint64_t ret;
2470 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2472 /* IOTLB invalidation request */
2473 if (val & VTD_TLB_IVT) {
2474 if (s->qi_enabled) {
2475 error_report_once("Queued Invalidation enabled, "
2476 "should not use register-based invalidation");
2477 return;
2479 ret = vtd_iotlb_flush(s, val);
2480 /* Invalidation completed. Change something to show */
2481 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2482 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2483 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2487 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2488 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2489 VTDInvDesc *inv_desc)
2491 dma_addr_t base_addr = s->iq;
2492 uint32_t offset = s->iq_head;
2493 uint32_t dw = s->iq_dw ? 32 : 16;
2494 dma_addr_t addr = base_addr + offset * dw;
2496 if (dma_memory_read(&address_space_memory, addr,
2497 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2498 error_report_once("Read INV DESC failed.");
2499 return false;
2501 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2502 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2503 if (dw == 32) {
2504 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2505 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2507 return true;
2510 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2512 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2513 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2514 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2515 " (reserved nonzero)", __func__, inv_desc->hi,
2516 inv_desc->lo);
2517 return false;
2519 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2520 /* Status Write */
2521 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2522 VTD_INV_DESC_WAIT_DATA_SHIFT);
2524 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2526 /* FIXME: need to be masked with HAW? */
2527 dma_addr_t status_addr = inv_desc->hi;
2528 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2529 status_data = cpu_to_le32(status_data);
2530 if (dma_memory_write(&address_space_memory, status_addr,
2531 &status_data, sizeof(status_data),
2532 MEMTXATTRS_UNSPECIFIED)) {
2533 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2534 return false;
2536 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2537 /* Interrupt flag */
2538 vtd_generate_completion_event(s);
2539 } else {
2540 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2541 " (unknown type)", __func__, inv_desc->hi,
2542 inv_desc->lo);
2543 return false;
2545 return true;
2548 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2549 VTDInvDesc *inv_desc)
2551 uint16_t sid, fmask;
2553 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2554 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2555 " (reserved nonzero)", __func__, inv_desc->hi,
2556 inv_desc->lo);
2557 return false;
2559 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2560 case VTD_INV_DESC_CC_DOMAIN:
2561 trace_vtd_inv_desc_cc_domain(
2562 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2563 /* Fall through */
2564 case VTD_INV_DESC_CC_GLOBAL:
2565 vtd_context_global_invalidate(s);
2566 break;
2568 case VTD_INV_DESC_CC_DEVICE:
2569 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2570 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2571 vtd_context_device_invalidate(s, sid, fmask);
2572 break;
2574 default:
2575 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2576 " (invalid type)", __func__, inv_desc->hi,
2577 inv_desc->lo);
2578 return false;
2580 return true;
2583 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2585 uint16_t domain_id;
2586 uint8_t am;
2587 hwaddr addr;
2589 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2590 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2591 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2592 ", lo=0x%"PRIx64" (reserved bits unzero)",
2593 __func__, inv_desc->hi, inv_desc->lo);
2594 return false;
2597 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2598 case VTD_INV_DESC_IOTLB_GLOBAL:
2599 vtd_iotlb_global_invalidate(s);
2600 break;
2602 case VTD_INV_DESC_IOTLB_DOMAIN:
2603 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2604 vtd_iotlb_domain_invalidate(s, domain_id);
2605 break;
2607 case VTD_INV_DESC_IOTLB_PAGE:
2608 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2609 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2610 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2611 if (am > VTD_MAMV) {
2612 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2613 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2614 __func__, inv_desc->hi, inv_desc->lo,
2615 am, (unsigned)VTD_MAMV);
2616 return false;
2618 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2619 break;
2621 default:
2622 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2623 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2624 __func__, inv_desc->hi, inv_desc->lo,
2625 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2626 return false;
2628 return true;
2631 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2632 VTDInvDesc *inv_desc)
2634 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2635 inv_desc->iec.index,
2636 inv_desc->iec.index_mask);
2638 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2639 inv_desc->iec.index,
2640 inv_desc->iec.index_mask);
2641 return true;
2644 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2645 VTDInvDesc *inv_desc)
2647 VTDAddressSpace *vtd_dev_as;
2648 IOMMUTLBEvent event;
2649 hwaddr addr;
2650 uint64_t sz;
2651 uint16_t sid;
2652 bool size;
2654 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2655 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2656 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2658 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2659 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2660 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2661 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2662 inv_desc->hi, inv_desc->lo);
2663 return false;
2667 * Using sid is OK since the guest should have finished the
2668 * initialization of both the bus and device.
2670 vtd_dev_as = vtd_get_as_by_sid(s, sid);
2671 if (!vtd_dev_as) {
2672 goto done;
2675 /* According to ATS spec table 2.4:
2676 * S = 0, bits 15:12 = xxxx range size: 4K
2677 * S = 1, bits 15:12 = xxx0 range size: 8K
2678 * S = 1, bits 15:12 = xx01 range size: 16K
2679 * S = 1, bits 15:12 = x011 range size: 32K
2680 * S = 1, bits 15:12 = 0111 range size: 64K
2681 * ...
2683 if (size) {
2684 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2685 addr &= ~(sz - 1);
2686 } else {
2687 sz = VTD_PAGE_SIZE;
2690 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2691 event.entry.target_as = &vtd_dev_as->as;
2692 event.entry.addr_mask = sz - 1;
2693 event.entry.iova = addr;
2694 event.entry.perm = IOMMU_NONE;
2695 event.entry.translated_addr = 0;
2696 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2698 done:
2699 return true;
2702 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2704 VTDInvDesc inv_desc;
2705 uint8_t desc_type;
2707 trace_vtd_inv_qi_head(s->iq_head);
2708 if (!vtd_get_inv_desc(s, &inv_desc)) {
2709 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2710 return false;
2713 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2714 /* FIXME: should update at first or at last? */
2715 s->iq_last_desc_type = desc_type;
2717 switch (desc_type) {
2718 case VTD_INV_DESC_CC:
2719 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2720 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2721 return false;
2723 break;
2725 case VTD_INV_DESC_IOTLB:
2726 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2727 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2728 return false;
2730 break;
2733 * TODO: the entity of below two cases will be implemented in future series.
