2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
54 * PCI bus number (or SID) is not reliable since the device is usaully
55 * initalized before guest can configure the PCI bridge
56 * (SECONDARY_BUS_NUMBER).
64 struct vtd_iotlb_key
{
71 static void vtd_address_space_refresh_all(IntelIOMMUState
*s
);
72 static void vtd_address_space_unmap(VTDAddressSpace
*as
, IOMMUNotifier
*n
);
74 static void vtd_panic_require_caching_mode(void)
76 error_report("We need to set caching-mode=on for intel-iommu to enable "
77 "device assignment with IOMMU protection.");
81 static void vtd_define_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
,
82 uint64_t wmask
, uint64_t w1cmask
)
84 stq_le_p(&s
->csr
[addr
], val
);
85 stq_le_p(&s
->wmask
[addr
], wmask
);
86 stq_le_p(&s
->w1cmask
[addr
], w1cmask
);
89 static void vtd_define_quad_wo(IntelIOMMUState
*s
, hwaddr addr
, uint64_t mask
)
91 stq_le_p(&s
->womask
[addr
], mask
);
94 static void vtd_define_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
,
95 uint32_t wmask
, uint32_t w1cmask
)
97 stl_le_p(&s
->csr
[addr
], val
);
98 stl_le_p(&s
->wmask
[addr
], wmask
);
99 stl_le_p(&s
->w1cmask
[addr
], w1cmask
);
102 static void vtd_define_long_wo(IntelIOMMUState
*s
, hwaddr addr
, uint32_t mask
)
104 stl_le_p(&s
->womask
[addr
], mask
);
107 /* "External" get/set operations */
108 static void vtd_set_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
110 uint64_t oldval
= ldq_le_p(&s
->csr
[addr
]);
111 uint64_t wmask
= ldq_le_p(&s
->wmask
[addr
]);
112 uint64_t w1cmask
= ldq_le_p(&s
->w1cmask
[addr
]);
113 stq_le_p(&s
->csr
[addr
],
114 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
117 static void vtd_set_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
)
119 uint32_t oldval
= ldl_le_p(&s
->csr
[addr
]);
120 uint32_t wmask
= ldl_le_p(&s
->wmask
[addr
]);
121 uint32_t w1cmask
= ldl_le_p(&s
->w1cmask
[addr
]);
122 stl_le_p(&s
->csr
[addr
],
123 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
126 static uint64_t vtd_get_quad(IntelIOMMUState
*s
, hwaddr addr
)
128 uint64_t val
= ldq_le_p(&s
->csr
[addr
]);
129 uint64_t womask
= ldq_le_p(&s
->womask
[addr
]);
130 return val
& ~womask
;
133 static uint32_t vtd_get_long(IntelIOMMUState
*s
, hwaddr addr
)
135 uint32_t val
= ldl_le_p(&s
->csr
[addr
]);
136 uint32_t womask
= ldl_le_p(&s
->womask
[addr
]);
137 return val
& ~womask
;
140 /* "Internal" get/set operations */
141 static uint64_t vtd_get_quad_raw(IntelIOMMUState
*s
, hwaddr addr
)
143 return ldq_le_p(&s
->csr
[addr
]);
146 static uint32_t vtd_get_long_raw(IntelIOMMUState
*s
, hwaddr addr
)
148 return ldl_le_p(&s
->csr
[addr
]);
151 static void vtd_set_quad_raw(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
153 stq_le_p(&s
->csr
[addr
], val
);
156 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState
*s
, hwaddr addr
,
157 uint32_t clear
, uint32_t mask
)
159 uint32_t new_val
= (ldl_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
160 stl_le_p(&s
->csr
[addr
], new_val
);
164 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState
*s
, hwaddr addr
,
165 uint64_t clear
, uint64_t mask
)
167 uint64_t new_val
= (ldq_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
168 stq_le_p(&s
->csr
[addr
], new_val
);
172 static inline void vtd_iommu_lock(IntelIOMMUState
*s
)
174 qemu_mutex_lock(&s
->iommu_lock
);
177 static inline void vtd_iommu_unlock(IntelIOMMUState
*s
)
179 qemu_mutex_unlock(&s
->iommu_lock
);
182 static void vtd_update_scalable_state(IntelIOMMUState
*s
)
184 uint64_t val
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
186 if (s
->scalable_mode
) {
187 s
->root_scalable
= val
& VTD_RTADDR_SMT
;
191 static void vtd_update_iq_dw(IntelIOMMUState
*s
)
193 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IQA_REG
);
195 if (s
->ecap
& VTD_ECAP_SMTS
&&
196 val
& VTD_IQA_DW_MASK
) {
203 /* Whether the address space needs to notify new mappings */
204 static inline gboolean
vtd_as_has_map_notifier(VTDAddressSpace
*as
)
206 return as
->notifier_flags
& IOMMU_NOTIFIER_MAP
;
209 /* GHashTable functions */
210 static gboolean
vtd_iotlb_equal(gconstpointer v1
, gconstpointer v2
)
212 const struct vtd_iotlb_key
*key1
= v1
;
213 const struct vtd_iotlb_key
*key2
= v2
;
215 return key1
->sid
== key2
->sid
&&
216 key1
->pasid
== key2
->pasid
&&
217 key1
->level
== key2
->level
&&
218 key1
->gfn
== key2
->gfn
;
221 static guint
vtd_iotlb_hash(gconstpointer v
)
223 const struct vtd_iotlb_key
*key
= v
;
224 uint64_t hash64
= key
->gfn
| ((uint64_t)(key
->sid
) << VTD_IOTLB_SID_SHIFT
) |
225 (uint64_t)(key
->level
- 1) << VTD_IOTLB_LVL_SHIFT
|
226 (uint64_t)(key
->pasid
) << VTD_IOTLB_PASID_SHIFT
;
228 return (guint
)((hash64
>> 32) ^ (hash64
& 0xffffffffU
));
231 static gboolean
vtd_as_equal(gconstpointer v1
, gconstpointer v2
)
233 const struct vtd_as_key
*key1
= v1
;
234 const struct vtd_as_key
*key2
= v2
;
236 return (key1
->bus
== key2
->bus
) && (key1
->devfn
== key2
->devfn
) &&
237 (key1
->pasid
== key2
->pasid
);
241 * Note that we use pointer to PCIBus as the key, so hashing/shifting
242 * based on the pointer value is intended. Note that we deal with
243 * collisions through vtd_as_equal().
245 static guint
vtd_as_hash(gconstpointer v
)
247 const struct vtd_as_key
*key
= v
;
248 guint value
= (guint
)(uintptr_t)key
->bus
;
250 return (guint
)(value
<< 8 | key
->devfn
);
253 static gboolean
vtd_hash_remove_by_domain(gpointer key
, gpointer value
,
256 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
257 uint16_t domain_id
= *(uint16_t *)user_data
;
258 return entry
->domain_id
== domain_id
;
261 /* The shift of an addr for a certain level of paging structure */
262 static inline uint32_t vtd_slpt_level_shift(uint32_t level
)
265 return VTD_PAGE_SHIFT_4K
+ (level
- 1) * VTD_SL_LEVEL_BITS
;
268 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level
)
270 return ~((1ULL << vtd_slpt_level_shift(level
)) - 1);
273 static gboolean
vtd_hash_remove_by_page(gpointer key
, gpointer value
,
276 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
277 VTDIOTLBPageInvInfo
*info
= (VTDIOTLBPageInvInfo
*)user_data
;
278 uint64_t gfn
= (info
->addr
>> VTD_PAGE_SHIFT_4K
) & info
->mask
;
279 uint64_t gfn_tlb
= (info
->addr
& entry
->mask
) >> VTD_PAGE_SHIFT_4K
;
280 return (entry
->domain_id
== info
->domain_id
) &&
281 (((entry
->gfn
& info
->mask
) == gfn
) ||
282 (entry
->gfn
== gfn_tlb
));
285 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
286 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
288 static void vtd_reset_context_cache_locked(IntelIOMMUState
*s
)
290 VTDAddressSpace
*vtd_as
;
291 GHashTableIter as_it
;
293 trace_vtd_context_cache_reset();
295 g_hash_table_iter_init(&as_it
, s
->vtd_address_spaces
);
297 while (g_hash_table_iter_next(&as_it
, NULL
, (void **)&vtd_as
)) {
298 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
300 s
->context_cache_gen
= 1;
303 /* Must be called with IOMMU lock held. */
304 static void vtd_reset_iotlb_locked(IntelIOMMUState
*s
)
307 g_hash_table_remove_all(s
->iotlb
);
310 static void vtd_reset_iotlb(IntelIOMMUState
*s
)
313 vtd_reset_iotlb_locked(s
);
317 static void vtd_reset_caches(IntelIOMMUState
*s
)
320 vtd_reset_iotlb_locked(s
);
321 vtd_reset_context_cache_locked(s
);
325 static uint64_t vtd_get_iotlb_gfn(hwaddr addr
, uint32_t level
)
327 return (addr
& vtd_slpt_level_page_mask(level
)) >> VTD_PAGE_SHIFT_4K
;
330 /* Must be called with IOMMU lock held */
331 static VTDIOTLBEntry
*vtd_lookup_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
332 uint32_t pasid
, hwaddr addr
)
334 struct vtd_iotlb_key key
;
335 VTDIOTLBEntry
*entry
;
338 for (level
= VTD_SL_PT_LEVEL
; level
< VTD_SL_PML4_LEVEL
; level
++) {
339 key
.gfn
= vtd_get_iotlb_gfn(addr
, level
);
343 entry
= g_hash_table_lookup(s
->iotlb
, &key
);
353 /* Must be with IOMMU lock held */
354 static void vtd_update_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
355 uint16_t domain_id
, hwaddr addr
, uint64_t slpte
,
356 uint8_t access_flags
, uint32_t level
,
359 VTDIOTLBEntry
*entry
= g_malloc(sizeof(*entry
));
360 struct vtd_iotlb_key
*key
= g_malloc(sizeof(*key
));
361 uint64_t gfn
= vtd_get_iotlb_gfn(addr
, level
);
363 trace_vtd_iotlb_page_update(source_id
, addr
, slpte
, domain_id
);
364 if (g_hash_table_size(s
->iotlb
) >= VTD_IOTLB_MAX_SIZE
) {
365 trace_vtd_iotlb_reset("iotlb exceeds size limit");
366 vtd_reset_iotlb_locked(s
);
370 entry
->domain_id
= domain_id
;
371 entry
->slpte
= slpte
;
372 entry
->access_flags
= access_flags
;
373 entry
->mask
= vtd_slpt_level_page_mask(level
);
374 entry
->pasid
= pasid
;
377 key
->sid
= source_id
;
381 g_hash_table_replace(s
->iotlb
, key
, entry
);
384 /* Given the reg addr of both the message data and address, generate an
387 static void vtd_generate_interrupt(IntelIOMMUState
*s
, hwaddr mesg_addr_reg
,
388 hwaddr mesg_data_reg
)
392 assert(mesg_data_reg
< DMAR_REG_SIZE
);
393 assert(mesg_addr_reg
< DMAR_REG_SIZE
);
395 msi
.address
= vtd_get_long_raw(s
, mesg_addr_reg
);
396 msi
.data
= vtd_get_long_raw(s
, mesg_data_reg
);
398 trace_vtd_irq_generate(msi
.address
, msi
.data
);
400 apic_get_class(NULL
)->send_msi(&msi
);
403 /* Generate a fault event to software via MSI if conditions are met.
404 * Notice that the value of FSTS_REG being passed to it should be the one
407 static void vtd_generate_fault_event(IntelIOMMUState
*s
, uint32_t pre_fsts
)
409 if (pre_fsts
& VTD_FSTS_PPF
|| pre_fsts
& VTD_FSTS_PFO
||
410 pre_fsts
& VTD_FSTS_IQE
) {
411 error_report_once("There are previous interrupt conditions "
412 "to be serviced by software, fault event "
416 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, 0, VTD_FECTL_IP
);
417 if (vtd_get_long_raw(s
, DMAR_FECTL_REG
) & VTD_FECTL_IM
) {
418 error_report_once("Interrupt Mask set, irq is not generated");
420 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
421 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
425 /* Check if the Fault (F) field of the Fault Recording Register referenced by
428 static bool vtd_is_frcd_set(IntelIOMMUState
*s
, uint16_t index
)
430 /* Each reg is 128-bit */
431 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
432 addr
+= 8; /* Access the high 64-bit half */
434 assert(index
< DMAR_FRCD_REG_NR
);
436 return vtd_get_quad_raw(s
, addr
) & VTD_FRCD_F
;
439 /* Update the PPF field of Fault Status Register.
440 * Should be called whenever change the F field of any fault recording
443 static void vtd_update_fsts_ppf(IntelIOMMUState
*s
)
446 uint32_t ppf_mask
= 0;
448 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
449 if (vtd_is_frcd_set(s
, i
)) {
450 ppf_mask
= VTD_FSTS_PPF
;
454 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_PPF
, ppf_mask
);
455 trace_vtd_fsts_ppf(!!ppf_mask
);
458 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState
*s
, uint16_t index
)
460 /* Each reg is 128-bit */
461 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
462 addr
+= 8; /* Access the high 64-bit half */
464 assert(index
< DMAR_FRCD_REG_NR
);
466 vtd_set_clear_mask_quad(s
, addr
, 0, VTD_FRCD_F
);
467 vtd_update_fsts_ppf(s
);
470 /* Must not update F field now, should be done later */
471 static void vtd_record_frcd(IntelIOMMUState
*s
, uint16_t index
,
472 uint16_t source_id
, hwaddr addr
,
473 VTDFaultReason fault
, bool is_write
,
474 bool is_pasid
, uint32_t pasid
)
477 hwaddr frcd_reg_addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
479 assert(index
< DMAR_FRCD_REG_NR
);
481 lo
= VTD_FRCD_FI(addr
);
482 hi
= VTD_FRCD_SID(source_id
) | VTD_FRCD_FR(fault
) |
483 VTD_FRCD_PV(pasid
) | VTD_FRCD_PP(is_pasid
);
487 vtd_set_quad_raw(s
, frcd_reg_addr
, lo
);
488 vtd_set_quad_raw(s
, frcd_reg_addr
+ 8, hi
);
490 trace_vtd_frr_new(index
, hi
, lo
);
493 /* Try to collapse multiple pending faults from the same requester */
494 static bool vtd_try_collapse_fault(IntelIOMMUState
*s
, uint16_t source_id
)
498 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ 8; /* The high 64-bit half */
500 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
501 frcd_reg
= vtd_get_quad_raw(s
, addr
);
502 if ((frcd_reg
& VTD_FRCD_F
) &&
503 ((frcd_reg
& VTD_FRCD_SID_MASK
) == source_id
)) {
506 addr
+= 16; /* 128-bit for each */
511 /* Log and report an DMAR (address translation) fault to software */
512 static void vtd_report_dmar_fault(IntelIOMMUState
*s
, uint16_t source_id
,
513 hwaddr addr
, VTDFaultReason fault
,
514 bool is_write
, bool is_pasid
,
517 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
519 assert(fault
< VTD_FR_MAX
);
521 trace_vtd_dmar_fault(source_id
, fault
, addr
, is_write
);
523 if (fsts_reg
& VTD_FSTS_PFO
) {
524 error_report_once("New fault is not recorded due to "
525 "Primary Fault Overflow");
529 if (vtd_try_collapse_fault(s
, source_id
)) {
530 error_report_once("New fault is not recorded due to "
531 "compression of faults");
535 if (vtd_is_frcd_set(s
, s
->next_frcd_reg
)) {
536 error_report_once("Next Fault Recording Reg is used, "
537 "new fault is not recorded, set PFO field");
538 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_PFO
);
542 vtd_record_frcd(s
, s
->next_frcd_reg
, source_id
, addr
, fault
,
543 is_write
, is_pasid
, pasid
);
545 if (fsts_reg
& VTD_FSTS_PPF
) {
546 error_report_once("There are pending faults already, "
547 "fault event is not generated");
548 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
);
550 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
551 s
->next_frcd_reg
= 0;
554 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_FRI_MASK
,
555 VTD_FSTS_FRI(s
->next_frcd_reg
));
556 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
); /* Will set PPF */
558 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
559 s
->next_frcd_reg
= 0;
561 /* This case actually cause the PPF to be Set.
562 * So generate fault event (interrupt).
