hw/misc/edu: Convert to realize()
[qemu/ar7.git] / hw / intc / arm_gic.c
blob13e297d52eb75783e8fef53c05f373a453240112
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "hw/sysbus.h"
22 #include "gic_internal.h"
23 #include "qom/cpu.h"
25 //#define DEBUG_GIC
27 #ifdef DEBUG_GIC
28 #define DPRINTF(fmt, ...) \
29 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
30 #else
31 #define DPRINTF(fmt, ...) do {} while(0)
32 #endif
34 static const uint8_t gic_id[] = {
35 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
38 static inline int gic_get_current_cpu(GICState *s)
40 if (s->num_cpu > 1) {
41 return current_cpu->cpu_index;
43 return 0;
46 /* Return true if this GIC config has interrupt groups, which is
47 * true if we're a GICv2, or a GICv1 with the security extensions.
49 static inline bool gic_has_groups(GICState *s)
51 return s->revision == 2 || s->security_extn;
54 /* TODO: Many places that call this routine could be optimized. */
55 /* Update interrupt status after enabled or pending bits have been changed. */
56 void gic_update(GICState *s)
58 int best_irq;
59 int best_prio;
60 int irq;
61 int irq_level, fiq_level;
62 int cpu;
63 int cm;
65 for (cpu = 0; cpu < s->num_cpu; cpu++) {
66 cm = 1 << cpu;
67 s->current_pending[cpu] = 1023;
68 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
69 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
70 qemu_irq_lower(s->parent_irq[cpu]);
71 qemu_irq_lower(s->parent_fiq[cpu]);
72 continue;
74 best_prio = 0x100;
75 best_irq = 1023;
76 for (irq = 0; irq < s->num_irq; irq++) {
77 if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
78 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
79 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
80 best_prio = GIC_GET_PRIORITY(irq, cpu);
81 best_irq = irq;
86 irq_level = fiq_level = 0;
88 if (best_prio < s->priority_mask[cpu]) {
89 s->current_pending[cpu] = best_irq;
90 if (best_prio < s->running_priority[cpu]) {
91 int group = GIC_TEST_GROUP(best_irq, cm);
93 if (extract32(s->ctlr, group, 1) &&
94 extract32(s->cpu_ctlr[cpu], group, 1)) {
95 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
96 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
97 best_irq, cpu);
98 fiq_level = 1;
99 } else {
100 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
101 best_irq, cpu);
102 irq_level = 1;
108 qemu_set_irq(s->parent_irq[cpu], irq_level);
109 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
113 void gic_set_pending_private(GICState *s, int cpu, int irq)
115 int cm = 1 << cpu;
117 if (gic_test_pending(s, irq, cm)) {
118 return;
121 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
122 GIC_SET_PENDING(irq, cm);
123 gic_update(s);
126 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
127 int cm, int target)
129 if (level) {
130 GIC_SET_LEVEL(irq, cm);
131 if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
132 DPRINTF("Set %d pending mask %x\n", irq, target);
133 GIC_SET_PENDING(irq, target);
135 } else {
136 GIC_CLEAR_LEVEL(irq, cm);
140 static void gic_set_irq_generic(GICState *s, int irq, int level,
141 int cm, int target)
143 if (level) {
144 GIC_SET_LEVEL(irq, cm);
145 DPRINTF("Set %d pending mask %x\n", irq, target);
146 if (GIC_TEST_EDGE_TRIGGER(irq)) {
147 GIC_SET_PENDING(irq, target);
149 } else {
150 GIC_CLEAR_LEVEL(irq, cm);
154 /* Process a change in an external IRQ input. */
155 static void gic_set_irq(void *opaque, int irq, int level)
157 /* Meaning of the 'irq' parameter:
158 * [0..N-1] : external interrupts
159 * [N..N+31] : PPI (internal) interrupts for CPU 0
160 * [N+32..N+63] : PPI (internal interrupts for CPU 1
161 * ...
