target/arm: Unify unallocated path in disas_fp_1src
[qemu/ar7.git] / hw / i386 / intel_iommu.c
blob209b3f55530efa623ef2636454e795954b179766
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
52 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
53 if (ret_fr) { \
54 ret_fr = -ret_fr; \
55 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
56 trace_vtd_fault_disabled(); \
57 } else { \
58 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
59 } \
60 goto error; \
61 } \
64 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
65 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
67 static void vtd_panic_require_caching_mode(void)
69 error_report("We need to set caching-mode=on for intel-iommu to enable "
70 "device assignment with IOMMU protection.");
71 exit(1);
74 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
75 uint64_t wmask, uint64_t w1cmask)
77 stq_le_p(&s->csr[addr], val);
78 stq_le_p(&s->wmask[addr], wmask);
79 stq_le_p(&s->w1cmask[addr], w1cmask);
82 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
84 stq_le_p(&s->womask[addr], mask);
87 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
88 uint32_t wmask, uint32_t w1cmask)
90 stl_le_p(&s->csr[addr], val);
91 stl_le_p(&s->wmask[addr], wmask);
92 stl_le_p(&s->w1cmask[addr], w1cmask);
95 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
97 stl_le_p(&s->womask[addr], mask);
100 /* "External" get/set operations */
101 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
103 uint64_t oldval = ldq_le_p(&s->csr[addr]);
104 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
105 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
106 stq_le_p(&s->csr[addr],
107 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
110 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
112 uint32_t oldval = ldl_le_p(&s->csr[addr]);
113 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
114 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
115 stl_le_p(&s->csr[addr],
116 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
119 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
121 uint64_t val = ldq_le_p(&s->csr[addr]);
122 uint64_t womask = ldq_le_p(&s->womask[addr]);
123 return val & ~womask;
126 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
128 uint32_t val = ldl_le_p(&s->csr[addr]);
129 uint32_t womask = ldl_le_p(&s->womask[addr]);
130 return val & ~womask;
133 /* "Internal" get/set operations */
134 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
136 return ldq_le_p(&s->csr[addr]);
139 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
141 return ldl_le_p(&s->csr[addr]);
144 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
146 stq_le_p(&s->csr[addr], val);
149 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
150 uint32_t clear, uint32_t mask)
152 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
153 stl_le_p(&s->csr[addr], new_val);
154 return new_val;
157 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
158 uint64_t clear, uint64_t mask)
160 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
161 stq_le_p(&s->csr[addr], new_val);
162 return new_val;
165 static inline void vtd_iommu_lock(IntelIOMMUState *s)
167 qemu_mutex_lock(&s->iommu_lock);
170 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
172 qemu_mutex_unlock(&s->iommu_lock);
175 static void vtd_update_scalable_state(IntelIOMMUState *s)
177 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
179 if (s->scalable_mode) {
180 s->root_scalable = val & VTD_RTADDR_SMT;
184 /* Whether the address space needs to notify new mappings */
185 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
187 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
190 /* GHashTable functions */
191 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
193 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
196 static guint vtd_uint64_hash(gconstpointer v)
198 return (guint)*(const uint64_t *)v;
201 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
202 gpointer user_data)
204 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
205 uint16_t domain_id = *(uint16_t *)user_data;
206 return entry->domain_id == domain_id;
209 /* The shift of an addr for a certain level of paging structure */
210 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
212 assert(level != 0);
213 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
216 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
218 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
221 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
222 gpointer user_data)
224 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
225 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
226 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
227 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
228 return (entry->domain_id == info->domain_id) &&
229 (((entry->gfn & info->mask) == gfn) ||
230 (entry->gfn == gfn_tlb));
233 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
234 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
236 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
238 VTDAddressSpace *vtd_as;
239 VTDBus *vtd_bus;
240 GHashTableIter bus_it;
241 uint32_t devfn_it;
243 trace_vtd_context_cache_reset();
245 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
247 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
248 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
249 vtd_as = vtd_bus->dev_as[devfn_it];
250 if (!vtd_as) {
251 continue;
253 vtd_as->context_cache_entry.context_cache_gen = 0;
256 s->context_cache_gen = 1;
259 /* Must be called with IOMMU lock held. */
260 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
262 assert(s->iotlb);
263 g_hash_table_remove_all(s->iotlb);
266 static void vtd_reset_iotlb(IntelIOMMUState *s)
268 vtd_iommu_lock(s);
269 vtd_reset_iotlb_locked(s);
270 vtd_iommu_unlock(s);
273 static void vtd_reset_caches(IntelIOMMUState *s)
275 vtd_iommu_lock(s);
276 vtd_reset_iotlb_locked(s);
277 vtd_reset_context_cache_locked(s);
278 vtd_iommu_unlock(s);
281 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
282 uint32_t level)
284 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
285 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
288 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
290 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
293 /* Must be called with IOMMU lock held */
294 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
295 hwaddr addr)
297 VTDIOTLBEntry *entry;
298 uint64_t key;
299 int level;
301 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
302 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
303 source_id, level);
304 entry = g_hash_table_lookup(s->iotlb, &key);
305 if (entry) {
306 goto out;
310 out:
311 return entry;
314 /* Must be with IOMMU lock held */
315 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
316 uint16_t domain_id, hwaddr addr, uint64_t slpte,
317 uint8_t access_flags, uint32_t level)
319 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
320 uint64_t *key = g_malloc(sizeof(*key));
321 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
323 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
324 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
325 trace_vtd_iotlb_reset("iotlb exceeds size limit");
326 vtd_reset_iotlb_locked(s);
329 entry->gfn = gfn;
330 entry->domain_id = domain_id;
331 entry->slpte = slpte;
332 entry->access_flags = access_flags;
333 entry->mask = vtd_slpt_level_page_mask(level);
334 *key = vtd_get_iotlb_key(gfn, source_id, level);
335 g_hash_table_replace(s->iotlb, key, entry);
338 /* Given the reg addr of both the message data and address, generate an
339 * interrupt via MSI.
341 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
342 hwaddr mesg_data_reg)
344 MSIMessage msi;
346 assert(mesg_data_reg < DMAR_REG_SIZE);
347 assert(mesg_addr_reg < DMAR_REG_SIZE);
349 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
350 msi.data = vtd_get_long_raw(s, mesg_data_reg);
352 trace_vtd_irq_generate(msi.address, msi.data);
354 apic_get_class()->send_msi(&msi);
357 /* Generate a fault event to software via MSI if conditions are met.
358 * Notice that the value of FSTS_REG being passed to it should be the one
359 * before any update.
361 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
363 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
364 pre_fsts & VTD_FSTS_IQE) {
365 error_report_once("There are previous interrupt conditions "
366 "to be serviced by software, fault event "
367 "is not generated");
368 return;
370 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
371 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
372 error_report_once("Interrupt Mask set, irq is not generated");
373 } else {
374 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
375 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
379 /* Check if the Fault (F) field of the Fault Recording Register referenced by
380 * @index is Set.
382 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
384 /* Each reg is 128-bit */
385 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
386 addr += 8; /* Access the high 64-bit half */
388 assert(index < DMAR_FRCD_REG_NR);
390 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
393 /* Update the PPF field of Fault Status Register.
394 * Should be called whenever change the F field of any fault recording
395 * registers.
397 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
399 uint32_t i;
400 uint32_t ppf_mask = 0;
402 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
403 if (vtd_is_frcd_set(s, i)) {
404 ppf_mask = VTD_FSTS_PPF;
405 break;
408 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
409 trace_vtd_fsts_ppf(!!ppf_mask);
412 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
414 /* Each reg is 128-bit */
415 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
416 addr += 8; /* Access the high 64-bit half */
418 assert(index < DMAR_FRCD_REG_NR);
420 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
421 vtd_update_fsts_ppf(s);
424 /* Must not update F field now, should be done later */
425 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
426 uint16_t source_id, hwaddr addr,
427 VTDFaultReason fault, bool is_write)
429 uint64_t hi = 0, lo;
430 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
432 assert(index < DMAR_FRCD_REG_NR);
434 lo = VTD_FRCD_FI(addr);
435 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
436 if (!is_write) {
437 hi |= VTD_FRCD_T;
439 vtd_set_quad_raw(s, frcd_reg_addr, lo);
440 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
442 trace_vtd_frr_new(index, hi, lo);
445 /* Try to collapse multiple pending faults from the same requester */
446 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
448 uint32_t i;
449 uint64_t frcd_reg;
450 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
452 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
453 frcd_reg = vtd_get_quad_raw(s, addr);
454 if ((frcd_reg & VTD_FRCD_F) &&
455 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
456 return true;
458 addr += 16; /* 128-bit for each */
460 return false;
463 /* Log and report an DMAR (address translation) fault to software */
464 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
465 hwaddr addr, VTDFaultReason fault,
466 bool is_write)
468 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
470 assert(fault < VTD_FR_MAX);
472 if (fault == VTD_FR_RESERVED_ERR) {
473 /* This is not a normal fault reason case. Drop it. */
474 return;
477 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
479 if (fsts_reg & VTD_FSTS_PFO) {
480 error_report_once("New fault is not recorded due to "
481 "Primary Fault Overflow");
482 return;
485 if (vtd_try_collapse_fault(s, source_id)) {
486 error_report_once("New fault is not recorded due to "
487 "compression of faults");
488 return;
491 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
492 error_report_once("Next Fault Recording Reg is used, "
493 "new fault is not recorded, set PFO field");
494 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
495 return;
498 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
500 if (fsts_reg & VTD_FSTS_PPF) {
501 error_report_once("There are pending faults already, "
502 "fault event is not generated");
503 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
504 s->next_frcd_reg++;
505 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
506 s->next_frcd_reg = 0;
508 } else {
509 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
510 VTD_FSTS_FRI(s->next_frcd_reg));
511 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
512 s->next_frcd_reg++;
513 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
514 s->next_frcd_reg = 0;
516 /* This case actually cause the PPF to be Set.
517 * So generate fault event (interrupt).
519 vtd_generate_fault_event(s, fsts_reg);
523 /* Handle Invalidation Queue Errors of queued invalidation interface error
524 * conditions.
526 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
528 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
530 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
531 vtd_generate_fault_event(s, fsts_reg);
534 /* Set the IWC field and try to generate an invalidation completion interrupt */
535 static void vtd_generate_completion_event(IntelIOMMUState *s)
537 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
538 trace_vtd_inv_desc_wait_irq("One pending, skip current");
539 return;
541 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
542 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
543 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
544 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
545 "new event not generated");
546 return;
547 } else {
548 /* Generate the interrupt event */
549 trace_vtd_inv_desc_wait_irq("Generating complete event");
550 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
551 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
555 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
556 VTDRootEntry *re,
557 uint8_t devfn)
559 if (s->root_scalable && devfn > UINT8_MAX / 2) {
560 return re->hi & VTD_ROOT_ENTRY_P;
563 return re->lo & VTD_ROOT_ENTRY_P;
566 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
567 VTDRootEntry *re)
569 dma_addr_t addr;
571 addr = s->root + index * sizeof(*re);
572 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
573 re->lo = 0;
574 return -VTD_FR_ROOT_TABLE_INV;
576 re->lo = le64_to_cpu(re->lo);
577 re->hi = le64_to_cpu(re->hi);
578 return 0;
581 static inline bool vtd_ce_present(VTDContextEntry *context)
583 return context->lo & VTD_CONTEXT_ENTRY_P;
586 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
587 VTDRootEntry *re,
588 uint8_t index,
589 VTDContextEntry *ce)
591 dma_addr_t addr, ce_size;
593 /* we have checked that root entry is present */
594 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
595 VTD_CTX_ENTRY_LEGACY_SIZE;
597 if (s->root_scalable && index > UINT8_MAX / 2) {
598 index = index & (~VTD_DEVFN_CHECK_MASK);
599 addr = re->hi & VTD_ROOT_ENTRY_CTP;
600 } else {
601 addr = re->lo & VTD_ROOT_ENTRY_CTP;
604 addr = addr + index * ce_size;
605 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
606 return -VTD_FR_CONTEXT_TABLE_INV;
609 ce->lo = le64_to_cpu(ce->lo);
610 ce->hi = le64_to_cpu(ce->hi);
611 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
612 ce->val[2] = le64_to_cpu(ce->val[2]);
613 ce->val[3] = le64_to_cpu(ce->val[3]);
615 return 0;
618 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
620 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
623 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
625 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
628 /* Whether the pte indicates the address of the page frame */
629 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
631 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
634 /* Get the content of a spte located in @base_addr[@index] */
635 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
637 uint64_t slpte;
639 assert(index < VTD_SL_PT_ENTRY_NR);
641 if (dma_memory_read(&address_space_memory,
642 base_addr + index * sizeof(slpte), &slpte,
643 sizeof(slpte))) {
644 slpte = (uint64_t)-1;
645 return slpte;
647 slpte = le64_to_cpu(slpte);
648 return slpte;
651 /* Given an iova and the level of paging structure, return the offset
652 * of current level.