2734 * To make guest (which integrates scalable mode support patch set in
2735 * iommu driver) work, just return true is enough so far.
2737 case VTD_INV_DESC_PC:
2738 break;
2740 case VTD_INV_DESC_PIOTLB:
2741 break;
2743 case VTD_INV_DESC_WAIT:
2744 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2745 if (!vtd_process_wait_desc(s, &inv_desc)) {
2746 return false;
2748 break;
2750 case VTD_INV_DESC_IEC:
2751 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2752 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2753 return false;
2755 break;
2757 case VTD_INV_DESC_DEVICE:
2758 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2759 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2760 return false;
2762 break;
2764 default:
2765 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2766 " (unknown type)", __func__, inv_desc.hi,
2767 inv_desc.lo);
2768 return false;
2770 s->iq_head++;
2771 if (s->iq_head == s->iq_size) {
2772 s->iq_head = 0;
2774 return true;
2777 /* Try to fetch and process more Invalidation Descriptors */
2778 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2780 int qi_shift;
2782 /* Refer to 10.4.23 of VT-d spec 3.0 */
2783 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2785 trace_vtd_inv_qi_fetch();
2787 if (s->iq_tail >= s->iq_size) {
2788 /* Detects an invalid Tail pointer */
2789 error_report_once("%s: detected invalid QI tail "
2790 "(tail=0x%x, size=0x%x)",
2791 __func__, s->iq_tail, s->iq_size);
2792 vtd_handle_inv_queue_error(s);
2793 return;
2795 while (s->iq_head != s->iq_tail) {
2796 if (!vtd_process_inv_desc(s)) {
2797 /* Invalidation Queue Errors */
2798 vtd_handle_inv_queue_error(s);
2799 break;
2801 /* Must update the IQH_REG in time */
2802 vtd_set_quad_raw(s, DMAR_IQH_REG,
2803 (((uint64_t)(s->iq_head)) << qi_shift) &
2804 VTD_IQH_QH_MASK);
2808 /* Handle write to Invalidation Queue Tail Register */
2809 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2811 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2813 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2814 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2815 __func__, val);
2816 return;
2818 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2819 trace_vtd_inv_qi_tail(s->iq_tail);
2821 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2822 /* Process Invalidation Queue here */
2823 vtd_fetch_inv_desc(s);
2827 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2829 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2830 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2831 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2833 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2834 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2835 trace_vtd_fsts_clear_ip();
2837 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2838 * Descriptors if there are any when Queued Invalidation is enabled?
2842 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2844 uint32_t fectl_reg;
2845 /* FIXME: when software clears the IM field, check the IP field. But do we
2846 * need to compare the old value and the new value to conclude that
2847 * software clears the IM field? Or just check if the IM field is zero?
2849 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2851 trace_vtd_reg_write_fectl(fectl_reg);
2853 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2854 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2855 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2859 static void vtd_handle_ics_write(IntelIOMMUState *s)
2861 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2862 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2864 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2865 trace_vtd_reg_ics_clear_ip();
2866 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2870 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2872 uint32_t iectl_reg;
2873 /* FIXME: when software clears the IM field, check the IP field. But do we
2874 * need to compare the old value and the new value to conclude that
2875 * software clears the IM field? Or just check if the IM field is zero?
2877 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2879 trace_vtd_reg_write_iectl(iectl_reg);
2881 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2882 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2883 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2887 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2889 IntelIOMMUState *s = opaque;
2890 uint64_t val;
2892 trace_vtd_reg_read(addr, size);
2894 if (addr + size > DMAR_REG_SIZE) {
2895 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2896 " size=0x%x", __func__, addr, size);
2897 return (uint64_t)-1;
2900 switch (addr) {
2901 /* Root Table Address Register, 64-bit */
2902 case DMAR_RTADDR_REG:
2903 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2904 if (size == 4) {
2905 val = val & ((1ULL << 32) - 1);
2907 break;
2909 case DMAR_RTADDR_REG_HI:
2910 assert(size == 4);
2911 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2912 break;
2914 /* Invalidation Queue Address Register, 64-bit */
2915 case DMAR_IQA_REG:
2916 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2917 if (size == 4) {
2918 val = val & ((1ULL << 32) - 1);
2920 break;
2922 case DMAR_IQA_REG_HI:
2923 assert(size == 4);
2924 val = s->iq >> 32;
2925 break;
2927 default:
2928 if (size == 4) {
2929 val = vtd_get_long(s, addr);
2930 } else {
2931 val = vtd_get_quad(s, addr);
2935 return val;
2938 static void vtd_mem_write(void *opaque, hwaddr addr,
2939 uint64_t val, unsigned size)
2941 IntelIOMMUState *s = opaque;
2943 trace_vtd_reg_write(addr, size, val);
2945 if (addr + size > DMAR_REG_SIZE) {
2946 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2947 " size=0x%x", __func__, addr, size);
2948 return;
2951 switch (addr) {