163 GICState *s = (GICState *)opaque;
164 int cm, target;
165 if (irq < (s->num_irq - GIC_INTERNAL)) {
166 /* The first external input line is internal interrupt 32. */
167 cm = ALL_CPU_MASK;
168 irq += GIC_INTERNAL;
169 target = GIC_TARGET(irq);
170 } else {
171 int cpu;
172 irq -= (s->num_irq - GIC_INTERNAL);
173 cpu = irq / GIC_INTERNAL;
174 irq %= GIC_INTERNAL;
175 cm = 1 << cpu;
176 target = cm;
179 assert(irq >= GIC_NR_SGIS);
181 if (level == GIC_TEST_LEVEL(irq, cm)) {
182 return;
185 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
186 gic_set_irq_11mpcore(s, irq, level, cm, target);
187 } else {
188 gic_set_irq_generic(s, irq, level, cm, target);
191 gic_update(s);
194 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
195 MemTxAttrs attrs)
197 uint16_t pending_irq = s->current_pending[cpu];
199 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
200 int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
201 /* On a GIC without the security extensions, reading this register
202 * behaves in the same way as a secure access to a GIC with them.
204 bool secure = !s->security_extn || attrs.secure;
206 if (group == 0 && !secure) {
207 /* Group0 interrupts hidden from Non-secure access */
208 return 1023;
210 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
211 /* Group1 interrupts only seen by Secure access if
212 * AckCtl bit set.
214 return 1022;
217 return pending_irq;
220 static int gic_get_group_priority(GICState *s, int cpu, int irq)
222 /* Return the group priority of the specified interrupt
223 * (which is the top bits of its priority, with the number
224 * of bits masked determined by the applicable binary point register).
226 int bpr;
227 uint32_t mask;
229 if (gic_has_groups(s) &&
230 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
231 GIC_TEST_GROUP(irq, (1 << cpu))) {
232 bpr = s->abpr[cpu];
233 } else {
234 bpr = s->bpr[cpu];
237 /* a BPR of 0 means the group priority bits are [7:1];
238 * a BPR of 1 means they are [7:2], and so on down to
239 * a BPR of 7 meaning no group priority bits at all.
241 mask = ~0U << ((bpr & 7) + 1);
243 return GIC_GET_PRIORITY(irq, cpu) & mask;
246 static void gic_activate_irq(GICState *s, int cpu, int irq)
248 /* Set the appropriate Active Priority Register bit for this IRQ,
249 * and update the running priority.
251 int prio = gic_get_group_priority(s, cpu, irq);
252 int preemption_level = prio >> (GIC_MIN_BPR + 1);
253 int regno = preemption_level / 32;
254 int bitno = preemption_level % 32;
256 if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
257 s->nsapr[regno][cpu] |= (1 << bitno);
258 } else {
259 s->apr[regno][cpu] |= (1 << bitno);
262 s->running_priority[cpu] = prio;
263 GIC_SET_ACTIVE(irq, 1 << cpu);
266 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
268 /* Recalculate the current running priority for this CPU based
269 * on the set bits in the Active Priority Registers.
271 int i;
272 for (i = 0; i < GIC_NR_APRS; i++) {
273 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
274 if (!apr) {
275 continue;
277 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
279 return 0x100;
282 static void gic_drop_prio(GICState *s, int cpu, int group)
284 /* Drop the priority of the currently active interrupt in the
285 * specified group.
287 * Note that we can guarantee (because of the requirement to nest
288 * GICC_IAR reads [which activate an interrupt and raise priority]
289 * with GICC_EOIR writes [which drop the priority for the interrupt])
290 * that the interrupt we're being called for is the highest priority
291 * active interrupt, meaning that it has the lowest set bit in the
292 * APR registers.
294 * If the guest does not honour the ordering constraints then the
295 * behaviour of the GIC is UNPREDICTABLE, which for us means that
296 * the values of the APR registers might become incorrect and the
297 * running priority will be wrong, so interrupts that should preempt
298 * might not do so, and interrupts that should not preempt might do so.
300 int i;
302 for (i = 0; i < GIC_NR_APRS; i++) {
303 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
304 if (!*papr) {
305 continue;
307 /* Clear lowest set bit */
308 *papr &= *papr - 1;
309 break;
312 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
315 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
317 int ret, irq, src;
318 int cm = 1 << cpu;
320 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
321 * for the case where this GIC supports grouping and the pending interrupt
322 * is in the wrong group.