654 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
656 return (iova >> vtd_slpt_level_shift(level)) &
657 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
660 /* Check Capability Register to see if the @level of page-table is supported */
661 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
663 return VTD_CAP_SAGAW_MASK & s->cap &
664 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
667 /* Return true if check passed, otherwise false */
668 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
669 VTDPASIDEntry *pe)
671 switch (VTD_PE_GET_TYPE(pe)) {
672 case VTD_SM_PASID_ENTRY_FLT:
673 case VTD_SM_PASID_ENTRY_SLT:
674 case VTD_SM_PASID_ENTRY_NESTED:
675 break;
676 case VTD_SM_PASID_ENTRY_PT:
677 if (!x86_iommu->pt_supported) {
678 return false;
680 break;
681 default:
682 /* Unknwon type */
683 return false;
685 return true;
688 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
690 return pdire->val & 1;
694 * Caller of this function should check present bit if wants
695 * to use pdir entry for futher usage except for fpd bit check.
697 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
698 uint32_t pasid,
699 VTDPASIDDirEntry *pdire)
701 uint32_t index;
702 dma_addr_t addr, entry_size;
704 index = VTD_PASID_DIR_INDEX(pasid);
705 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
706 addr = pasid_dir_base + index * entry_size;
707 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
708 return -VTD_FR_PASID_TABLE_INV;
711 return 0;
714 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
716 return pe->val[0] & VTD_PASID_ENTRY_P;
719 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
720 uint32_t pasid,
721 dma_addr_t addr,
722 VTDPASIDEntry *pe)
724 uint32_t index;
725 dma_addr_t entry_size;
726 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
728 index = VTD_PASID_TABLE_INDEX(pasid);
729 entry_size = VTD_PASID_ENTRY_SIZE;
730 addr = addr + index * entry_size;
731 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
732 return -VTD_FR_PASID_TABLE_INV;
735 /* Do translation type check */
736 if (!vtd_pe_type_check(x86_iommu, pe)) {
737 return -VTD_FR_PASID_TABLE_INV;
740 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
741 return -VTD_FR_PASID_TABLE_INV;
744 return 0;
748 * Caller of this function should check present bit if wants
749 * to use pasid entry for futher usage except for fpd bit check.
751 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
752 uint32_t pasid,
753 VTDPASIDDirEntry *pdire,
754 VTDPASIDEntry *pe)
756 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
758 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
762 * This function gets a pasid entry from a specified pasid
763 * table (includes dir and leaf table) with a specified pasid.
764 * Sanity check should be done to ensure return a present
765 * pasid entry to caller.
767 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
768 dma_addr_t pasid_dir_base,
769 uint32_t pasid,
770 VTDPASIDEntry *pe)
772 int ret;
773 VTDPASIDDirEntry pdire;
775 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
776 pasid, &pdire);
777 if (ret) {
778 return ret;
781 if (!vtd_pdire_present(&pdire)) {
782 return -VTD_FR_PASID_TABLE_INV;
785 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
786 if (ret) {
787 return ret;
790 if (!vtd_pe_present(pe)) {
791 return -VTD_FR_PASID_TABLE_INV;
794 return 0;
797 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
798 VTDContextEntry *ce,
799 VTDPASIDEntry *pe)
801 uint32_t pasid;
802 dma_addr_t pasid_dir_base;
803 int ret = 0;
805 pasid = VTD_CE_GET_RID2PASID(ce);
806 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
807 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
809 return ret;
812 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
813 VTDContextEntry *ce,
814 bool *pe_fpd_set)
816 int ret;
817 uint32_t pasid;
818 dma_addr_t pasid_dir_base;
819 VTDPASIDDirEntry pdire;
820 VTDPASIDEntry pe;
822 pasid = VTD_CE_GET_RID2PASID(ce);
823 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
826 * No present bit check since fpd is meaningful even
827 * if the present bit is clear.
829 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
830 if (ret) {
831 return ret;
834 if (pdire.val & VTD_PASID_DIR_FPD) {
835 *pe_fpd_set = true;
836 return 0;
839 if (!vtd_pdire_present(&pdire)) {
840 return -VTD_FR_PASID_TABLE_INV;
844 * No present bit check since fpd is meaningful even
845 * if the present bit is clear.
847 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
848 if (ret) {
849 return ret;
852 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
853 *pe_fpd_set = true;
856 return 0;
859 /* Get the page-table level that hardware should use for the second-level
860 * page-table walk from the Address Width field of context-entry.
862 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
864 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
867 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
868 VTDContextEntry *ce)
870 VTDPASIDEntry pe;
872 if (s->root_scalable) {
873 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
874 return VTD_PE_GET_LEVEL(&pe);
877 return vtd_ce_get_level(ce);
880 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
882 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
885 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
886 VTDContextEntry *ce)
888 VTDPASIDEntry pe;
890 if (s->root_scalable) {
891 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
892 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
895 return vtd_ce_get_agaw(ce);
898 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
900 return ce->lo & VTD_CONTEXT_ENTRY_TT;
903 /* Only for Legacy Mode. Return true if check passed, otherwise false */
904 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
905 VTDContextEntry *ce)
907 switch (vtd_ce_get_type(ce)) {
908 case VTD_CONTEXT_TT_MULTI_LEVEL:
909 /* Always supported */
910 break;
911 case VTD_CONTEXT_TT_DEV_IOTLB:
912 if (!x86_iommu->dt_supported) {
913 error_report_once("%s: DT specified but not supported", __func__);
914 return false;
916 break;
917 case VTD_CONTEXT_TT_PASS_THROUGH:
918 if (!x86_iommu->pt_supported) {
919 error_report_once("%s: PT specified but not supported", __func__);
920 return false;
922 break;
923 default:
924 /* Unknown type */
925 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
926 vtd_ce_get_type(ce));
927 return false;
929 return true;
932 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
933 VTDContextEntry *ce, uint8_t aw)
935 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
936 return 1ULL << MIN(ce_agaw, aw);
939 /* Return true if IOVA passes range check, otherwise false. */
940 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
941 uint64_t iova, VTDContextEntry *ce,
942 uint8_t aw)
945 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
946 * in CAP_REG and AW in context-entry.
948 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
951 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
952 VTDContextEntry *ce)
954 VTDPASIDEntry pe;
956 if (s->root_scalable) {
957 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
958 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
961 return vtd_ce_get_slpt_base(ce);
965 * Rsvd field masks for spte:
966 * vtd_spte_rsvd 4k pages
967 * vtd_spte_rsvd_large large pages
969 static uint64_t vtd_spte_rsvd[5];
970 static uint64_t vtd_spte_rsvd_large[5];
972 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
974 uint64_t rsvd_mask = vtd_spte_rsvd[level];
976 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
977 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
978 /* large page */
979 rsvd_mask = vtd_spte_rsvd_large[level];
982 return slpte & rsvd_mask;
985 /* Find the VTD address space associated with a given bus number */
986 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
988 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
989 GHashTableIter iter;
991 if (vtd_bus) {
992 return vtd_bus;
996 * Iterate over the registered buses to find the one which
997 * currently holds this bus number and update the bus_num
998 * lookup table.
1000 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1001 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1002 if (pci_bus_num(vtd_bus->bus) == bus_num) {
1003 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
1004 return vtd_bus;
1008 return NULL;
1011 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1012 * of the translation, can be used for deciding the size of large page.
1014 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1015 uint64_t iova, bool is_write,
1016 uint64_t *slptep, uint32_t *slpte_level,
1017 bool *reads, bool *writes, uint8_t aw_bits)
1019 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1020 uint32_t level = vtd_get_iova_level(s, ce);
1021 uint32_t offset;
1022 uint64_t slpte;
1023 uint64_t access_right_check;
1025 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
1026 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
1027 __func__, iova);
1028 return -VTD_FR_ADDR_BEYOND_MGAW;
1031 /* FIXME: what is the Atomics request here? */
1032 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1034 while (true) {
1035 offset = vtd_iova_level_offset(iova, level);
1036 slpte = vtd_get_slpte(addr, offset);
1038 if (slpte == (uint64_t)-1) {
1039 error_report_once("%s: detected read error on DMAR slpte "
1040 "(iova=0x%" PRIx64 ")", __func__, iova);
1041 if (level == vtd_get_iova_level(s, ce)) {
1042 /* Invalid programming of context-entry */
1043 return -VTD_FR_CONTEXT_ENTRY_INV;
1044 } else {
1045 return -VTD_FR_PAGING_ENTRY_INV;
1048 *reads = (*reads) && (slpte & VTD_SL_R);
1049 *writes = (*writes) && (slpte & VTD_SL_W);
1050 if (!(slpte & access_right_check)) {
1051 error_report_once("%s: detected slpte permission error "
1052 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1053 "slpte=0x%" PRIx64 ", write=%d)", __func__,
1054 iova, level, slpte, is_write);
1055 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1057 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1058 error_report_once("%s: detected splte reserve non-zero "
1059 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1060 "slpte=0x%" PRIx64 ")", __func__, iova,
1061 level, slpte);
1062 return -VTD_FR_PAGING_ENTRY_RSVD;
1065 if (vtd_is_last_slpte(slpte, level)) {
1066 *slptep = slpte;
1067 *slpte_level = level;
1068 return 0;
1070 addr = vtd_get_slpte_addr(slpte, aw_bits);
1071 level--;
1075 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1078 * Constant information used during page walking
1080 * @hook_fn: hook func to be called when detected page
1081 * @private: private data to be passed into hook func
1082 * @notify_unmap: whether we should notify invalid entries
1083 * @as: VT-d address space of the device
1084 * @aw: maximum address width
1085 * @domain: domain ID of the page walk
1087 typedef struct {
1088 VTDAddressSpace *as;
1089 vtd_page_walk_hook hook_fn;
1090 void *private;
1091 bool notify_unmap;
1092 uint8_t aw;
1093 uint16_t domain_id;
1094 } vtd_page_walk_info;
1096 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1098 VTDAddressSpace *as = info->as;
1099 vtd_page_walk_hook hook_fn = info->hook_fn;
1100 void *private = info->private;
1101 IOMMUTLBEntry *entry = &event->entry;
1102 DMAMap target = {
1103 .iova = entry->iova,
1104 .size = entry->addr_mask,
1105 .translated_addr = entry->translated_addr,
1106 .perm = entry->perm,
1108 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1110 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1111 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1112 return 0;
1115 assert(hook_fn);
1117 /* Update local IOVA mapped ranges */
1118 if (event->type == IOMMU_NOTIFIER_MAP) {
1119 if (mapped) {
1120 /* If it's exactly the same translation, skip */
1121 if (!memcmp(mapped, &target, sizeof(target))) {
1122 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1123 entry->translated_addr);
1124 return 0;
1125 } else {
1127 * Translation changed. Normally this should not
1128 * happen, but it can happen when with buggy guest
1129 * OSes. Note that there will be a small window that
1130 * we don't have map at all. But that's the best
1131 * effort we can do. The ideal way to emulate this is
1132 * atomically modify the PTE to follow what has
1133 * changed, but we can't. One example is that vfio
1134 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1135 * interface to modify a mapping (meanwhile it seems
1136 * meaningless to even provide one). Anyway, let's
1137 * mark this as a TODO in case one day we'll have
1138 * a better solution.
