replay: check other timers for icount limit
[qemu/ar7.git] / hw / block / m25p80.c
blob11ff5b9ad7b38614c9c977a9b6ffc7efe7ab7fee
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/ssi/ssi.h"
29 #include "migration/vmstate.h"
30 #include "qemu/bitops.h"
31 #include "qemu/log.h"
32 #include "qemu/module.h"
33 #include "qemu/error-report.h"
34 #include "qapi/error.h"
36 #ifndef M25P80_ERR_DEBUG
37 #define M25P80_ERR_DEBUG 0
38 #endif
40 #define DB_PRINT_L(level, ...) do { \
41 if (M25P80_ERR_DEBUG > (level)) { \
42 fprintf(stderr, ": %s: ", __func__); \
43 fprintf(stderr, ## __VA_ARGS__); \
44 } \
45 } while (0)
47 /* Fields for FlashPartInfo->flags */
49 /* erase capabilities */
50 #define ER_4K 1
51 #define ER_32K 2
52 /* set to allow the page program command to write 0s back to 1. Useful for
53 * modelling EEPROM with SPI flash command set
55 #define EEPROM 0x100
57 /* 16 MiB max in 3 byte address mode */
58 #define MAX_3BYTES_SIZE 0x1000000
60 #define SPI_NOR_MAX_ID_LEN 6
62 typedef struct FlashPartInfo {
63 const char *part_name;
65 * This array stores the ID bytes.
66 * The first three bytes are the JEDIC ID.
67 * JEDEC ID zero means "no ID" (mostly older chips).
69 uint8_t id[SPI_NOR_MAX_ID_LEN];
70 uint8_t id_len;
71 /* there is confusion between manufacturers as to what a sector is. In this
72 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
73 * command (opcode 0xd8).
75 uint32_t sector_size;
76 uint32_t n_sectors;
77 uint32_t page_size;
78 uint16_t flags;
80 * Big sized spi nor are often stacked devices, thus sometime
81 * replace chip erase with die erase.
82 * This field inform how many die is in the chip.
84 uint8_t die_cnt;
85 } FlashPartInfo;
87 /* adapted from linux */
88 /* Used when the "_ext_id" is two bytes at most */
89 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
90 .part_name = _part_name,\
91 .id = {\
92 ((_jedec_id) >> 16) & 0xff,\
93 ((_jedec_id) >> 8) & 0xff,\
94 (_jedec_id) & 0xff,\
95 ((_ext_id) >> 8) & 0xff,\
96 (_ext_id) & 0xff,\
97 },\
98 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
99 .sector_size = (_sector_size),\
100 .n_sectors = (_n_sectors),\
101 .page_size = 256,\
102 .flags = (_flags),\
103 .die_cnt = 0
105 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
106 .part_name = _part_name,\
107 .id = {\
108 ((_jedec_id) >> 16) & 0xff,\
109 ((_jedec_id) >> 8) & 0xff,\
110 (_jedec_id) & 0xff,\
111 ((_ext_id) >> 16) & 0xff,\
112 ((_ext_id) >> 8) & 0xff,\
113 (_ext_id) & 0xff,\
115 .id_len = 6,\
116 .sector_size = (_sector_size),\
117 .n_sectors = (_n_sectors),\
118 .page_size = 256,\
119 .flags = (_flags),\
120 .die_cnt = 0
122 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
123 _flags, _die_cnt)\
124 .part_name = _part_name,\
125 .id = {\
126 ((_jedec_id) >> 16) & 0xff,\
127 ((_jedec_id) >> 8) & 0xff,\
128 (_jedec_id) & 0xff,\
129 ((_ext_id) >> 8) & 0xff,\
130 (_ext_id) & 0xff,\
132 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
133 .sector_size = (_sector_size),\
134 .n_sectors = (_n_sectors),\
135 .page_size = 256,\
136 .flags = (_flags),\
137 .die_cnt = _die_cnt
139 #define JEDEC_NUMONYX 0x20
140 #define JEDEC_WINBOND 0xEF
141 #define JEDEC_SPANSION 0x01
143 /* Numonyx (Micron) Configuration register macros */
144 #define VCFG_DUMMY 0x1
145 #define VCFG_WRAP_SEQUENTIAL 0x2
146 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
147 #define NVCFG_XIP_MODE_MASK (7 << 9)
148 #define VCFG_XIP_MODE_ENABLED (1 << 3)
149 #define CFG_DUMMY_CLK_LEN 4
150 #define NVCFG_DUMMY_CLK_POS 12
151 #define VCFG_DUMMY_CLK_POS 4
152 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
153 #define EVCFG_VPP_ACCELERATOR (1 << 3)
154 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
155 #define NVCFG_DUAL_IO_MASK (1 << 2)
156 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
157 #define NVCFG_QUAD_IO_MASK (1 << 3)
158 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
159 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
160 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
162 /* Numonyx (Micron) Flag Status Register macros */
163 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
164 #define FSR_FLASH_READY (1 << 7)
166 /* Spansion configuration registers macros. */
167 #define SPANSION_QUAD_CFG_POS 0
168 #define SPANSION_QUAD_CFG_LEN 1
169 #define SPANSION_DUMMY_CLK_POS 0
170 #define SPANSION_DUMMY_CLK_LEN 4
171 #define SPANSION_ADDR_LEN_POS 7
172 #define SPANSION_ADDR_LEN_LEN 1
175 * Spansion read mode command length in bytes,
176 * the mode is currently not supported.