324 irq = gic_get_current_pending_irq(s, cpu, attrs);
326 if (irq >= GIC_MAXIRQ) {
327 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
328 return irq;
331 if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
332 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
333 return 1023;
336 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
337 /* Clear pending flags for both level and edge triggered interrupts.
338 * Level triggered IRQs will be reasserted once they become inactive.
340 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
341 ret = irq;
342 } else {
343 if (irq < GIC_NR_SGIS) {
344 /* Lookup the source CPU for the SGI and clear this in the
345 * sgi_pending map. Return the src and clear the overall pending
346 * state on this CPU if the SGI is not pending from any CPUs.
348 assert(s->sgi_pending[irq][cpu] != 0);
349 src = ctz32(s->sgi_pending[irq][cpu]);
350 s->sgi_pending[irq][cpu] &= ~(1 << src);
351 if (s->sgi_pending[irq][cpu] == 0) {
352 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
354 ret = irq | ((src & 0x7) << 10);
355 } else {
356 /* Clear pending state for both level and edge triggered
357 * interrupts. (level triggered interrupts with an active line
358 * remain pending, see gic_test_pending)
360 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
361 ret = irq;
365 gic_activate_irq(s, cpu, irq);
366 gic_update(s);
367 DPRINTF("ACK %d\n", irq);
368 return ret;
371 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
372 MemTxAttrs attrs)
374 if (s->security_extn && !attrs.secure) {
375 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
376 return; /* Ignore Non-secure access of Group0 IRQ */
378 val = 0x80 | (val >> 1); /* Non-secure view */
381 if (irq < GIC_INTERNAL) {
382 s->priority1[irq][cpu] = val;
383 } else {
384 s->priority2[(irq) - GIC_INTERNAL] = val;
388 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
389 MemTxAttrs attrs)
391 uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
393 if (s->security_extn && !attrs.secure) {
394 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
395 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
397 prio = (prio << 1) & 0xff; /* Non-secure view */
399 return prio;
402 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
403 MemTxAttrs attrs)
405 if (s->security_extn && !attrs.secure) {
406 if (s->priority_mask[cpu] & 0x80) {
407 /* Priority Mask in upper half */
408 pmask = 0x80 | (pmask >> 1);
409 } else {
410 /* Non-secure write ignored if priority mask is in lower half */
411 return;
414 s->priority_mask[cpu] = pmask;
417 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
419 uint32_t pmask = s->priority_mask[cpu];
421 if (s->security_extn && !attrs.secure) {
422 if (pmask & 0x80) {
423 /* Priority Mask in upper half, return Non-secure view */
424 pmask = (pmask << 1) & 0xff;
425 } else {
426 /* Priority Mask in lower half, RAZ */
427 pmask = 0;
430 return pmask;
433 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
435 uint32_t ret = s->cpu_ctlr[cpu];
437 if (s->security_extn && !attrs.secure) {
438 /* Construct the NS banked view of GICC_CTLR from the correct
439 * bits of the S banked view. We don't need to move the bypass
440 * control bits because we don't implement that (IMPDEF) part
441 * of the GIC architecture.
443 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
445 return ret;
448 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
449 MemTxAttrs attrs)
451 uint32_t mask;
453 if (s->security_extn && !attrs.secure) {
454 /* The NS view can only write certain bits in the register;
455 * the rest are unchanged
457 mask = GICC_CTLR_EN_GRP1;
458 if (s->revision == 2) {
459 mask |= GICC_CTLR_EOIMODE_NS;
461 s->cpu_ctlr[cpu] &= ~mask;
462 s->cpu_ctlr[cpu] |= (value << 1) & mask;
463 } else {
464 if (s->revision == 2) {
465 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
466 } else {
467 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
469 s->cpu_ctlr[cpu] = value & mask;
471 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
472 "Group1 Interrupts %sabled\n", cpu,
473 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
474 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
477 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
479 if (s->security_extn && !attrs.secure) {
480 if (s->running_priority[cpu] & 0x80) {
481 /* Running priority in upper half of range: return the Non-secure
482 * view of the priority.