564 vtd_generate_fault_event(s
, fsts_reg
);
568 /* Handle Invalidation Queue Errors of queued invalidation interface error
571 static void vtd_handle_inv_queue_error(IntelIOMMUState
*s
)
573 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
575 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_IQE
);
576 vtd_generate_fault_event(s
, fsts_reg
);
579 /* Set the IWC field and try to generate an invalidation completion interrupt */
580 static void vtd_generate_completion_event(IntelIOMMUState
*s
)
582 if (vtd_get_long_raw(s
, DMAR_ICS_REG
) & VTD_ICS_IWC
) {
583 trace_vtd_inv_desc_wait_irq("One pending, skip current");
586 vtd_set_clear_mask_long(s
, DMAR_ICS_REG
, 0, VTD_ICS_IWC
);
587 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, 0, VTD_IECTL_IP
);
588 if (vtd_get_long_raw(s
, DMAR_IECTL_REG
) & VTD_IECTL_IM
) {
589 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
590 "new event not generated");
593 /* Generate the interrupt event */
594 trace_vtd_inv_desc_wait_irq("Generating complete event");
595 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
596 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
600 static inline bool vtd_root_entry_present(IntelIOMMUState
*s
,
604 if (s
->root_scalable
&& devfn
> UINT8_MAX
/ 2) {
605 return re
->hi
& VTD_ROOT_ENTRY_P
;
608 return re
->lo
& VTD_ROOT_ENTRY_P
;
611 static int vtd_get_root_entry(IntelIOMMUState
*s
, uint8_t index
,
616 addr
= s
->root
+ index
* sizeof(*re
);
617 if (dma_memory_read(&address_space_memory
, addr
,
618 re
, sizeof(*re
), MEMTXATTRS_UNSPECIFIED
)) {
620 return -VTD_FR_ROOT_TABLE_INV
;
622 re
->lo
= le64_to_cpu(re
->lo
);
623 re
->hi
= le64_to_cpu(re
->hi
);
627 static inline bool vtd_ce_present(VTDContextEntry
*context
)
629 return context
->lo
& VTD_CONTEXT_ENTRY_P
;
632 static int vtd_get_context_entry_from_root(IntelIOMMUState
*s
,
637 dma_addr_t addr
, ce_size
;
639 /* we have checked that root entry is present */
640 ce_size
= s
->root_scalable
? VTD_CTX_ENTRY_SCALABLE_SIZE
:
641 VTD_CTX_ENTRY_LEGACY_SIZE
;
643 if (s
->root_scalable
&& index
> UINT8_MAX
/ 2) {
644 index
= index
& (~VTD_DEVFN_CHECK_MASK
);
645 addr
= re
->hi
& VTD_ROOT_ENTRY_CTP
;
647 addr
= re
->lo
& VTD_ROOT_ENTRY_CTP
;
650 addr
= addr
+ index
* ce_size
;
651 if (dma_memory_read(&address_space_memory
, addr
,
652 ce
, ce_size
, MEMTXATTRS_UNSPECIFIED
)) {
653 return -VTD_FR_CONTEXT_TABLE_INV
;
656 ce
->lo
= le64_to_cpu(ce
->lo
);
657 ce
->hi
= le64_to_cpu(ce
->hi
);
658 if (ce_size
== VTD_CTX_ENTRY_SCALABLE_SIZE
) {
659 ce
->val
[2] = le64_to_cpu(ce
->val
[2]);
660 ce
->val
[3] = le64_to_cpu(ce
->val
[3]);
665 static inline dma_addr_t
vtd_ce_get_slpt_base(VTDContextEntry
*ce
)
667 return ce
->lo
& VTD_CONTEXT_ENTRY_SLPTPTR
;
670 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte
, uint8_t aw
)
672 return slpte
& VTD_SL_PT_BASE_ADDR_MASK(aw
);
675 /* Whether the pte indicates the address of the page frame */
676 static inline bool vtd_is_last_slpte(uint64_t slpte
, uint32_t level
)
678 return level
== VTD_SL_PT_LEVEL
|| (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
);
681 /* Get the content of a spte located in @base_addr[@index] */
682 static uint64_t vtd_get_slpte(dma_addr_t base_addr
, uint32_t index
)
686 assert(index
< VTD_SL_PT_ENTRY_NR
);
688 if (dma_memory_read(&address_space_memory
,
689 base_addr
+ index
* sizeof(slpte
),
690 &slpte
, sizeof(slpte
), MEMTXATTRS_UNSPECIFIED
)) {
691 slpte
= (uint64_t)-1;
694 slpte
= le64_to_cpu(slpte
);
698 /* Given an iova and the level of paging structure, return the offset
701 static inline uint32_t vtd_iova_level_offset(uint64_t iova
, uint32_t level
)
703 return (iova
>> vtd_slpt_level_shift(level
)) &
704 ((1ULL << VTD_SL_LEVEL_BITS
) - 1);
707 /* Check Capability Register to see if the @level of page-table is supported */
708 static inline bool vtd_is_level_supported(IntelIOMMUState
*s
, uint32_t level
)
710 return VTD_CAP_SAGAW_MASK
& s
->cap
&
711 (1ULL << (level
- 2 + VTD_CAP_SAGAW_SHIFT
));
714 /* Return true if check passed, otherwise false */
715 static inline bool vtd_pe_type_check(X86IOMMUState
*x86_iommu
,
718 switch (VTD_PE_GET_TYPE(pe
)) {
719 case VTD_SM_PASID_ENTRY_FLT
:
720 case VTD_SM_PASID_ENTRY_SLT
:
721 case VTD_SM_PASID_ENTRY_NESTED
:
723 case VTD_SM_PASID_ENTRY_PT
:
724 if (!x86_iommu
->pt_supported
) {
735 static inline bool vtd_pdire_present(VTDPASIDDirEntry
*pdire
)
737 return pdire
->val
& 1;
741 * Caller of this function should check present bit if wants
742 * to use pdir entry for further usage except for fpd bit check.
744 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base
,
746 VTDPASIDDirEntry
*pdire
)
749 dma_addr_t addr
, entry_size
;
751 index
= VTD_PASID_DIR_INDEX(pasid
);
752 entry_size
= VTD_PASID_DIR_ENTRY_SIZE
;
753 addr
= pasid_dir_base
+ index
* entry_size
;
754 if (dma_memory_read(&address_space_memory
, addr
,
755 pdire
, entry_size
, MEMTXATTRS_UNSPECIFIED
)) {
756 return -VTD_FR_PASID_TABLE_INV
;
759 pdire
->val
= le64_to_cpu(pdire
->val
);
764 static inline bool vtd_pe_present(VTDPASIDEntry
*pe
)
766 return pe
->val
[0] & VTD_PASID_ENTRY_P
;
769 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState
*s
,
775 dma_addr_t entry_size
;
776 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
778 index
= VTD_PASID_TABLE_INDEX(pasid
);
779 entry_size
= VTD_PASID_ENTRY_SIZE
;
780 addr
= addr
+ index
* entry_size
;
781 if (dma_memory_read(&address_space_memory
, addr
,
782 pe
, entry_size
, MEMTXATTRS_UNSPECIFIED
)) {
783 return -VTD_FR_PASID_TABLE_INV
;
785 for (size_t i
= 0; i
< ARRAY_SIZE(pe
->val
); i
++) {
786 pe
->val
[i
] = le64_to_cpu(pe
->val
[i
]);
789 /* Do translation type check */
790 if (!vtd_pe_type_check(x86_iommu
, pe
)) {
791 return -VTD_FR_PASID_TABLE_INV
;
794 if (!vtd_is_level_supported(s
, VTD_PE_GET_LEVEL(pe
))) {
795 return -VTD_FR_PASID_TABLE_INV
;
802 * Caller of this function should check present bit if wants
803 * to use pasid entry for further usage except for fpd bit check.
805 static int vtd_get_pe_from_pdire(IntelIOMMUState
*s
,
807 VTDPASIDDirEntry
*pdire
,
810 dma_addr_t addr
= pdire
->val
& VTD_PASID_TABLE_BASE_ADDR_MASK
;
812 return vtd_get_pe_in_pasid_leaf_table(s
, pasid
, addr
, pe
);
816 * This function gets a pasid entry from a specified pasid
817 * table (includes dir and leaf table) with a specified pasid.
818 * Sanity check should be done to ensure return a present
819 * pasid entry to caller.
821 static int vtd_get_pe_from_pasid_table(IntelIOMMUState
*s
,
822 dma_addr_t pasid_dir_base
,
827 VTDPASIDDirEntry pdire
;
829 ret
= vtd_get_pdire_from_pdir_table(pasid_dir_base
,
835 if (!vtd_pdire_present(&pdire
)) {
836 return -VTD_FR_PASID_TABLE_INV
;
839 ret
= vtd_get_pe_from_pdire(s
, pasid
, &pdire
, pe
);
844 if (!vtd_pe_present(pe
)) {
845 return -VTD_FR_PASID_TABLE_INV
;
851 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState
*s
,
856 dma_addr_t pasid_dir_base
;
859 if (pasid
== PCI_NO_PASID
) {
860 pasid
= VTD_CE_GET_RID2PASID(ce
);
862 pasid_dir_base
= VTD_CE_GET_PASID_DIR_TABLE(ce
);
863 ret
= vtd_get_pe_from_pasid_table(s
, pasid_dir_base
, pasid
, pe
);
868 static int vtd_ce_get_pasid_fpd(IntelIOMMUState
*s
,
874 dma_addr_t pasid_dir_base
;
875 VTDPASIDDirEntry pdire
;
878 if (pasid
== PCI_NO_PASID
) {
879 pasid
= VTD_CE_GET_RID2PASID(ce
);
881 pasid_dir_base
= VTD_CE_GET_PASID_DIR_TABLE(ce
);
884 * No present bit check since fpd is meaningful even
885 * if the present bit is clear.
887 ret
= vtd_get_pdire_from_pdir_table(pasid_dir_base
, pasid
, &pdire
);
892 if (pdire
.val
& VTD_PASID_DIR_FPD
) {
897 if (!vtd_pdire_present(&pdire
)) {
898 return -VTD_FR_PASID_TABLE_INV
;
902 * No present bit check since fpd is meaningful even
903 * if the present bit is clear.
905 ret
= vtd_get_pe_from_pdire(s
, pasid
, &pdire
, &pe
);
910 if (pe
.val
[0] & VTD_PASID_ENTRY_FPD
) {
917 /* Get the page-table level that hardware should use for the second-level
918 * page-table walk from the Address Width field of context-entry.
920 static inline uint32_t vtd_ce_get_level(VTDContextEntry
*ce
)
922 return 2 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
);
925 static uint32_t vtd_get_iova_level(IntelIOMMUState
*s
,
931 if (s
->root_scalable
) {
932 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
, pasid
);
933 return VTD_PE_GET_LEVEL(&pe
);
936 return vtd_ce_get_level(ce
);
939 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry
*ce
)
941 return 30 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
) * 9;
944 static uint32_t vtd_get_iova_agaw(IntelIOMMUState
*s
,
950 if (s
->root_scalable
) {
951 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
, pasid
);
952 return 30 + ((pe
.val
[0] >> 2) & VTD_SM_PASID_ENTRY_AW
) * 9;
955 return vtd_ce_get_agaw(ce
);
958 static inline uint32_t vtd_ce_get_type(VTDContextEntry
*ce
)
960 return ce
->lo
& VTD_CONTEXT_ENTRY_TT
;
963 /* Only for Legacy Mode. Return true if check passed, otherwise false */
964 static inline bool vtd_ce_type_check(X86IOMMUState
*x86_iommu
,
967 switch (vtd_ce_get_type(ce
)) {
968 case VTD_CONTEXT_TT_MULTI_LEVEL
:
969 /* Always supported */
971 case VTD_CONTEXT_TT_DEV_IOTLB
:
972 if (!x86_iommu
->dt_supported
) {
973 error_report_once("%s: DT specified but not supported", __func__
);
977 case VTD_CONTEXT_TT_PASS_THROUGH
:
978 if (!x86_iommu
->pt_supported
) {
979 error_report_once("%s: PT specified but not supported", __func__
);
985 error_report_once("%s: unknown ce type: %"PRIu32
, __func__
,
986 vtd_ce_get_type(ce
));
992 static inline uint64_t vtd_iova_limit(IntelIOMMUState
*s
,
993 VTDContextEntry
*ce
, uint8_t aw
,
996 uint32_t ce_agaw
= vtd_get_iova_agaw(s
, ce
, pasid
);
997 return 1ULL << MIN(ce_agaw
, aw
);
1000 /* Return true if IOVA passes range check, otherwise false. */
1001 static inline bool vtd_iova_range_check(IntelIOMMUState
*s
,
1002 uint64_t iova
, VTDContextEntry
*ce
,
1003 uint8_t aw
, uint32_t pasid
)
1006 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1007 * in CAP_REG and AW in context-entry.
1009 return !(iova
& ~(vtd_iova_limit(s
, ce
, aw
, pasid
) - 1));
1012 static dma_addr_t
vtd_get_iova_pgtbl_base(IntelIOMMUState
*s
,
1013 VTDContextEntry
*ce
,
1018 if (s
->root_scalable
) {
1019 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
, pasid
);
1020 return pe
.val
[0] & VTD_SM_PASID_ENTRY_SLPTPTR
;
1023 return vtd_ce_get_slpt_base(ce
);
1027 * Rsvd field masks for spte:
1028 * vtd_spte_rsvd 4k pages
1029 * vtd_spte_rsvd_large large pages
1031 static uint64_t vtd_spte_rsvd
[5];
1032 static uint64_t vtd_spte_rsvd_large
[5];
1034 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte
, uint32_t level
)
1036 uint64_t rsvd_mask
= vtd_spte_rsvd
[level
];
1038 if ((level
== VTD_SL_PD_LEVEL
|| level
== VTD_SL_PDP_LEVEL
) &&
1039 (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
)) {
1041 rsvd_mask
= vtd_spte_rsvd_large
[level
];
1044 return slpte
& rsvd_mask
;
1047 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1048 * of the translation, can be used for deciding the size of large page.
1050 static int vtd_iova_to_slpte(IntelIOMMUState
*s
, VTDContextEntry
*ce
,
1051 uint64_t iova
, bool is_write
,
1052 uint64_t *slptep
, uint32_t *slpte_level
,
1053 bool *reads
, bool *writes
, uint8_t aw_bits
,
1056 dma_addr_t addr
= vtd_get_iova_pgtbl_base(s
, ce
, pasid
);
1057 uint32_t level
= vtd_get_iova_level(s
, ce
, pasid
);
1060 uint64_t access_right_check
;
1061 uint64_t xlat
, size
;
1063 if (!vtd_iova_range_check(s
, iova
, ce
, aw_bits
, pasid
)) {
1064 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64
","
1065 "pasid=0x%" PRIx32
")", __func__
, iova
, pasid
);
1066 return -VTD_FR_ADDR_BEYOND_MGAW
;
1069 /* FIXME: what is the Atomics request here? */
1070 access_right_check
= is_write
? VTD_SL_W
: VTD_SL_R
;
1073 offset
= vtd_iova_level_offset(iova
, level
);
1074 slpte
= vtd_get_slpte(addr
, offset
);
1076 if (slpte
== (uint64_t)-1) {
1077 error_report_once("%s: detected read error on DMAR slpte "
1078 "(iova=0x%" PRIx64
", pasid=0x%" PRIx32
")",
1079 __func__
, iova
, pasid
);
1080 if (level
== vtd_get_iova_level(s
, ce
, pasid
)) {
1081 /* Invalid programming of context-entry */
1082 return -VTD_FR_CONTEXT_ENTRY_INV
;
1084 return -VTD_FR_PAGING_ENTRY_INV
;
1087 *reads
= (*reads
) && (slpte
& VTD_SL_R
);
1088 *writes
= (*writes
) && (slpte
& VTD_SL_W
);
1089 if (!(slpte
& access_right_check
)) {
1090 error_report_once("%s: detected slpte permission error "
1091 "(iova=0x%" PRIx64
", level=0x%" PRIx32
", "
1092 "slpte=0x%" PRIx64
", write=%d, pasid=0x%"
1093 PRIx32
")", __func__
, iova
, level
,
1094 slpte
, is_write
, pasid
);
1095 return is_write
? -VTD_FR_WRITE
: -VTD_FR_READ
;
1097 if (vtd_slpte_nonzero_rsvd(slpte
, level
)) {
1098 error_report_once("%s: detected splte reserve non-zero "
1099 "iova=0x%" PRIx64
", level=0x%" PRIx32
1100 "slpte=0x%" PRIx64
", pasid=0x%" PRIX32
")",
1101 __func__
, iova
, level
, slpte
, pasid
);
1102 return -VTD_FR_PAGING_ENTRY_RSVD
;
1105 if (vtd_is_last_slpte(slpte
, level
)) {
1107 *slpte_level
= level
;
1110 addr
= vtd_get_slpte_addr(slpte
, aw_bits
);
1114 xlat
= vtd_get_slpte_addr(*slptep
, aw_bits
);
1115 size
= ~vtd_slpt_level_page_mask(level
) + 1;
1118 * From VT-d spec 3.14: Untranslated requests and translation
1119 * requests that result in an address in the interrupt range will be
1120 * blocked with condition code LGN.4 or SGN.8.
1122 if ((xlat
> VTD_INTERRUPT_ADDR_LAST
||
1123 xlat
+ size
- 1 < VTD_INTERRUPT_ADDR_FIRST
)) {
1126 error_report_once("%s: xlat address is in interrupt range "
1127 "(iova=0x%" PRIx64
", level=0x%" PRIx32
", "
1128 "slpte=0x%" PRIx64
", write=%d, "
1129 "xlat=0x%" PRIx64
", size=0x%" PRIx64
", "
1130 "pasid=0x%" PRIx32
")",
1131 __func__
, iova
, level
, slpte
, is_write
,
1133 return s
->scalable_mode
? -VTD_FR_SM_INTERRUPT_ADDR
:
1134 -VTD_FR_INTERRUPT_ADDR
;
1138 typedef int (*vtd_page_walk_hook
)(IOMMUTLBEvent
*event
, void *private);
1141 * Constant information used during page walking
1143 * @hook_fn: hook func to be called when detected page
1144 * @private: private data to be passed into hook func
1145 * @notify_unmap: whether we should notify invalid entries
1146 * @as: VT-d address space of the device
1147 * @aw: maximum address width
1148 * @domain: domain ID of the page walk
1151 VTDAddressSpace
*as
;
1152 vtd_page_walk_hook hook_fn
;
1157 } vtd_page_walk_info
;
1159 static int vtd_page_walk_one(IOMMUTLBEvent
*event
, vtd_page_walk_info
*info
)
1161 VTDAddressSpace
*as
= info
->as
;
1162 vtd_page_walk_hook hook_fn
= info
->hook_fn
;
1163 void *private = info
->private;
1164 IOMMUTLBEntry
*entry
= &event
->entry
;
1166 .iova
= entry
->iova
,
1167 .size
= entry
->addr_mask
,
1168 .translated_addr
= entry
->translated_addr
,
1169 .perm
= entry
->perm
,
1171 const DMAMap
*mapped
= iova_tree_find(as
->iova_tree
, &target
);
1173 if (event
->type
== IOMMU_NOTIFIER_UNMAP
&& !info
->notify_unmap
) {
1174 trace_vtd_page_walk_one_skip_unmap(entry
->iova
, entry
->addr_mask
);
1180 /* Update local IOVA mapped ranges */
1181 if (event
->type
== IOMMU_NOTIFIER_MAP
) {
1183 /* If it's exactly the same translation, skip */
1184 if (!memcmp(mapped
, &target
, sizeof(target
))) {
1185 trace_vtd_page_walk_one_skip_map(entry
->iova
, entry
->addr_mask
,
1186 entry
->translated_addr
);
1190 * Translation changed. Normally this should not
1191 * happen, but it can happen when with buggy guest
1192 * OSes. Note that there will be a small window that
1193 * we don't have map at all. But that's the best
1194 * effort we can do. The ideal way to emulate this is
1195 * atomically modify the PTE to follow what has
1196 * changed, but we can't. One example is that vfio
1197 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1198 * interface to modify a mapping (meanwhile it seems
1199 * meaningless to even provide one). Anyway, let's
1200 * mark this as a TODO in case one day we'll have
1201 * a better solution.