179 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
180 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
182 static const FlashPartInfo known_devices[] = {
183 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
184 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
185 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
187 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
188 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
189 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
191 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
192 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
193 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
194 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
196 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
198 /* Atmel EEPROMS - it is assumed, that don't care bit in command
199 * is set to 0. Block protection is not supported.
201 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
202 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
204 /* EON -- en25xxx */
205 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
206 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
207 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
208 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
209 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
211 /* GigaDevice */
212 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
213 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
215 /* Intel/Numonyx -- xxxs33b */
216 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
217 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
218 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
219 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
221 /* Macronix */
222 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
223 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
224 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
225 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
226 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
227 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
228 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
229 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
230 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
231 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
232 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
233 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
234 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
236 /* Micron */
237 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
238 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
239 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
240 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
241 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
242 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
243 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
244 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
245 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) },
246 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
247 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
248 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
249 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
250 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
251 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
252 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
253 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
255 /* Spansion -- single (large) sector size only, at least
256 * for the chips listed here (without boot sectors).
258 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
259 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
260 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
261 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
262 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
263 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
264 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
265 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
266 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
267 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
268 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
269 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
270 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
271 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
272 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
273 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
274 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
276 /* Spansion -- boot sectors support */
277 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
278 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
280 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
281 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
282 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
283 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
284 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
285 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
286 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
287 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
288 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
289 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
291 /* ST Microelectronics -- newer production may have feature updates */
292 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
293 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
294 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
295 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
296 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
297 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
298 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
299 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
300 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
301 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
303 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
304 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
305 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
307 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
308 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
309 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
311 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
312 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
313 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
314 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
316 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
317 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
318 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
319 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
320 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
321 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
322 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
323 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
324 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
325 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
326 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
327 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
328 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
329 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
330 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K) },
333 typedef enum {
334 NOP = 0,
335 WRSR = 0x1,
336 WRDI = 0x4,
337 RDSR = 0x5,
338 WREN = 0x6,
339 BRRD = 0x16,
340 BRWR = 0x17,
341 JEDEC_READ = 0x9f,
342 BULK_ERASE_60 = 0x60,
343 BULK_ERASE = 0xc7,
344 READ_FSR = 0x70,
345 RDCR = 0x15,
347 READ = 0x03,
348 READ4 = 0x13,
349 FAST_READ = 0x0b,
350 FAST_READ4 = 0x0c,
351 DOR = 0x3b,
352 DOR4 = 0x3c,
353 QOR = 0x6b,
354 QOR4 = 0x6c,
355 DIOR = 0xbb,
356 DIOR4 = 0xbc,
357 QIOR = 0xeb,
358 QIOR4 = 0xec,
360 PP = 0x02,
361 PP4 = 0x12,
362 PP4_4 = 0x3e,
363 DPP = 0xa2,
364 QPP = 0x32,
365 QPP_4 = 0x34,
366 RDID_90 = 0x90,
367 RDID_AB = 0xab,
369 ERASE_4K = 0x20,
370 ERASE4_4K = 0x21,
371 ERASE_32K = 0x52,
372 ERASE4_32K = 0x5c,
373 ERASE_SECTOR = 0xd8,
374 ERASE4_SECTOR = 0xdc,
376 EN_4BYTE_ADDR = 0xB7,
377 EX_4BYTE_ADDR = 0xE9,
379 EXTEND_ADDR_READ = 0xC8,
380 EXTEND_ADDR_WRITE = 0xC5,
382 RESET_ENABLE = 0x66,
383 RESET_MEMORY = 0x99,
386 * Micron: 0x35 - enable QPI
387 * Spansion: 0x35 - read control register
389 RDCR_EQIO = 0x35,
390 RSTQIO = 0xf5,
392 RNVCR = 0xB5,
393 WNVCR = 0xB1,
395 RVCR = 0x85,
396 WVCR = 0x81,
398 REVCR = 0x65,
399 WEVCR = 0x61,
401 DIE_ERASE = 0xC4,
402 } FlashCMD;
404 typedef enum {
405 STATE_IDLE,
406 STATE_PAGE_PROGRAM,
407 STATE_READ,
408 STATE_COLLECTING_DATA,
409 STATE_COLLECTING_VAR_LEN_DATA,
410 STATE_READING_DATA,
411 } CMDState;
413 typedef enum {
414 MAN_SPANSION,
415 MAN_MACRONIX,
416 MAN_NUMONYX,
417 MAN_WINBOND,
418 MAN_SST,
419 MAN_GENERIC,
420 } Manufacturer;
422 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
424 typedef struct Flash {