2952 /* Global Command Register, 32-bit */
2953 case DMAR_GCMD_REG:
2954 vtd_set_long(s, addr, val);
2955 vtd_handle_gcmd_write(s);
2956 break;
2958 /* Context Command Register, 64-bit */
2959 case DMAR_CCMD_REG:
2960 if (size == 4) {
2961 vtd_set_long(s, addr, val);
2962 } else {
2963 vtd_set_quad(s, addr, val);
2964 vtd_handle_ccmd_write(s);
2966 break;
2968 case DMAR_CCMD_REG_HI:
2969 assert(size == 4);
2970 vtd_set_long(s, addr, val);
2971 vtd_handle_ccmd_write(s);
2972 break;
2974 /* IOTLB Invalidation Register, 64-bit */
2975 case DMAR_IOTLB_REG:
2976 if (size == 4) {
2977 vtd_set_long(s, addr, val);
2978 } else {
2979 vtd_set_quad(s, addr, val);
2980 vtd_handle_iotlb_write(s);
2982 break;
2984 case DMAR_IOTLB_REG_HI:
2985 assert(size == 4);
2986 vtd_set_long(s, addr, val);
2987 vtd_handle_iotlb_write(s);
2988 break;
2990 /* Invalidate Address Register, 64-bit */
2991 case DMAR_IVA_REG:
2992 if (size == 4) {
2993 vtd_set_long(s, addr, val);
2994 } else {
2995 vtd_set_quad(s, addr, val);
2997 break;
2999 case DMAR_IVA_REG_HI:
3000 assert(size == 4);
3001 vtd_set_long(s, addr, val);
3002 break;
3004 /* Fault Status Register, 32-bit */
3005 case DMAR_FSTS_REG:
3006 assert(size == 4);
3007 vtd_set_long(s, addr, val);
3008 vtd_handle_fsts_write(s);
3009 break;
3011 /* Fault Event Control Register, 32-bit */
3012 case DMAR_FECTL_REG:
3013 assert(size == 4);
3014 vtd_set_long(s, addr, val);
3015 vtd_handle_fectl_write(s);
3016 break;
3018 /* Fault Event Data Register, 32-bit */
3019 case DMAR_FEDATA_REG:
3020 assert(size == 4);
3021 vtd_set_long(s, addr, val);
3022 break;
3024 /* Fault Event Address Register, 32-bit */
3025 case DMAR_FEADDR_REG:
3026 if (size == 4) {
3027 vtd_set_long(s, addr, val);
3028 } else {
3030 * While the register is 32-bit only, some guests (Xen...) write to
3031 * it with 64-bit.
3033 vtd_set_quad(s, addr, val);
3035 break;
3037 /* Fault Event Upper Address Register, 32-bit */
3038 case DMAR_FEUADDR_REG:
3039 assert(size == 4);
3040 vtd_set_long(s, addr, val);
3041 break;
3043 /* Protected Memory Enable Register, 32-bit */
3044 case DMAR_PMEN_REG:
3045 assert(size == 4);
3046 vtd_set_long(s, addr, val);
3047 break;
3049 /* Root Table Address Register, 64-bit */
3050 case DMAR_RTADDR_REG:
3051 if (size == 4) {
3052 vtd_set_long(s, addr, val);
3053 } else {
3054 vtd_set_quad(s, addr, val);
3056 break;
3058 case DMAR_RTADDR_REG_HI:
3059 assert(size == 4);
3060 vtd_set_long(s, addr, val);
3061 break;
3063 /* Invalidation Queue Tail Register, 64-bit */
3064 case DMAR_IQT_REG:
3065 if (size == 4) {
3066 vtd_set_long(s, addr, val);
3067 } else {
3068 vtd_set_quad(s, addr, val);
3070 vtd_handle_iqt_write(s);
3071 break;
3073 case DMAR_IQT_REG_HI:
3074 assert(size == 4);
3075 vtd_set_long(s, addr, val);
3076 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3077 break;
3079 /* Invalidation Queue Address Register, 64-bit */
3080 case DMAR_IQA_REG:
3081 if (size == 4) {
3082 vtd_set_long(s, addr, val);
3083 } else {
3084 vtd_set_quad(s, addr, val);
3086 vtd_update_iq_dw(s);
3087 break;
3089 case DMAR_IQA_REG_HI:
3090 assert(size == 4);
3091 vtd_set_long(s, addr, val);
3092 break;
3094 /* Invalidation Completion Status Register, 32-bit */
3095 case DMAR_ICS_REG:
3096 assert(size == 4);
3097 vtd_set_long(s, addr, val);
3098 vtd_handle_ics_write(s);
3099 break;
3101 /* Invalidation Event Control Register, 32-bit */
3102 case DMAR_IECTL_REG:
3103 assert(size == 4);
3104 vtd_set_long(s, addr, val);
3105 vtd_handle_iectl_write(s);
3106 break;
3108 /* Invalidation Event Data Register, 32-bit */
3109 case DMAR_IEDATA_REG:
3110 assert(size == 4);
3111 vtd_set_long(s, addr, val);
3112 break;
3114 /* Invalidation Event Address Register, 32-bit */
3115 case DMAR_IEADDR_REG:
3116 assert(size == 4);
3117 vtd_set_long(s, addr, val);
3118 break;
3120 /* Invalidation Event Upper Address Register, 32-bit */
3121 case DMAR_IEUADDR_REG:
3122 assert(size == 4);
3123 vtd_set_long(s, addr, val);
3124 break;
3126 /* Fault Recording Registers, 128-bit */
3127 case DMAR_FRCD_REG_0_0:
3128 if (size == 4) {
3129 vtd_set_long(s, addr, val);
3130 } else {
3131 vtd_set_quad(s, addr, val);
3133 break;
3135 case DMAR_FRCD_REG_0_1:
3136 assert(size == 4);
3137 vtd_set_long(s, addr, val);
3138 break;
3140 case DMAR_FRCD_REG_0_2:
3141 if (size == 4) {
3142 vtd_set_long(s, addr, val);
3143 } else {
3144 vtd_set_quad(s, addr, val);
3145 /* May clear bit 127 (Fault), update PPF */
3146 vtd_update_fsts_ppf(s);
3148 break;
3150 case DMAR_FRCD_REG_0_3:
3151 assert(size == 4);
3152 vtd_set_long(s, addr, val);
3153 /* May clear bit 127 (Fault), update PPF */
3154 vtd_update_fsts_ppf(s);
3155 break;
3157 case DMAR_IRTA_REG:
3158 if (size == 4) {
3159 vtd_set_long(s, addr, val);
3160 } else {
3161 vtd_set_quad(s, addr, val);
3163 break;
3165 case DMAR_IRTA_REG_HI:
3166 assert(size == 4);
3167 vtd_set_long(s, addr, val);
3168 break;
3170 default:
3171 if (size == 4) {
3172 vtd_set_long(s, addr, val);
3173 } else {
3174 vtd_set_quad(s, addr, val);
3179 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3180 IOMMUAccessFlags flag, int iommu_idx)
3182 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3183 IntelIOMMUState *s = vtd_as->iommu_state;
3184 IOMMUTLBEntry iotlb = {
3185 /* We'll fill in the rest later. */
3186 .target_as = &address_space_memory,
3188 bool success;
3190 if (likely(s->dmar_enabled)) {
3191 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3192 addr, flag & IOMMU_WO, &iotlb);
3193 } else {
3194 /* DMAR disabled, passthrough, use 4k-page*/
3195 iotlb.iova = addr & VTD_PAGE_MASK_4K;
3196 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3197 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3198 iotlb.perm = IOMMU_RW;
3199 success = true;
3202 if (likely(success)) {
3203 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3204 VTD_PCI_SLOT(vtd_as->devfn),