484 return s->running_priority[cpu] << 1;
485 } else {
486 /* Running priority in lower half of range: RAZ */
487 return 0;
489 } else {
490 return s->running_priority[cpu];
494 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
496 int cm = 1 << cpu;
497 int group;
499 DPRINTF("EOI %d\n", irq);
500 if (irq >= s->num_irq) {
501 /* This handles two cases:
502 * 1. If software writes the ID of a spurious interrupt [ie 1023]
503 * to the GICC_EOIR, the GIC ignores that write.
504 * 2. If software writes the number of a non-existent interrupt
505 * this must be a subcase of "value written does not match the last
506 * valid interrupt value read from the Interrupt Acknowledge
507 * register" and so this is UNPREDICTABLE. We choose to ignore it.
509 return;
511 if (s->running_priority[cpu] == 0x100) {
512 return; /* No active IRQ. */
515 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
516 /* Mark level triggered interrupts as pending if they are still
517 raised. */
518 if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
519 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
520 DPRINTF("Set %d pending mask %x\n", irq, cm);
521 GIC_SET_PENDING(irq, cm);
525 group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
527 if (s->security_extn && !attrs.secure && !group) {
528 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
529 return;
532 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
533 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
534 * i.e. go ahead and complete the irq anyway.
537 gic_drop_prio(s, cpu, group);
538 GIC_CLEAR_ACTIVE(irq, cm);
539 gic_update(s);
542 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
544 GICState *s = (GICState *)opaque;
545 uint32_t res;
546 int irq;
547 int i;
548 int cpu;
549 int cm;
550 int mask;
552 cpu = gic_get_current_cpu(s);
553 cm = 1 << cpu;
554 if (offset < 0x100) {
555 if (offset == 0) { /* GICD_CTLR */
556 if (s->security_extn && !attrs.secure) {
557 /* The NS bank of this register is just an alias of the
558 * EnableGrp1 bit in the S bank version.
560 return extract32(s->ctlr, 1, 1);
561 } else {
562 return s->ctlr;
565 if (offset == 4)
566 /* Interrupt Controller Type Register */
567 return ((s->num_irq / 32) - 1)
568 | ((s->num_cpu - 1) << 5)
569 | (s->security_extn << 10);
570 if (offset < 0x08)
571 return 0;
572 if (offset >= 0x80) {
573 /* Interrupt Group Registers: these RAZ/WI if this is an NS
574 * access to a GIC with the security extensions, or if the GIC
575 * doesn't have groups at all.
577 res = 0;
578 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
579 /* Every byte offset holds 8 group status bits */
580 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
581 if (irq >= s->num_irq) {
582 goto bad_reg;
584 for (i = 0; i < 8; i++) {
585 if (GIC_TEST_GROUP(irq + i, cm)) {
586 res |= (1 << i);
590 return res;
592 goto bad_reg;
593 } else if (offset < 0x200) {
594 /* Interrupt Set/Clear Enable. */
595 if (offset < 0x180)
596 irq = (offset - 0x100) * 8;
597 else
598 irq = (offset - 0x180) * 8;
599 irq += GIC_BASE_IRQ;
600 if (irq >= s->num_irq)
601 goto bad_reg;
602 res = 0;
603 for (i = 0; i < 8; i++) {
604 if (GIC_TEST_ENABLED(irq + i, cm)) {
605 res |= (1 << i);
608 } else if (offset < 0x300) {
609 /* Interrupt Set/Clear Pending. */
610 if (offset < 0x280)
611 irq = (offset - 0x200) * 8;
612 else
613 irq = (offset - 0x280) * 8;
614 irq += GIC_BASE_IRQ;
615 if (irq >= s->num_irq)
616 goto bad_reg;
617 res = 0;
618 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