1140 IOMMUAccessFlags cache_perm = entry->perm;
1141 int ret;
1143 /* Emulate an UNMAP */
1144 event->type = IOMMU_NOTIFIER_UNMAP;
1145 entry->perm = IOMMU_NONE;
1146 trace_vtd_page_walk_one(info->domain_id,
1147 entry->iova,
1148 entry->translated_addr,
1149 entry->addr_mask,
1150 entry->perm);
1151 ret = hook_fn(event, private);
1152 if (ret) {
1153 return ret;
1155 /* Drop any existing mapping */
1156 iova_tree_remove(as->iova_tree, &target);
1157 /* Recover the correct type */
1158 event->type = IOMMU_NOTIFIER_MAP;
1159 entry->perm = cache_perm;
1162 iova_tree_insert(as->iova_tree, &target);
1163 } else {
1164 if (!mapped) {
1165 /* Skip since we didn't map this range at all */
1166 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1167 return 0;
1169 iova_tree_remove(as->iova_tree, &target);
1172 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1173 entry->translated_addr, entry->addr_mask,
1174 entry->perm);
1175 return hook_fn(event, private);
1179 * vtd_page_walk_level - walk over specific level for IOVA range
1181 * @addr: base GPA addr to start the walk
1182 * @start: IOVA range start address
1183 * @end: IOVA range end address (start <= addr < end)
1184 * @read: whether parent level has read permission
1185 * @write: whether parent level has write permission
1186 * @info: constant information for the page walk
1188 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1189 uint64_t end, uint32_t level, bool read,
1190 bool write, vtd_page_walk_info *info)
1192 bool read_cur, write_cur, entry_valid;
1193 uint32_t offset;
1194 uint64_t slpte;
1195 uint64_t subpage_size, subpage_mask;
1196 IOMMUTLBEvent event;
1197 uint64_t iova = start;
1198 uint64_t iova_next;
1199 int ret = 0;
1201 trace_vtd_page_walk_level(addr, level, start, end);
1203 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1204 subpage_mask = vtd_slpt_level_page_mask(level);
1206 while (iova < end) {
1207 iova_next = (iova & subpage_mask) + subpage_size;
1209 offset = vtd_iova_level_offset(iova, level);
1210 slpte = vtd_get_slpte(addr, offset);
1212 if (slpte == (uint64_t)-1) {
1213 trace_vtd_page_walk_skip_read(iova, iova_next);
1214 goto next;
1217 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1218 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1219 goto next;
1222 /* Permissions are stacked with parents' */
1223 read_cur = read && (slpte & VTD_SL_R);
1224 write_cur = write && (slpte & VTD_SL_W);
1227 * As long as we have either read/write permission, this is a
1228 * valid entry. The rule works for both page entries and page
1229 * table entries.
1231 entry_valid = read_cur | write_cur;
1233 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1235 * This is a valid PDE (or even bigger than PDE). We need
1236 * to walk one further level.
1238 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1239 iova, MIN(iova_next, end), level - 1,
1240 read_cur, write_cur, info);
1241 } else {
1243 * This means we are either:
1245 * (1) the real page entry (either 4K page, or huge page)
1246 * (2) the whole range is invalid
1248 * In either case, we send an IOTLB notification down.
1250 event.entry.target_as = &address_space_memory;
1251 event.entry.iova = iova & subpage_mask;
1252 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1253 event.entry.addr_mask = ~subpage_mask;
1254 /* NOTE: this is only meaningful if entry_valid == true */
1255 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1256 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1257 IOMMU_NOTIFIER_UNMAP;
1258 ret = vtd_page_walk_one(&event, info);
1261 if (ret < 0) {
1262 return ret;
1265 next:
1266 iova = iova_next;
1269 return 0;
1273 * vtd_page_walk - walk specific IOVA range, and call the hook
1275 * @s: intel iommu state
1276 * @ce: context entry to walk upon
1277 * @start: IOVA address to start the walk
1278 * @end: IOVA range end address (start <= addr < end)
1279 * @info: page walking information struct
1281 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1282 uint64_t start, uint64_t end,
1283 vtd_page_walk_info *info)
1285 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1286 uint32_t level = vtd_get_iova_level(s, ce);
1288 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1289 return -VTD_FR_ADDR_BEYOND_MGAW;
1292 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1293 /* Fix end so that it reaches the maximum */
1294 end = vtd_iova_limit(s, ce, info->aw);
1297 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1300 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1301 VTDRootEntry *re)
1303 /* Legacy Mode reserved bits check */
1304 if (!s->root_scalable &&
1305 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1306 goto rsvd_err;
1308 /* Scalable Mode reserved bits check */
1309 if (s->root_scalable &&
1310 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1311 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1312 goto rsvd_err;
1314 return 0;
1316 rsvd_err:
1317 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1318 ", lo=0x%"PRIx64,
1319 __func__, re->hi, re->lo);
1320 return -VTD_FR_ROOT_ENTRY_RSVD;
1323 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1324 VTDContextEntry *ce)
1326 if (!s->root_scalable &&
1327 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1328 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1329 error_report_once("%s: invalid context entry: hi=%"PRIx64
1330 ", lo=%"PRIx64" (reserved nonzero)",
1331 __func__, ce->hi, ce->lo);
1332 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1335 if (s->root_scalable &&
1336 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1337 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1338 ce->val[2] ||
1339 ce->val[3])) {
1340 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1341 ", val[2]=%"PRIx64
1342 ", val[1]=%"PRIx64
1343 ", val[0]=%"PRIx64" (reserved nonzero)",
1344 __func__, ce->val[3], ce->val[2],
1345 ce->val[1], ce->val[0]);
1346 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1349 return 0;
1352 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1353 VTDContextEntry *ce)
1355 VTDPASIDEntry pe;
1358 * Make sure in Scalable Mode, a present context entry
1359 * has valid rid2pasid setting, which includes valid
1360 * rid2pasid field and corresponding pasid entry setting
1362 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1365 /* Map a device to its corresponding domain (context-entry) */
1366 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1367 uint8_t devfn, VTDContextEntry *ce)
1369 VTDRootEntry re;
1370 int ret_fr;
1371 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1373 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1374 if (ret_fr) {
1375 return ret_fr;
1378 if (!vtd_root_entry_present(s, &re, devfn)) {
1379 /* Not error - it's okay we don't have root entry. */
1380 trace_vtd_re_not_present(bus_num);
1381 return -VTD_FR_ROOT_ENTRY_P;
1384 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1385 if (ret_fr) {
1386 return ret_fr;
1389 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1390 if (ret_fr) {
1391 return ret_fr;
1394 if (!vtd_ce_present(ce)) {
1395 /* Not error - it's okay we don't have context entry. */
1396 trace_vtd_ce_not_present(bus_num, devfn);
1397 return -VTD_FR_CONTEXT_ENTRY_P;
1400 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1401 if (ret_fr) {
1402 return ret_fr;
1405 /* Check if the programming of context-entry is valid */
1406 if (!s->root_scalable &&
1407 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1408 error_report_once("%s: invalid context entry: hi=%"PRIx64
1409 ", lo=%"PRIx64" (level %d not supported)",
1410 __func__, ce->hi, ce->lo,
1411 vtd_ce_get_level(ce));
1412 return -VTD_FR_CONTEXT_ENTRY_INV;
1415 if (!s->root_scalable) {
1416 /* Do translation type check */
1417 if (!vtd_ce_type_check(x86_iommu, ce)) {
1418 /* Errors dumped in vtd_ce_type_check() */
1419 return -VTD_FR_CONTEXT_ENTRY_INV;
1421 } else {
1423 * Check if the programming of context-entry.rid2pasid
1424 * and corresponding pasid setting is valid, and thus
1425 * avoids to check pasid entry fetching result in future
1426 * helper function calling.
1428 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1429 if (ret_fr) {
1430 return ret_fr;
1434 return 0;
1437 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1438 void *private)
1440 memory_region_notify_iommu(private, 0, *event);
1441 return 0;
1444 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1445 VTDContextEntry *ce)
1447 VTDPASIDEntry pe;
1449 if (s->root_scalable) {
1450 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1451 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1454 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1457 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1458 VTDContextEntry *ce,
1459 hwaddr addr, hwaddr size)
1461 IntelIOMMUState *s = vtd_as->iommu_state;
1462 vtd_page_walk_info info = {
1463 .hook_fn = vtd_sync_shadow_page_hook,
1464 .private = (void *)&vtd_as->iommu,
1465 .notify_unmap = true,
1466 .aw = s->aw_bits,
1467 .as = vtd_as,
1468 .domain_id = vtd_get_domain_id(s, ce),
1471 return vtd_page_walk(s, ce, addr, addr + size, &info);
1474 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1476 int ret;
1477 VTDContextEntry ce;
1478 IOMMUNotifier *n;
1480 if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) {
1481 return 0;
1484 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1485 pci_bus_num(vtd_as->bus),
1486 vtd_as->devfn, &ce);
1487 if (ret) {
1488 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1490 * It's a valid scenario to have a context entry that is
1491 * not present. For example, when a device is removed
1492 * from an existing domain then the context entry will be
1493 * zeroed by the guest before it was put into another
1494 * domain. When this happens, instead of synchronizing
1495 * the shadow pages we should invalidate all existing
1496 * mappings and notify the backends.
1498 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1499 vtd_address_space_unmap(vtd_as, n);
1501 ret = 0;
1503 return ret;
1506 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1510 * Check if specific device is configed to bypass address
1511 * translation for DMA requests. In Scalable Mode, bypass
1512 * 1st-level translation or 2nd-level translation, it depends
1513 * on PGTT setting.
1515 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1517 IntelIOMMUState *s;
1518 VTDContextEntry ce;
1519 VTDPASIDEntry pe;
1520 int ret;
1522 assert(as);
1524 s = as->iommu_state;
1525 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1526 as->devfn, &ce);
1527 if (ret) {
1529 * Possibly failed to parse the context entry for some reason
1530 * (e.g., during init, or any guest configuration errors on
1531 * context entries). We should assume PT not enabled for
1532 * safety.
1534 return false;
1537 if (s->root_scalable) {
1538 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1539 if (ret) {
1540 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1541 __func__, ret);
1542 return false;
1544 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1547 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1550 /* Return whether the device is using IOMMU translation. */
1551 static bool vtd_switch_address_space(VTDAddressSpace *as)
1553 bool use_iommu;
1554 /* Whether we need to take the BQL on our own */
1555 bool take_bql = !qemu_mutex_iothread_locked();
1557 assert(as);
1559 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1561 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1562 VTD_PCI_SLOT(as->devfn),
1563 VTD_PCI_FUNC(as->devfn),
1564 use_iommu);
1567 * It's possible that we reach here without BQL, e.g., when called
1568 * from vtd_pt_enable_fast_path(). However the memory APIs need
1569 * it. We'd better make sure we have had it already, or, take it.