3205 VTD_PCI_FUNC(vtd_as->devfn),
3206 iotlb.iova, iotlb.translated_addr,
3207 iotlb.addr_mask);
3208 } else {
3209 error_report_once("%s: detected translation failure "
3210 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3211 __func__, pci_bus_num(vtd_as->bus),
3212 VTD_PCI_SLOT(vtd_as->devfn),
3213 VTD_PCI_FUNC(vtd_as->devfn),
3214 addr);
3217 return iotlb;
3220 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3221 IOMMUNotifierFlag old,
3222 IOMMUNotifierFlag new,
3223 Error **errp)
3225 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3226 IntelIOMMUState *s = vtd_as->iommu_state;
3227 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3229 /* TODO: add support for VFIO and vhost users */
3230 if (s->snoop_control) {
3231 error_setg_errno(errp, ENOTSUP,
3232 "Snoop Control with vhost or VFIO is not supported");
3233 return -ENOTSUP;
3235 if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3236 error_setg_errno(errp, ENOTSUP,
3237 "device %02x.%02x.%x requires caching mode",
3238 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3239 PCI_FUNC(vtd_as->devfn));
3240 return -ENOTSUP;
3242 if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3243 error_setg_errno(errp, ENOTSUP,
3244 "device %02x.%02x.%x requires device IOTLB mode",
3245 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3246 PCI_FUNC(vtd_as->devfn));
3247 return -ENOTSUP;
3250 /* Update per-address-space notifier flags */
3251 vtd_as->notifier_flags = new;
3253 if (old == IOMMU_NOTIFIER_NONE) {
3254 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3255 } else if (new == IOMMU_NOTIFIER_NONE) {
3256 QLIST_REMOVE(vtd_as, next);
3258 return 0;
3261 static int vtd_post_load(void *opaque, int version_id)
3263 IntelIOMMUState *iommu = opaque;
3266 * We don't need to migrate the root_scalable because we can
3267 * simply do the calculation after the loading is complete. We
3268 * can actually do similar things with root, dmar_enabled, etc.
3269 * however since we've had them already so we'd better keep them
3270 * for compatibility of migration.
3272 vtd_update_scalable_state(iommu);
3274 vtd_update_iq_dw(iommu);
3277 * Memory regions are dynamically turned on/off depending on
3278 * context entry configurations from the guest. After migration,
3279 * we need to make sure the memory regions are still correct.
3281 vtd_switch_address_space_all(iommu);
3283 return 0;
3286 static const VMStateDescription vtd_vmstate = {
3287 .name = "iommu-intel",
3288 .version_id = 1,
3289 .minimum_version_id = 1,
3290 .priority = MIG_PRI_IOMMU,
3291 .post_load = vtd_post_load,
3292 .fields = (const VMStateField[]) {
3293 VMSTATE_UINT64(root, IntelIOMMUState),
3294 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3295 VMSTATE_UINT64(iq, IntelIOMMUState),
3296 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3297 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3298 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3299 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3300 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3301 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3302 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3303 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3304 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3305 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3306 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3307 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3308 VMSTATE_END_OF_LIST()
3312 static const MemoryRegionOps vtd_mem_ops = {
3313 .read = vtd_mem_read,
3314 .write = vtd_mem_write,
3315 .endianness = DEVICE_LITTLE_ENDIAN,
3316 .impl = {
3317 .min_access_size = 4,
3318 .max_access_size = 8,
3320 .valid = {
3321 .min_access_size = 4,
3322 .max_access_size = 8,
3326 static Property vtd_properties[] = {
3327 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3328 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3329 ON_OFF_AUTO_AUTO),
3330 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3331 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3332 VTD_HOST_ADDRESS_WIDTH),
3333 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3334 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3335 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3336 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3337 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3338 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3339 DEFINE_PROP_END_OF_LIST(),
3342 /* Read IRTE entry with specific index */
3343 static bool vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3344 VTD_IR_TableEntry *entry, uint16_t sid,
3345 bool do_fault)
3347 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3348 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3349 dma_addr_t addr = 0x00;
3350 uint16_t mask, source_id;
3351 uint8_t bus, bus_max, bus_min;
3353 if (index >= iommu->intr_size) {
3354 error_report_once("%s: index too large: ind=0x%x",
3355 __func__, index);
3356 if (do_fault) {
3357 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_INDEX_OVER, index);
3359 return false;
3362 addr = iommu->intr_root + index * sizeof(*entry);
3363 if (dma_memory_read(&address_space_memory, addr,
3364 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3365 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3366 __func__, index, addr);
3367 if (do_fault) {
3368 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ROOT_INVAL, index);
3370 return false;
3373 entry->data[0] = le64_to_cpu(entry->data[0]);
3374 entry->data[1] = le64_to_cpu(entry->data[1]);
3376 trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]);
3379 * The remaining potential fault conditions are "qualified" by the
3380 * Fault Processing Disable bit in the IRTE. Even "not present".