1203 IOMMUAccessFlags cache_perm
= entry
->perm
;
1206 /* Emulate an UNMAP */
1207 event
->type
= IOMMU_NOTIFIER_UNMAP
;
1208 entry
->perm
= IOMMU_NONE
;
1209 trace_vtd_page_walk_one(info
->domain_id
,
1211 entry
->translated_addr
,
1214 ret
= hook_fn(event
, private);
1218 /* Drop any existing mapping */
1219 iova_tree_remove(as
->iova_tree
, target
);
1220 /* Recover the correct type */
1221 event
->type
= IOMMU_NOTIFIER_MAP
;
1222 entry
->perm
= cache_perm
;
1225 iova_tree_insert(as
->iova_tree
, &target
);
1228 /* Skip since we didn't map this range at all */
1229 trace_vtd_page_walk_one_skip_unmap(entry
->iova
, entry
->addr_mask
);
1232 iova_tree_remove(as
->iova_tree
, target
);
1235 trace_vtd_page_walk_one(info
->domain_id
, entry
->iova
,
1236 entry
->translated_addr
, entry
->addr_mask
,
1238 return hook_fn(event
, private);
1242 * vtd_page_walk_level - walk over specific level for IOVA range
1244 * @addr: base GPA addr to start the walk
1245 * @start: IOVA range start address
1246 * @end: IOVA range end address (start <= addr < end)
1247 * @read: whether parent level has read permission
1248 * @write: whether parent level has write permission
1249 * @info: constant information for the page walk
1251 static int vtd_page_walk_level(dma_addr_t addr
, uint64_t start
,
1252 uint64_t end
, uint32_t level
, bool read
,
1253 bool write
, vtd_page_walk_info
*info
)
1255 bool read_cur
, write_cur
, entry_valid
;
1258 uint64_t subpage_size
, subpage_mask
;
1259 IOMMUTLBEvent event
;
1260 uint64_t iova
= start
;
1264 trace_vtd_page_walk_level(addr
, level
, start
, end
);
1266 subpage_size
= 1ULL << vtd_slpt_level_shift(level
);
1267 subpage_mask
= vtd_slpt_level_page_mask(level
);
1269 while (iova
< end
) {
1270 iova_next
= (iova
& subpage_mask
) + subpage_size
;
1272 offset
= vtd_iova_level_offset(iova
, level
);
1273 slpte
= vtd_get_slpte(addr
, offset
);
1275 if (slpte
== (uint64_t)-1) {
1276 trace_vtd_page_walk_skip_read(iova
, iova_next
);
1280 if (vtd_slpte_nonzero_rsvd(slpte
, level
)) {
1281 trace_vtd_page_walk_skip_reserve(iova
, iova_next
);
1285 /* Permissions are stacked with parents' */
1286 read_cur
= read
&& (slpte
& VTD_SL_R
);
1287 write_cur
= write
&& (slpte
& VTD_SL_W
);
1290 * As long as we have either read/write permission, this is a
1291 * valid entry. The rule works for both page entries and page
1294 entry_valid
= read_cur
| write_cur
;
1296 if (!vtd_is_last_slpte(slpte
, level
) && entry_valid
) {
1298 * This is a valid PDE (or even bigger than PDE). We need
1299 * to walk one further level.
1301 ret
= vtd_page_walk_level(vtd_get_slpte_addr(slpte
, info
->aw
),
1302 iova
, MIN(iova_next
, end
), level
- 1,
1303 read_cur
, write_cur
, info
);
1306 * This means we are either:
1308 * (1) the real page entry (either 4K page, or huge page)
1309 * (2) the whole range is invalid
1311 * In either case, we send an IOTLB notification down.
1313 event
.entry
.target_as
= &address_space_memory
;
1314 event
.entry
.iova
= iova
& subpage_mask
;
1315 event
.entry
.perm
= IOMMU_ACCESS_FLAG(read_cur
, write_cur
);
1316 event
.entry
.addr_mask
= ~subpage_mask
;
1317 /* NOTE: this is only meaningful if entry_valid == true */
1318 event
.entry
.translated_addr
= vtd_get_slpte_addr(slpte
, info
->aw
);
1319 event
.type
= event
.entry
.perm
? IOMMU_NOTIFIER_MAP
:
1320 IOMMU_NOTIFIER_UNMAP
;
1321 ret
= vtd_page_walk_one(&event
, info
);
1336 * vtd_page_walk - walk specific IOVA range, and call the hook
1338 * @s: intel iommu state
1339 * @ce: context entry to walk upon
1340 * @start: IOVA address to start the walk
1341 * @end: IOVA range end address (start <= addr < end)
1342 * @info: page walking information struct
1344 static int vtd_page_walk(IntelIOMMUState
*s
, VTDContextEntry
*ce
,
1345 uint64_t start
, uint64_t end
,
1346 vtd_page_walk_info
*info
,
1349 dma_addr_t addr
= vtd_get_iova_pgtbl_base(s
, ce
, pasid
);
1350 uint32_t level
= vtd_get_iova_level(s
, ce
, pasid
);
1352 if (!vtd_iova_range_check(s
, start
, ce
, info
->aw
, pasid
)) {
1353 return -VTD_FR_ADDR_BEYOND_MGAW
;
1356 if (!vtd_iova_range_check(s
, end
, ce
, info
->aw
, pasid
)) {
1357 /* Fix end so that it reaches the maximum */
1358 end
= vtd_iova_limit(s
, ce
, info
->aw
, pasid
);
1361 return vtd_page_walk_level(addr
, start
, end
, level
, true, true, info
);
1364 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState
*s
,
1367 /* Legacy Mode reserved bits check */
1368 if (!s
->root_scalable
&&
1369 (re
->hi
|| (re
->lo
& VTD_ROOT_ENTRY_RSVD(s
->aw_bits
))))
1372 /* Scalable Mode reserved bits check */
1373 if (s
->root_scalable
&&
1374 ((re
->lo
& VTD_ROOT_ENTRY_RSVD(s
->aw_bits
)) ||
1375 (re
->hi
& VTD_ROOT_ENTRY_RSVD(s
->aw_bits
))))
1381 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1383 __func__
, re
->hi
, re
->lo
);
1384 return -VTD_FR_ROOT_ENTRY_RSVD
;
1387 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState
*s
,
1388 VTDContextEntry
*ce
)
1390 if (!s
->root_scalable
&&
1391 (ce
->hi
& VTD_CONTEXT_ENTRY_RSVD_HI
||
1392 ce
->lo
& VTD_CONTEXT_ENTRY_RSVD_LO(s
->aw_bits
))) {
1393 error_report_once("%s: invalid context entry: hi=%"PRIx64
1394 ", lo=%"PRIx64
" (reserved nonzero)",
1395 __func__
, ce
->hi
, ce
->lo
);
1396 return -VTD_FR_CONTEXT_ENTRY_RSVD
;
1399 if (s
->root_scalable
&&
1400 (ce
->val
[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s
->aw_bits
) ||
1401 ce
->val
[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1
||
1404 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1407 ", val[0]=%"PRIx64
" (reserved nonzero)",
1408 __func__
, ce
->val
[3], ce
->val
[2],
1409 ce
->val
[1], ce
->val
[0]);
1410 return -VTD_FR_CONTEXT_ENTRY_RSVD
;
1416 static int vtd_ce_rid2pasid_check(IntelIOMMUState
*s
,
1417 VTDContextEntry
*ce
)
1422 * Make sure in Scalable Mode, a present context entry
1423 * has valid rid2pasid setting, which includes valid
1424 * rid2pasid field and corresponding pasid entry setting
1426 return vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
, PCI_NO_PASID
);
1429 /* Map a device to its corresponding domain (context-entry) */
1430 static int vtd_dev_to_context_entry(IntelIOMMUState
*s
, uint8_t bus_num
,
1431 uint8_t devfn
, VTDContextEntry
*ce
)
1435 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
1437 ret_fr
= vtd_get_root_entry(s
, bus_num
, &re
);
1442 if (!vtd_root_entry_present(s
, &re
, devfn
)) {
1443 /* Not error - it's okay we don't have root entry. */
1444 trace_vtd_re_not_present(bus_num
);
1445 return -VTD_FR_ROOT_ENTRY_P
;
1448 ret_fr
= vtd_root_entry_rsvd_bits_check(s
, &re
);
1453 ret_fr
= vtd_get_context_entry_from_root(s
, &re
, devfn
, ce
);
1458 if (!vtd_ce_present(ce
)) {
1459 /* Not error - it's okay we don't have context entry. */
1460 trace_vtd_ce_not_present(bus_num
, devfn
);
1461 return -VTD_FR_CONTEXT_ENTRY_P
;
1464 ret_fr
= vtd_context_entry_rsvd_bits_check(s
, ce
);
1469 /* Check if the programming of context-entry is valid */
1470 if (!s
->root_scalable
&&
1471 !vtd_is_level_supported(s
, vtd_ce_get_level(ce
))) {
1472 error_report_once("%s: invalid context entry: hi=%"PRIx64
1473 ", lo=%"PRIx64
" (level %d not supported)",
1474 __func__
, ce
->hi
, ce
->lo
,
1475 vtd_ce_get_level(ce
));
1476 return -VTD_FR_CONTEXT_ENTRY_INV
;
1479 if (!s
->root_scalable
) {
1480 /* Do translation type check */
1481 if (!vtd_ce_type_check(x86_iommu
, ce
)) {
1482 /* Errors dumped in vtd_ce_type_check() */
1483 return -VTD_FR_CONTEXT_ENTRY_INV
;
1487 * Check if the programming of context-entry.rid2pasid
1488 * and corresponding pasid setting is valid, and thus
1489 * avoids to check pasid entry fetching result in future
1490 * helper function calling.
1492 ret_fr
= vtd_ce_rid2pasid_check(s
, ce
);
1501 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent
*event
,
1504 memory_region_notify_iommu(private, 0, *event
);
1508 static uint16_t vtd_get_domain_id(IntelIOMMUState
*s
,
1509 VTDContextEntry
*ce
,
1514 if (s
->root_scalable
) {
1515 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
, pasid
);
1516 return VTD_SM_PASID_ENTRY_DID(pe
.val
[1]);
1519 return VTD_CONTEXT_ENTRY_DID(ce
->hi
);
1522 static int vtd_sync_shadow_page_table_range(VTDAddressSpace
*vtd_as
,
1523 VTDContextEntry
*ce
,
1524 hwaddr addr
, hwaddr size
)
1526 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
1527 vtd_page_walk_info info
= {
1528 .hook_fn
= vtd_sync_shadow_page_hook
,
1529 .private = (void *)&vtd_as
->iommu
,
1530 .notify_unmap
= true,
1533 .domain_id
= vtd_get_domain_id(s
, ce
, vtd_as
->pasid
),
1536 return vtd_page_walk(s
, ce
, addr
, addr
+ size
, &info
, vtd_as
->pasid
);
1539 static int vtd_address_space_sync(VTDAddressSpace
*vtd_as
)
1545 /* If no MAP notifier registered, we simply invalidate all the cache */
1546 if (!vtd_as_has_map_notifier(vtd_as
)) {
1547 IOMMU_NOTIFIER_FOREACH(n
, &vtd_as
->iommu
) {
1548 memory_region_unmap_iommu_notifier_range(n
);
1553 ret
= vtd_dev_to_context_entry(vtd_as
->iommu_state
,
1554 pci_bus_num(vtd_as
->bus
),
1555 vtd_as
->devfn
, &ce
);
1557 if (ret
== -VTD_FR_CONTEXT_ENTRY_P
) {
1559 * It's a valid scenario to have a context entry that is
1560 * not present. For example, when a device is removed
1561 * from an existing domain then the context entry will be
1562 * zeroed by the guest before it was put into another
1563 * domain. When this happens, instead of synchronizing
1564 * the shadow pages we should invalidate all existing
1565 * mappings and notify the backends.
1567 IOMMU_NOTIFIER_FOREACH(n
, &vtd_as
->iommu
) {
1568 vtd_address_space_unmap(vtd_as
, n
);
1575 return vtd_sync_shadow_page_table_range(vtd_as
, &ce
, 0, UINT64_MAX
);
1579 * Check if specific device is configured to bypass address
1580 * translation for DMA requests. In Scalable Mode, bypass
1581 * 1st-level translation or 2nd-level translation, it depends
1584 static bool vtd_dev_pt_enabled(IntelIOMMUState
*s
, VTDContextEntry
*ce
,
1590 if (s
->root_scalable
) {
1591 ret
= vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
, pasid
);
1594 * This error is guest triggerable. We should assumt PT
1595 * not enabled for safety.
1599 return (VTD_PE_GET_TYPE(&pe
) == VTD_SM_PASID_ENTRY_PT
);
1602 return (vtd_ce_get_type(ce
) == VTD_CONTEXT_TT_PASS_THROUGH
);
1606 static bool vtd_as_pt_enabled(VTDAddressSpace
*as
)
1613 s
= as
->iommu_state
;
1614 if (vtd_dev_to_context_entry(s
, pci_bus_num(as
->bus
), as
->devfn
,
1617 * Possibly failed to parse the context entry for some reason
1618 * (e.g., during init, or any guest configuration errors on
1619 * context entries). We should assume PT not enabled for
1625 return vtd_dev_pt_enabled(s
, &ce
, as
->pasid
);
1628 /* Return whether the device is using IOMMU translation. */
1629 static bool vtd_switch_address_space(VTDAddressSpace
*as
)
1632 /* Whether we need to take the BQL on our own */
1633 bool take_bql
= !qemu_mutex_iothread_locked();
1637 use_iommu
= as
->iommu_state
->dmar_enabled
&& !vtd_as_pt_enabled(as
);
1638 pt
= as
->iommu_state
->dmar_enabled
&& vtd_as_pt_enabled(as
);
1640 trace_vtd_switch_address_space(pci_bus_num(as
->bus
),
1641 VTD_PCI_SLOT(as
->devfn
),
1642 VTD_PCI_FUNC(as
->devfn
),
1646 * It's possible that we reach here without BQL, e.g., when called
1647 * from vtd_pt_enable_fast_path(). However the memory APIs need
1648 * it. We'd better make sure we have had it already, or, take it.
1651 qemu_mutex_lock_iothread();
1654 /* Turn off first then on the other */
1656 memory_region_set_enabled(&as
->nodmar
, false);
1657 memory_region_set_enabled(MEMORY_REGION(&as
->iommu
), true);
1659 * vt-d spec v3.4 3.14:
1662 * Requests-with-PASID with input address in range 0xFEEx_xxxx
1663 * are translated normally like any other request-with-PASID
1664 * through DMA-remapping hardware.
1667 * Need to disable ir for as with PASID.
1669 if (as
->pasid
!= PCI_NO_PASID
) {
1670 memory_region_set_enabled(&as
->iommu_ir
, false);
1672 memory_region_set_enabled(&as
->iommu_ir
, true);
1675 memory_region_set_enabled(MEMORY_REGION(&as
->iommu
), false);
1676 memory_region_set_enabled(&as
->nodmar
, true);
1680 * vtd-spec v3.4 3.14:
1683 * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1684 * translated normally like any other request-with-PASID through
1685 * DMA-remapping hardware. However, if such a request is processed
1686 * using pass-through translation, it will be blocked as described
1687 * in the paragraph below.
1689 * Software must not program paging-structure entries to remap any
1690 * address to the interrupt address range. Untranslated requests
1691 * and translation requests that result in an address in the
1692 * interrupt range will be blocked with condition code LGN.4 or
1696 * We enable per as memory region (iommu_ir_fault) for catching
1697 * the tranlsation for interrupt range through PASID + PT.