619 for (i = 0; i < 8; i++) {
620 if (gic_test_pending(s, irq + i, mask)) {
621 res |= (1 << i);
624 } else if (offset < 0x400) {
625 /* Interrupt Active. */
626 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
627 if (irq >= s->num_irq)
628 goto bad_reg;
629 res = 0;
630 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
631 for (i = 0; i < 8; i++) {
632 if (GIC_TEST_ACTIVE(irq + i, mask)) {
633 res |= (1 << i);
636 } else if (offset < 0x800) {
637 /* Interrupt Priority. */
638 irq = (offset - 0x400) + GIC_BASE_IRQ;
639 if (irq >= s->num_irq)
640 goto bad_reg;
641 res = gic_get_priority(s, cpu, irq, attrs);
642 } else if (offset < 0xc00) {
643 /* Interrupt CPU Target. */
644 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
645 /* For uniprocessor GICs these RAZ/WI */
646 res = 0;
647 } else {
648 irq = (offset - 0x800) + GIC_BASE_IRQ;
649 if (irq >= s->num_irq) {
650 goto bad_reg;
652 if (irq >= 29 && irq <= 31) {
653 res = cm;
654 } else {
655 res = GIC_TARGET(irq);
658 } else if (offset < 0xf00) {
659 /* Interrupt Configuration. */
660 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
661 if (irq >= s->num_irq)
662 goto bad_reg;
663 res = 0;
664 for (i = 0; i < 4; i++) {
665 if (GIC_TEST_MODEL(irq + i))
666 res |= (1 << (i * 2));
667 if (GIC_TEST_EDGE_TRIGGER(irq + i))
668 res |= (2 << (i * 2));
670 } else if (offset < 0xf10) {
671 goto bad_reg;
672 } else if (offset < 0xf30) {
673 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
674 goto bad_reg;
677 if (offset < 0xf20) {
678 /* GICD_CPENDSGIRn */
679 irq = (offset - 0xf10);
680 } else {
681 irq = (offset - 0xf20);
682 /* GICD_SPENDSGIRn */
685 res = s->sgi_pending[irq][cpu];
686 } else if (offset < 0xfe0) {
687 goto bad_reg;
688 } else /* offset >= 0xfe0 */ {
689 if (offset & 3) {
690 res = 0;
691 } else {
692 res = gic_id[(offset - 0xfe0) >> 2];
695 return res;
696 bad_reg:
697 qemu_log_mask(LOG_GUEST_ERROR,
698 "gic_dist_readb: Bad offset %x\n", (int)offset);
699 return 0;
702 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
703 unsigned size, MemTxAttrs attrs)
705 switch (size) {
706 case 1:
707 *data = gic_dist_readb(opaque, offset, attrs);
708 return MEMTX_OK;
709 case 2:
710 *data = gic_dist_readb(opaque, offset, attrs);
711 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
712 return MEMTX_OK;
713 case 4:
714 *data = gic_dist_readb(opaque, offset, attrs);
715 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
716 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
717 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
718 return MEMTX_OK;
719 default:
720 return MEMTX_ERROR;
724 static void gic_dist_writeb(void *opaque, hwaddr offset,
725 uint32_t value, MemTxAttrs attrs)
727 GICState *s = (GICState *)opaque;
728 int irq;
729 int i;
730 int cpu;
732 cpu = gic_get_current_cpu(s);
733 if (offset < 0x100) {
734 if (offset == 0) {
735 if (s->security_extn && !attrs.secure) {
736 /* NS version is just an alias of the S version's bit 1 */
737 s->ctlr = deposit32(s->ctlr, 1, 1, value);
738 } else if (gic_has_groups(s)) {
739 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
740 } else {
741 s->ctlr = value & GICD_CTLR_EN_GRP0;
743 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
744 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
745 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
746 } else if (offset < 4) {
747 /* ignored. */
748 } else if (offset >= 0x80) {
749 /* Interrupt Group Registers: RAZ/WI for NS access to secure
750 * GIC, or for GICs without groups.