3381 * So just clear the do_fault flag if PFD is set, which will
3382 * prevent faults being raised.
3384 if (entry->irte.fault_disable) {
3385 do_fault = false;
3388 if (!entry->irte.present) {
3389 error_report_once("%s: detected non-present IRTE "
3390 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3391 __func__, index, entry->data[1], entry->data[0]);
3392 if (do_fault) {
3393 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ENTRY_P, index);
3395 return false;
3398 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3399 entry->irte.__reserved_2) {
3400 error_report_once("%s: detected non-zero reserved IRTE "
3401 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3402 __func__, index, entry->data[1], entry->data[0]);
3403 if (do_fault) {
3404 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_IRTE_RSVD, index);
3406 return false;
3409 if (sid != X86_IOMMU_SID_INVALID) {
3410 /* Validate IRTE SID */
3411 source_id = entry->irte.source_id;
3412 switch (entry->irte.sid_vtype) {
3413 case VTD_SVT_NONE:
3414 break;
3416 case VTD_SVT_ALL:
3417 mask = vtd_svt_mask[entry->irte.sid_q];
3418 if ((source_id & mask) != (sid & mask)) {
3419 error_report_once("%s: invalid IRTE SID "
3420 "(index=%u, sid=%u, source_id=%u)",
3421 __func__, index, sid, source_id);
3422 if (do_fault) {
3423 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3425 return false;
3427 break;
3429 case VTD_SVT_BUS:
3430 bus_max = source_id >> 8;
3431 bus_min = source_id & 0xff;
3432 bus = sid >> 8;
3433 if (bus > bus_max || bus < bus_min) {
3434 error_report_once("%s: invalid SVT_BUS "
3435 "(index=%u, bus=%u, min=%u, max=%u)",
3436 __func__, index, bus, bus_min, bus_max);
3437 if (do_fault) {
3438 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3440 return false;
3442 break;
3444 default:
3445 error_report_once("%s: detected invalid IRTE SVT "
3446 "(index=%u, type=%d)", __func__,
3447 index, entry->irte.sid_vtype);
3448 /* Take this as verification failure. */
3449 if (do_fault) {
3450 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3452 return false;
3456 return true;
3459 /* Fetch IRQ information of specific IR index */
3460 static bool vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3461 X86IOMMUIrq *irq, uint16_t sid, bool do_fault)
3463 VTD_IR_TableEntry irte = {};
3465 if (!vtd_irte_get(iommu, index, &irte, sid, do_fault)) {
3466 return false;
3469 irq->trigger_mode = irte.irte.trigger_mode;
3470 irq->vector = irte.irte.vector;
3471 irq->delivery_mode = irte.irte.delivery_mode;
3472 irq->dest = irte.irte.dest_id;
3473 if (!iommu->intr_eime) {
3474 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3475 #define VTD_IR_APIC_DEST_SHIFT (8)
3476 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3477 VTD_IR_APIC_DEST_SHIFT;
3479 irq->dest_mode = irte.irte.dest_mode;
3480 irq->redir_hint = irte.irte.redir_hint;
3482 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3483 irq->delivery_mode, irq->dest, irq->dest_mode);
3485 return true;
3488 /* Interrupt remapping for MSI/MSI-X entry */
3489 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3490 MSIMessage *origin,
3491 MSIMessage *translated,
3492 uint16_t sid, bool do_fault)
3494 VTD_IR_MSIAddress addr;
3495 uint16_t index;
3496 X86IOMMUIrq irq = {};
3498 assert(origin && translated);
3500 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3502 if (!iommu || !iommu->intr_enabled) {
3503 memcpy(translated, origin, sizeof(*origin));
3504 goto out;
3507 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3508 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3509 "address=0x%" PRIx64, __func__, origin->address);
3510 if (do_fault) {
3511 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3513 return -EINVAL;
3516 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3517 if (addr.addr.__head != 0xfee) {
3518 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3519 __func__, addr.data);
3520 if (do_fault) {
3521 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3523 return -EINVAL;
3526 /* This is compatible mode. */
3527 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3528 memcpy(translated, origin, sizeof(*origin));
3529 goto out;
3532 index = addr.addr.index_h << 15 | addr.addr.index_l;
3534 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3535 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3537 if (addr.addr.sub_valid) {
3538 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3539 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3542 if (!vtd_remap_irq_get(iommu, index, &irq, sid, do_fault)) {
3543 return -EINVAL;
3546 if (addr.addr.sub_valid) {
3547 trace_vtd_ir_remap_type("MSI");
3548 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3549 error_report_once("%s: invalid IR MSI "
3550 "(sid=%u, address=0x%" PRIx64
3551 ", data=0x%" PRIx32 ")",
3552 __func__, sid, origin->address, origin->data);
3553 if (do_fault) {
3554 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3556 return -EINVAL;
3558 } else {
3559 uint8_t vector = origin->data & 0xff;
3560 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3562 trace_vtd_ir_remap_type("IOAPIC");
3563 /* IOAPIC entry vector should be aligned with IRTE vector
3564 * (see vt-d spec 5.1.5.1). */
3565 if (vector != irq.vector) {
3566 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3569 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3570 * (see vt-d spec 5.1.5.1). */
3571 if (trigger_mode != irq.trigger_mode) {
3572 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3573 irq.trigger_mode);
3578 * We'd better keep the last two bits, assuming that guest OS
3579 * might modify it. Keep it does not hurt after all.