1571 if (take_bql) {
1572 qemu_mutex_lock_iothread();
1575 /* Turn off first then on the other */
1576 if (use_iommu) {
1577 memory_region_set_enabled(&as->nodmar, false);
1578 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1579 } else {
1580 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1581 memory_region_set_enabled(&as->nodmar, true);
1584 if (take_bql) {
1585 qemu_mutex_unlock_iothread();
1588 return use_iommu;
1591 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1593 GHashTableIter iter;
1594 VTDBus *vtd_bus;
1595 int i;
1597 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1598 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1599 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1600 if (!vtd_bus->dev_as[i]) {
1601 continue;
1603 vtd_switch_address_space(vtd_bus->dev_as[i]);
1608 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1610 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1613 static const bool vtd_qualified_faults[] = {
1614 [VTD_FR_RESERVED] = false,
1615 [VTD_FR_ROOT_ENTRY_P] = false,
1616 [VTD_FR_CONTEXT_ENTRY_P] = true,
1617 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1618 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1619 [VTD_FR_WRITE] = true,
1620 [VTD_FR_READ] = true,
1621 [VTD_FR_PAGING_ENTRY_INV] = true,
1622 [VTD_FR_ROOT_TABLE_INV] = false,
1623 [VTD_FR_CONTEXT_TABLE_INV] = false,
1624 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1625 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1626 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1627 [VTD_FR_PASID_TABLE_INV] = false,
1628 [VTD_FR_RESERVED_ERR] = false,
1629 [VTD_FR_MAX] = false,
1632 /* To see if a fault condition is "qualified", which is reported to software
1633 * only if the FPD field in the context-entry used to process the faulting
1634 * request is 0.
1636 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1638 return vtd_qualified_faults[fault];
1641 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1643 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1646 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1648 VTDBus *vtd_bus;
1649 VTDAddressSpace *vtd_as;
1650 bool success = false;
1652 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1653 if (!vtd_bus) {
1654 goto out;
1657 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1658 if (!vtd_as) {
1659 goto out;
1662 if (vtd_switch_address_space(vtd_as) == false) {
1663 /* We switched off IOMMU region successfully. */
1664 success = true;
1667 out:
1668 trace_vtd_pt_enable_fast_path(source_id, success);
1671 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1672 * translation.
1674 * Called from RCU critical section.
1676 * @bus_num: The bus number
1677 * @devfn: The devfn, which is the combined of device and function number
1678 * @is_write: The access is a write operation
1679 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1681 * Returns true if translation is successful, otherwise false.
1683 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1684 uint8_t devfn, hwaddr addr, bool is_write,
1685 IOMMUTLBEntry *entry)
1687 IntelIOMMUState *s = vtd_as->iommu_state;
1688 VTDContextEntry ce;
1689 uint8_t bus_num = pci_bus_num(bus);
1690 VTDContextCacheEntry *cc_entry;
1691 uint64_t slpte, page_mask;
1692 uint32_t level;
1693 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1694 int ret_fr;
1695 bool is_fpd_set = false;
1696 bool reads = true;
1697 bool writes = true;
1698 uint8_t access_flags;
1699 VTDIOTLBEntry *iotlb_entry;
1702 * We have standalone memory region for interrupt addresses, we
1703 * should never receive translation requests in this region.
1705 assert(!vtd_is_interrupt_addr(addr));
1707 vtd_iommu_lock(s);
1709 cc_entry = &vtd_as->context_cache_entry;
1711 /* Try to fetch slpte form IOTLB */
1712 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1713 if (iotlb_entry) {
1714 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1715 iotlb_entry->domain_id);
1716 slpte = iotlb_entry->slpte;
1717 access_flags = iotlb_entry->access_flags;
1718 page_mask = iotlb_entry->mask;
1719 goto out;
1722 /* Try to fetch context-entry from cache first */
1723 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1724 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1725 cc_entry->context_entry.lo,
1726 cc_entry->context_cache_gen);
1727 ce = cc_entry->context_entry;
1728 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1729 if (!is_fpd_set && s->root_scalable) {
1730 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1731 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1733 } else {
1734 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1735 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1736 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1737 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1739 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1740 /* Update context-cache */
1741 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1742 cc_entry->context_cache_gen,
1743 s->context_cache_gen);
1744 cc_entry->context_entry = ce;
1745 cc_entry->context_cache_gen = s->context_cache_gen;
1749 * We don't need to translate for pass-through context entries.
1750 * Also, let's ignore IOTLB caching as well for PT devices.
1752 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1753 entry->iova = addr & VTD_PAGE_MASK_4K;
1754 entry->translated_addr = entry->iova;
1755 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1756 entry->perm = IOMMU_RW;
1757 trace_vtd_translate_pt(source_id, entry->iova);
1760 * When this happens, it means firstly caching-mode is not
1761 * enabled, and this is the first passthrough translation for
1762 * the device. Let's enable the fast path for passthrough.
1764 * When passthrough is disabled again for the device, we can
1765 * capture it via the context entry invalidation, then the
1766 * IOMMU region can be swapped back.
1768 vtd_pt_enable_fast_path(s, source_id);
1769 vtd_iommu_unlock(s);
1770 return true;
1773 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1774 &reads, &writes, s->aw_bits);
1775 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1777 page_mask = vtd_slpt_level_page_mask(level);
1778 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1779 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1780 access_flags, level);
1781 out:
1782 vtd_iommu_unlock(s);
1783 entry->iova = addr & page_mask;
1784 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1785 entry->addr_mask = ~page_mask;
1786 entry->perm = access_flags;
1787 return true;
1789 error:
1790 vtd_iommu_unlock(s);
1791 entry->iova = 0;
1792 entry->translated_addr = 0;
1793 entry->addr_mask = 0;
1794 entry->perm = IOMMU_NONE;
1795 return false;
1798 static void vtd_root_table_setup(IntelIOMMUState *s)
1800 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1801 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1803 vtd_update_scalable_state(s);
1805 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1808 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1809 uint32_t index, uint32_t mask)
1811 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1814 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1816 uint64_t value = 0;
1817 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1818 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1819 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1820 s->intr_eime = value & VTD_IRTA_EIME;
1822 /* Notify global invalidation */
1823 vtd_iec_notify_all(s, true, 0, 0);
1825 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1828 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1830 VTDAddressSpace *vtd_as;
1832 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1833 vtd_sync_shadow_page_table(vtd_as);
1837 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1839 trace_vtd_inv_desc_cc_global();
1840 /* Protects context cache */
1841 vtd_iommu_lock(s);
1842 s->context_cache_gen++;
1843 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1844 vtd_reset_context_cache_locked(s);
1846 vtd_iommu_unlock(s);
1847 vtd_address_space_refresh_all(s);
1849 * From VT-d spec 6.5.2.1, a global context entry invalidation
1850 * should be followed by a IOTLB global invalidation, so we should
1851 * be safe even without this. Hoewever, let's replay the region as
1852 * well to be safer, and go back here when we need finer tunes for
1853 * VT-d emulation codes.
1855 vtd_iommu_replay_all(s);
1858 /* Do a context-cache device-selective invalidation.
1859 * @func_mask: FM field after shifting
1861 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1862 uint16_t source_id,
1863 uint16_t func_mask)
1865 uint16_t mask;
1866 VTDBus *vtd_bus;
1867 VTDAddressSpace *vtd_as;
1868 uint8_t bus_n, devfn;
1869 uint16_t devfn_it;
1871 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1873 switch (func_mask & 3) {
1874 case 0:
1875 mask = 0; /* No bits in the SID field masked */
1876 break;
1877 case 1:
1878 mask = 4; /* Mask bit 2 in the SID field */
1879 break;
1880 case 2:
1881 mask = 6; /* Mask bit 2:1 in the SID field */
1882 break;
1883 case 3:
1884 mask = 7; /* Mask bit 2:0 in the SID field */
1885 break;
1886 default:
1887 g_assert_not_reached();
1889 mask = ~mask;
1891 bus_n = VTD_SID_TO_BUS(source_id);
1892 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1893 if (vtd_bus) {
1894 devfn = VTD_SID_TO_DEVFN(source_id);
1895 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1896 vtd_as = vtd_bus->dev_as[devfn_it];
1897 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1898 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1899 VTD_PCI_FUNC(devfn_it));
1900 vtd_iommu_lock(s);
1901 vtd_as->context_cache_entry.context_cache_gen = 0;
1902 vtd_iommu_unlock(s);
1904 * Do switch address space when needed, in case if the
1905 * device passthrough bit is switched.
1907 vtd_switch_address_space(vtd_as);
1909 * So a device is moving out of (or moving into) a
1910 * domain, resync the shadow page table.
1911 * This won't bring bad even if we have no such
1912 * notifier registered - the IOMMU notification
1913 * framework will skip MAP notifications if that
1914 * happened.
1916 vtd_sync_shadow_page_table(vtd_as);
1922 /* Context-cache invalidation
1923 * Returns the Context Actual Invalidation Granularity.
1924 * @val: the content of the CCMD_REG
1926 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1928 uint64_t caig;
1929 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1931 switch (type) {
1932 case VTD_CCMD_DOMAIN_INVL:
1933 /* Fall through */
1934 case VTD_CCMD_GLOBAL_INVL:
1935 caig = VTD_CCMD_GLOBAL_INVL_A;
1936 vtd_context_global_invalidate(s);
1937 break;
1939 case VTD_CCMD_DEVICE_INVL:
1940 caig = VTD_CCMD_DEVICE_INVL_A;
1941 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1942 break;
1944 default:
1945 error_report_once("%s: invalid context: 0x%" PRIx64,
1946 __func__, val);
1947 caig = 0;
1949 return caig;
1952 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1954 trace_vtd_inv_desc_iotlb_global();
1955 vtd_reset_iotlb(s);
1956 vtd_iommu_replay_all(s);
1959 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1961 VTDContextEntry ce;
1962 VTDAddressSpace *vtd_as;
1964 trace_vtd_inv_desc_iotlb_domain(domain_id);
1966 vtd_iommu_lock(s);
1967 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1968 &domain_id);
1969 vtd_iommu_unlock(s);
1971 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1972 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1973 vtd_as->devfn, &ce) &&
1974 domain_id == vtd_get_domain_id(s, &ce)) {
1975 vtd_sync_shadow_page_table(vtd_as);
1980 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1981 uint16_t domain_id, hwaddr addr,
1982 uint8_t am)
1984 VTDAddressSpace *vtd_as;
1985 VTDContextEntry ce;
1986 int ret;
1987 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1989 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1990 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1991 vtd_as->devfn, &ce);
1992 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1993 if (vtd_as_has_map_notifier(vtd_as)) {
1995 * As long as we have MAP notifications registered in
1996 * any of our IOMMU notifiers, we need to sync the
1997 * shadow page table.
1999 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2000 } else {
2002 * For UNMAP-only notifiers, we don't need to walk the
2003 * page tables. We just deliver the PSI down to
2004 * invalidate caches.
2006 IOMMUTLBEvent event = {
2007 .type = IOMMU_NOTIFIER_UNMAP,
2008 .entry = {
2009 .target_as = &address_space_memory,
2010 .iova = addr,
2011 .translated_addr = 0,
2012 .addr_mask = size - 1,
2013 .perm = IOMMU_NONE,
2016 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2022 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2023 hwaddr addr, uint8_t am)
2025 VTDIOTLBPageInvInfo info;
2027 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2029 assert(am <= VTD_MAMV);
2030 info.domain_id = domain_id;
2031 info.addr = addr;
2032 info.mask = ~((1 << am) - 1);
2033 vtd_iommu_lock(s);
2034 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2035 vtd_iommu_unlock(s);
2036 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
2039 /* Flush IOTLB
2040 * Returns the IOTLB Actual Invalidation Granularity.