1699 if (pt
&& as
->pasid
!= PCI_NO_PASID
) {
1700 memory_region_set_enabled(&as
->iommu_ir_fault
, true);
1702 memory_region_set_enabled(&as
->iommu_ir_fault
, false);
1706 qemu_mutex_unlock_iothread();
1712 static void vtd_switch_address_space_all(IntelIOMMUState
*s
)
1714 VTDAddressSpace
*vtd_as
;
1715 GHashTableIter iter
;
1717 g_hash_table_iter_init(&iter
, s
->vtd_address_spaces
);
1718 while (g_hash_table_iter_next(&iter
, NULL
, (void **)&vtd_as
)) {
1719 vtd_switch_address_space(vtd_as
);
1723 static const bool vtd_qualified_faults
[] = {
1724 [VTD_FR_RESERVED
] = false,
1725 [VTD_FR_ROOT_ENTRY_P
] = false,
1726 [VTD_FR_CONTEXT_ENTRY_P
] = true,
1727 [VTD_FR_CONTEXT_ENTRY_INV
] = true,
1728 [VTD_FR_ADDR_BEYOND_MGAW
] = true,
1729 [VTD_FR_WRITE
] = true,
1730 [VTD_FR_READ
] = true,
1731 [VTD_FR_PAGING_ENTRY_INV
] = true,
1732 [VTD_FR_ROOT_TABLE_INV
] = false,
1733 [VTD_FR_CONTEXT_TABLE_INV
] = false,
1734 [VTD_FR_INTERRUPT_ADDR
] = true,
1735 [VTD_FR_ROOT_ENTRY_RSVD
] = false,
1736 [VTD_FR_PAGING_ENTRY_RSVD
] = true,
1737 [VTD_FR_CONTEXT_ENTRY_TT
] = true,
1738 [VTD_FR_PASID_TABLE_INV
] = false,
1739 [VTD_FR_SM_INTERRUPT_ADDR
] = true,
1740 [VTD_FR_MAX
] = false,
1743 /* To see if a fault condition is "qualified", which is reported to software
1744 * only if the FPD field in the context-entry used to process the faulting
1747 static inline bool vtd_is_qualified_fault(VTDFaultReason fault
)
1749 return vtd_qualified_faults
[fault
];
1752 static inline bool vtd_is_interrupt_addr(hwaddr addr
)
1754 return VTD_INTERRUPT_ADDR_FIRST
<= addr
&& addr
<= VTD_INTERRUPT_ADDR_LAST
;
1757 static gboolean
vtd_find_as_by_sid(gpointer key
, gpointer value
,
1760 struct vtd_as_key
*as_key
= (struct vtd_as_key
*)key
;
1761 uint16_t target_sid
= *(uint16_t *)user_data
;
1762 uint16_t sid
= PCI_BUILD_BDF(pci_bus_num(as_key
->bus
), as_key
->devfn
);
1763 return sid
== target_sid
;
1766 static VTDAddressSpace
*vtd_get_as_by_sid(IntelIOMMUState
*s
, uint16_t sid
)
1768 uint8_t bus_num
= PCI_BUS_NUM(sid
);
1769 VTDAddressSpace
*vtd_as
= s
->vtd_as_cache
[bus_num
];
1772 (sid
== PCI_BUILD_BDF(pci_bus_num(vtd_as
->bus
), vtd_as
->devfn
))) {
1776 vtd_as
= g_hash_table_find(s
->vtd_address_spaces
, vtd_find_as_by_sid
, &sid
);
1777 s
->vtd_as_cache
[bus_num
] = vtd_as
;
1782 static void vtd_pt_enable_fast_path(IntelIOMMUState
*s
, uint16_t source_id
)
1784 VTDAddressSpace
*vtd_as
;
1785 bool success
= false;
1787 vtd_as
= vtd_get_as_by_sid(s
, source_id
);
1792 if (vtd_switch_address_space(vtd_as
) == false) {
1793 /* We switched off IOMMU region successfully. */
1798 trace_vtd_pt_enable_fast_path(source_id
, success
);
1801 static void vtd_report_fault(IntelIOMMUState
*s
,
1802 int err
, bool is_fpd_set
,
1809 if (is_fpd_set
&& vtd_is_qualified_fault(err
)) {
1810 trace_vtd_fault_disabled();
1812 vtd_report_dmar_fault(s
, source_id
, addr
, err
, is_write
,
1817 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1820 * Called from RCU critical section.
1822 * @bus_num: The bus number
1823 * @devfn: The devfn, which is the combined of device and function number
1824 * @is_write: The access is a write operation
1825 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1827 * Returns true if translation is successful, otherwise false.
1829 static bool vtd_do_iommu_translate(VTDAddressSpace
*vtd_as
, PCIBus
*bus
,
1830 uint8_t devfn
, hwaddr addr
, bool is_write
,
1831 IOMMUTLBEntry
*entry
)
1833 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
1835 uint8_t bus_num
= pci_bus_num(bus
);
1836 VTDContextCacheEntry
*cc_entry
;
1837 uint64_t slpte
, page_mask
;
1838 uint32_t level
, pasid
= vtd_as
->pasid
;
1839 uint16_t source_id
= PCI_BUILD_BDF(bus_num
, devfn
);
1841 bool is_fpd_set
= false;
1844 uint8_t access_flags
;
1845 bool rid2pasid
= (pasid
== PCI_NO_PASID
) && s
->root_scalable
;
1846 VTDIOTLBEntry
*iotlb_entry
;
1849 * We have standalone memory region for interrupt addresses, we
1850 * should never receive translation requests in this region.
1852 assert(!vtd_is_interrupt_addr(addr
));
1856 cc_entry
= &vtd_as
->context_cache_entry
;
1858 /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
1860 iotlb_entry
= vtd_lookup_iotlb(s
, source_id
, pasid
, addr
);
1862 trace_vtd_iotlb_page_hit(source_id
, addr
, iotlb_entry
->slpte
,
1863 iotlb_entry
->domain_id
);
1864 slpte
= iotlb_entry
->slpte
;
1865 access_flags
= iotlb_entry
->access_flags
;
1866 page_mask
= iotlb_entry
->mask
;
1871 /* Try to fetch context-entry from cache first */
1872 if (cc_entry
->context_cache_gen
== s
->context_cache_gen
) {
1873 trace_vtd_iotlb_cc_hit(bus_num
, devfn
, cc_entry
->context_entry
.hi
,
1874 cc_entry
->context_entry
.lo
,
1875 cc_entry
->context_cache_gen
);
1876 ce
= cc_entry
->context_entry
;
1877 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
1878 if (!is_fpd_set
&& s
->root_scalable
) {
1879 ret_fr
= vtd_ce_get_pasid_fpd(s
, &ce
, &is_fpd_set
, pasid
);
1881 vtd_report_fault(s
, -ret_fr
, is_fpd_set
,
1882 source_id
, addr
, is_write
,
1888 ret_fr
= vtd_dev_to_context_entry(s
, bus_num
, devfn
, &ce
);
1889 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
1890 if (!ret_fr
&& !is_fpd_set
&& s
->root_scalable
) {
1891 ret_fr
= vtd_ce_get_pasid_fpd(s
, &ce
, &is_fpd_set
, pasid
);
1894 vtd_report_fault(s
, -ret_fr
, is_fpd_set
,
1895 source_id
, addr
, is_write
,
1899 /* Update context-cache */
1900 trace_vtd_iotlb_cc_update(bus_num
, devfn
, ce
.hi
, ce
.lo
,
1901 cc_entry
->context_cache_gen
,
1902 s
->context_cache_gen
);
1903 cc_entry
->context_entry
= ce
;
1904 cc_entry
->context_cache_gen
= s
->context_cache_gen
;
1908 pasid
= VTD_CE_GET_RID2PASID(&ce
);
1912 * We don't need to translate for pass-through context entries.
1913 * Also, let's ignore IOTLB caching as well for PT devices.
1915 if (vtd_dev_pt_enabled(s
, &ce
, pasid
)) {
1916 entry
->iova
= addr
& VTD_PAGE_MASK_4K
;
1917 entry
->translated_addr
= entry
->iova
;
1918 entry
->addr_mask
= ~VTD_PAGE_MASK_4K
;
1919 entry
->perm
= IOMMU_RW
;
1920 trace_vtd_translate_pt(source_id
, entry
->iova
);
1923 * When this happens, it means firstly caching-mode is not
1924 * enabled, and this is the first passthrough translation for
1925 * the device. Let's enable the fast path for passthrough.
1927 * When passthrough is disabled again for the device, we can
1928 * capture it via the context entry invalidation, then the
1929 * IOMMU region can be swapped back.
1931 vtd_pt_enable_fast_path(s
, source_id
);
1932 vtd_iommu_unlock(s
);
1936 /* Try to fetch slpte form IOTLB for RID2PASID slow path */
1938 iotlb_entry
= vtd_lookup_iotlb(s
, source_id
, pasid
, addr
);
1940 trace_vtd_iotlb_page_hit(source_id
, addr
, iotlb_entry
->slpte
,
1941 iotlb_entry
->domain_id
);
1942 slpte
= iotlb_entry
->slpte
;
1943 access_flags
= iotlb_entry
->access_flags
;
1944 page_mask
= iotlb_entry
->mask
;
1949 ret_fr
= vtd_iova_to_slpte(s
, &ce
, addr
, is_write
, &slpte
, &level
,
1950 &reads
, &writes
, s
->aw_bits
, pasid
);
1952 vtd_report_fault(s
, -ret_fr
, is_fpd_set
, source_id
,
1953 addr
, is_write
, pasid
!= PCI_NO_PASID
, pasid
);
1957 page_mask
= vtd_slpt_level_page_mask(level
);
1958 access_flags
= IOMMU_ACCESS_FLAG(reads
, writes
);
1959 vtd_update_iotlb(s
, source_id
, vtd_get_domain_id(s
, &ce
, pasid
),
1960 addr
, slpte
, access_flags
, level
, pasid
);
1962 vtd_iommu_unlock(s
);
1963 entry
->iova
= addr
& page_mask
;
1964 entry
->translated_addr
= vtd_get_slpte_addr(slpte
, s
->aw_bits
) & page_mask
;
1965 entry
->addr_mask
= ~page_mask
;
1966 entry
->perm
= access_flags
;
1970 vtd_iommu_unlock(s
);
1972 entry
->translated_addr
= 0;
1973 entry
->addr_mask
= 0;
1974 entry
->perm
= IOMMU_NONE
;
1978 static void vtd_root_table_setup(IntelIOMMUState
*s
)
1980 s
->root
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
1981 s
->root
&= VTD_RTADDR_ADDR_MASK(s
->aw_bits
);
1983 vtd_update_scalable_state(s
);
1985 trace_vtd_reg_dmar_root(s
->root
, s
->root_scalable
);
1988 static void vtd_iec_notify_all(IntelIOMMUState
*s
, bool global
,
1989 uint32_t index
, uint32_t mask
)
1991 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s
), global
, index
, mask
);
1994 static void vtd_interrupt_remap_table_setup(IntelIOMMUState
*s
)
1997 value
= vtd_get_quad_raw(s
, DMAR_IRTA_REG
);
1998 s
->intr_size
= 1UL << ((value
& VTD_IRTA_SIZE_MASK
) + 1);
1999 s
->intr_root
= value
& VTD_IRTA_ADDR_MASK(s
->aw_bits
);
2000 s
->intr_eime
= value
& VTD_IRTA_EIME
;
2002 /* Notify global invalidation */
2003 vtd_iec_notify_all(s
, true, 0, 0);
2005 trace_vtd_reg_ir_root(s
->intr_root
, s
->intr_size
);
2008 static void vtd_iommu_replay_all(IntelIOMMUState
*s
)
2010 VTDAddressSpace
*vtd_as
;
2012 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
2013 vtd_address_space_sync(vtd_as
);
2017 static void vtd_context_global_invalidate(IntelIOMMUState
*s
)
2019 trace_vtd_inv_desc_cc_global();
2020 /* Protects context cache */
2022 s
->context_cache_gen
++;
2023 if (s
->context_cache_gen
== VTD_CONTEXT_CACHE_GEN_MAX
) {
2024 vtd_reset_context_cache_locked(s
);
2026 vtd_iommu_unlock(s
);
2027 vtd_address_space_refresh_all(s
);
2029 * From VT-d spec 6.5.2.1, a global context entry invalidation
2030 * should be followed by a IOTLB global invalidation, so we should
2031 * be safe even without this. Hoewever, let's replay the region as
2032 * well to be safer, and go back here when we need finer tunes for
2033 * VT-d emulation codes.
2035 vtd_iommu_replay_all(s
);
2038 /* Do a context-cache device-selective invalidation.
2039 * @func_mask: FM field after shifting
2041 static void vtd_context_device_invalidate(IntelIOMMUState
*s
,
2045 GHashTableIter as_it
;
2047 VTDAddressSpace
*vtd_as
;
2048 uint8_t bus_n
, devfn
;
2050 trace_vtd_inv_desc_cc_devices(source_id
, func_mask
);
2052 switch (func_mask
& 3) {
2054 mask
= 0; /* No bits in the SID field masked */
2057 mask
= 4; /* Mask bit 2 in the SID field */
2060 mask
= 6; /* Mask bit 2:1 in the SID field */
2063 mask
= 7; /* Mask bit 2:0 in the SID field */
2066 g_assert_not_reached();
2070 bus_n
= VTD_SID_TO_BUS(source_id
);
2071 devfn
= VTD_SID_TO_DEVFN(source_id
);
2073 g_hash_table_iter_init(&as_it
, s
->vtd_address_spaces
);
2074 while (g_hash_table_iter_next(&as_it
, NULL
, (void **)&vtd_as
)) {
2075 if ((pci_bus_num(vtd_as
->bus
) == bus_n
) &&
2076 (vtd_as
->devfn
& mask
) == (devfn
& mask
)) {
2077 trace_vtd_inv_desc_cc_device(bus_n
, VTD_PCI_SLOT(vtd_as
->devfn
),
2078 VTD_PCI_FUNC(vtd_as
->devfn
));
2080 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
2081 vtd_iommu_unlock(s
);
2083 * Do switch address space when needed, in case if the
2084 * device passthrough bit is switched.
2086 vtd_switch_address_space(vtd_as
);
2088 * So a device is moving out of (or moving into) a
2089 * domain, resync the shadow page table.
2090 * This won't bring bad even if we have no such
2091 * notifier registered - the IOMMU notification
2092 * framework will skip MAP notifications if that
2095 vtd_address_space_sync(vtd_as
);
2100 /* Context-cache invalidation
2101 * Returns the Context Actual Invalidation Granularity.
2102 * @val: the content of the CCMD_REG
2104 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState
*s
, uint64_t val
)
2107 uint64_t type
= val
& VTD_CCMD_CIRG_MASK
;
2110 case VTD_CCMD_DOMAIN_INVL
:
2112 case VTD_CCMD_GLOBAL_INVL
:
2113 caig
= VTD_CCMD_GLOBAL_INVL_A
;
2114 vtd_context_global_invalidate(s
);
2117 case VTD_CCMD_DEVICE_INVL
:
2118 caig
= VTD_CCMD_DEVICE_INVL_A
;
2119 vtd_context_device_invalidate(s
, VTD_CCMD_SID(val
), VTD_CCMD_FM(val
));
2123 error_report_once("%s: invalid context: 0x%" PRIx64
,
2130 static void vtd_iotlb_global_invalidate(IntelIOMMUState
*s
)
2132 trace_vtd_inv_desc_iotlb_global();
2134 vtd_iommu_replay_all(s
);
2137 static void vtd_iotlb_domain_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
)
2140 VTDAddressSpace
*vtd_as
;
2142 trace_vtd_inv_desc_iotlb_domain(domain_id
);
2145 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_domain
,
2147 vtd_iommu_unlock(s
);
2149 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
2150 if (!vtd_dev_to_context_entry(s
, pci_bus_num(vtd_as
->bus
),
2151 vtd_as
->devfn
, &ce
) &&
2152 domain_id
== vtd_get_domain_id(s
, &ce
, vtd_as
->pasid
)) {
2153 vtd_address_space_sync(vtd_as
);
2158 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState
*s
,
2159 uint16_t domain_id
, hwaddr addr
,
2160 uint8_t am
, uint32_t pasid
)
2162 VTDAddressSpace
*vtd_as
;
2165 hwaddr size
= (1 << am
) * VTD_PAGE_SIZE
;
2167 QLIST_FOREACH(vtd_as
, &(s
->vtd_as_with_notifiers
), next
) {
2168 if (pasid
!= PCI_NO_PASID
&& pasid
!= vtd_as
->pasid
) {
2171 ret
= vtd_dev_to_context_entry(s
, pci_bus_num(vtd_as
->bus
),
2172 vtd_as
->devfn
, &ce
);
2173 if (!ret
&& domain_id
== vtd_get_domain_id(s
, &ce
, vtd_as
->pasid
)) {
2174 if (vtd_as_has_map_notifier(vtd_as
)) {
2176 * As long as we have MAP notifications registered in
2177 * any of our IOMMU notifiers, we need to sync the
2178 * shadow page table.
2180 vtd_sync_shadow_page_table_range(vtd_as
, &ce
, addr
, size
);
2183 * For UNMAP-only notifiers, we don't need to walk the
2184 * page tables. We just deliver the PSI down to
2185 * invalidate caches.
2187 IOMMUTLBEvent event
= {
2188 .type
= IOMMU_NOTIFIER_UNMAP
,
2190 .target_as
= &address_space_memory
,
2192 .translated_addr
= 0,
2193 .addr_mask
= size
- 1,
2197 memory_region_notify_iommu(&vtd_as
->iommu
, 0, event
);
2203 static void vtd_iotlb_page_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
,
2204 hwaddr addr
, uint8_t am
)
2206 VTDIOTLBPageInvInfo info
;
2208 trace_vtd_inv_desc_iotlb_pages(domain_id
, addr
, am
);
2210 assert(am
<= VTD_MAMV
);
2211 info
.domain_id
= domain_id
;
2213 info
.mask
= ~((1 << am
) - 1);
2215 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_page
, &info
);
2216 vtd_iommu_unlock(s
);
2217 vtd_iotlb_page_invalidate_notify(s
, domain_id
, addr
, am
, PCI_NO_PASID
);
2221 * Returns the IOTLB Actual Invalidation Granularity.