3581 irq.msi_addr_last_bits = addr.addr.__not_care;
3583 /* Translate X86IOMMUIrq to MSI message */
3584 x86_iommu_irq_to_msi_message(&irq, translated);
3586 out:
3587 trace_vtd_ir_remap_msi(origin->address, origin->data,
3588 translated->address, translated->data);
3589 return 0;
3592 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3593 MSIMessage *dst, uint16_t sid)
3595 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3596 src, dst, sid, false);
3599 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3600 uint64_t *data, unsigned size,
3601 MemTxAttrs attrs)
3603 return MEMTX_OK;
3606 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3607 uint64_t value, unsigned size,
3608 MemTxAttrs attrs)
3610 int ret = 0;
3611 MSIMessage from = {}, to = {};
3612 uint16_t sid = X86_IOMMU_SID_INVALID;
3614 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3615 from.data = (uint32_t) value;
3617 if (!attrs.unspecified) {
3618 /* We have explicit Source ID */
3619 sid = attrs.requester_id;
3622 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid, true);
3623 if (ret) {
3624 /* Drop this interrupt */
3625 return MEMTX_ERROR;
3628 apic_get_class(NULL)->send_msi(&to);
3630 return MEMTX_OK;
3633 static const MemoryRegionOps vtd_mem_ir_ops = {
3634 .read_with_attrs = vtd_mem_ir_read,
3635 .write_with_attrs = vtd_mem_ir_write,
3636 .endianness = DEVICE_LITTLE_ENDIAN,
3637 .impl = {
3638 .min_access_size = 4,
3639 .max_access_size = 4,
3641 .valid = {
3642 .min_access_size = 4,
3643 .max_access_size = 4,
3647 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
3648 hwaddr addr, bool is_write)
3650 IntelIOMMUState *s = vtd_as->iommu_state;
3651 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3652 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
3653 bool is_fpd_set = false;
3654 VTDContextEntry ce;
3656 assert(vtd_as->pasid != PCI_NO_PASID);
3658 /* Try out best to fetch FPD, we can't do anything more */
3659 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3660 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
3661 if (!is_fpd_set && s->root_scalable) {
3662 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
3666 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
3667 is_fpd_set, sid, addr, is_write,
3668 true, vtd_as->pasid);
3671 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
3672 uint64_t *data, unsigned size,
3673 MemTxAttrs attrs)
3675 vtd_report_ir_illegal_access(opaque, addr, false);
3677 return MEMTX_ERROR;
3680 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
3681 uint64_t value, unsigned size,
3682 MemTxAttrs attrs)
3684 vtd_report_ir_illegal_access(opaque, addr, true);
3686 return MEMTX_ERROR;
3689 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
3690 .read_with_attrs = vtd_mem_ir_fault_read,
3691 .write_with_attrs = vtd_mem_ir_fault_write,
3692 .endianness = DEVICE_LITTLE_ENDIAN,
3693 .impl = {
3694 .min_access_size = 1,
3695 .max_access_size = 8,
3697 .valid = {
3698 .min_access_size = 1,
3699 .max_access_size = 8,
3703 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
3704 int devfn, unsigned int pasid)
3707 * We can't simply use sid here since the bus number might not be
3708 * initialized by the guest.
3710 struct vtd_as_key key = {
3711 .bus = bus,
3712 .devfn = devfn,
3713 .pasid = pasid,
3715 VTDAddressSpace *vtd_dev_as;
3716 char name[128];
3718 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
3719 if (!vtd_dev_as) {
3720 struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
3722 new_key->bus = bus;
3723 new_key->devfn = devfn;
3724 new_key->pasid = pasid;
3726 if (pasid == PCI_NO_PASID) {
3727 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3728 PCI_FUNC(devfn));
3729 } else {
3730 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
3731 PCI_FUNC(devfn), pasid);
3734 vtd_dev_as = g_new0(VTDAddressSpace, 1);
3736 vtd_dev_as->bus = bus;
3737 vtd_dev_as->devfn = (uint8_t)devfn;
3738 vtd_dev_as->pasid = pasid;
3739 vtd_dev_as->iommu_state = s;
3740 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3741 vtd_dev_as->iova_tree = iova_tree_new();
3743 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3744 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3747 * Build the DMAR-disabled container with aliases to the
3748 * shared MRs. Note that aliasing to a shared memory region
3749 * could help the memory API to detect same FlatViews so we
3750 * can have devices to share the same FlatView when DMAR is
3751 * disabled (either by not providing "intel_iommu=on" or with
3752 * "iommu=pt"). It will greatly reduce the total number of
3753 * FlatViews of the system hence VM runs faster.
3755 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3756 "vtd-nodmar", &s->mr_nodmar, 0,
3757 memory_region_size(&s->mr_nodmar));
3760 * Build the per-device DMAR-enabled container.
3762 * TODO: currently we have per-device IOMMU memory region only
3763 * because we have per-device IOMMU notifiers for devices. If
3764 * one day we can abstract the IOMMU notifiers out of the
3765 * memory regions then we can also share the same memory
3766 * region here just like what we've done above with the nodmar
3767 * region.
3769 strcat(name, "-dmar");
3770 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3771 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3772 name, UINT64_MAX);
3773 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3774 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3775 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3776 VTD_INTERRUPT_ADDR_FIRST,
3777 &vtd_dev_as->iommu_ir, 1);
3780 * This region is used for catching fault to access interrupt
3781 * range via passthrough + PASID. See also
3782 * vtd_switch_address_space(). We can't use alias since we
3783 * need to know the sid which is valid for MSI who uses
3784 * bus_master_as (see msi_send_message()).
3786 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
3787 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
3788 VTD_INTERRUPT_ADDR_SIZE);
3790 * Hook to root since when PT is enabled vtd_dev_as->iommu
3791 * will be disabled.