2041 * @val: the content of the IOTLB_REG
2043 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2045 uint64_t iaig;
2046 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2047 uint16_t domain_id;
2048 hwaddr addr;
2049 uint8_t am;
2051 switch (type) {
2052 case VTD_TLB_GLOBAL_FLUSH:
2053 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2054 vtd_iotlb_global_invalidate(s);
2055 break;
2057 case VTD_TLB_DSI_FLUSH:
2058 domain_id = VTD_TLB_DID(val);
2059 iaig = VTD_TLB_DSI_FLUSH_A;
2060 vtd_iotlb_domain_invalidate(s, domain_id);
2061 break;
2063 case VTD_TLB_PSI_FLUSH:
2064 domain_id = VTD_TLB_DID(val);
2065 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2066 am = VTD_IVA_AM(addr);
2067 addr = VTD_IVA_ADDR(addr);
2068 if (am > VTD_MAMV) {
2069 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2070 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2071 iaig = 0;
2072 break;
2074 iaig = VTD_TLB_PSI_FLUSH_A;
2075 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2076 break;
2078 default:
2079 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2080 __func__, val);
2081 iaig = 0;
2083 return iaig;
2086 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2088 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2090 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2091 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2094 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2096 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2098 trace_vtd_inv_qi_enable(en);
2100 if (en) {
2101 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2102 /* 2^(x+8) entries */
2103 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2104 s->qi_enabled = true;
2105 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2106 /* Ok - report back to driver */
2107 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2109 if (s->iq_tail != 0) {
2111 * This is a spec violation but Windows guests are known to set up
2112 * Queued Invalidation this way so we allow the write and process
2113 * Invalidation Descriptors right away.
2115 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2116 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2117 vtd_fetch_inv_desc(s);
2120 } else {
2121 if (vtd_queued_inv_disable_check(s)) {
2122 /* disable Queued Invalidation */
2123 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2124 s->iq_head = 0;
2125 s->qi_enabled = false;
2126 /* Ok - report back to driver */
2127 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2128 } else {
2129 error_report_once("%s: detected improper state when disable QI "
2130 "(head=0x%x, tail=0x%x, last_type=%d)",
2131 __func__,
2132 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2137 /* Set Root Table Pointer */
2138 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2140 vtd_root_table_setup(s);
2141 /* Ok - report back to driver */
2142 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2143 vtd_reset_caches(s);
2144 vtd_address_space_refresh_all(s);
2147 /* Set Interrupt Remap Table Pointer */
2148 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2150 vtd_interrupt_remap_table_setup(s);
2151 /* Ok - report back to driver */
2152 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2155 /* Handle Translation Enable/Disable */
2156 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2158 if (s->dmar_enabled == en) {
2159 return;
2162 trace_vtd_dmar_enable(en);
2164 if (en) {
2165 s->dmar_enabled = true;
2166 /* Ok - report back to driver */
2167 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2168 } else {
2169 s->dmar_enabled = false;
2171 /* Clear the index of Fault Recording Register */
2172 s->next_frcd_reg = 0;
2173 /* Ok - report back to driver */
2174 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2177 vtd_reset_caches(s);
2178 vtd_address_space_refresh_all(s);
2181 /* Handle Interrupt Remap Enable/Disable */
2182 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2184 trace_vtd_ir_enable(en);
2186 if (en) {
2187 s->intr_enabled = true;
2188 /* Ok - report back to driver */
2189 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2190 } else {
2191 s->intr_enabled = false;
2192 /* Ok - report back to driver */
2193 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2197 /* Handle write to Global Command Register */
2198 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2200 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2201 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2202 uint32_t changed = status ^ val;
2204 trace_vtd_reg_write_gcmd(status, val);
2205 if (changed & VTD_GCMD_TE) {
2206 /* Translation enable/disable */
2207 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2209 if (val & VTD_GCMD_SRTP) {
2210 /* Set/update the root-table pointer */
2211 vtd_handle_gcmd_srtp(s);
2213 if (changed & VTD_GCMD_QIE) {
2214 /* Queued Invalidation Enable */
2215 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2217 if (val & VTD_GCMD_SIRTP) {
2218 /* Set/update the interrupt remapping root-table pointer */
2219 vtd_handle_gcmd_sirtp(s);
2221 if (changed & VTD_GCMD_IRE) {
2222 /* Interrupt remap enable/disable */
2223 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2227 /* Handle write to Context Command Register */
2228 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2230 uint64_t ret;
2231 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2233 /* Context-cache invalidation request */
2234 if (val & VTD_CCMD_ICC) {
2235 if (s->qi_enabled) {
2236 error_report_once("Queued Invalidation enabled, "
2237 "should not use register-based invalidation");
2238 return;
2240 ret = vtd_context_cache_invalidate(s, val);
2241 /* Invalidation completed. Change something to show */
2242 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2243 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2244 ret);
2248 /* Handle write to IOTLB Invalidation Register */
2249 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2251 uint64_t ret;
2252 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2254 /* IOTLB invalidation request */
2255 if (val & VTD_TLB_IVT) {
2256 if (s->qi_enabled) {
2257 error_report_once("Queued Invalidation enabled, "
2258 "should not use register-based invalidation");
2259 return;
2261 ret = vtd_iotlb_flush(s, val);
2262 /* Invalidation completed. Change something to show */
2263 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2264 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2265 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2269 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2270 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2271 VTDInvDesc *inv_desc)
2273 dma_addr_t base_addr = s->iq;
2274 uint32_t offset = s->iq_head;
2275 uint32_t dw = s->iq_dw ? 32 : 16;
2276 dma_addr_t addr = base_addr + offset * dw;
2278 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2279 error_report_once("Read INV DESC failed.");
2280 return false;
2282 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2283 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2284 if (dw == 32) {
2285 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2286 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2288 return true;
2291 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2293 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2294 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2295 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2296 " (reserved nonzero)", __func__, inv_desc->hi,
2297 inv_desc->lo);
2298 return false;
2300 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2301 /* Status Write */
2302 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2303 VTD_INV_DESC_WAIT_DATA_SHIFT);
2305 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2307 /* FIXME: need to be masked with HAW? */
2308 dma_addr_t status_addr = inv_desc->hi;
2309 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2310 status_data = cpu_to_le32(status_data);
2311 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2312 sizeof(status_data))) {
2313 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2314 return false;
2316 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2317 /* Interrupt flag */
2318 vtd_generate_completion_event(s);
2319 } else {
2320 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2321 " (unknown type)", __func__, inv_desc->hi,
2322 inv_desc->lo);
2323 return false;
2325 return true;
2328 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2329 VTDInvDesc *inv_desc)
2331 uint16_t sid, fmask;
2333 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2334 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2335 " (reserved nonzero)", __func__, inv_desc->hi,
2336 inv_desc->lo);
2337 return false;
2339 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2340 case VTD_INV_DESC_CC_DOMAIN:
2341 trace_vtd_inv_desc_cc_domain(
2342 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2343 /* Fall through */
2344 case VTD_INV_DESC_CC_GLOBAL:
2345 vtd_context_global_invalidate(s);
2346 break;
2348 case VTD_INV_DESC_CC_DEVICE:
2349 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2350 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2351 vtd_context_device_invalidate(s, sid, fmask);
2352 break;
2354 default:
2355 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2356 " (invalid type)", __func__, inv_desc->hi,
2357 inv_desc->lo);
2358 return false;
2360 return true;
2363 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2365 uint16_t domain_id;
2366 uint8_t am;
2367 hwaddr addr;
2369 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2370 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2371 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2372 ", lo=0x%"PRIx64" (reserved bits unzero)",
2373 __func__, inv_desc->hi, inv_desc->lo);
2374 return false;
2377 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2378 case VTD_INV_DESC_IOTLB_GLOBAL:
2379 vtd_iotlb_global_invalidate(s);
2380 break;
2382 case VTD_INV_DESC_IOTLB_DOMAIN:
2383 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2384 vtd_iotlb_domain_invalidate(s, domain_id);
2385 break;
2387 case VTD_INV_DESC_IOTLB_PAGE:
2388 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2389 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2390 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2391 if (am > VTD_MAMV) {
2392 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2393 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2394 __func__, inv_desc->hi, inv_desc->lo,
2395 am, (unsigned)VTD_MAMV);
2396 return false;
2398 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2399 break;
2401 default:
2402 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2403 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2404 __func__, inv_desc->hi, inv_desc->lo,
2405 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2406 return false;
2408 return true;
2411 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2412 VTDInvDesc *inv_desc)
2414 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2415 inv_desc->iec.index,
2416 inv_desc->iec.index_mask);
2418 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2419 inv_desc->iec.index,
2420 inv_desc->iec.index_mask);
2421 return true;
2424 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2425 VTDInvDesc *inv_desc)
2427 VTDAddressSpace *vtd_dev_as;
2428 IOMMUTLBEvent event;
2429 struct VTDBus *vtd_bus;
2430 hwaddr addr;
2431 uint64_t sz;
2432 uint16_t sid;
2433 uint8_t devfn;
2434 bool size;
2435 uint8_t bus_num;
2437 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2438 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2439 devfn = sid & 0xff;
2440 bus_num = sid >> 8;
2441 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2443 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2444 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2445 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2446 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2447 inv_desc->hi, inv_desc->lo);
2448 return false;
2451 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2452 if (!vtd_bus) {
2453 goto done;
2456 vtd_dev_as = vtd_bus->dev_as[devfn];
2457 if (!vtd_dev_as) {
2458 goto done;
2461 /* According to ATS spec table 2.4:
2462 * S = 0, bits 15:12 = xxxx range size: 4K
2463 * S = 1, bits 15:12 = xxx0 range size: 8K
2464 * S = 1, bits 15:12 = xx01 range size: 16K
2465 * S = 1, bits 15:12 = x011 range size: 32K
2466 * S = 1, bits 15:12 = 0111 range size: 64K
2467 * ...
2469 if (size) {
2470 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2471 addr &= ~(sz - 1);
2472 } else {
2473 sz = VTD_PAGE_SIZE;
2476 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2477 event.entry.target_as = &vtd_dev_as->as;
2478 event.entry.addr_mask = sz - 1;
2479 event.entry.iova = addr;
2480 event.entry.perm = IOMMU_NONE;
2481 event.entry.translated_addr = 0;
2482 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2484 done:
2485 return true;
2488 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2490 VTDInvDesc inv_desc;
2491 uint8_t desc_type;
2493 trace_vtd_inv_qi_head(s->iq_head);
2494 if (!vtd_get_inv_desc(s, &inv_desc)) {
2495 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2496 return false;
2499 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2500 /* FIXME: should update at first or at last? */
2501 s->iq_last_desc_type = desc_type;
2503 switch (desc_type) {
2504 case VTD_INV_DESC_CC:
2505 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2506 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2507 return false;
2509 break;
2511 case VTD_INV_DESC_IOTLB:
2512 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2513 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2514 return false;
2516 break;
2519 * TODO: the entity of below two cases will be implemented in future series.
2520 * To make guest (which integrates scalable mode support patch set in
2521 * iommu driver) work, just return true is enough so far.