2222 * @val: the content of the IOTLB_REG
2224 static uint64_t vtd_iotlb_flush(IntelIOMMUState
*s
, uint64_t val
)
2227 uint64_t type
= val
& VTD_TLB_FLUSH_GRANU_MASK
;
2233 case VTD_TLB_GLOBAL_FLUSH
:
2234 iaig
= VTD_TLB_GLOBAL_FLUSH_A
;
2235 vtd_iotlb_global_invalidate(s
);
2238 case VTD_TLB_DSI_FLUSH
:
2239 domain_id
= VTD_TLB_DID(val
);
2240 iaig
= VTD_TLB_DSI_FLUSH_A
;
2241 vtd_iotlb_domain_invalidate(s
, domain_id
);
2244 case VTD_TLB_PSI_FLUSH
:
2245 domain_id
= VTD_TLB_DID(val
);
2246 addr
= vtd_get_quad_raw(s
, DMAR_IVA_REG
);
2247 am
= VTD_IVA_AM(addr
);
2248 addr
= VTD_IVA_ADDR(addr
);
2249 if (am
> VTD_MAMV
) {
2250 error_report_once("%s: address mask overflow: 0x%" PRIx64
,
2251 __func__
, vtd_get_quad_raw(s
, DMAR_IVA_REG
));
2255 iaig
= VTD_TLB_PSI_FLUSH_A
;
2256 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
2260 error_report_once("%s: invalid granularity: 0x%" PRIx64
,
2267 static void vtd_fetch_inv_desc(IntelIOMMUState
*s
);
2269 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState
*s
)
2271 return s
->qi_enabled
&& (s
->iq_tail
== s
->iq_head
) &&
2272 (s
->iq_last_desc_type
== VTD_INV_DESC_WAIT
);
2275 static void vtd_handle_gcmd_qie(IntelIOMMUState
*s
, bool en
)
2277 uint64_t iqa_val
= vtd_get_quad_raw(s
, DMAR_IQA_REG
);
2279 trace_vtd_inv_qi_enable(en
);
2282 s
->iq
= iqa_val
& VTD_IQA_IQA_MASK(s
->aw_bits
);
2283 /* 2^(x+8) entries */
2284 s
->iq_size
= 1UL << ((iqa_val
& VTD_IQA_QS
) + 8 - (s
->iq_dw
? 1 : 0));
2285 s
->qi_enabled
= true;
2286 trace_vtd_inv_qi_setup(s
->iq
, s
->iq_size
);
2287 /* Ok - report back to driver */
2288 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_QIES
);
2290 if (s
->iq_tail
!= 0) {
2292 * This is a spec violation but Windows guests are known to set up
2293 * Queued Invalidation this way so we allow the write and process
2294 * Invalidation Descriptors right away.
2296 trace_vtd_warn_invalid_qi_tail(s
->iq_tail
);
2297 if (!(vtd_get_long_raw(s
, DMAR_FSTS_REG
) & VTD_FSTS_IQE
)) {
2298 vtd_fetch_inv_desc(s
);
2302 if (vtd_queued_inv_disable_check(s
)) {
2303 /* disable Queued Invalidation */
2304 vtd_set_quad_raw(s
, DMAR_IQH_REG
, 0);
2306 s
->qi_enabled
= false;
2307 /* Ok - report back to driver */
2308 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_QIES
, 0);
2310 error_report_once("%s: detected improper state when disable QI "
2311 "(head=0x%x, tail=0x%x, last_type=%d)",
2313 s
->iq_head
, s
->iq_tail
, s
->iq_last_desc_type
);
2318 /* Set Root Table Pointer */
2319 static void vtd_handle_gcmd_srtp(IntelIOMMUState
*s
)
2321 vtd_root_table_setup(s
);
2322 /* Ok - report back to driver */
2323 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_RTPS
);
2324 vtd_reset_caches(s
);
2325 vtd_address_space_refresh_all(s
);
2328 /* Set Interrupt Remap Table Pointer */
2329 static void vtd_handle_gcmd_sirtp(IntelIOMMUState
*s
)
2331 vtd_interrupt_remap_table_setup(s
);
2332 /* Ok - report back to driver */
2333 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_IRTPS
);
2336 /* Handle Translation Enable/Disable */
2337 static void vtd_handle_gcmd_te(IntelIOMMUState
*s
, bool en
)
2339 if (s
->dmar_enabled
== en
) {
2343 trace_vtd_dmar_enable(en
);
2346 s
->dmar_enabled
= true;
2347 /* Ok - report back to driver */
2348 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_TES
);
2350 s
->dmar_enabled
= false;
2352 /* Clear the index of Fault Recording Register */
2353 s
->next_frcd_reg
= 0;
2354 /* Ok - report back to driver */
2355 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_TES
, 0);
2358 vtd_reset_caches(s
);
2359 vtd_address_space_refresh_all(s
);
2362 /* Handle Interrupt Remap Enable/Disable */
2363 static void vtd_handle_gcmd_ire(IntelIOMMUState
*s
, bool en
)
2365 trace_vtd_ir_enable(en
);
2368 s
->intr_enabled
= true;
2369 /* Ok - report back to driver */
2370 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_IRES
);
2372 s
->intr_enabled
= false;
2373 /* Ok - report back to driver */
2374 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_IRES
, 0);
2378 /* Handle write to Global Command Register */
2379 static void vtd_handle_gcmd_write(IntelIOMMUState
*s
)
2381 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
2382 uint32_t status
= vtd_get_long_raw(s
, DMAR_GSTS_REG
);
2383 uint32_t val
= vtd_get_long_raw(s
, DMAR_GCMD_REG
);
2384 uint32_t changed
= status
^ val
;
2386 trace_vtd_reg_write_gcmd(status
, val
);
2387 if ((changed
& VTD_GCMD_TE
) && s
->dma_translation
) {
2388 /* Translation enable/disable */
2389 vtd_handle_gcmd_te(s
, val
& VTD_GCMD_TE
);
2391 if (val
& VTD_GCMD_SRTP
) {
2392 /* Set/update the root-table pointer */
2393 vtd_handle_gcmd_srtp(s
);
2395 if (changed
& VTD_GCMD_QIE
) {
2396 /* Queued Invalidation Enable */
2397 vtd_handle_gcmd_qie(s
, val
& VTD_GCMD_QIE
);
2399 if (val
& VTD_GCMD_SIRTP
) {
2400 /* Set/update the interrupt remapping root-table pointer */
2401 vtd_handle_gcmd_sirtp(s
);
2403 if ((changed
& VTD_GCMD_IRE
) &&
2404 x86_iommu_ir_supported(x86_iommu
)) {
2405 /* Interrupt remap enable/disable */
2406 vtd_handle_gcmd_ire(s
, val
& VTD_GCMD_IRE
);
2410 /* Handle write to Context Command Register */
2411 static void vtd_handle_ccmd_write(IntelIOMMUState
*s
)
2414 uint64_t val
= vtd_get_quad_raw(s
, DMAR_CCMD_REG
);
2416 /* Context-cache invalidation request */
2417 if (val
& VTD_CCMD_ICC
) {
2418 if (s
->qi_enabled
) {
2419 error_report_once("Queued Invalidation enabled, "
2420 "should not use register-based invalidation");
2423 ret
= vtd_context_cache_invalidate(s
, val
);
2424 /* Invalidation completed. Change something to show */
2425 vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_ICC
, 0ULL);
2426 ret
= vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_CAIG_MASK
,
2431 /* Handle write to IOTLB Invalidation Register */
2432 static void vtd_handle_iotlb_write(IntelIOMMUState
*s
)
2435 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IOTLB_REG
);
2437 /* IOTLB invalidation request */
2438 if (val
& VTD_TLB_IVT
) {
2439 if (s
->qi_enabled
) {
2440 error_report_once("Queued Invalidation enabled, "
2441 "should not use register-based invalidation");
2444 ret
= vtd_iotlb_flush(s
, val
);
2445 /* Invalidation completed. Change something to show */
2446 vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
, VTD_TLB_IVT
, 0ULL);
2447 ret
= vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
,
2448 VTD_TLB_FLUSH_GRANU_MASK_A
, ret
);
2452 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2453 static bool vtd_get_inv_desc(IntelIOMMUState
*s
,
2454 VTDInvDesc
*inv_desc
)
2456 dma_addr_t base_addr
= s
->iq
;
2457 uint32_t offset
= s
->iq_head
;
2458 uint32_t dw
= s
->iq_dw
? 32 : 16;
2459 dma_addr_t addr
= base_addr
+ offset
* dw
;
2461 if (dma_memory_read(&address_space_memory
, addr
,
2462 inv_desc
, dw
, MEMTXATTRS_UNSPECIFIED
)) {
2463 error_report_once("Read INV DESC failed.");
2466 inv_desc
->lo
= le64_to_cpu(inv_desc
->lo
);
2467 inv_desc
->hi
= le64_to_cpu(inv_desc
->hi
);
2469 inv_desc
->val
[2] = le64_to_cpu(inv_desc
->val
[2]);
2470 inv_desc
->val
[3] = le64_to_cpu(inv_desc
->val
[3]);
2475 static bool vtd_process_wait_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
2477 if ((inv_desc
->hi
& VTD_INV_DESC_WAIT_RSVD_HI
) ||
2478 (inv_desc
->lo
& VTD_INV_DESC_WAIT_RSVD_LO
)) {
2479 error_report_once("%s: invalid wait desc: hi=%"PRIx64
", lo=%"PRIx64
2480 " (reserved nonzero)", __func__
, inv_desc
->hi
,
2484 if (inv_desc
->lo
& VTD_INV_DESC_WAIT_SW
) {
2486 uint32_t status_data
= (uint32_t)(inv_desc
->lo
>>
2487 VTD_INV_DESC_WAIT_DATA_SHIFT
);
2489 assert(!(inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
));
2491 /* FIXME: need to be masked with HAW? */
2492 dma_addr_t status_addr
= inv_desc
->hi
;
2493 trace_vtd_inv_desc_wait_sw(status_addr
, status_data
);
2494 status_data
= cpu_to_le32(status_data
);
2495 if (dma_memory_write(&address_space_memory
, status_addr
,
2496 &status_data
, sizeof(status_data
),
2497 MEMTXATTRS_UNSPECIFIED
)) {
2498 trace_vtd_inv_desc_wait_write_fail(inv_desc
->hi
, inv_desc
->lo
);
2501 } else if (inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
) {
2502 /* Interrupt flag */
2503 vtd_generate_completion_event(s
);
2505 error_report_once("%s: invalid wait desc: hi=%"PRIx64
", lo=%"PRIx64
2506 " (unknown type)", __func__
, inv_desc
->hi
,
2513 static bool vtd_process_context_cache_desc(IntelIOMMUState
*s
,
2514 VTDInvDesc
*inv_desc
)
2516 uint16_t sid
, fmask
;
2518 if ((inv_desc
->lo
& VTD_INV_DESC_CC_RSVD
) || inv_desc
->hi
) {
2519 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64
", lo=%"PRIx64
2520 " (reserved nonzero)", __func__
, inv_desc
->hi
,
2524 switch (inv_desc
->lo
& VTD_INV_DESC_CC_G
) {
2525 case VTD_INV_DESC_CC_DOMAIN
:
2526 trace_vtd_inv_desc_cc_domain(
2527 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc
->lo
));
2529 case VTD_INV_DESC_CC_GLOBAL
:
2530 vtd_context_global_invalidate(s
);
2533 case VTD_INV_DESC_CC_DEVICE
:
2534 sid
= VTD_INV_DESC_CC_SID(inv_desc
->lo
);
2535 fmask
= VTD_INV_DESC_CC_FM(inv_desc
->lo
);
2536 vtd_context_device_invalidate(s
, sid
, fmask
);
2540 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64
", lo=%"PRIx64
2541 " (invalid type)", __func__
, inv_desc
->hi
,
2548 static bool vtd_process_iotlb_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
2554 if ((inv_desc
->lo
& VTD_INV_DESC_IOTLB_RSVD_LO
) ||
2555 (inv_desc
->hi
& VTD_INV_DESC_IOTLB_RSVD_HI
)) {
2556 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2557 ", lo=0x%"PRIx64
" (reserved bits unzero)",
2558 __func__
, inv_desc
->hi
, inv_desc
->lo
);
2562 switch (inv_desc
->lo
& VTD_INV_DESC_IOTLB_G
) {
2563 case VTD_INV_DESC_IOTLB_GLOBAL
:
2564 vtd_iotlb_global_invalidate(s
);
2567 case VTD_INV_DESC_IOTLB_DOMAIN
:
2568 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
2569 vtd_iotlb_domain_invalidate(s
, domain_id
);
2572 case VTD_INV_DESC_IOTLB_PAGE
:
2573 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
2574 addr
= VTD_INV_DESC_IOTLB_ADDR(inv_desc
->hi
);
2575 am
= VTD_INV_DESC_IOTLB_AM(inv_desc
->hi
);
2576 if (am
> VTD_MAMV
) {
2577 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2578 ", lo=0x%"PRIx64
" (am=%u > VTD_MAMV=%u)",
2579 __func__
, inv_desc
->hi
, inv_desc
->lo
,
2580 am
, (unsigned)VTD_MAMV
);
2583 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
2587 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2588 ", lo=0x%"PRIx64
" (type mismatch: 0x%llx)",
2589 __func__
, inv_desc
->hi
, inv_desc
->lo
,
2590 inv_desc
->lo
& VTD_INV_DESC_IOTLB_G
);
2596 static bool vtd_process_inv_iec_desc(IntelIOMMUState
*s
,
2597 VTDInvDesc
*inv_desc
)
2599 trace_vtd_inv_desc_iec(inv_desc
->iec
.granularity
,
2600 inv_desc
->iec
.index
,
2601 inv_desc
->iec
.index_mask
);
2603 vtd_iec_notify_all(s
, !inv_desc
->iec
.granularity
,
2604 inv_desc
->iec
.index
,
2605 inv_desc
->iec
.index_mask
);
2609 static bool vtd_process_device_iotlb_desc(IntelIOMMUState
*s
,
2610 VTDInvDesc
*inv_desc
)
2612 VTDAddressSpace
*vtd_dev_as
;
2613 IOMMUTLBEvent event
;
2619 addr
= VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc
->hi
);
2620 sid
= VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc
->lo
);
2621 size
= VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc
->hi
);
2623 if ((inv_desc
->lo
& VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO
) ||
2624 (inv_desc
->hi
& VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI
)) {
2625 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2626 ", lo=%"PRIx64
" (reserved nonzero)", __func__
,
2627 inv_desc
->hi
, inv_desc
->lo
);
2632 * Using sid is OK since the guest should have finished the
2633 * initialization of both the bus and device.
2635 vtd_dev_as
= vtd_get_as_by_sid(s
, sid
);
2640 /* According to ATS spec table 2.4:
2641 * S = 0, bits 15:12 = xxxx range size: 4K
2642 * S = 1, bits 15:12 = xxx0 range size: 8K
2643 * S = 1, bits 15:12 = xx01 range size: 16K
2644 * S = 1, bits 15:12 = x011 range size: 32K
2645 * S = 1, bits 15:12 = 0111 range size: 64K
2649 sz
= (VTD_PAGE_SIZE
* 2) << cto64(addr
>> VTD_PAGE_SHIFT
);
2655 event
.type
= IOMMU_NOTIFIER_DEVIOTLB_UNMAP
;
2656 event
.entry
.target_as
= &vtd_dev_as
->as
;
2657 event
.entry
.addr_mask
= sz
- 1;
2658 event
.entry
.iova
= addr
;
2659 event
.entry
.perm
= IOMMU_NONE
;
2660 event
.entry
.translated_addr
= 0;
2661 memory_region_notify_iommu(&vtd_dev_as
->iommu
, 0, event
);
2667 static bool vtd_process_inv_desc(IntelIOMMUState
*s
)
2669 VTDInvDesc inv_desc
;
2672 trace_vtd_inv_qi_head(s
->iq_head
);
2673 if (!vtd_get_inv_desc(s
, &inv_desc
)) {
2674 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
2678 desc_type
= inv_desc
.lo
& VTD_INV_DESC_TYPE
;
2679 /* FIXME: should update at first or at last? */
2680 s
->iq_last_desc_type
= desc_type
;
2682 switch (desc_type
) {
2683 case VTD_INV_DESC_CC
:
2684 trace_vtd_inv_desc("context-cache", inv_desc
.hi
, inv_desc
.lo
);
2685 if (!vtd_process_context_cache_desc(s
, &inv_desc
)) {
2690 case VTD_INV_DESC_IOTLB
:
2691 trace_vtd_inv_desc("iotlb", inv_desc
.hi
, inv_desc
.lo
);
2692 if (!vtd_process_iotlb_desc(s
, &inv_desc
)) {
2698 * TODO: the entity of below two cases will be implemented in future series.
2699 * To make guest (which integrates scalable mode support patch set in
2700 * iommu driver) work, just return true is enough so far.