3793 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
3794 VTD_INTERRUPT_ADDR_FIRST,
3795 &vtd_dev_as->iommu_ir_fault, 2);
3798 * Hook both the containers under the root container, we
3799 * switch between DMAR & noDMAR by enable/disable
3800 * corresponding sub-containers
3802 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3803 MEMORY_REGION(&vtd_dev_as->iommu),
3805 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3806 &vtd_dev_as->nodmar, 0);
3808 vtd_switch_address_space(vtd_dev_as);
3810 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
3812 return vtd_dev_as;
3815 /* Unmap the whole range in the notifier's scope. */
3816 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3818 hwaddr total, remain;
3819 hwaddr start = n->start;
3820 hwaddr end = n->end;
3821 IntelIOMMUState *s = as->iommu_state;
3822 DMAMap map;
3825 * Note: all the codes in this function has a assumption that IOVA
3826 * bits are no more than VTD_MGAW bits (which is restricted by
3827 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3830 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3832 * Don't need to unmap regions that is bigger than the whole
3833 * VT-d supported address space size
3835 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3838 assert(start <= end);
3839 total = remain = end - start + 1;
3841 while (remain >= VTD_PAGE_SIZE) {
3842 IOMMUTLBEvent event;
3843 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3844 uint64_t size = mask + 1;
3846 assert(size);
3848 event.type = IOMMU_NOTIFIER_UNMAP;
3849 event.entry.iova = start;
3850 event.entry.addr_mask = mask;
3851 event.entry.target_as = &address_space_memory;
3852 event.entry.perm = IOMMU_NONE;
3853 /* This field is meaningless for unmap */
3854 event.entry.translated_addr = 0;
3856 memory_region_notify_iommu_one(n, &event);
3858 start += size;
3859 remain -= size;
3862 assert(!remain);
3864 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3865 VTD_PCI_SLOT(as->devfn),
3866 VTD_PCI_FUNC(as->devfn),
3867 n->start, total);
3869 map.iova = n->start;
3870 map.size = total - 1; /* Inclusive */
3871 iova_tree_remove(as->iova_tree, map);
3874 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3876 VTDAddressSpace *vtd_as;
3877 IOMMUNotifier *n;
3879 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3880 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3881 vtd_address_space_unmap(vtd_as, n);
3886 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3888 vtd_address_space_unmap_all(s);
3889 vtd_switch_address_space_all(s);
3892 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3894 memory_region_notify_iommu_one(private, event);
3895 return 0;
3898 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3900 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3901 IntelIOMMUState *s = vtd_as->iommu_state;
3902 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3903 VTDContextEntry ce;
3904 DMAMap map = { .iova = 0, .size = HWADDR_MAX };
3906 /* replay is protected by BQL, page walk will re-setup it safely */
3907 iova_tree_remove(vtd_as->iova_tree, map);
3909 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3910 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3911 "legacy mode",
3912 bus_n, PCI_SLOT(vtd_as->devfn),
3913 PCI_FUNC(vtd_as->devfn),
3914 vtd_get_domain_id(s, &ce, vtd_as->pasid),
3915 ce.hi, ce.lo);
3916 if (n->notifier_flags & IOMMU_NOTIFIER_MAP) {
3917 /* This is required only for MAP typed notifiers */
3918 vtd_page_walk_info info = {
3919 .hook_fn = vtd_replay_hook,
3920 .private = (void *)n,
3921 .notify_unmap = false,
3922 .aw = s->aw_bits,
3923 .as = vtd_as,
3924 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
3927 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
3929 } else {
3930 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3931 PCI_FUNC(vtd_as->devfn));
3934 return;
3937 /* Do the initialization. It will also be called when reset, so pay
3938 * attention when adding new initialization stuff.
3940 static void vtd_init(IntelIOMMUState *s)
3942 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3944 memset(s->csr, 0, DMAR_REG_SIZE);
3945 memset(s->wmask, 0, DMAR_REG_SIZE);
3946 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3947 memset(s->womask, 0, DMAR_REG_SIZE);
3949 s->root = 0;
3950 s->root_scalable = false;
3951 s->dmar_enabled = false;
3952 s->intr_enabled = false;
3953 s->iq_head = 0;
3954 s->iq_tail = 0;
3955 s->iq = 0;
3956 s->iq_size = 0;
3957 s->qi_enabled = false;
3958 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3959 s->iq_dw = false;
3960 s->next_frcd_reg = 0;
3961 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3962 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3963 VTD_CAP_MGAW(s->aw_bits);
3964 if (s->dma_drain) {
3965 s->cap |= VTD_CAP_DRAIN;
3967 if (s->dma_translation) {
3968 if (s->aw_bits >= VTD_HOST_AW_39BIT) {
3969 s->cap |= VTD_CAP_SAGAW_39bit;
3971 if (s->aw_bits >= VTD_HOST_AW_48BIT) {
3972 s->cap |= VTD_CAP_SAGAW_48bit;
3975 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3978 * Rsvd field masks for spte
3980 vtd_spte_rsvd[0] = ~0ULL;
3981 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3982 x86_iommu->dt_supported);
3983 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3984 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3985 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3987 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3988 x86_iommu->dt_supported);
3989 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3990 x86_iommu->dt_supported);
3992 if (s->scalable_mode || s->snoop_control) {
3993 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3994 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3995 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3998 if (x86_iommu_ir_supported(x86_iommu)) {
3999 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
4000 if (s->intr_eim == ON_OFF_AUTO_ON) {
4001 s->ecap |= VTD_ECAP_EIM;
4003 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
4006 if (x86_iommu->dt_supported) {
4007 s->ecap |= VTD_ECAP_DT;
4010 if (x86_iommu->pt_supported) {
4011 s->ecap |= VTD_ECAP_PT;
4014 if (s->caching_mode) {
4015 s->cap |= VTD_CAP_CM;
4018 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
4019 if (s->scalable_mode) {
4020 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
4023 if (s->snoop_control) {
4024 s->ecap |= VTD_ECAP_SC;
4027 if (s->pasid) {
4028 s->ecap |= VTD_ECAP_PASID;
4031 vtd_reset_caches(s);
4033 /* Define registers with default values and bit semantics */
4034 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
4035 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
4036 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
4037 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
4038 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
4039 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
4040 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
4041 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
4042 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
4044 /* Advanced Fault Logging not supported */
4045 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
4046 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4047 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
4048 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
4050 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
4051 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
4053 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
4055 /* Treated as RO for implementations that PLMR and PHMR fields reported
4056 * as Clear in the CAP_REG.