2523 case VTD_INV_DESC_PC:
2524 break;
2526 case VTD_INV_DESC_PIOTLB:
2527 break;
2529 case VTD_INV_DESC_WAIT:
2530 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2531 if (!vtd_process_wait_desc(s, &inv_desc)) {
2532 return false;
2534 break;
2536 case VTD_INV_DESC_IEC:
2537 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2538 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2539 return false;
2541 break;
2543 case VTD_INV_DESC_DEVICE:
2544 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2545 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2546 return false;
2548 break;
2550 default:
2551 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2552 " (unknown type)", __func__, inv_desc.hi,
2553 inv_desc.lo);
2554 return false;
2556 s->iq_head++;
2557 if (s->iq_head == s->iq_size) {
2558 s->iq_head = 0;
2560 return true;
2563 /* Try to fetch and process more Invalidation Descriptors */
2564 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2566 int qi_shift;
2568 /* Refer to 10.4.23 of VT-d spec 3.0 */
2569 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2571 trace_vtd_inv_qi_fetch();
2573 if (s->iq_tail >= s->iq_size) {
2574 /* Detects an invalid Tail pointer */
2575 error_report_once("%s: detected invalid QI tail "
2576 "(tail=0x%x, size=0x%x)",
2577 __func__, s->iq_tail, s->iq_size);
2578 vtd_handle_inv_queue_error(s);
2579 return;
2581 while (s->iq_head != s->iq_tail) {
2582 if (!vtd_process_inv_desc(s)) {
2583 /* Invalidation Queue Errors */
2584 vtd_handle_inv_queue_error(s);
2585 break;
2587 /* Must update the IQH_REG in time */
2588 vtd_set_quad_raw(s, DMAR_IQH_REG,
2589 (((uint64_t)(s->iq_head)) << qi_shift) &
2590 VTD_IQH_QH_MASK);
2594 /* Handle write to Invalidation Queue Tail Register */
2595 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2597 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2599 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2600 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2601 __func__, val);
2602 return;
2604 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2605 trace_vtd_inv_qi_tail(s->iq_tail);
2607 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2608 /* Process Invalidation Queue here */
2609 vtd_fetch_inv_desc(s);
2613 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2615 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2616 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2617 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2619 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2620 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2621 trace_vtd_fsts_clear_ip();
2623 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2624 * Descriptors if there are any when Queued Invalidation is enabled?
2628 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2630 uint32_t fectl_reg;
2631 /* FIXME: when software clears the IM field, check the IP field. But do we
2632 * need to compare the old value and the new value to conclude that
2633 * software clears the IM field? Or just check if the IM field is zero?
2635 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2637 trace_vtd_reg_write_fectl(fectl_reg);
2639 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2640 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2641 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2645 static void vtd_handle_ics_write(IntelIOMMUState *s)
2647 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2648 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2650 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2651 trace_vtd_reg_ics_clear_ip();
2652 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2656 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2658 uint32_t iectl_reg;
2659 /* FIXME: when software clears the IM field, check the IP field. But do we
2660 * need to compare the old value and the new value to conclude that
2661 * software clears the IM field? Or just check if the IM field is zero?
2663 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2665 trace_vtd_reg_write_iectl(iectl_reg);
2667 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2668 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2669 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2673 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2675 IntelIOMMUState *s = opaque;
2676 uint64_t val;
2678 trace_vtd_reg_read(addr, size);
2680 if (addr + size > DMAR_REG_SIZE) {
2681 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2682 " size=0x%x", __func__, addr, size);
2683 return (uint64_t)-1;
2686 switch (addr) {
2687 /* Root Table Address Register, 64-bit */
2688 case DMAR_RTADDR_REG:
2689 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2690 if (size == 4) {
2691 val = val & ((1ULL << 32) - 1);
2693 break;
2695 case DMAR_RTADDR_REG_HI:
2696 assert(size == 4);
2697 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2698 break;
2700 /* Invalidation Queue Address Register, 64-bit */
2701 case DMAR_IQA_REG:
2702 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2703 if (size == 4) {
2704 val = val & ((1ULL << 32) - 1);
2706 break;
2708 case DMAR_IQA_REG_HI:
2709 assert(size == 4);
2710 val = s->iq >> 32;
2711 break;
2713 default:
2714 if (size == 4) {
2715 val = vtd_get_long(s, addr);
2716 } else {
2717 val = vtd_get_quad(s, addr);
2721 return val;
2724 static void vtd_mem_write(void *opaque, hwaddr addr,
2725 uint64_t val, unsigned size)
2727 IntelIOMMUState *s = opaque;
2729 trace_vtd_reg_write(addr, size, val);
2731 if (addr + size > DMAR_REG_SIZE) {
2732 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2733 " size=0x%x", __func__, addr, size);
2734 return;
2737 switch (addr) {
2738 /* Global Command Register, 32-bit */
2739 case DMAR_GCMD_REG:
2740 vtd_set_long(s, addr, val);
2741 vtd_handle_gcmd_write(s);
2742 break;
2744 /* Context Command Register, 64-bit */
2745 case DMAR_CCMD_REG:
2746 if (size == 4) {
2747 vtd_set_long(s, addr, val);
2748 } else {
2749 vtd_set_quad(s, addr, val);
2750 vtd_handle_ccmd_write(s);
2752 break;
2754 case DMAR_CCMD_REG_HI:
2755 assert(size == 4);
2756 vtd_set_long(s, addr, val);
2757 vtd_handle_ccmd_write(s);
2758 break;
2760 /* IOTLB Invalidation Register, 64-bit */
2761 case DMAR_IOTLB_REG:
2762 if (size == 4) {
2763 vtd_set_long(s, addr, val);
2764 } else {
2765 vtd_set_quad(s, addr, val);
2766 vtd_handle_iotlb_write(s);
2768 break;
2770 case DMAR_IOTLB_REG_HI:
2771 assert(size == 4);
2772 vtd_set_long(s, addr, val);
2773 vtd_handle_iotlb_write(s);
2774 break;
2776 /* Invalidate Address Register, 64-bit */
2777 case DMAR_IVA_REG:
2778 if (size == 4) {
2779 vtd_set_long(s, addr, val);
2780 } else {
2781 vtd_set_quad(s, addr, val);
2783 break;
2785 case DMAR_IVA_REG_HI:
2786 assert(size == 4);
2787 vtd_set_long(s, addr, val);
2788 break;
2790 /* Fault Status Register, 32-bit */
2791 case DMAR_FSTS_REG:
2792 assert(size == 4);
2793 vtd_set_long(s, addr, val);
2794 vtd_handle_fsts_write(s);
2795 break;
2797 /* Fault Event Control Register, 32-bit */
2798 case DMAR_FECTL_REG:
2799 assert(size == 4);
2800 vtd_set_long(s, addr, val);
2801 vtd_handle_fectl_write(s);
2802 break;
2804 /* Fault Event Data Register, 32-bit */
2805 case DMAR_FEDATA_REG:
2806 assert(size == 4);
2807 vtd_set_long(s, addr, val);
2808 break;
2810 /* Fault Event Address Register, 32-bit */
2811 case DMAR_FEADDR_REG:
2812 if (size == 4) {
2813 vtd_set_long(s, addr, val);
2814 } else {
2816 * While the register is 32-bit only, some guests (Xen...) write to
2817 * it with 64-bit.
2819 vtd_set_quad(s, addr, val);
2821 break;
2823 /* Fault Event Upper Address Register, 32-bit */
2824 case DMAR_FEUADDR_REG:
2825 assert(size == 4);
2826 vtd_set_long(s, addr, val);
2827 break;
2829 /* Protected Memory Enable Register, 32-bit */
2830 case DMAR_PMEN_REG:
2831 assert(size == 4);
2832 vtd_set_long(s, addr, val);
2833 break;
2835 /* Root Table Address Register, 64-bit */
2836 case DMAR_RTADDR_REG:
2837 if (size == 4) {
2838 vtd_set_long(s, addr, val);
2839 } else {
2840 vtd_set_quad(s, addr, val);
2842 break;
2844 case DMAR_RTADDR_REG_HI:
2845 assert(size == 4);
2846 vtd_set_long(s, addr, val);
2847 break;
2849 /* Invalidation Queue Tail Register, 64-bit */
2850 case DMAR_IQT_REG:
2851 if (size == 4) {
2852 vtd_set_long(s, addr, val);
2853 } else {
2854 vtd_set_quad(s, addr, val);
2856 vtd_handle_iqt_write(s);
2857 break;
2859 case DMAR_IQT_REG_HI:
2860 assert(size == 4);
2861 vtd_set_long(s, addr, val);
2862 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2863 break;
2865 /* Invalidation Queue Address Register, 64-bit */
2866 case DMAR_IQA_REG:
2867 if (size == 4) {
2868 vtd_set_long(s, addr, val);
2869 } else {
2870 vtd_set_quad(s, addr, val);
2872 if (s->ecap & VTD_ECAP_SMTS &&
2873 val & VTD_IQA_DW_MASK) {
2874 s->iq_dw = true;
2875 } else {
2876 s->iq_dw = false;
2878 break;
2880 case DMAR_IQA_REG_HI:
2881 assert(size == 4);
2882 vtd_set_long(s, addr, val);
2883 break;
2885 /* Invalidation Completion Status Register, 32-bit */
2886 case DMAR_ICS_REG:
2887 assert(size == 4);
2888 vtd_set_long(s, addr, val);
2889 vtd_handle_ics_write(s);
2890 break;
2892 /* Invalidation Event Control Register, 32-bit */
2893 case DMAR_IECTL_REG:
2894 assert(size == 4);
2895 vtd_set_long(s, addr, val);
2896 vtd_handle_iectl_write(s);
2897 break;
2899 /* Invalidation Event Data Register, 32-bit */
2900 case DMAR_IEDATA_REG:
2901 assert(size == 4);
2902 vtd_set_long(s, addr, val);
2903 break;
2905 /* Invalidation Event Address Register, 32-bit */
2906 case DMAR_IEADDR_REG:
2907 assert(size == 4);
2908 vtd_set_long(s, addr, val);
2909 break;
2911 /* Invalidation Event Upper Address Register, 32-bit */
2912 case DMAR_IEUADDR_REG:
2913 assert(size == 4);
2914 vtd_set_long(s, addr, val);
2915 break;
2917 /* Fault Recording Registers, 128-bit */
2918 case DMAR_FRCD_REG_0_0:
2919 if (size == 4) {
2920 vtd_set_long(s, addr, val);
2921 } else {
2922 vtd_set_quad(s, addr, val);
2924 break;
2926 case DMAR_FRCD_REG_0_1:
2927 assert(size == 4);
2928 vtd_set_long(s, addr, val);
2929 break;
2931 case DMAR_FRCD_REG_0_2:
2932 if (size == 4) {
2933 vtd_set_long(s, addr, val);
2934 } else {
2935 vtd_set_quad(s, addr, val);
2936 /* May clear bit 127 (Fault), update PPF */
2937 vtd_update_fsts_ppf(s);
2939 break;
2941 case DMAR_FRCD_REG_0_3:
2942 assert(size == 4);
2943 vtd_set_long(s, addr, val);
2944 /* May clear bit 127 (Fault), update PPF */
2945 vtd_update_fsts_ppf(s);
2946 break;
2948 case DMAR_IRTA_REG:
2949 if (size == 4) {
2950 vtd_set_long(s, addr, val);
2951 } else {
2952 vtd_set_quad(s, addr, val);
2954 break;
2956 case DMAR_IRTA_REG_HI:
2957 assert(size == 4);
2958 vtd_set_long(s, addr, val);
2959 break;
2961 default:
2962 if (size == 4) {
2963 vtd_set_long(s, addr, val);
2964 } else {
2965 vtd_set_quad(s, addr, val);
2970 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2971 IOMMUAccessFlags flag, int iommu_idx)
2973 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2974 IntelIOMMUState *s = vtd_as->iommu_state;
2975 IOMMUTLBEntry iotlb = {
2976 /* We'll fill in the rest later. */
2977 .target_as = &address_space_memory,
2979 bool success;
2981 if (likely(s->dmar_enabled)) {
2982 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2983 addr, flag & IOMMU_WO, &iotlb);
2984 } else {
2985 /* DMAR disabled, passthrough, use 4k-page*/
2986 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2987 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2988 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2989 iotlb.perm = IOMMU_RW;
2990 success = true;
2993 if (likely(success)) {
2994 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2995 VTD_PCI_SLOT(vtd_as->devfn),
2996 VTD_PCI_FUNC(vtd_as->devfn),
2997 iotlb.iova, iotlb.translated_addr,
2998 iotlb.addr_mask);
2999 } else {
3000 error_report_once("%s: detected translation failure "
3001 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3002 __func__, pci_bus_num(vtd_as->bus),
3003 VTD_PCI_SLOT(vtd_as->devfn),
3004 VTD_PCI_FUNC(vtd_as->devfn),
3005 addr);
3008 return iotlb;
3011 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3012 IOMMUNotifierFlag old,
3013 IOMMUNotifierFlag new,
3014 Error **errp)
3016 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3017 IntelIOMMUState *s = vtd_as->iommu_state;
3019 /* Update per-address-space notifier flags */
3020 vtd_as->notifier_flags = new;
3022 if (old == IOMMU_NOTIFIER_NONE) {
3023 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3024 } else if (new == IOMMU_NOTIFIER_NONE) {
3025 QLIST_REMOVE(vtd_as, next);
3027 return 0;
3030 static int vtd_post_load(void *opaque, int version_id)
3032 IntelIOMMUState *iommu = opaque;
3035 * Memory regions are dynamically turned on/off depending on
3036 * context entry configurations from the guest. After migration,
3037 * we need to make sure the memory regions are still correct.