752 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
753 /* Every byte offset holds 8 group status bits */
754 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
755 if (irq >= s->num_irq) {
756 goto bad_reg;
758 for (i = 0; i < 8; i++) {
759 /* Group bits are banked for private interrupts */
760 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
761 if (value & (1 << i)) {
762 /* Group1 (Non-secure) */
763 GIC_SET_GROUP(irq + i, cm);
764 } else {
765 /* Group0 (Secure) */
766 GIC_CLEAR_GROUP(irq + i, cm);
770 } else {
771 goto bad_reg;
773 } else if (offset < 0x180) {
774 /* Interrupt Set Enable. */
775 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
776 if (irq >= s->num_irq)
777 goto bad_reg;
778 if (irq < GIC_NR_SGIS) {
779 value = 0xff;
782 for (i = 0; i < 8; i++) {
783 if (value & (1 << i)) {
784 int mask =
785 (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
786 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
788 if (!GIC_TEST_ENABLED(irq + i, cm)) {
789 DPRINTF("Enabled IRQ %d\n", irq + i);
791 GIC_SET_ENABLED(irq + i, cm);
792 /* If a raised level triggered IRQ enabled then mark
793 is as pending. */
794 if (GIC_TEST_LEVEL(irq + i, mask)
795 && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
796 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
797 GIC_SET_PENDING(irq + i, mask);
801 } else if (offset < 0x200) {
802 /* Interrupt Clear Enable. */
803 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
804 if (irq >= s->num_irq)
805 goto bad_reg;
806 if (irq < GIC_NR_SGIS) {
807 value = 0;
810 for (i = 0; i < 8; i++) {
811 if (value & (1 << i)) {
812 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
814 if (GIC_TEST_ENABLED(irq + i, cm)) {
815 DPRINTF("Disabled IRQ %d\n", irq + i);
817 GIC_CLEAR_ENABLED(irq + i, cm);
820 } else if (offset < 0x280) {
821 /* Interrupt Set Pending. */
822 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
823 if (irq >= s->num_irq)
824 goto bad_reg;
825 if (irq < GIC_NR_SGIS) {
826 value = 0;
829 for (i = 0; i < 8; i++) {
830 if (value & (1 << i)) {
831 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
834 } else if (offset < 0x300) {
835 /* Interrupt Clear Pending. */
836 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
837 if (irq >= s->num_irq)
838 goto bad_reg;
839 if (irq < GIC_NR_SGIS) {
840 value = 0;
843 for (i = 0; i < 8; i++) {
844 /* ??? This currently clears the pending bit for all CPUs, even
845 for per-CPU interrupts. It's unclear whether this is the
846 corect behavior. */
847 if (value & (1 << i)) {
848 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
851 } else if (offset < 0x400) {
852 /* Interrupt Active. */
853 goto bad_reg;
854 } else if (offset < 0x800) {
855 /* Interrupt Priority. */
856 irq = (offset - 0x400) + GIC_BASE_IRQ;
857 if (irq >= s->num_irq)
858 goto bad_reg;
859 gic_set_priority(s, cpu, irq, value, attrs);
860 } else if (offset < 0xc00) {
861 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
862 * annoying exception of the 11MPCore's GIC.
864 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
865 irq = (offset - 0x800) + GIC_BASE_IRQ;
866 if (irq >= s->num_irq) {
867 goto bad_reg;
869 if (irq < 29) {
870 value = 0;
871 } else if (irq < GIC_INTERNAL) {
872 value = ALL_CPU_MASK;
874 s->irq_target[irq] = value & ALL_CPU_MASK;
876 } else if (offset < 0xf00) {
877 /* Interrupt Configuration. */
878 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
879 if (irq >= s->num_irq)
880 goto bad_reg;
881 if (irq < GIC_NR_SGIS)
882 value |= 0xaa;
883 for (i = 0; i < 4; i++) {
884 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
885 if (value & (1 << (i * 2))) {
886 GIC_SET_MODEL(irq + i);
887 } else {
888 GIC_CLEAR_MODEL(irq + i);
891 if (value & (2 << (i * 2))) {
892 GIC_SET_EDGE_TRIGGER(irq + i);
893 } else {
894 GIC_CLEAR_EDGE_TRIGGER(irq + i);
897 } else if (offset < 0xf10) {