425 SSISlave parent_obj;
427 BlockBackend *blk;
429 uint8_t *storage;
430 uint32_t size;
431 int page_size;
433 uint8_t state;
434 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
435 uint32_t len;
436 uint32_t pos;
437 bool data_read_loop;
438 uint8_t needed_bytes;
439 uint8_t cmd_in_progress;
440 uint32_t cur_addr;
441 uint32_t nonvolatile_cfg;
442 /* Configuration register for Macronix */
443 uint32_t volatile_cfg;
444 uint32_t enh_volatile_cfg;
445 /* Spansion cfg registers. */
446 uint8_t spansion_cr1nv;
447 uint8_t spansion_cr2nv;
448 uint8_t spansion_cr3nv;
449 uint8_t spansion_cr4nv;
450 uint8_t spansion_cr1v;
451 uint8_t spansion_cr2v;
452 uint8_t spansion_cr3v;
453 uint8_t spansion_cr4v;
454 bool write_enable;
455 bool four_bytes_address_mode;
456 bool reset_enable;
457 bool quad_enable;
458 uint8_t ear;
460 int64_t dirty_page;
462 const FlashPartInfo *pi;
464 } Flash;
466 typedef struct M25P80Class {
467 SSISlaveClass parent_class;
468 FlashPartInfo *pi;
469 } M25P80Class;
471 #define TYPE_M25P80 "m25p80-generic"
472 #define M25P80(obj) \
473 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
474 #define M25P80_CLASS(klass) \
475 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
476 #define M25P80_GET_CLASS(obj) \
477 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
479 static inline Manufacturer get_man(Flash *s)
481 switch (s->pi->id[0]) {
482 case 0x20:
483 return MAN_NUMONYX;
484 case 0xEF:
485 return MAN_WINBOND;
486 case 0x01:
487 return MAN_SPANSION;
488 case 0xC2:
489 return MAN_MACRONIX;
490 case 0xBF:
491 return MAN_SST;
492 default:
493 return MAN_GENERIC;
497 static void blk_sync_complete(void *opaque, int ret)
499 QEMUIOVector *iov = opaque;
501 qemu_iovec_destroy(iov);
502 g_free(iov);
504 /* do nothing. Masters do not directly interact with the backing store,
505 * only the working copy so no mutexing required.
509 static void flash_sync_page(Flash *s, int page)
511 QEMUIOVector *iov;
513 if (!s->blk || blk_is_read_only(s->blk)) {
514 return;
517 iov = g_new(QEMUIOVector, 1);
518 qemu_iovec_init(iov, 1);
519 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
520 s->pi->page_size);
521 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
522 blk_sync_complete, iov);
525 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
527 QEMUIOVector *iov;
529 if (!s->blk || blk_is_read_only(s->blk)) {
530 return;
533 assert(!(len % BDRV_SECTOR_SIZE));
534 iov = g_new(QEMUIOVector, 1);
535 qemu_iovec_init(iov, 1);
536 qemu_iovec_add(iov, s->storage + off, len);
537 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
540 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
542 uint32_t len;
543 uint8_t capa_to_assert = 0;
545 switch (cmd) {
546 case ERASE_4K:
547 case ERASE4_4K:
548 len = 4 * KiB;
549 capa_to_assert = ER_4K;
550 break;
551 case ERASE_32K:
552 case ERASE4_32K:
553 len = 32 * KiB;
554 capa_to_assert = ER_32K;
555 break;
556 case ERASE_SECTOR:
557 case ERASE4_SECTOR:
558 len = s->pi->sector_size;
559 break;
560 case BULK_ERASE:
561 len = s->size;
562 break;
563 case DIE_ERASE:
564 if (s->pi->die_cnt) {
565 len = s->size / s->pi->die_cnt;
566 offset = offset & (~(len - 1));
567 } else {
568 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
569 " by device\n");
570 return;
572 break;
573 default:
574 abort();
577 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
578 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
579 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
580 " device\n", len);
583 if (!s->write_enable) {
584 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
585 return;
587 memset(s->storage + offset, 0xff, len);
588 flash_sync_area(s, offset, len);
591 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
593 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
594 flash_sync_page(s, s->dirty_page);
595 s->dirty_page = newpage;
599 static inline
600 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
602 uint32_t page = addr / s->pi->page_size;
603 uint8_t prev = s->storage[s->cur_addr];
605 if (!s->write_enable) {
606 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
609 if ((prev ^ data) & data) {
610 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 " %" PRIx8
611 " -> %" PRIx8 "\n", addr, prev, data);
614 if (s->pi->flags & EEPROM) {
615 s->storage[s->cur_addr] = data;
616 } else {
617 s->storage[s->cur_addr] &= data;
620 flash_sync_dirty(s, page);
621 s->dirty_page = page;
624 static inline int get_addr_length(Flash *s)
626 /* check if eeprom is in use */