3039 vtd_switch_address_space_all(iommu);
3042 * We don't need to migrate the root_scalable because we can
3043 * simply do the calculation after the loading is complete. We
3044 * can actually do similar things with root, dmar_enabled, etc.
3045 * however since we've had them already so we'd better keep them
3046 * for compatibility of migration.
3048 vtd_update_scalable_state(iommu);
3050 return 0;
3053 static const VMStateDescription vtd_vmstate = {
3054 .name = "iommu-intel",
3055 .version_id = 1,
3056 .minimum_version_id = 1,
3057 .priority = MIG_PRI_IOMMU,
3058 .post_load = vtd_post_load,
3059 .fields = (VMStateField[]) {
3060 VMSTATE_UINT64(root, IntelIOMMUState),
3061 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3062 VMSTATE_UINT64(iq, IntelIOMMUState),
3063 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3064 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3065 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3066 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3067 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3068 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3069 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3070 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3071 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3072 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3073 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3074 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3075 VMSTATE_END_OF_LIST()
3079 static const MemoryRegionOps vtd_mem_ops = {
3080 .read = vtd_mem_read,
3081 .write = vtd_mem_write,
3082 .endianness = DEVICE_LITTLE_ENDIAN,
3083 .impl = {
3084 .min_access_size = 4,
3085 .max_access_size = 8,
3087 .valid = {
3088 .min_access_size = 4,
3089 .max_access_size = 8,
3093 static Property vtd_properties[] = {
3094 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3095 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3096 ON_OFF_AUTO_AUTO),
3097 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3098 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3099 VTD_HOST_ADDRESS_WIDTH),
3100 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3101 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3102 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3103 DEFINE_PROP_END_OF_LIST(),
3106 /* Read IRTE entry with specific index */
3107 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3108 VTD_IR_TableEntry *entry, uint16_t sid)
3110 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3111 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3112 dma_addr_t addr = 0x00;
3113 uint16_t mask, source_id;
3114 uint8_t bus, bus_max, bus_min;
3116 if (index >= iommu->intr_size) {
3117 error_report_once("%s: index too large: ind=0x%x",
3118 __func__, index);
3119 return -VTD_FR_IR_INDEX_OVER;
3122 addr = iommu->intr_root + index * sizeof(*entry);
3123 if (dma_memory_read(&address_space_memory, addr, entry,
3124 sizeof(*entry))) {
3125 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3126 __func__, index, addr);
3127 return -VTD_FR_IR_ROOT_INVAL;
3130 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3131 le64_to_cpu(entry->data[0]));
3133 if (!entry->irte.present) {
3134 error_report_once("%s: detected non-present IRTE "
3135 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3136 __func__, index, le64_to_cpu(entry->data[1]),
3137 le64_to_cpu(entry->data[0]));
3138 return -VTD_FR_IR_ENTRY_P;
3141 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3142 entry->irte.__reserved_2) {
3143 error_report_once("%s: detected non-zero reserved IRTE "
3144 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3145 __func__, index, le64_to_cpu(entry->data[1]),
3146 le64_to_cpu(entry->data[0]));
3147 return -VTD_FR_IR_IRTE_RSVD;
3150 if (sid != X86_IOMMU_SID_INVALID) {
3151 /* Validate IRTE SID */
3152 source_id = le32_to_cpu(entry->irte.source_id);
3153 switch (entry->irte.sid_vtype) {
3154 case VTD_SVT_NONE:
3155 break;
3157 case VTD_SVT_ALL:
3158 mask = vtd_svt_mask[entry->irte.sid_q];
3159 if ((source_id & mask) != (sid & mask)) {
3160 error_report_once("%s: invalid IRTE SID "
3161 "(index=%u, sid=%u, source_id=%u)",
3162 __func__, index, sid, source_id);
3163 return -VTD_FR_IR_SID_ERR;
3165 break;
3167 case VTD_SVT_BUS:
3168 bus_max = source_id >> 8;
3169 bus_min = source_id & 0xff;
3170 bus = sid >> 8;
3171 if (bus > bus_max || bus < bus_min) {
3172 error_report_once("%s: invalid SVT_BUS "
3173 "(index=%u, bus=%u, min=%u, max=%u)",
3174 __func__, index, bus, bus_min, bus_max);
3175 return -VTD_FR_IR_SID_ERR;
3177 break;
3179 default:
3180 error_report_once("%s: detected invalid IRTE SVT "
3181 "(index=%u, type=%d)", __func__,
3182 index, entry->irte.sid_vtype);
3183 /* Take this as verification failure. */
3184 return -VTD_FR_IR_SID_ERR;
3188 return 0;
3191 /* Fetch IRQ information of specific IR index */
3192 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3193 X86IOMMUIrq *irq, uint16_t sid)
3195 VTD_IR_TableEntry irte = {};
3196 int ret = 0;
3198 ret = vtd_irte_get(iommu, index, &irte, sid);
3199 if (ret) {
3200 return ret;
3203 irq->trigger_mode = irte.irte.trigger_mode;
3204 irq->vector = irte.irte.vector;
3205 irq->delivery_mode = irte.irte.delivery_mode;
3206 irq->dest = le32_to_cpu(irte.irte.dest_id);
3207 if (!iommu->intr_eime) {
3208 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3209 #define VTD_IR_APIC_DEST_SHIFT (8)
3210 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3211 VTD_IR_APIC_DEST_SHIFT;
3213 irq->dest_mode = irte.irte.dest_mode;
3214 irq->redir_hint = irte.irte.redir_hint;
3216 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3217 irq->delivery_mode, irq->dest, irq->dest_mode);
3219 return 0;
3222 /* Interrupt remapping for MSI/MSI-X entry */
3223 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3224 MSIMessage *origin,
3225 MSIMessage *translated,
3226 uint16_t sid)
3228 int ret = 0;
3229 VTD_IR_MSIAddress addr;
3230 uint16_t index;
3231 X86IOMMUIrq irq = {};
3233 assert(origin && translated);
3235 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3237 if (!iommu || !iommu->intr_enabled) {
3238 memcpy(translated, origin, sizeof(*origin));
3239 goto out;
3242 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3243 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3244 "address=0x%" PRIx64, __func__, origin->address);
3245 return -VTD_FR_IR_REQ_RSVD;
3248 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3249 if (addr.addr.__head != 0xfee) {
3250 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3251 __func__, addr.data);
3252 return -VTD_FR_IR_REQ_RSVD;
3255 /* This is compatible mode. */
3256 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3257 memcpy(translated, origin, sizeof(*origin));
3258 goto out;
3261 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3263 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3264 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3266 if (addr.addr.sub_valid) {
3267 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3268 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3271 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3272 if (ret) {
3273 return ret;
3276 if (addr.addr.sub_valid) {
3277 trace_vtd_ir_remap_type("MSI");
3278 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3279 error_report_once("%s: invalid IR MSI "
3280 "(sid=%u, address=0x%" PRIx64
3281 ", data=0x%" PRIx32 ")",
3282 __func__, sid, origin->address, origin->data);
3283 return -VTD_FR_IR_REQ_RSVD;
3285 } else {
3286 uint8_t vector = origin->data & 0xff;
3287 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3289 trace_vtd_ir_remap_type("IOAPIC");
3290 /* IOAPIC entry vector should be aligned with IRTE vector
3291 * (see vt-d spec 5.1.5.1). */
3292 if (vector != irq.vector) {
3293 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3296 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3297 * (see vt-d spec 5.1.5.1). */
3298 if (trigger_mode != irq.trigger_mode) {
3299 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3300 irq.trigger_mode);
3305 * We'd better keep the last two bits, assuming that guest OS
3306 * might modify it. Keep it does not hurt after all.
3308 irq.msi_addr_last_bits = addr.addr.__not_care;
3310 /* Translate X86IOMMUIrq to MSI message */
3311 x86_iommu_irq_to_msi_message(&irq, translated);
3313 out:
3314 trace_vtd_ir_remap_msi(origin->address, origin->data,
3315 translated->address, translated->data);
3316 return 0;
3319 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3320 MSIMessage *dst, uint16_t sid)
3322 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3323 src, dst, sid);
3326 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3327 uint64_t *data, unsigned size,
3328 MemTxAttrs attrs)
3330 return MEMTX_OK;
3333 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3334 uint64_t value, unsigned size,
3335 MemTxAttrs attrs)
3337 int ret = 0;
3338 MSIMessage from = {}, to = {};
3339 uint16_t sid = X86_IOMMU_SID_INVALID;
3341 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3342 from.data = (uint32_t) value;
3344 if (!attrs.unspecified) {
3345 /* We have explicit Source ID */
3346 sid = attrs.requester_id;
3349 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3350 if (ret) {
3351 /* TODO: report error */
3352 /* Drop this interrupt */
3353 return MEMTX_ERROR;
3356 apic_get_class()->send_msi(&to);
3358 return MEMTX_OK;
3361 static const MemoryRegionOps vtd_mem_ir_ops = {
3362 .read_with_attrs = vtd_mem_ir_read,
3363 .write_with_attrs = vtd_mem_ir_write,
3364 .endianness = DEVICE_LITTLE_ENDIAN,
3365 .impl = {
3366 .min_access_size = 4,
3367 .max_access_size = 4,
3369 .valid = {
3370 .min_access_size = 4,
3371 .max_access_size = 4,
3375 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3377 uintptr_t key = (uintptr_t)bus;
3378 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3379 VTDAddressSpace *vtd_dev_as;
3380 char name[128];
3382 if (!vtd_bus) {
3383 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3384 *new_key = (uintptr_t)bus;
3385 /* No corresponding free() */
3386 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3387 PCI_DEVFN_MAX);
3388 vtd_bus->bus = bus;
3389 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3392 vtd_dev_as = vtd_bus->dev_as[devfn];
3394 if (!vtd_dev_as) {
3395 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3396 PCI_FUNC(devfn));
3397 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3399 vtd_dev_as->bus = bus;
3400 vtd_dev_as->devfn = (uint8_t)devfn;
3401 vtd_dev_as->iommu_state = s;
3402 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3403 vtd_dev_as->iova_tree = iova_tree_new();
3405 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3406 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3409 * Build the DMAR-disabled container with aliases to the
3410 * shared MRs. Note that aliasing to a shared memory region
3411 * could help the memory API to detect same FlatViews so we
3412 * can have devices to share the same FlatView when DMAR is
3413 * disabled (either by not providing "intel_iommu=on" or with
3414 * "iommu=pt"). It will greatly reduce the total number of
3415 * FlatViews of the system hence VM runs faster.