4057 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
4059 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
4061 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
4062 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
4063 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
4064 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
4065 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4066 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
4067 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
4068 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
4069 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
4071 /* IOTLB registers */
4072 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
4073 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4074 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4076 /* Fault Recording Registers, 128-bit */
4077 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4078 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4081 * Interrupt remapping registers.
4083 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4086 /* Should not reset address_spaces when reset because devices will still use
4087 * the address space they got at first (won't ask the bus again).
4089 static void vtd_reset(DeviceState *dev)
4091 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4093 vtd_init(s);
4094 vtd_address_space_refresh_all(s);
4097 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4099 IntelIOMMUState *s = opaque;
4100 VTDAddressSpace *vtd_as;
4102 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4104 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4105 return &vtd_as->as;
4108 static PCIIOMMUOps vtd_iommu_ops = {
4109 .get_address_space = vtd_host_dma_iommu,
4112 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4114 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4116 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4117 error_setg(errp, "eim=on cannot be selected without intremap=on");
4118 return false;
4121 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4122 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4123 && x86_iommu_ir_supported(x86_iommu) ?
4124 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4126 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4127 if (kvm_irqchip_is_split() && !kvm_enable_x2apic()) {
4128 error_setg(errp, "eim=on requires support on the KVM side"
4129 "(X2APIC_API, first shipped in v4.7)");
4130 return false;
4134 /* Currently only address widths supported are 39 and 48 bits */
4135 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
4136 (s->aw_bits != VTD_HOST_AW_48BIT)) {
4137 error_setg(errp, "Supported values for aw-bits are: %d, %d",
4138 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4139 return false;
4142 if (s->scalable_mode && !s->dma_drain) {
4143 error_setg(errp, "Need to set dma_drain for scalable mode");
4144 return false;
4147 if (s->pasid && !s->scalable_mode) {
4148 error_setg(errp, "Need to set scalable mode for PASID");
4149 return false;
4152 return true;
4155 static int vtd_machine_done_notify_one(Object *child, void *unused)
4157 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4160 * We hard-coded here because vfio-pci is the only special case
4161 * here. Let's be more elegant in the future when we can, but so
4162 * far there seems to be no better way.
4164 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4165 vtd_panic_require_caching_mode();
4168 return 0;
4171 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4173 object_child_foreach_recursive(object_get_root(),
4174 vtd_machine_done_notify_one, NULL);
4177 static Notifier vtd_machine_done_notify = {
4178 .notify = vtd_machine_done_hook,
4181 static void vtd_realize(DeviceState *dev, Error **errp)
4183 MachineState *ms = MACHINE(qdev_get_machine());
4184 PCMachineState *pcms = PC_MACHINE(ms);
4185 X86MachineState *x86ms = X86_MACHINE(ms);
4186 PCIBus *bus = pcms->pcibus;
4187 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4188 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4190 if (s->pasid && x86_iommu->dt_supported) {
4192 * PASID-based-Device-TLB Invalidate Descriptor is not
4193 * implemented and it requires support from vhost layer which
4194 * needs to be implemented in the future.
4196 error_setg(errp, "PASID based device IOTLB is not supported");
4197 return;
4200 if (!vtd_decide_config(s, errp)) {
4201 return;
4204 QLIST_INIT(&s->vtd_as_with_notifiers);
4205 qemu_mutex_init(&s->iommu_lock);
4206 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4207 "intel_iommu", DMAR_REG_SIZE);
4208 memory_region_add_subregion(get_system_memory(),
4209 Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem);
4211 /* Create the shared memory regions by all devices */
4212 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4213 UINT64_MAX);
4214 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4215 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4216 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4217 "vtd-sys-alias", get_system_memory(), 0,
4218 memory_region_size(get_system_memory()));
4219 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4220 &s->mr_sys_alias, 0);
4221 memory_region_add_subregion_overlap(&s->mr_nodmar,
4222 VTD_INTERRUPT_ADDR_FIRST,
4223 &s->mr_ir, 1);
4224 /* No corresponding destroy */
4225 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4226 g_free, g_free);
4227 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4228 g_free, g_free);
4229 vtd_init(s);
4230 pci_setup_iommu(bus, &vtd_iommu_ops, dev);
4231 /* Pseudo address space under root PCI bus. */
4232 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4233 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4236 static void vtd_class_init(ObjectClass *klass, void *data)
4238 DeviceClass *dc = DEVICE_CLASS(klass);
4239 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4241 dc->reset = vtd_reset;
4242 dc->vmsd = &vtd_vmstate;
4243 device_class_set_props(dc, vtd_properties);
4244 dc->hotpluggable = false;
4245 x86_class->realize = vtd_realize;
4246 x86_class->int_remap = vtd_int_remap;
4247 /* Supported by the pc-q35-* machine types */
4248 dc->user_creatable = true;
4249 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4250 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4253 static const TypeInfo vtd_info = {
4254 .name = TYPE_INTEL_IOMMU_DEVICE,
4255 .parent = TYPE_X86_IOMMU_DEVICE,
4256 .instance_size = sizeof(IntelIOMMUState),
4257 .class_init = vtd_class_init,
4260 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4261 void *data)
4263 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4265 imrc->translate = vtd_iommu_translate;
4266 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4267 imrc->replay = vtd_iommu_replay;
4270 static const TypeInfo vtd_iommu_memory_region_info = {
4271 .parent = TYPE_IOMMU_MEMORY_REGION,
4272 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4273 .class_init = vtd_iommu_memory_region_class_init,
4276 static void vtd_register_types(void)
4278 type_register_static(&vtd_info);
4279 type_register_static(&vtd_iommu_memory_region_info);
4282 type_init(vtd_register_types)