627 if (s->pi->flags == EEPROM) {
628 return 2;
631 switch (s->cmd_in_progress) {
632 case PP4:
633 case PP4_4:
634 case QPP_4:
635 case READ4:
636 case QIOR4:
637 case ERASE4_4K:
638 case ERASE4_32K:
639 case ERASE4_SECTOR:
640 case FAST_READ4:
641 case DOR4:
642 case QOR4:
643 case DIOR4:
644 return 4;
645 default:
646 return s->four_bytes_address_mode ? 4 : 3;
650 static void complete_collecting_data(Flash *s)
652 int i, n;
654 n = get_addr_length(s);
655 s->cur_addr = (n == 3 ? s->ear : 0);
656 for (i = 0; i < n; ++i) {
657 s->cur_addr <<= 8;
658 s->cur_addr |= s->data[i];
661 s->cur_addr &= s->size - 1;
663 s->state = STATE_IDLE;
665 switch (s->cmd_in_progress) {
666 case DPP:
667 case QPP:
668 case QPP_4:
669 case PP:
670 case PP4:
671 case PP4_4:
672 s->state = STATE_PAGE_PROGRAM;
673 break;
674 case READ:
675 case READ4:
676 case FAST_READ:
677 case FAST_READ4:
678 case DOR:
679 case DOR4:
680 case QOR:
681 case QOR4:
682 case DIOR:
683 case DIOR4:
684 case QIOR:
685 case QIOR4:
686 s->state = STATE_READ;
687 break;
688 case ERASE_4K:
689 case ERASE4_4K:
690 case ERASE_32K:
691 case ERASE4_32K:
692 case ERASE_SECTOR:
693 case ERASE4_SECTOR:
694 case DIE_ERASE:
695 flash_erase(s, s->cur_addr, s->cmd_in_progress);
696 break;
697 case WRSR:
698 switch (get_man(s)) {
699 case MAN_SPANSION:
700 s->quad_enable = !!(s->data[1] & 0x02);
701 break;
702 case MAN_MACRONIX:
703 s->quad_enable = extract32(s->data[0], 6, 1);
704 if (s->len > 1) {
705 s->volatile_cfg = s->data[1];
706 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
708 break;
709 default:
710 break;
712 if (s->write_enable) {
713 s->write_enable = false;
715 break;
716 case BRWR:
717 case EXTEND_ADDR_WRITE:
718 s->ear = s->data[0];
719 break;
720 case WNVCR:
721 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
722 break;
723 case WVCR:
724 s->volatile_cfg = s->data[0];
725 break;
726 case WEVCR:
727 s->enh_volatile_cfg = s->data[0];
728 break;
729 case RDID_90:
730 case RDID_AB:
731 if (get_man(s) == MAN_SST) {
732 if (s->cur_addr <= 1) {
733 if (s->cur_addr) {
734 s->data[0] = s->pi->id[2];
735 s->data[1] = s->pi->id[0];
736 } else {
737 s->data[0] = s->pi->id[0];
738 s->data[1] = s->pi->id[2];
740 s->pos = 0;
741 s->len = 2;
742 s->data_read_loop = true;
743 s->state = STATE_READING_DATA;
744 } else {
745 qemu_log_mask(LOG_GUEST_ERROR,
746 "M25P80: Invalid read id address\n");
748 } else {
749 qemu_log_mask(LOG_GUEST_ERROR,
750 "M25P80: Read id (command 0x90/0xAB) is not supported"
751 " by device\n");
753 break;
754 default:
755 break;
759 static void reset_memory(Flash *s)
761 s->cmd_in_progress = NOP;
762 s->cur_addr = 0;
763 s->ear = 0;
764 s->four_bytes_address_mode = false;
765 s->len = 0;
766 s->needed_bytes = 0;
767 s->pos = 0;
768 s->state = STATE_IDLE;
769 s->write_enable = false;
770 s->reset_enable = false;
771 s->quad_enable = false;
773 switch (get_man(s)) {
774 case MAN_NUMONYX:
775 s->volatile_cfg = 0;
776 s->volatile_cfg |= VCFG_DUMMY;
777 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
778 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
779 != NVCFG_XIP_MODE_DISABLED) {
780 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
782 s->volatile_cfg |= deposit32(s->volatile_cfg,
783 VCFG_DUMMY_CLK_POS,
784 CFG_DUMMY_CLK_LEN,
785 extract32(s->nonvolatile_cfg,
786 NVCFG_DUMMY_CLK_POS,
787 CFG_DUMMY_CLK_LEN)
790 s->enh_volatile_cfg = 0;
791 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
792 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
793 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
794 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
795 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
797 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
798 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
800 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
801 s->four_bytes_address_mode = true;
803 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
804 s->ear = s->size / MAX_3BYTES_SIZE - 1;
806 break;
807 case MAN_MACRONIX:
808 s->volatile_cfg = 0x7;
809 break;
810 case MAN_SPANSION:
811 s->spansion_cr1v = s->spansion_cr1nv;
812 s->spansion_cr2v = s->spansion_cr2nv;
813 s->spansion_cr3v = s->spansion_cr3nv;
814 s->spansion_cr4v = s->spansion_cr4nv;
815 s->quad_enable = extract32(s->spansion_cr1v,
816 SPANSION_QUAD_CFG_POS,
817 SPANSION_QUAD_CFG_LEN
819 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
820 SPANSION_ADDR_LEN_POS,
821 SPANSION_ADDR_LEN_LEN
823 break;
824 default:
825 break;
828 DB_PRINT_L(0, "Reset done.\n");