3417 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3418 "vtd-nodmar", &s->mr_nodmar, 0,
3419 memory_region_size(&s->mr_nodmar));
3422 * Build the per-device DMAR-enabled container.
3424 * TODO: currently we have per-device IOMMU memory region only
3425 * because we have per-device IOMMU notifiers for devices. If
3426 * one day we can abstract the IOMMU notifiers out of the
3427 * memory regions then we can also share the same memory
3428 * region here just like what we've done above with the nodmar
3429 * region.
3431 strcat(name, "-dmar");
3432 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3433 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3434 name, UINT64_MAX);
3435 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3436 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3437 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3438 VTD_INTERRUPT_ADDR_FIRST,
3439 &vtd_dev_as->iommu_ir, 1);
3442 * Hook both the containers under the root container, we
3443 * switch between DMAR & noDMAR by enable/disable
3444 * corresponding sub-containers
3446 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3447 MEMORY_REGION(&vtd_dev_as->iommu),
3449 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3450 &vtd_dev_as->nodmar, 0);
3452 vtd_switch_address_space(vtd_dev_as);
3454 return vtd_dev_as;
3457 /* Unmap the whole range in the notifier's scope. */
3458 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3460 hwaddr size, remain;
3461 hwaddr start = n->start;
3462 hwaddr end = n->end;
3463 IntelIOMMUState *s = as->iommu_state;
3464 DMAMap map;
3467 * Note: all the codes in this function has a assumption that IOVA
3468 * bits are no more than VTD_MGAW bits (which is restricted by
3469 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3472 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3474 * Don't need to unmap regions that is bigger than the whole
3475 * VT-d supported address space size
3477 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3480 assert(start <= end);
3481 size = remain = end - start + 1;
3483 while (remain >= VTD_PAGE_SIZE) {
3484 IOMMUTLBEvent event;
3485 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3486 uint64_t size = mask + 1;
3488 assert(size);
3490 event.type = IOMMU_NOTIFIER_UNMAP;
3491 event.entry.iova = start;
3492 event.entry.addr_mask = mask;
3493 event.entry.target_as = &address_space_memory;
3494 event.entry.perm = IOMMU_NONE;
3495 /* This field is meaningless for unmap */
3496 event.entry.translated_addr = 0;
3498 memory_region_notify_iommu_one(n, &event);
3500 start += size;
3501 remain -= size;
3504 assert(!remain);
3506 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3507 VTD_PCI_SLOT(as->devfn),
3508 VTD_PCI_FUNC(as->devfn),
3509 n->start, size);
3511 map.iova = n->start;
3512 map.size = size;
3513 iova_tree_remove(as->iova_tree, &map);
3516 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3518 VTDAddressSpace *vtd_as;
3519 IOMMUNotifier *n;
3521 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3522 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3523 vtd_address_space_unmap(vtd_as, n);
3528 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3530 vtd_address_space_unmap_all(s);
3531 vtd_switch_address_space_all(s);
3534 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3536 memory_region_notify_iommu_one(private, event);
3537 return 0;
3540 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3542 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3543 IntelIOMMUState *s = vtd_as->iommu_state;
3544 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3545 VTDContextEntry ce;
3548 * The replay can be triggered by either a invalidation or a newly
3549 * created entry. No matter what, we release existing mappings
3550 * (it means flushing caches for UNMAP-only registers).
3552 vtd_address_space_unmap(vtd_as, n);
3554 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3555 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3556 "legacy mode",
3557 bus_n, PCI_SLOT(vtd_as->devfn),
3558 PCI_FUNC(vtd_as->devfn),
3559 vtd_get_domain_id(s, &ce),
3560 ce.hi, ce.lo);
3561 if (vtd_as_has_map_notifier(vtd_as)) {
3562 /* This is required only for MAP typed notifiers */
3563 vtd_page_walk_info info = {
3564 .hook_fn = vtd_replay_hook,
3565 .private = (void *)n,
3566 .notify_unmap = false,
3567 .aw = s->aw_bits,
3568 .as = vtd_as,
3569 .domain_id = vtd_get_domain_id(s, &ce),
3572 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3574 } else {
3575 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3576 PCI_FUNC(vtd_as->devfn));
3579 return;
3582 /* Do the initialization. It will also be called when reset, so pay
3583 * attention when adding new initialization stuff.
3585 static void vtd_init(IntelIOMMUState *s)
3587 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3589 memset(s->csr, 0, DMAR_REG_SIZE);
3590 memset(s->wmask, 0, DMAR_REG_SIZE);
3591 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3592 memset(s->womask, 0, DMAR_REG_SIZE);
3594 s->root = 0;
3595 s->root_scalable = false;
3596 s->dmar_enabled = false;
3597 s->intr_enabled = false;
3598 s->iq_head = 0;
3599 s->iq_tail = 0;
3600 s->iq = 0;
3601 s->iq_size = 0;
3602 s->qi_enabled = false;
3603 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3604 s->iq_dw = false;
3605 s->next_frcd_reg = 0;
3606 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3607 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3608 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3609 if (s->dma_drain) {
3610 s->cap |= VTD_CAP_DRAIN;
3612 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3613 s->cap |= VTD_CAP_SAGAW_48bit;
3615 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3618 * Rsvd field masks for spte
3620 vtd_spte_rsvd[0] = ~0ULL;
3621 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3622 x86_iommu->dt_supported);
3623 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3624 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3625 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3627 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3628 x86_iommu->dt_supported);
3629 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3630 x86_iommu->dt_supported);
3632 if (x86_iommu_ir_supported(x86_iommu)) {
3633 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3634 if (s->intr_eim == ON_OFF_AUTO_ON) {
3635 s->ecap |= VTD_ECAP_EIM;
3637 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3640 if (x86_iommu->dt_supported) {
3641 s->ecap |= VTD_ECAP_DT;
3644 if (x86_iommu->pt_supported) {
3645 s->ecap |= VTD_ECAP_PT;
3648 if (s->caching_mode) {
3649 s->cap |= VTD_CAP_CM;
3652 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3653 if (s->scalable_mode) {
3654 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3657 vtd_reset_caches(s);
3659 /* Define registers with default values and bit semantics */
3660 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3661 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3662 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3663 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3664 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3665 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3666 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3667 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3668 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3670 /* Advanced Fault Logging not supported */
3671 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3672 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3673 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3674 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3676 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3677 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3679 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3681 /* Treated as RO for implementations that PLMR and PHMR fields reported
3682 * as Clear in the CAP_REG.
3683 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3685 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3687 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3688 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3689 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3690 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3691 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3692 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3693 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3694 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3695 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3697 /* IOTLB registers */
3698 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3699 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3700 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3702 /* Fault Recording Registers, 128-bit */
3703 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3704 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3707 * Interrupt remapping registers.
3709 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3712 /* Should not reset address_spaces when reset because devices will still use
3713 * the address space they got at first (won't ask the bus again).
3715 static void vtd_reset(DeviceState *dev)
3717 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3719 vtd_init(s);
3720 vtd_address_space_refresh_all(s);
3723 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3725 IntelIOMMUState *s = opaque;
3726 VTDAddressSpace *vtd_as;
3728 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3730 vtd_as = vtd_find_add_as(s, bus, devfn);
3731 return &vtd_as->as;
3734 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3736 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3738 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3739 error_setg(errp, "eim=on cannot be selected without intremap=on");
3740 return false;
3743 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3744 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3745 && x86_iommu_ir_supported(x86_iommu) ?
3746 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3748 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3749 if (!kvm_irqchip_in_kernel()) {
3750 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3751 return false;
3753 if (!kvm_enable_x2apic()) {
3754 error_setg(errp, "eim=on requires support on the KVM side"
3755 "(X2APIC_API, first shipped in v4.7)");
3756 return false;
3760 /* Currently only address widths supported are 39 and 48 bits */
3761 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3762 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3763 error_setg(errp, "Supported values for aw-bits are: %d, %d",
3764 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3765 return false;
3768 if (s->scalable_mode && !s->dma_drain) {
3769 error_setg(errp, "Need to set dma_drain for scalable mode");
3770 return false;
3773 return true;
3776 static int vtd_machine_done_notify_one(Object *child, void *unused)
3778 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3781 * We hard-coded here because vfio-pci is the only special case
3782 * here. Let's be more elegant in the future when we can, but so
3783 * far there seems to be no better way.
3785 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3786 vtd_panic_require_caching_mode();
3789 return 0;
3792 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3794 object_child_foreach_recursive(object_get_root(),
3795 vtd_machine_done_notify_one, NULL);
3798 static Notifier vtd_machine_done_notify = {
3799 .notify = vtd_machine_done_hook,
3802 static void vtd_realize(DeviceState *dev, Error **errp)
3804 MachineState *ms = MACHINE(qdev_get_machine());
3805 PCMachineState *pcms = PC_MACHINE(ms);
3806 X86MachineState *x86ms = X86_MACHINE(ms);
3807 PCIBus *bus = pcms->bus;
3808 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3809 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3811 x86_iommu->type = TYPE_INTEL;
3813 if (!vtd_decide_config(s, errp)) {
3814 return;
3817 QLIST_INIT(&s->vtd_as_with_notifiers);
3818 qemu_mutex_init(&s->iommu_lock);
3819 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3820 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3821 "intel_iommu", DMAR_REG_SIZE);
3823 /* Create the shared memory regions by all devices */
3824 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3825 UINT64_MAX);
3826 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3827 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3828 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3829 "vtd-sys-alias", get_system_memory(), 0,
3830 memory_region_size(get_system_memory()));
3831 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3832 &s->mr_sys_alias, 0);
3833 memory_region_add_subregion_overlap(&s->mr_nodmar,
3834 VTD_INTERRUPT_ADDR_FIRST,
3835 &s->mr_ir, 1);
3837 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3838 /* No corresponding destroy */
3839 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3840 g_free, g_free);
3841 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3842 g_free, g_free);
3843 vtd_init(s);
3844 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3845 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3846 /* Pseudo address space under root PCI bus. */
3847 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3848 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3851 static void vtd_class_init(ObjectClass *klass, void *data)
3853 DeviceClass *dc = DEVICE_CLASS(klass);
3854 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
3856 dc->reset = vtd_reset;
3857 dc->vmsd = &vtd_vmstate;
3858 device_class_set_props(dc, vtd_properties);
3859 dc->hotpluggable = false;
3860 x86_class->realize = vtd_realize;
3861 x86_class->int_remap = vtd_int_remap;
3862 /* Supported by the pc-q35-* machine types */
3863 dc->user_creatable = true;
3864 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3865 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3868 static const TypeInfo vtd_info = {
3869 .name = TYPE_INTEL_IOMMU_DEVICE,
3870 .parent = TYPE_X86_IOMMU_DEVICE,
3871 .instance_size = sizeof(IntelIOMMUState),
3872 .class_init = vtd_class_init,
3875 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3876 void *data)
3878 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3880 imrc->translate = vtd_iommu_translate;
3881 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3882 imrc->replay = vtd_iommu_replay;
3885 static const TypeInfo vtd_iommu_memory_region_info = {
3886 .parent = TYPE_IOMMU_MEMORY_REGION,
3887 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3888 .class_init = vtd_iommu_memory_region_class_init,
3891 static void vtd_register_types(void)
3893 type_register_static(&vtd_info);
3894 type_register_static(&vtd_iommu_memory_region_info);
3897 type_init(vtd_register_types)