2702 case VTD_INV_DESC_PC
:
2705 case VTD_INV_DESC_PIOTLB
:
2708 case VTD_INV_DESC_WAIT
:
2709 trace_vtd_inv_desc("wait", inv_desc
.hi
, inv_desc
.lo
);
2710 if (!vtd_process_wait_desc(s
, &inv_desc
)) {
2715 case VTD_INV_DESC_IEC
:
2716 trace_vtd_inv_desc("iec", inv_desc
.hi
, inv_desc
.lo
);
2717 if (!vtd_process_inv_iec_desc(s
, &inv_desc
)) {
2722 case VTD_INV_DESC_DEVICE
:
2723 trace_vtd_inv_desc("device", inv_desc
.hi
, inv_desc
.lo
);
2724 if (!vtd_process_device_iotlb_desc(s
, &inv_desc
)) {
2730 error_report_once("%s: invalid inv desc: hi=%"PRIx64
", lo=%"PRIx64
2731 " (unknown type)", __func__
, inv_desc
.hi
,
2736 if (s
->iq_head
== s
->iq_size
) {
2742 /* Try to fetch and process more Invalidation Descriptors */
2743 static void vtd_fetch_inv_desc(IntelIOMMUState
*s
)
2747 /* Refer to 10.4.23 of VT-d spec 3.0 */
2748 qi_shift
= s
->iq_dw
? VTD_IQH_QH_SHIFT_5
: VTD_IQH_QH_SHIFT_4
;
2750 trace_vtd_inv_qi_fetch();
2752 if (s
->iq_tail
>= s
->iq_size
) {
2753 /* Detects an invalid Tail pointer */
2754 error_report_once("%s: detected invalid QI tail "
2755 "(tail=0x%x, size=0x%x)",
2756 __func__
, s
->iq_tail
, s
->iq_size
);
2757 vtd_handle_inv_queue_error(s
);
2760 while (s
->iq_head
!= s
->iq_tail
) {
2761 if (!vtd_process_inv_desc(s
)) {
2762 /* Invalidation Queue Errors */
2763 vtd_handle_inv_queue_error(s
);
2766 /* Must update the IQH_REG in time */
2767 vtd_set_quad_raw(s
, DMAR_IQH_REG
,
2768 (((uint64_t)(s
->iq_head
)) << qi_shift
) &
2773 /* Handle write to Invalidation Queue Tail Register */
2774 static void vtd_handle_iqt_write(IntelIOMMUState
*s
)
2776 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IQT_REG
);
2778 if (s
->iq_dw
&& (val
& VTD_IQT_QT_256_RSV_BIT
)) {
2779 error_report_once("%s: RSV bit is set: val=0x%"PRIx64
,
2783 s
->iq_tail
= VTD_IQT_QT(s
->iq_dw
, val
);
2784 trace_vtd_inv_qi_tail(s
->iq_tail
);
2786 if (s
->qi_enabled
&& !(vtd_get_long_raw(s
, DMAR_FSTS_REG
) & VTD_FSTS_IQE
)) {
2787 /* Process Invalidation Queue here */
2788 vtd_fetch_inv_desc(s
);
2792 static void vtd_handle_fsts_write(IntelIOMMUState
*s
)
2794 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
2795 uint32_t fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
2796 uint32_t status_fields
= VTD_FSTS_PFO
| VTD_FSTS_PPF
| VTD_FSTS_IQE
;
2798 if ((fectl_reg
& VTD_FECTL_IP
) && !(fsts_reg
& status_fields
)) {
2799 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
2800 trace_vtd_fsts_clear_ip();
2802 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2803 * Descriptors if there are any when Queued Invalidation is enabled?
2807 static void vtd_handle_fectl_write(IntelIOMMUState
*s
)
2810 /* FIXME: when software clears the IM field, check the IP field. But do we
2811 * need to compare the old value and the new value to conclude that
2812 * software clears the IM field? Or just check if the IM field is zero?
2814 fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
2816 trace_vtd_reg_write_fectl(fectl_reg
);
2818 if ((fectl_reg
& VTD_FECTL_IP
) && !(fectl_reg
& VTD_FECTL_IM
)) {
2819 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
2820 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
2824 static void vtd_handle_ics_write(IntelIOMMUState
*s
)
2826 uint32_t ics_reg
= vtd_get_long_raw(s
, DMAR_ICS_REG
);
2827 uint32_t iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
2829 if ((iectl_reg
& VTD_IECTL_IP
) && !(ics_reg
& VTD_ICS_IWC
)) {
2830 trace_vtd_reg_ics_clear_ip();
2831 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
2835 static void vtd_handle_iectl_write(IntelIOMMUState
*s
)
2838 /* FIXME: when software clears the IM field, check the IP field. But do we
2839 * need to compare the old value and the new value to conclude that
2840 * software clears the IM field? Or just check if the IM field is zero?
2842 iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
2844 trace_vtd_reg_write_iectl(iectl_reg
);
2846 if ((iectl_reg
& VTD_IECTL_IP
) && !(iectl_reg
& VTD_IECTL_IM
)) {
2847 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
2848 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
2852 static uint64_t vtd_mem_read(void *opaque
, hwaddr addr
, unsigned size
)
2854 IntelIOMMUState
*s
= opaque
;
2857 trace_vtd_reg_read(addr
, size
);
2859 if (addr
+ size
> DMAR_REG_SIZE
) {
2860 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2861 " size=0x%x", __func__
, addr
, size
);
2862 return (uint64_t)-1;
2866 /* Root Table Address Register, 64-bit */
2867 case DMAR_RTADDR_REG
:
2868 val
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
2870 val
= val
& ((1ULL << 32) - 1);
2874 case DMAR_RTADDR_REG_HI
:
2876 val
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
) >> 32;
2879 /* Invalidation Queue Address Register, 64-bit */
2881 val
= s
->iq
| (vtd_get_quad(s
, DMAR_IQA_REG
) & VTD_IQA_QS
);
2883 val
= val
& ((1ULL << 32) - 1);
2887 case DMAR_IQA_REG_HI
:
2894 val
= vtd_get_long(s
, addr
);
2896 val
= vtd_get_quad(s
, addr
);
2903 static void vtd_mem_write(void *opaque
, hwaddr addr
,
2904 uint64_t val
, unsigned size
)
2906 IntelIOMMUState
*s
= opaque
;
2908 trace_vtd_reg_write(addr
, size
, val
);
2910 if (addr
+ size
> DMAR_REG_SIZE
) {
2911 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2912 " size=0x%x", __func__
, addr
, size
);
2917 /* Global Command Register, 32-bit */
2919 vtd_set_long(s
, addr
, val
);
2920 vtd_handle_gcmd_write(s
);
2923 /* Context Command Register, 64-bit */
2926 vtd_set_long(s
, addr
, val
);
2928 vtd_set_quad(s
, addr
, val
);
2929 vtd_handle_ccmd_write(s
);
2933 case DMAR_CCMD_REG_HI
:
2935 vtd_set_long(s
, addr
, val
);
2936 vtd_handle_ccmd_write(s
);
2939 /* IOTLB Invalidation Register, 64-bit */
2940 case DMAR_IOTLB_REG
:
2942 vtd_set_long(s
, addr
, val
);
2944 vtd_set_quad(s
, addr
, val
);
2945 vtd_handle_iotlb_write(s
);
2949 case DMAR_IOTLB_REG_HI
:
2951 vtd_set_long(s
, addr
, val
);
2952 vtd_handle_iotlb_write(s
);
2955 /* Invalidate Address Register, 64-bit */
2958 vtd_set_long(s
, addr
, val
);
2960 vtd_set_quad(s
, addr
, val
);
2964 case DMAR_IVA_REG_HI
:
2966 vtd_set_long(s
, addr
, val
);
2969 /* Fault Status Register, 32-bit */
2972 vtd_set_long(s
, addr
, val
);
2973 vtd_handle_fsts_write(s
);
2976 /* Fault Event Control Register, 32-bit */
2977 case DMAR_FECTL_REG
:
2979 vtd_set_long(s
, addr
, val
);
2980 vtd_handle_fectl_write(s
);
2983 /* Fault Event Data Register, 32-bit */
2984 case DMAR_FEDATA_REG
:
2986 vtd_set_long(s
, addr
, val
);
2989 /* Fault Event Address Register, 32-bit */
2990 case DMAR_FEADDR_REG
:
2992 vtd_set_long(s
, addr
, val
);
2995 * While the register is 32-bit only, some guests (Xen...) write to
2998 vtd_set_quad(s
, addr
, val
);
3002 /* Fault Event Upper Address Register, 32-bit */
3003 case DMAR_FEUADDR_REG
:
3005 vtd_set_long(s
, addr
, val
);
3008 /* Protected Memory Enable Register, 32-bit */
3011 vtd_set_long(s
, addr
, val
);
3014 /* Root Table Address Register, 64-bit */
3015 case DMAR_RTADDR_REG
:
3017 vtd_set_long(s
, addr
, val
);
3019 vtd_set_quad(s
, addr
, val
);
3023 case DMAR_RTADDR_REG_HI
:
3025 vtd_set_long(s
, addr
, val
);
3028 /* Invalidation Queue Tail Register, 64-bit */
3031 vtd_set_long(s
, addr
, val
);
3033 vtd_set_quad(s
, addr
, val
);
3035 vtd_handle_iqt_write(s
);
3038 case DMAR_IQT_REG_HI
:
3040 vtd_set_long(s
, addr
, val
);
3041 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3044 /* Invalidation Queue Address Register, 64-bit */
3047 vtd_set_long(s
, addr
, val
);
3049 vtd_set_quad(s
, addr
, val
);
3051 vtd_update_iq_dw(s
);
3054 case DMAR_IQA_REG_HI
:
3056 vtd_set_long(s
, addr
, val
);
3059 /* Invalidation Completion Status Register, 32-bit */
3062 vtd_set_long(s
, addr
, val
);
3063 vtd_handle_ics_write(s
);
3066 /* Invalidation Event Control Register, 32-bit */
3067 case DMAR_IECTL_REG
:
3069 vtd_set_long(s
, addr
, val
);
3070 vtd_handle_iectl_write(s
);
3073 /* Invalidation Event Data Register, 32-bit */
3074 case DMAR_IEDATA_REG
:
3076 vtd_set_long(s
, addr
, val
);
3079 /* Invalidation Event Address Register, 32-bit */
3080 case DMAR_IEADDR_REG
:
3082 vtd_set_long(s
, addr
, val
);
3085 /* Invalidation Event Upper Address Register, 32-bit */
3086 case DMAR_IEUADDR_REG
:
3088 vtd_set_long(s
, addr
, val
);
3091 /* Fault Recording Registers, 128-bit */
3092 case DMAR_FRCD_REG_0_0
:
3094 vtd_set_long(s
, addr
, val
);
3096 vtd_set_quad(s
, addr
, val
);
3100 case DMAR_FRCD_REG_0_1
:
3102 vtd_set_long(s
, addr
, val
);
3105 case DMAR_FRCD_REG_0_2
:
3107 vtd_set_long(s
, addr
, val
);
3109 vtd_set_quad(s
, addr
, val
);
3110 /* May clear bit 127 (Fault), update PPF */
3111 vtd_update_fsts_ppf(s
);
3115 case DMAR_FRCD_REG_0_3
:
3117 vtd_set_long(s
, addr
, val
);
3118 /* May clear bit 127 (Fault), update PPF */
3119 vtd_update_fsts_ppf(s
);
3124 vtd_set_long(s
, addr
, val
);
3126 vtd_set_quad(s
, addr
, val
);
3130 case DMAR_IRTA_REG_HI
:
3132 vtd_set_long(s
, addr
, val
);
3137 vtd_set_long(s
, addr
, val
);
3139 vtd_set_quad(s
, addr
, val
);
3144 static IOMMUTLBEntry
vtd_iommu_translate(IOMMUMemoryRegion
*iommu
, hwaddr addr
,
3145 IOMMUAccessFlags flag
, int iommu_idx
)
3147 VTDAddressSpace
*vtd_as
= container_of(iommu
, VTDAddressSpace
, iommu
);
3148 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
3149 IOMMUTLBEntry iotlb
= {
3150 /* We'll fill in the rest later. */
3151 .target_as
= &address_space_memory
,
3155 if (likely(s
->dmar_enabled
)) {
3156 success
= vtd_do_iommu_translate(vtd_as
, vtd_as
->bus
, vtd_as
->devfn
,
3157 addr
, flag
& IOMMU_WO
, &iotlb
);
3159 /* DMAR disabled, passthrough, use 4k-page*/
3160 iotlb
.iova
= addr
& VTD_PAGE_MASK_4K
;
3161 iotlb
.translated_addr
= addr
& VTD_PAGE_MASK_4K
;
3162 iotlb
.addr_mask
= ~VTD_PAGE_MASK_4K
;
3163 iotlb
.perm
= IOMMU_RW
;
3167 if (likely(success
)) {
3168 trace_vtd_dmar_translate(pci_bus_num(vtd_as
->bus
),
3169 VTD_PCI_SLOT(vtd_as
->devfn
),
3170 VTD_PCI_FUNC(vtd_as
->devfn
),
3171 iotlb
.iova
, iotlb
.translated_addr
,
3174 error_report_once("%s: detected translation failure "
3175 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64
")",
3176 __func__
, pci_bus_num(vtd_as
->bus
),
3177 VTD_PCI_SLOT(vtd_as
->devfn
),
3178 VTD_PCI_FUNC(vtd_as
->devfn
),
3185 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion
*iommu
,
3186 IOMMUNotifierFlag old
,
3187 IOMMUNotifierFlag
new,
3190 VTDAddressSpace
*vtd_as
= container_of(iommu
, VTDAddressSpace
, iommu
);
3191 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
3192 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
3194 /* TODO: add support for VFIO and vhost users */
3195 if (s
->snoop_control
) {
3196 error_setg_errno(errp
, ENOTSUP
,
3197 "Snoop Control with vhost or VFIO is not supported");
3200 if (!s
->caching_mode
&& (new & IOMMU_NOTIFIER_MAP
)) {
3201 error_setg_errno(errp
, ENOTSUP
,
3202 "device %02x.%02x.%x requires caching mode",
3203 pci_bus_num(vtd_as
->bus
), PCI_SLOT(vtd_as
->devfn
),
3204 PCI_FUNC(vtd_as
->devfn
));
3207 if (!x86_iommu
->dt_supported
&& (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP
)) {
3208 error_setg_errno(errp
, ENOTSUP
,
3209 "device %02x.%02x.%x requires device IOTLB mode",
3210 pci_bus_num(vtd_as
->bus
), PCI_SLOT(vtd_as
->devfn
),
3211 PCI_FUNC(vtd_as
->devfn
));
3215 /* Update per-address-space notifier flags */
3216 vtd_as
->notifier_flags
= new;
3218 if (old
== IOMMU_NOTIFIER_NONE
) {
3219 QLIST_INSERT_HEAD(&s
->vtd_as_with_notifiers
, vtd_as
, next
);
3220 } else if (new == IOMMU_NOTIFIER_NONE
) {
3221 QLIST_REMOVE(vtd_as
, next
);
3226 static int vtd_post_load(void *opaque
, int version_id
)
3228 IntelIOMMUState
*iommu
= opaque
;
3231 * We don't need to migrate the root_scalable because we can
3232 * simply do the calculation after the loading is complete. We
3233 * can actually do similar things with root, dmar_enabled, etc.
3234 * however since we've had them already so we'd better keep them
3235 * for compatibility of migration.
3237 vtd_update_scalable_state(iommu
);
3239 vtd_update_iq_dw(iommu
);
3242 * Memory regions are dynamically turned on/off depending on
3243 * context entry configurations from the guest. After migration,
3244 * we need to make sure the memory regions are still correct.