831 static void decode_fast_read_cmd(Flash *s)
833 s->needed_bytes = get_addr_length(s);
834 switch (get_man(s)) {
835 /* Dummy cycles - modeled with bytes writes instead of bits */
836 case MAN_WINBOND:
837 s->needed_bytes += 8;
838 break;
839 case MAN_NUMONYX:
840 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
841 break;
842 case MAN_MACRONIX:
843 if (extract32(s->volatile_cfg, 6, 2) == 1) {
844 s->needed_bytes += 6;
845 } else {
846 s->needed_bytes += 8;
848 break;
849 case MAN_SPANSION:
850 s->needed_bytes += extract32(s->spansion_cr2v,
851 SPANSION_DUMMY_CLK_POS,
852 SPANSION_DUMMY_CLK_LEN
854 break;
855 default:
856 break;
858 s->pos = 0;
859 s->len = 0;
860 s->state = STATE_COLLECTING_DATA;
863 static void decode_dio_read_cmd(Flash *s)
865 s->needed_bytes = get_addr_length(s);
866 /* Dummy cycles modeled with bytes writes instead of bits */
867 switch (get_man(s)) {
868 case MAN_WINBOND:
869 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
870 break;
871 case MAN_SPANSION:
872 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
873 s->needed_bytes += extract32(s->spansion_cr2v,
874 SPANSION_DUMMY_CLK_POS,
875 SPANSION_DUMMY_CLK_LEN
877 break;
878 case MAN_NUMONYX:
879 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
880 break;
881 case MAN_MACRONIX:
882 switch (extract32(s->volatile_cfg, 6, 2)) {
883 case 1:
884 s->needed_bytes += 6;
885 break;
886 case 2:
887 s->needed_bytes += 8;
888 break;
889 default:
890 s->needed_bytes += 4;
891 break;
893 break;
894 default:
895 break;
897 s->pos = 0;
898 s->len = 0;
899 s->state = STATE_COLLECTING_DATA;
902 static void decode_qio_read_cmd(Flash *s)
904 s->needed_bytes = get_addr_length(s);
905 /* Dummy cycles modeled with bytes writes instead of bits */
906 switch (get_man(s)) {
907 case MAN_WINBOND:
908 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
909 s->needed_bytes += 4;
910 break;
911 case MAN_SPANSION:
912 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
913 s->needed_bytes += extract32(s->spansion_cr2v,
914 SPANSION_DUMMY_CLK_POS,
915 SPANSION_DUMMY_CLK_LEN
917 break;
918 case MAN_NUMONYX:
919 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
920 break;
921 case MAN_MACRONIX:
922 switch (extract32(s->volatile_cfg, 6, 2)) {
923 case 1:
924 s->needed_bytes += 4;
925 break;
926 case 2:
927 s->needed_bytes += 8;
928 break;
929 default:
930 s->needed_bytes += 6;
931 break;
933 break;
934 default:
935 break;
937 s->pos = 0;
938 s->len = 0;
939 s->state = STATE_COLLECTING_DATA;
942 static void decode_new_cmd(Flash *s, uint32_t value)
944 s->cmd_in_progress = value;
945 int i;
946 DB_PRINT_L(0, "decoded new command:%x\n", value);
948 if (value != RESET_MEMORY) {
949 s->reset_enable = false;
952 switch (value) {
954 case ERASE_4K:
955 case ERASE4_4K:
956 case ERASE_32K:
957 case ERASE4_32K:
958 case ERASE_SECTOR:
959 case ERASE4_SECTOR:
960 case READ:
961 case READ4:
962 case DPP:
963 case QPP:
964 case QPP_4:
965 case PP:
966 case PP4:
967 case PP4_4:
968 case DIE_ERASE:
969 case RDID_90:
970 case RDID_AB:
971 s->needed_bytes = get_addr_length(s);
972 s->pos = 0;
973 s->len = 0;
974 s->state = STATE_COLLECTING_DATA;
975 break;
977 case FAST_READ:
978 case FAST_READ4:
979 case DOR:
980 case DOR4:
981 case QOR:
982 case QOR4:
983 decode_fast_read_cmd(s);
984 break;
986 case DIOR:
987 case DIOR4:
988 decode_dio_read_cmd(s);
989 break;
991 case QIOR:
992 case QIOR4:
993 decode_qio_read_cmd(s);
994 break;
996 case WRSR:
997 if (s->write_enable) {
998 switch (get_man(s)) {
999 case MAN_SPANSION:
1000 s->needed_bytes = 2;
1001 s->state = STATE_COLLECTING_DATA;
1002 break;
1003 case MAN_MACRONIX:
1004 s->needed_bytes = 2;
1005 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1006 break;
1007 default:
1008 s->needed_bytes = 1;
1009 s->state = STATE_COLLECTING_DATA;
1011 s->pos = 0;
1013 break;
1015 case WRDI:
1016 s->write_enable = false;
1017 break;
1018 case WREN:
1019 s->write_enable = true;
1020 break;
1022 case RDSR:
1023 s->data[0] = (!!s->write_enable) << 1;
1024 if (get_man(s) == MAN_MACRONIX) {
1025 s->data[0] |= (!!s->quad_enable) << 6;
1027 s->pos = 0;
1028 s->len = 1;
1029 s->data_read_loop = true;
1030 s->state = STATE_READING_DATA;
1031 break;
1033 case READ_FSR:
1034 s->data[0] = FSR_FLASH_READY;
1035 if (s->four_bytes_address_mode) {
1036 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1038 s->pos = 0;
1039 s->len = 1;
1040 s->data_read_loop = true;
1041 s->state = STATE_READING_DATA;
1042 break;
1044 case JEDEC_READ:
1045 DB_PRINT_L(0, "populated jedec code\n");