3246 vtd_switch_address_space_all(iommu
);
3251 static const VMStateDescription vtd_vmstate
= {
3252 .name
= "iommu-intel",
3254 .minimum_version_id
= 1,
3255 .priority
= MIG_PRI_IOMMU
,
3256 .post_load
= vtd_post_load
,
3257 .fields
= (VMStateField
[]) {
3258 VMSTATE_UINT64(root
, IntelIOMMUState
),
3259 VMSTATE_UINT64(intr_root
, IntelIOMMUState
),
3260 VMSTATE_UINT64(iq
, IntelIOMMUState
),
3261 VMSTATE_UINT32(intr_size
, IntelIOMMUState
),
3262 VMSTATE_UINT16(iq_head
, IntelIOMMUState
),
3263 VMSTATE_UINT16(iq_tail
, IntelIOMMUState
),
3264 VMSTATE_UINT16(iq_size
, IntelIOMMUState
),
3265 VMSTATE_UINT16(next_frcd_reg
, IntelIOMMUState
),
3266 VMSTATE_UINT8_ARRAY(csr
, IntelIOMMUState
, DMAR_REG_SIZE
),
3267 VMSTATE_UINT8(iq_last_desc_type
, IntelIOMMUState
),
3268 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3269 VMSTATE_BOOL(dmar_enabled
, IntelIOMMUState
),
3270 VMSTATE_BOOL(qi_enabled
, IntelIOMMUState
),
3271 VMSTATE_BOOL(intr_enabled
, IntelIOMMUState
),
3272 VMSTATE_BOOL(intr_eime
, IntelIOMMUState
),
3273 VMSTATE_END_OF_LIST()
3277 static const MemoryRegionOps vtd_mem_ops
= {
3278 .read
= vtd_mem_read
,
3279 .write
= vtd_mem_write
,
3280 .endianness
= DEVICE_LITTLE_ENDIAN
,
3282 .min_access_size
= 4,
3283 .max_access_size
= 8,
3286 .min_access_size
= 4,
3287 .max_access_size
= 8,
3291 static Property vtd_properties
[] = {
3292 DEFINE_PROP_UINT32("version", IntelIOMMUState
, version
, 0),
3293 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState
, intr_eim
,
3295 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState
, buggy_eim
, false),
3296 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState
, aw_bits
,
3297 VTD_HOST_ADDRESS_WIDTH
),
3298 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState
, caching_mode
, FALSE
),
3299 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState
, scalable_mode
, FALSE
),
3300 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState
, snoop_control
, false),
3301 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState
, pasid
, false),
3302 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState
, dma_drain
, true),
3303 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState
, dma_translation
, true),
3304 DEFINE_PROP_END_OF_LIST(),
3307 /* Read IRTE entry with specific index */
3308 static int vtd_irte_get(IntelIOMMUState
*iommu
, uint16_t index
,
3309 VTD_IR_TableEntry
*entry
, uint16_t sid
)
3311 static const uint16_t vtd_svt_mask
[VTD_SQ_MAX
] = \
3312 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3313 dma_addr_t addr
= 0x00;
3314 uint16_t mask
, source_id
;
3315 uint8_t bus
, bus_max
, bus_min
;
3317 if (index
>= iommu
->intr_size
) {
3318 error_report_once("%s: index too large: ind=0x%x",
3320 return -VTD_FR_IR_INDEX_OVER
;
3323 addr
= iommu
->intr_root
+ index
* sizeof(*entry
);
3324 if (dma_memory_read(&address_space_memory
, addr
,
3325 entry
, sizeof(*entry
), MEMTXATTRS_UNSPECIFIED
)) {
3326 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64
,
3327 __func__
, index
, addr
);
3328 return -VTD_FR_IR_ROOT_INVAL
;
3331 entry
->data
[0] = le64_to_cpu(entry
->data
[0]);
3332 entry
->data
[1] = le64_to_cpu(entry
->data
[1]);
3334 trace_vtd_ir_irte_get(index
, entry
->data
[1], entry
->data
[0]);
3336 if (!entry
->irte
.present
) {
3337 error_report_once("%s: detected non-present IRTE "
3338 "(index=%u, high=0x%" PRIx64
", low=0x%" PRIx64
")",
3339 __func__
, index
, entry
->data
[1], entry
->data
[0]);
3340 return -VTD_FR_IR_ENTRY_P
;
3343 if (entry
->irte
.__reserved_0
|| entry
->irte
.__reserved_1
||
3344 entry
->irte
.__reserved_2
) {
3345 error_report_once("%s: detected non-zero reserved IRTE "
3346 "(index=%u, high=0x%" PRIx64
", low=0x%" PRIx64
")",
3347 __func__
, index
, entry
->data
[1], entry
->data
[0]);
3348 return -VTD_FR_IR_IRTE_RSVD
;
3351 if (sid
!= X86_IOMMU_SID_INVALID
) {
3352 /* Validate IRTE SID */
3353 source_id
= entry
->irte
.source_id
;
3354 switch (entry
->irte
.sid_vtype
) {
3359 mask
= vtd_svt_mask
[entry
->irte
.sid_q
];
3360 if ((source_id
& mask
) != (sid
& mask
)) {
3361 error_report_once("%s: invalid IRTE SID "
3362 "(index=%u, sid=%u, source_id=%u)",
3363 __func__
, index
, sid
, source_id
);
3364 return -VTD_FR_IR_SID_ERR
;
3369 bus_max
= source_id
>> 8;
3370 bus_min
= source_id
& 0xff;
3372 if (bus
> bus_max
|| bus
< bus_min
) {
3373 error_report_once("%s: invalid SVT_BUS "
3374 "(index=%u, bus=%u, min=%u, max=%u)",
3375 __func__
, index
, bus
, bus_min
, bus_max
);
3376 return -VTD_FR_IR_SID_ERR
;
3381 error_report_once("%s: detected invalid IRTE SVT "
3382 "(index=%u, type=%d)", __func__
,
3383 index
, entry
->irte
.sid_vtype
);
3384 /* Take this as verification failure. */
3385 return -VTD_FR_IR_SID_ERR
;
3392 /* Fetch IRQ information of specific IR index */
3393 static int vtd_remap_irq_get(IntelIOMMUState
*iommu
, uint16_t index
,
3394 X86IOMMUIrq
*irq
, uint16_t sid
)
3396 VTD_IR_TableEntry irte
= {};
3399 ret
= vtd_irte_get(iommu
, index
, &irte
, sid
);
3404 irq
->trigger_mode
= irte
.irte
.trigger_mode
;
3405 irq
->vector
= irte
.irte
.vector
;
3406 irq
->delivery_mode
= irte
.irte
.delivery_mode
;
3407 irq
->dest
= irte
.irte
.dest_id
;
3408 if (!iommu
->intr_eime
) {
3409 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3410 #define VTD_IR_APIC_DEST_SHIFT (8)
3411 irq
->dest
= (irq
->dest
& VTD_IR_APIC_DEST_MASK
) >>
3412 VTD_IR_APIC_DEST_SHIFT
;
3414 irq
->dest_mode
= irte
.irte
.dest_mode
;
3415 irq
->redir_hint
= irte
.irte
.redir_hint
;
3417 trace_vtd_ir_remap(index
, irq
->trigger_mode
, irq
->vector
,
3418 irq
->delivery_mode
, irq
->dest
, irq
->dest_mode
);
3423 /* Interrupt remapping for MSI/MSI-X entry */
3424 static int vtd_interrupt_remap_msi(IntelIOMMUState
*iommu
,
3426 MSIMessage
*translated
,
3430 VTD_IR_MSIAddress addr
;
3432 X86IOMMUIrq irq
= {};
3434 assert(origin
&& translated
);
3436 trace_vtd_ir_remap_msi_req(origin
->address
, origin
->data
);
3438 if (!iommu
|| !iommu
->intr_enabled
) {
3439 memcpy(translated
, origin
, sizeof(*origin
));
3443 if (origin
->address
& VTD_MSI_ADDR_HI_MASK
) {
3444 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3445 "address=0x%" PRIx64
, __func__
, origin
->address
);
3446 return -VTD_FR_IR_REQ_RSVD
;
3449 addr
.data
= origin
->address
& VTD_MSI_ADDR_LO_MASK
;
3450 if (addr
.addr
.__head
!= 0xfee) {
3451 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32
,
3452 __func__
, addr
.data
);
3453 return -VTD_FR_IR_REQ_RSVD
;
3456 /* This is compatible mode. */
3457 if (addr
.addr
.int_mode
!= VTD_IR_INT_FORMAT_REMAP
) {
3458 memcpy(translated
, origin
, sizeof(*origin
));
3462 index
= addr
.addr
.index_h
<< 15 | addr
.addr
.index_l
;
3464 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3465 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3467 if (addr
.addr
.sub_valid
) {
3468 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3469 index
+= origin
->data
& VTD_IR_MSI_DATA_SUBHANDLE
;
3472 ret
= vtd_remap_irq_get(iommu
, index
, &irq
, sid
);
3477 if (addr
.addr
.sub_valid
) {
3478 trace_vtd_ir_remap_type("MSI");
3479 if (origin
->data
& VTD_IR_MSI_DATA_RESERVED
) {
3480 error_report_once("%s: invalid IR MSI "
3481 "(sid=%u, address=0x%" PRIx64
3482 ", data=0x%" PRIx32
")",
3483 __func__
, sid
, origin
->address
, origin
->data
);
3484 return -VTD_FR_IR_REQ_RSVD
;
3487 uint8_t vector
= origin
->data
& 0xff;
3488 uint8_t trigger_mode
= (origin
->data
>> MSI_DATA_TRIGGER_SHIFT
) & 0x1;
3490 trace_vtd_ir_remap_type("IOAPIC");
3491 /* IOAPIC entry vector should be aligned with IRTE vector
3492 * (see vt-d spec 5.1.5.1). */
3493 if (vector
!= irq
.vector
) {
3494 trace_vtd_warn_ir_vector(sid
, index
, vector
, irq
.vector
);
3497 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3498 * (see vt-d spec 5.1.5.1). */
3499 if (trigger_mode
!= irq
.trigger_mode
) {
3500 trace_vtd_warn_ir_trigger(sid
, index
, trigger_mode
,
3506 * We'd better keep the last two bits, assuming that guest OS
3507 * might modify it. Keep it does not hurt after all.
3509 irq
.msi_addr_last_bits
= addr
.addr
.__not_care
;
3511 /* Translate X86IOMMUIrq to MSI message */
3512 x86_iommu_irq_to_msi_message(&irq
, translated
);
3515 trace_vtd_ir_remap_msi(origin
->address
, origin
->data
,
3516 translated
->address
, translated
->data
);
3520 static int vtd_int_remap(X86IOMMUState
*iommu
, MSIMessage
*src
,
3521 MSIMessage
*dst
, uint16_t sid
)
3523 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu
),
3527 static MemTxResult
vtd_mem_ir_read(void *opaque
, hwaddr addr
,
3528 uint64_t *data
, unsigned size
,
3534 static MemTxResult
vtd_mem_ir_write(void *opaque
, hwaddr addr
,
3535 uint64_t value
, unsigned size
,
3539 MSIMessage from
= {}, to
= {};
3540 uint16_t sid
= X86_IOMMU_SID_INVALID
;
3542 from
.address
= (uint64_t) addr
+ VTD_INTERRUPT_ADDR_FIRST
;
3543 from
.data
= (uint32_t) value
;
3545 if (!attrs
.unspecified
) {
3546 /* We have explicit Source ID */
3547 sid
= attrs
.requester_id
;
3550 ret
= vtd_interrupt_remap_msi(opaque
, &from
, &to
, sid
);
3552 /* TODO: report error */
3553 /* Drop this interrupt */
3557 apic_get_class(NULL
)->send_msi(&to
);
3562 static const MemoryRegionOps vtd_mem_ir_ops
= {
3563 .read_with_attrs
= vtd_mem_ir_read
,
3564 .write_with_attrs
= vtd_mem_ir_write
,
3565 .endianness
= DEVICE_LITTLE_ENDIAN
,
3567 .min_access_size
= 4,
3568 .max_access_size
= 4,
3571 .min_access_size
= 4,
3572 .max_access_size
= 4,
3576 static void vtd_report_ir_illegal_access(VTDAddressSpace
*vtd_as
,
3577 hwaddr addr
, bool is_write
)
3579 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
3580 uint8_t bus_n
= pci_bus_num(vtd_as
->bus
);
3581 uint16_t sid
= PCI_BUILD_BDF(bus_n
, vtd_as
->devfn
);
3582 bool is_fpd_set
= false;
3585 assert(vtd_as
->pasid
!= PCI_NO_PASID
);
3587 /* Try out best to fetch FPD, we can't do anything more */
3588 if (vtd_dev_to_context_entry(s
, bus_n
, vtd_as
->devfn
, &ce
) == 0) {
3589 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
3590 if (!is_fpd_set
&& s
->root_scalable
) {
3591 vtd_ce_get_pasid_fpd(s
, &ce
, &is_fpd_set
, vtd_as
->pasid
);
3595 vtd_report_fault(s
, VTD_FR_SM_INTERRUPT_ADDR
,
3596 is_fpd_set
, sid
, addr
, is_write
,
3597 true, vtd_as
->pasid
);
3600 static MemTxResult
vtd_mem_ir_fault_read(void *opaque
, hwaddr addr
,
3601 uint64_t *data
, unsigned size
,
3604 vtd_report_ir_illegal_access(opaque
, addr
, false);
3609 static MemTxResult
vtd_mem_ir_fault_write(void *opaque
, hwaddr addr
,
3610 uint64_t value
, unsigned size
,
3613 vtd_report_ir_illegal_access(opaque
, addr
, true);
3618 static const MemoryRegionOps vtd_mem_ir_fault_ops
= {
3619 .read_with_attrs
= vtd_mem_ir_fault_read
,
3620 .write_with_attrs
= vtd_mem_ir_fault_write
,
3621 .endianness
= DEVICE_LITTLE_ENDIAN
,
3623 .min_access_size
= 1,
3624 .max_access_size
= 8,
3627 .min_access_size
= 1,
3628 .max_access_size
= 8,
3632 VTDAddressSpace
*vtd_find_add_as(IntelIOMMUState
*s
, PCIBus
*bus
,
3633 int devfn
, unsigned int pasid
)
3636 * We can't simply use sid here since the bus number might not be
3637 * initialized by the guest.
3639 struct vtd_as_key key
= {
3644 VTDAddressSpace
*vtd_dev_as
;
3647 vtd_dev_as
= g_hash_table_lookup(s
->vtd_address_spaces
, &key
);
3649 struct vtd_as_key
*new_key
= g_malloc(sizeof(*new_key
));
3652 new_key
->devfn
= devfn
;
3653 new_key
->pasid
= pasid
;
3655 if (pasid
== PCI_NO_PASID
) {
3656 snprintf(name
, sizeof(name
), "vtd-%02x.%x", PCI_SLOT(devfn
),
3659 snprintf(name
, sizeof(name
), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn
),
3660 PCI_FUNC(devfn
), pasid
);
3663 vtd_dev_as
= g_new0(VTDAddressSpace
, 1);
3665 vtd_dev_as
->bus
= bus
;
3666 vtd_dev_as
->devfn
= (uint8_t)devfn
;
3667 vtd_dev_as
->pasid
= pasid
;
3668 vtd_dev_as
->iommu_state
= s
;
3669 vtd_dev_as
->context_cache_entry
.context_cache_gen
= 0;
3670 vtd_dev_as
->iova_tree
= iova_tree_new();
3672 memory_region_init(&vtd_dev_as
->root
, OBJECT(s
), name
, UINT64_MAX
);
3673 address_space_init(&vtd_dev_as
->as
, &vtd_dev_as
->root
, "vtd-root");
3676 * Build the DMAR-disabled container with aliases to the
3677 * shared MRs. Note that aliasing to a shared memory region
3678 * could help the memory API to detect same FlatViews so we
3679 * can have devices to share the same FlatView when DMAR is
3680 * disabled (either by not providing "intel_iommu=on" or with
3681 * "iommu=pt"). It will greatly reduce the total number of
3682 * FlatViews of the system hence VM runs faster.
3684 memory_region_init_alias(&vtd_dev_as
->nodmar
, OBJECT(s
),
3685 "vtd-nodmar", &s
->mr_nodmar
, 0,
3686 memory_region_size(&s
->mr_nodmar
));
3689 * Build the per-device DMAR-enabled container.
3691 * TODO: currently we have per-device IOMMU memory region only
3692 * because we have per-device IOMMU notifiers for devices. If
3693 * one day we can abstract the IOMMU notifiers out of the
3694 * memory regions then we can also share the same memory
3695 * region here just like what we've done above with the nodmar
3698 strcat(name
, "-dmar");
3699 memory_region_init_iommu(&vtd_dev_as
->iommu
, sizeof(vtd_dev_as
->iommu
),
3700 TYPE_INTEL_IOMMU_MEMORY_REGION
, OBJECT(s
),
3702 memory_region_init_alias(&vtd_dev_as
->iommu_ir
, OBJECT(s
), "vtd-ir",
3703 &s
->mr_ir
, 0, memory_region_size(&s
->mr_ir
));
3704 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as
->iommu
),
3705 VTD_INTERRUPT_ADDR_FIRST
,
3706 &vtd_dev_as
->iommu_ir
, 1);
3709 * This region is used for catching fault to access interrupt
3710 * range via passthrough + PASID. See also
3711 * vtd_switch_address_space(). We can't use alias since we
3712 * need to know the sid which is valid for MSI who uses
3713 * bus_master_as (see msi_send_message()).
3715 memory_region_init_io(&vtd_dev_as
->iommu_ir_fault
, OBJECT(s
),
3716 &vtd_mem_ir_fault_ops
, vtd_dev_as
, "vtd-no-ir",
3717 VTD_INTERRUPT_ADDR_SIZE
);
3719 * Hook to root since when PT is enabled vtd_dev_as->iommu
3722 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as
->root
),
3723 VTD_INTERRUPT_ADDR_FIRST
,
3724 &vtd_dev_as
->iommu_ir_fault
, 2);
3727 * Hook both the containers under the root container, we
3728 * switch between DMAR & noDMAR by enable/disable
3729 * corresponding sub-containers
3731 memory_region_add_subregion_overlap(&vtd_dev_as
->root
, 0,
3732 MEMORY_REGION(&vtd_dev_as
->iommu
),
3734 memory_region_add_subregion_overlap(&vtd_dev_as
->root
, 0,
3735 &vtd_dev_as
->nodmar
, 0);
3737 vtd_switch_address_space(vtd_dev_as
);
3739 g_hash_table_insert(s
->vtd_address_spaces
, new_key
, vtd_dev_as
);
3744 /* Unmap the whole range in the notifier's scope. */
3745 static void vtd_address_space_unmap(VTDAddressSpace
*as
, IOMMUNotifier
*n
)
3747 hwaddr size
, remain
;
3748 hwaddr start
= n
->start
;
3749 hwaddr end
= n
->end
;
3750 IntelIOMMUState
*s
= as
->iommu_state
;
3754 * Note: all the codes in this function has a assumption that IOVA
3755 * bits are no more than VTD_MGAW bits (which is restricted by
3756 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3759 if (end
> VTD_ADDRESS_SIZE(s
->aw_bits
) - 1) {
3761 * Don't need to unmap regions that is bigger than the whole
3762 * VT-d supported address space size
3764 end
= VTD_ADDRESS_SIZE(s
->aw_bits
) - 1;
3767 assert(start
<= end
);
3768 size
= remain
= end
- start
+ 1;
3770 while (remain
>= VTD_PAGE_SIZE
) {
3771 IOMMUTLBEvent event
;
3772 uint64_t mask
= dma_aligned_pow2_mask(start
, end
, s
->aw_bits
);
3773 uint64_t size
= mask
+ 1;
3777 event
.type
= IOMMU_NOTIFIER_UNMAP
;
3778 event
.entry
.iova
= start
;
3779 event
.entry
.addr_mask
= mask
;
3780 event
.entry
.target_as
= &address_space_memory
;
3781 event
.entry
.perm
= IOMMU_NONE
;
3782 /* This field is meaningless for unmap */
3783 event
.entry
.translated_addr
= 0;
3785 memory_region_notify_iommu_one(n
, &event
);
3793 trace_vtd_as_unmap_whole(pci_bus_num(as
->bus
),
3794 VTD_PCI_SLOT(as
->devfn
),
3795 VTD_PCI_FUNC(as
->devfn
),
3798 map
.iova
= n
->start
;
3799 map
.size
= size
- 1; /* Inclusive */
3800 iova_tree_remove(as
->iova_tree
, map
);
3803 static void vtd_address_space_unmap_all(IntelIOMMUState
*s
)
3805 VTDAddressSpace
*vtd_as
;
3808 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
3809 IOMMU_NOTIFIER_FOREACH(n
, &vtd_as
->iommu
) {
3810 vtd_address_space_unmap(vtd_as
, n
);
3815 static void vtd_address_space_refresh_all(IntelIOMMUState
*s
)
3817 vtd_address_space_unmap_all(s
);
3818 vtd_switch_address_space_all(s
);
3821 static int vtd_replay_hook(IOMMUTLBEvent
*event
, void *private)
3823 memory_region_notify_iommu_one(private, event
);
3827 static void vtd_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
3829 VTDAddressSpace
*vtd_as
= container_of(iommu_mr
, VTDAddressSpace
, iommu
);
3830 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
3831 uint8_t bus_n
= pci_bus_num(vtd_as
->bus
);
3833 DMAMap map
= { .iova
= 0, .size
= HWADDR_MAX
};
3835 /* replay is protected by BQL, page walk will re-setup it safely */
3836 iova_tree_remove(vtd_as
->iova_tree
, map
);
3838 if (vtd_dev_to_context_entry(s
, bus_n
, vtd_as
->devfn
, &ce
) == 0) {
3839 trace_vtd_replay_ce_valid(s
->root_scalable
? "scalable mode" :
3841 bus_n
, PCI_SLOT(vtd_as
->devfn
),
3842 PCI_FUNC(vtd_as
->devfn
),
3843 vtd_get_domain_id(s
, &ce
, vtd_as
->pasid
),
3845 if (n
->notifier_flags
& IOMMU_NOTIFIER_MAP
) {
3846 /* This is required only for MAP typed notifiers */
3847 vtd_page_walk_info info
= {
3848 .hook_fn
= vtd_replay_hook
,
3849 .private = (void *)n
,
3850 .notify_unmap
= false,
3853 .domain_id
= vtd_get_domain_id(s
, &ce
, vtd_as
->pasid
),
3856 vtd_page_walk(s
, &ce
, 0, ~0ULL, &info
, vtd_as
->pasid
);
3859 trace_vtd_replay_ce_invalid(bus_n
, PCI_SLOT(vtd_as
->devfn
),
3860 PCI_FUNC(vtd_as
->devfn
));
3866 /* Do the initialization. It will also be called when reset, so pay
3867 * attention when adding new initialization stuff.