1046 for (i = 0; i < s->pi->id_len; i++) {
1047 s->data[i] = s->pi->id[i];
1050 s->len = s->pi->id_len;
1051 s->pos = 0;
1052 s->state = STATE_READING_DATA;
1053 break;
1055 case RDCR:
1056 s->data[0] = s->volatile_cfg & 0xFF;
1057 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1058 s->pos = 0;
1059 s->len = 1;
1060 s->state = STATE_READING_DATA;
1061 break;
1063 case BULK_ERASE_60:
1064 case BULK_ERASE:
1065 if (s->write_enable) {
1066 DB_PRINT_L(0, "chip erase\n");
1067 flash_erase(s, 0, BULK_ERASE);
1068 } else {
1069 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1070 "protect!\n");
1072 break;
1073 case NOP:
1074 break;
1075 case EN_4BYTE_ADDR:
1076 s->four_bytes_address_mode = true;
1077 break;
1078 case EX_4BYTE_ADDR:
1079 s->four_bytes_address_mode = false;
1080 break;
1081 case BRRD:
1082 case EXTEND_ADDR_READ:
1083 s->data[0] = s->ear;
1084 s->pos = 0;
1085 s->len = 1;
1086 s->state = STATE_READING_DATA;
1087 break;
1088 case BRWR:
1089 case EXTEND_ADDR_WRITE:
1090 if (s->write_enable) {
1091 s->needed_bytes = 1;
1092 s->pos = 0;
1093 s->len = 0;
1094 s->state = STATE_COLLECTING_DATA;
1096 break;
1097 case RNVCR:
1098 s->data[0] = s->nonvolatile_cfg & 0xFF;
1099 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1100 s->pos = 0;
1101 s->len = 2;
1102 s->state = STATE_READING_DATA;
1103 break;
1104 case WNVCR:
1105 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1106 s->needed_bytes = 2;
1107 s->pos = 0;
1108 s->len = 0;
1109 s->state = STATE_COLLECTING_DATA;
1111 break;
1112 case RVCR:
1113 s->data[0] = s->volatile_cfg & 0xFF;
1114 s->pos = 0;
1115 s->len = 1;
1116 s->state = STATE_READING_DATA;
1117 break;
1118 case WVCR:
1119 if (s->write_enable) {
1120 s->needed_bytes = 1;
1121 s->pos = 0;
1122 s->len = 0;
1123 s->state = STATE_COLLECTING_DATA;
1125 break;
1126 case REVCR:
1127 s->data[0] = s->enh_volatile_cfg & 0xFF;
1128 s->pos = 0;
1129 s->len = 1;
1130 s->state = STATE_READING_DATA;
1131 break;
1132 case WEVCR:
1133 if (s->write_enable) {
1134 s->needed_bytes = 1;
1135 s->pos = 0;
1136 s->len = 0;
1137 s->state = STATE_COLLECTING_DATA;
1139 break;
1140 case RESET_ENABLE:
1141 s->reset_enable = true;
1142 break;
1143 case RESET_MEMORY:
1144 if (s->reset_enable) {
1145 reset_memory(s);
1147 break;
1148 case RDCR_EQIO:
1149 switch (get_man(s)) {
1150 case MAN_SPANSION:
1151 s->data[0] = (!!s->quad_enable) << 1;
1152 s->pos = 0;
1153 s->len = 1;
1154 s->state = STATE_READING_DATA;
1155 break;
1156 case MAN_MACRONIX:
1157 s->quad_enable = true;
1158 break;
1159 default:
1160 break;
1162 break;
1163 case RSTQIO:
1164 s->quad_enable = false;
1165 break;
1166 default:
1167 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1168 break;
1172 static int m25p80_cs(SSISlave *ss, bool select)
1174 Flash *s = M25P80(ss);
1176 if (select) {
1177 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1178 complete_collecting_data(s);
1180 s->len = 0;
1181 s->pos = 0;
1182 s->state = STATE_IDLE;
1183 flash_sync_dirty(s, -1);
1184 s->data_read_loop = false;
1187 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1189 return 0;
1192 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1194 Flash *s = M25P80(ss);
1195 uint32_t r = 0;
1197 switch (s->state) {
1199 case STATE_PAGE_PROGRAM:
1200 DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1201 s->cur_addr, (uint8_t)tx);
1202 flash_write8(s, s->cur_addr, (uint8_t)tx);
1203 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1204 break;
1206 case STATE_READ:
1207 r = s->storage[s->cur_addr];
1208 DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1209 (uint8_t)r);
1210 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1211 break;
1213 case STATE_COLLECTING_DATA:
1214 case STATE_COLLECTING_VAR_LEN_DATA:
1216 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1217 qemu_log_mask(LOG_GUEST_ERROR,
1218 "M25P80: Write overrun internal data buffer. "
1219 "SPI controller (QEMU emulator or guest driver) "
1220 "is misbehaving\n");
1221 s->len = s->pos = 0;
1222 s->state = STATE_IDLE;
1223 break;
1226 s->data[s->len] = (uint8_t)tx;
1227 s->len++;
1229 if (s->len == s->needed_bytes) {
1230 complete_collecting_data(s);
1232 break;
1234 case STATE_READING_DATA:
1236 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1237 qemu_log_mask(LOG_GUEST_ERROR,
1238 "M25P80: Read overrun internal data buffer. "
1239 "SPI controller (QEMU emulator or guest driver) "
1240 "is misbehaving\n");
1241 s->len = s->pos = 0;
1242 s->state = STATE_IDLE;
1243 break;
1246 r = s->data[s->pos];
1247 s->pos++;
1248 if (s->pos == s->len) {
1249 s->pos = 0;
1250 if (!s->data_read_loop) {
1251 s->state = STATE_IDLE;
1254 break;
1256 default:
1257 case STATE_IDLE:
1258 decode_new_cmd(s, (uint8_t)tx);
1259 break;
1262 return r;
1265 static void m25p80_realize(SSISlave *ss, Error **errp)
1267 Flash *s = M25P80(ss);
1268 M25P80Class *mc = M25P80_GET_CLASS(s);
1269 int ret;
1271 s->pi = mc->pi;
1273 s->size = s->pi->sector_size * s->pi->n_sectors;
1274 s->dirty_page = -1;
1276 if (s->blk) {
1277 uint64_t perm = BLK_PERM_CONSISTENT_READ |
1278 (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1279 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1280 if (ret < 0) {
1281 return;
1284 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1285 s->storage = blk_blockalign(s->blk, s->size);
1287 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1288 error_setg(errp, "failed to read the initial flash content");
1289 return;
1291 } else {
1292 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1293 s->storage = blk_blockalign(NULL, s->size);
1294 memset(s->storage, 0xFF, s->size);
1298 static void m25p80_reset(DeviceState *d)
1300 Flash *s = M25P80(d);
1302 reset_memory(s);
1305 static int m25p80_pre_save(void *opaque)
1307 flash_sync_dirty((Flash *)opaque, -1);
1309 return 0;
1312 static Property m25p80_properties[] = {
1313 /* This is default value for Micron flash */
1314 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1315 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1316 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1317 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1318 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1319 DEFINE_PROP_DRIVE("drive", Flash, blk),
1320 DEFINE_PROP_END_OF_LIST(),
1323 static int m25p80_pre_load(void *opaque)
1325 Flash *s = (Flash *)opaque;
1327 s->data_read_loop = false;
1328 return 0;
1331 static bool m25p80_data_read_loop_needed(void *opaque)
1333 Flash *s = (Flash *)opaque;
1335 return s->data_read_loop;
1338 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1339 .name = "m25p80/data_read_loop",
1340 .version_id = 1,
1341 .minimum_version_id = 1,
1342 .needed = m25p80_data_read_loop_needed,
1343 .fields = (VMStateField[]) {
1344 VMSTATE_BOOL(data_read_loop, Flash),
1345 VMSTATE_END_OF_LIST()
1349 static const VMStateDescription vmstate_m25p80 = {
1350 .name = "m25p80",
1351 .version_id = 0,
1352 .minimum_version_id = 0,
1353 .pre_save = m25p80_pre_save,
1354 .pre_load = m25p80_pre_load,
1355 .fields = (VMStateField[]) {
1356 VMSTATE_UINT8(state, Flash),
1357 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1358 VMSTATE_UINT32(len, Flash),
1359 VMSTATE_UINT32(pos, Flash),
1360 VMSTATE_UINT8(needed_bytes, Flash),
1361 VMSTATE_UINT8(cmd_in_progress, Flash),
1362 VMSTATE_UINT32(cur_addr, Flash),
1363 VMSTATE_BOOL(write_enable, Flash),
1364 VMSTATE_BOOL(reset_enable, Flash),
1365 VMSTATE_UINT8(ear, Flash),
1366 VMSTATE_BOOL(four_bytes_address_mode, Flash),
1367 VMSTATE_UINT32(nonvolatile_cfg, Flash),
1368 VMSTATE_UINT32(volatile_cfg, Flash),
1369 VMSTATE_UINT32(enh_volatile_cfg, Flash),
1370 VMSTATE_BOOL(quad_enable, Flash),
1371 VMSTATE_UINT8(spansion_cr1nv, Flash),
1372 VMSTATE_UINT8(spansion_cr2nv, Flash),
1373 VMSTATE_UINT8(spansion_cr3nv, Flash),
1374 VMSTATE_UINT8(spansion_cr4nv, Flash),
1375 VMSTATE_END_OF_LIST()
1377 .subsections = (const VMStateDescription * []) {
1378 &vmstate_m25p80_data_read_loop,
1379 NULL
1383 static void m25p80_class_init(ObjectClass *klass, void *data)
1385 DeviceClass *dc = DEVICE_CLASS(klass);
1386 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1387 M25P80Class *mc = M25P80_CLASS(klass);
1389 k->realize = m25p80_realize;
1390 k->transfer = m25p80_transfer8;
1391 k->set_cs = m25p80_cs;
1392 k->cs_polarity = SSI_CS_LOW;
1393 dc->vmsd = &vmstate_m25p80;
1394 dc->props = m25p80_properties;
1395 dc->reset = m25p80_reset;
1396 mc->pi = data;
1399 static const TypeInfo m25p80_info = {
1400 .name = TYPE_M25P80,
1401 .parent = TYPE_SSI_SLAVE,
1402 .instance_size = sizeof(Flash),
1403 .class_size = sizeof(M25P80Class),
1404 .abstract = true,
1407 static void m25p80_register_types(void)
1409 int i;
1411 type_register_static(&m25p80_info);
1412 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1413 TypeInfo ti = {
1414 .name = known_devices[i].part_name,
1415 .parent = TYPE_M25P80,
1416 .class_init = m25p80_class_init,
1417 .class_data = (void *)&known_devices[i],
1419 type_register(&ti);
1423 type_init(m25p80_register_types)