3869 static void vtd_init(IntelIOMMUState
*s
)
3871 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
3873 memset(s
->csr
, 0, DMAR_REG_SIZE
);
3874 memset(s
->wmask
, 0, DMAR_REG_SIZE
);
3875 memset(s
->w1cmask
, 0, DMAR_REG_SIZE
);
3876 memset(s
->womask
, 0, DMAR_REG_SIZE
);
3879 s
->root_scalable
= false;
3880 s
->dmar_enabled
= false;
3881 s
->intr_enabled
= false;
3886 s
->qi_enabled
= false;
3887 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
3889 s
->next_frcd_reg
= 0;
3890 s
->cap
= VTD_CAP_FRO
| VTD_CAP_NFR
| VTD_CAP_ND
|
3891 VTD_CAP_MAMV
| VTD_CAP_PSI
| VTD_CAP_SLLPS
|
3892 VTD_CAP_MGAW(s
->aw_bits
);
3894 s
->cap
|= VTD_CAP_DRAIN
;
3896 if (s
->dma_translation
) {
3897 if (s
->aw_bits
>= VTD_HOST_AW_39BIT
) {
3898 s
->cap
|= VTD_CAP_SAGAW_39bit
;
3900 if (s
->aw_bits
>= VTD_HOST_AW_48BIT
) {
3901 s
->cap
|= VTD_CAP_SAGAW_48bit
;
3904 s
->ecap
= VTD_ECAP_QI
| VTD_ECAP_IRO
;
3907 * Rsvd field masks for spte
3909 vtd_spte_rsvd
[0] = ~0ULL;
3910 vtd_spte_rsvd
[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s
->aw_bits
,
3911 x86_iommu
->dt_supported
);
3912 vtd_spte_rsvd
[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s
->aw_bits
);
3913 vtd_spte_rsvd
[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s
->aw_bits
);
3914 vtd_spte_rsvd
[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s
->aw_bits
);
3916 vtd_spte_rsvd_large
[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s
->aw_bits
,
3917 x86_iommu
->dt_supported
);
3918 vtd_spte_rsvd_large
[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s
->aw_bits
,
3919 x86_iommu
->dt_supported
);
3921 if (s
->scalable_mode
|| s
->snoop_control
) {
3922 vtd_spte_rsvd
[1] &= ~VTD_SPTE_SNP
;
3923 vtd_spte_rsvd_large
[2] &= ~VTD_SPTE_SNP
;
3924 vtd_spte_rsvd_large
[3] &= ~VTD_SPTE_SNP
;
3927 if (x86_iommu_ir_supported(x86_iommu
)) {
3928 s
->ecap
|= VTD_ECAP_IR
| VTD_ECAP_MHMV
;
3929 if (s
->intr_eim
== ON_OFF_AUTO_ON
) {
3930 s
->ecap
|= VTD_ECAP_EIM
;
3932 assert(s
->intr_eim
!= ON_OFF_AUTO_AUTO
);
3935 if (x86_iommu
->dt_supported
) {
3936 s
->ecap
|= VTD_ECAP_DT
;
3939 if (x86_iommu
->pt_supported
) {
3940 s
->ecap
|= VTD_ECAP_PT
;
3943 if (s
->caching_mode
) {
3944 s
->cap
|= VTD_CAP_CM
;
3947 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3948 if (s
->scalable_mode
) {
3949 s
->ecap
|= VTD_ECAP_SMTS
| VTD_ECAP_SRS
| VTD_ECAP_SLTS
;
3952 if (s
->snoop_control
) {
3953 s
->ecap
|= VTD_ECAP_SC
;
3957 s
->ecap
|= VTD_ECAP_PASID
;
3960 vtd_reset_caches(s
);
3962 /* Define registers with default values and bit semantics */
3963 vtd_define_long(s
, DMAR_VER_REG
, 0x10UL
, 0, 0);
3964 vtd_define_quad(s
, DMAR_CAP_REG
, s
->cap
, 0, 0);
3965 vtd_define_quad(s
, DMAR_ECAP_REG
, s
->ecap
, 0, 0);
3966 vtd_define_long(s
, DMAR_GCMD_REG
, 0, 0xff800000UL
, 0);
3967 vtd_define_long_wo(s
, DMAR_GCMD_REG
, 0xff800000UL
);
3968 vtd_define_long(s
, DMAR_GSTS_REG
, 0, 0, 0);
3969 vtd_define_quad(s
, DMAR_RTADDR_REG
, 0, 0xfffffffffffffc00ULL
, 0);
3970 vtd_define_quad(s
, DMAR_CCMD_REG
, 0, 0xe0000003ffffffffULL
, 0);
3971 vtd_define_quad_wo(s
, DMAR_CCMD_REG
, 0x3ffff0000ULL
);
3973 /* Advanced Fault Logging not supported */
3974 vtd_define_long(s
, DMAR_FSTS_REG
, 0, 0, 0x11UL
);
3975 vtd_define_long(s
, DMAR_FECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
3976 vtd_define_long(s
, DMAR_FEDATA_REG
, 0, 0x0000ffffUL
, 0);
3977 vtd_define_long(s
, DMAR_FEADDR_REG
, 0, 0xfffffffcUL
, 0);
3979 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3980 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3982 vtd_define_long(s
, DMAR_FEUADDR_REG
, 0, 0, 0);
3984 /* Treated as RO for implementations that PLMR and PHMR fields reported
3985 * as Clear in the CAP_REG.
3986 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3988 vtd_define_long(s
, DMAR_PMEN_REG
, 0, 0, 0);
3990 vtd_define_quad(s
, DMAR_IQH_REG
, 0, 0, 0);
3991 vtd_define_quad(s
, DMAR_IQT_REG
, 0, 0x7fff0ULL
, 0);
3992 vtd_define_quad(s
, DMAR_IQA_REG
, 0, 0xfffffffffffff807ULL
, 0);
3993 vtd_define_long(s
, DMAR_ICS_REG
, 0, 0, 0x1UL
);
3994 vtd_define_long(s
, DMAR_IECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
3995 vtd_define_long(s
, DMAR_IEDATA_REG
, 0, 0xffffffffUL
, 0);
3996 vtd_define_long(s
, DMAR_IEADDR_REG
, 0, 0xfffffffcUL
, 0);
3997 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3998 vtd_define_long(s
, DMAR_IEUADDR_REG
, 0, 0, 0);
4000 /* IOTLB registers */
4001 vtd_define_quad(s
, DMAR_IOTLB_REG
, 0, 0Xb003ffff00000000ULL
, 0);
4002 vtd_define_quad(s
, DMAR_IVA_REG
, 0, 0xfffffffffffff07fULL
, 0);
4003 vtd_define_quad_wo(s
, DMAR_IVA_REG
, 0xfffffffffffff07fULL
);
4005 /* Fault Recording Registers, 128-bit */
4006 vtd_define_quad(s
, DMAR_FRCD_REG_0_0
, 0, 0, 0);
4007 vtd_define_quad(s
, DMAR_FRCD_REG_0_2
, 0, 0, 0x8000000000000000ULL
);
4010 * Interrupt remapping registers.
4012 vtd_define_quad(s
, DMAR_IRTA_REG
, 0, 0xfffffffffffff80fULL
, 0);
4015 /* Should not reset address_spaces when reset because devices will still use
4016 * the address space they got at first (won't ask the bus again).
4018 static void vtd_reset(DeviceState
*dev
)
4020 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
4023 vtd_address_space_refresh_all(s
);
4026 static AddressSpace
*vtd_host_dma_iommu(PCIBus
*bus
, void *opaque
, int devfn
)
4028 IntelIOMMUState
*s
= opaque
;
4029 VTDAddressSpace
*vtd_as
;
4031 assert(0 <= devfn
&& devfn
< PCI_DEVFN_MAX
);
4033 vtd_as
= vtd_find_add_as(s
, bus
, devfn
, PCI_NO_PASID
);
4037 static bool vtd_decide_config(IntelIOMMUState
*s
, Error
**errp
)
4039 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
4041 if (s
->intr_eim
== ON_OFF_AUTO_ON
&& !x86_iommu_ir_supported(x86_iommu
)) {
4042 error_setg(errp
, "eim=on cannot be selected without intremap=on");
4046 if (s
->intr_eim
== ON_OFF_AUTO_AUTO
) {
4047 s
->intr_eim
= (kvm_irqchip_in_kernel() || s
->buggy_eim
)
4048 && x86_iommu_ir_supported(x86_iommu
) ?
4049 ON_OFF_AUTO_ON
: ON_OFF_AUTO_OFF
;
4051 if (s
->intr_eim
== ON_OFF_AUTO_ON
&& !s
->buggy_eim
) {
4052 if (!kvm_irqchip_is_split()) {
4053 error_setg(errp
, "eim=on requires accel=kvm,kernel-irqchip=split");
4056 if (!kvm_enable_x2apic()) {
4057 error_setg(errp
, "eim=on requires support on the KVM side"
4058 "(X2APIC_API, first shipped in v4.7)");
4063 /* Currently only address widths supported are 39 and 48 bits */
4064 if ((s
->aw_bits
!= VTD_HOST_AW_39BIT
) &&
4065 (s
->aw_bits
!= VTD_HOST_AW_48BIT
)) {
4066 error_setg(errp
, "Supported values for aw-bits are: %d, %d",
4067 VTD_HOST_AW_39BIT
, VTD_HOST_AW_48BIT
);
4071 if (s
->scalable_mode
&& !s
->dma_drain
) {
4072 error_setg(errp
, "Need to set dma_drain for scalable mode");
4076 if (s
->pasid
&& !s
->scalable_mode
) {
4077 error_setg(errp
, "Need to set scalable mode for PASID");
4084 static int vtd_machine_done_notify_one(Object
*child
, void *unused
)
4086 IntelIOMMUState
*iommu
= INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4089 * We hard-coded here because vfio-pci is the only special case
4090 * here. Let's be more elegant in the future when we can, but so
4091 * far there seems to be no better way.
4093 if (object_dynamic_cast(child
, "vfio-pci") && !iommu
->caching_mode
) {
4094 vtd_panic_require_caching_mode();
4100 static void vtd_machine_done_hook(Notifier
*notifier
, void *unused
)
4102 object_child_foreach_recursive(object_get_root(),
4103 vtd_machine_done_notify_one
, NULL
);
4106 static Notifier vtd_machine_done_notify
= {
4107 .notify
= vtd_machine_done_hook
,
4110 static void vtd_realize(DeviceState
*dev
, Error
**errp
)
4112 MachineState
*ms
= MACHINE(qdev_get_machine());
4113 PCMachineState
*pcms
= PC_MACHINE(ms
);
4114 X86MachineState
*x86ms
= X86_MACHINE(ms
);
4115 PCIBus
*bus
= pcms
->bus
;
4116 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
4117 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
4119 if (s
->pasid
&& x86_iommu
->dt_supported
) {
4121 * PASID-based-Device-TLB Invalidate Descriptor is not
4122 * implemented and it requires support from vhost layer which
4123 * needs to be implemented in the future.
4125 error_setg(errp
, "PASID based device IOTLB is not supported");
4129 if (!vtd_decide_config(s
, errp
)) {
4133 QLIST_INIT(&s
->vtd_as_with_notifiers
);
4134 qemu_mutex_init(&s
->iommu_lock
);
4135 memory_region_init_io(&s
->csrmem
, OBJECT(s
), &vtd_mem_ops
, s
,
4136 "intel_iommu", DMAR_REG_SIZE
);
4138 /* Create the shared memory regions by all devices */
4139 memory_region_init(&s
->mr_nodmar
, OBJECT(s
), "vtd-nodmar",
4141 memory_region_init_io(&s
->mr_ir
, OBJECT(s
), &vtd_mem_ir_ops
,
4142 s
, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE
);
4143 memory_region_init_alias(&s
->mr_sys_alias
, OBJECT(s
),
4144 "vtd-sys-alias", get_system_memory(), 0,
4145 memory_region_size(get_system_memory()));
4146 memory_region_add_subregion_overlap(&s
->mr_nodmar
, 0,
4147 &s
->mr_sys_alias
, 0);
4148 memory_region_add_subregion_overlap(&s
->mr_nodmar
,
4149 VTD_INTERRUPT_ADDR_FIRST
,
4152 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->csrmem
);
4153 /* No corresponding destroy */
4154 s
->iotlb
= g_hash_table_new_full(vtd_iotlb_hash
, vtd_iotlb_equal
,
4156 s
->vtd_address_spaces
= g_hash_table_new_full(vtd_as_hash
, vtd_as_equal
,
4159 sysbus_mmio_map(SYS_BUS_DEVICE(s
), 0, Q35_HOST_BRIDGE_IOMMU_ADDR
);
4160 pci_setup_iommu(bus
, vtd_host_dma_iommu
, dev
);
4161 /* Pseudo address space under root PCI bus. */
4162 x86ms
->ioapic_as
= vtd_host_dma_iommu(bus
, s
, Q35_PSEUDO_DEVFN_IOAPIC
);
4163 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify
);
4166 static void vtd_class_init(ObjectClass
*klass
, void *data
)
4168 DeviceClass
*dc
= DEVICE_CLASS(klass
);
4169 X86IOMMUClass
*x86_class
= X86_IOMMU_DEVICE_CLASS(klass
);
4171 dc
->reset
= vtd_reset
;
4172 dc
->vmsd
= &vtd_vmstate
;
4173 device_class_set_props(dc
, vtd_properties
);
4174 dc
->hotpluggable
= false;
4175 x86_class
->realize
= vtd_realize
;
4176 x86_class
->int_remap
= vtd_int_remap
;
4177 /* Supported by the pc-q35-* machine types */
4178 dc
->user_creatable
= true;
4179 set_bit(DEVICE_CATEGORY_MISC
, dc
->categories
);
4180 dc
->desc
= "Intel IOMMU (VT-d) DMA Remapping device";
4183 static const TypeInfo vtd_info
= {
4184 .name
= TYPE_INTEL_IOMMU_DEVICE
,
4185 .parent
= TYPE_X86_IOMMU_DEVICE
,
4186 .instance_size
= sizeof(IntelIOMMUState
),
4187 .class_init
= vtd_class_init
,
4190 static void vtd_iommu_memory_region_class_init(ObjectClass
*klass
,
4193 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_CLASS(klass
);
4195 imrc
->translate
= vtd_iommu_translate
;
4196 imrc
->notify_flag_changed
= vtd_iommu_notify_flag_changed
;
4197 imrc
->replay
= vtd_iommu_replay
;
4200 static const TypeInfo vtd_iommu_memory_region_info
= {
4201 .parent
= TYPE_IOMMU_MEMORY_REGION
,
4202 .name
= TYPE_INTEL_IOMMU_MEMORY_REGION
,
4203 .class_init
= vtd_iommu_memory_region_class_init
,
4206 static void vtd_register_types(void)
4208 type_register_static(&vtd_info
);
4209 type_register_static(&vtd_iommu_memory_region_info
);
4212 type_init(vtd_register_types
)