898 /* 0xf00 is only handled for 32-bit writes. */
899 goto bad_reg;
900 } else if (offset < 0xf20) {
901 /* GICD_CPENDSGIRn */
902 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
903 goto bad_reg;
905 irq = (offset - 0xf10);
907 s->sgi_pending[irq][cpu] &= ~value;
908 if (s->sgi_pending[irq][cpu] == 0) {
909 GIC_CLEAR_PENDING(irq, 1 << cpu);
911 } else if (offset < 0xf30) {
912 /* GICD_SPENDSGIRn */
913 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
914 goto bad_reg;
916 irq = (offset - 0xf20);
918 GIC_SET_PENDING(irq, 1 << cpu);
919 s->sgi_pending[irq][cpu] |= value;
920 } else {
921 goto bad_reg;
923 gic_update(s);
924 return;
925 bad_reg:
926 qemu_log_mask(LOG_GUEST_ERROR,
927 "gic_dist_writeb: Bad offset %x\n", (int)offset);
930 static void gic_dist_writew(void *opaque, hwaddr offset,
931 uint32_t value, MemTxAttrs attrs)
933 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
934 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
937 static void gic_dist_writel(void *opaque, hwaddr offset,
938 uint32_t value, MemTxAttrs attrs)
940 GICState *s = (GICState *)opaque;
941 if (offset == 0xf00) {
942 int cpu;
943 int irq;
944 int mask;
945 int target_cpu;
947 cpu = gic_get_current_cpu(s);
948 irq = value & 0x3ff;
949 switch ((value >> 24) & 3) {
950 case 0:
951 mask = (value >> 16) & ALL_CPU_MASK;
952 break;
953 case 1:
954 mask = ALL_CPU_MASK ^ (1 << cpu);
955 break;
956 case 2:
957 mask = 1 << cpu;
958 break;
959 default:
960 DPRINTF("Bad Soft Int target filter\n");
961 mask = ALL_CPU_MASK;
962 break;
964 GIC_SET_PENDING(irq, mask);
965 target_cpu = ctz32(mask);
966 while (target_cpu < GIC_NCPU) {
967 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
968 mask &= ~(1 << target_cpu);
969 target_cpu = ctz32(mask);
971 gic_update(s);
972 return;
974 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
975 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
978 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
979 unsigned size, MemTxAttrs attrs)
981 switch (size) {
982 case 1:
983 gic_dist_writeb(opaque, offset, data, attrs);
984 return MEMTX_OK;
985 case 2:
986 gic_dist_writew(opaque, offset, data, attrs);
987 return MEMTX_OK;
988 case 4:
989 gic_dist_writel(opaque, offset, data, attrs);
990 return MEMTX_OK;
991 default:
992 return MEMTX_ERROR;
996 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
998 /* Return the Nonsecure view of GICC_APR<regno>. This is the
999 * second half of GICC_NSAPR.
1001 switch (GIC_MIN_BPR) {
1002 case 0:
1003 if (regno < 2) {
1004 return s->nsapr[regno + 2][cpu];
1006 break;
1007 case 1:
1008 if (regno == 0) {
1009 return s->nsapr[regno + 1][cpu];
1011 break;
1012 case 2:
1013 if (regno == 0) {
1014 return extract32(s->nsapr[0][cpu], 16, 16);
1016 break;
1017 case 3:
1018 if (regno == 0) {
1019 return extract32(s->nsapr[0][cpu], 8, 8);
1021 break;
1022 default:
1023 g_assert_not_reached();
1025 return 0;
1028 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1029 uint32_t value)
1031 /* Write the Nonsecure view of GICC_APR<regno>. */
1032 switch (GIC_MIN_BPR) {
1033 case 0:
1034 if (regno < 2) {
1035 s->nsapr[regno + 2][cpu] = value;
1037 break;
1038 case 1:
1039 if (regno == 0) {
1040 s->nsapr[regno + 1][cpu] = value;
1042 break;
1043 case 2:
1044 if (regno == 0) {
1045 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1047 break;
1048 case 3:
1049 if (regno == 0) {
1050 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1052 break;
1053 default:
1054 g_assert_not_reached();
1058 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1059 uint64_t *data, MemTxAttrs attrs)
1061 switch (offset) {
1062 case 0x00: /* Control */
1063 *data = gic_get_cpu_control(s, cpu, attrs);
1064 break;
1065 case 0x04: /* Priority mask */
1066 *data = gic_get_priority_mask(s, cpu, attrs);
1067 break;
1068 case 0x08: /* Binary Point */
1069 if (s->security_extn && !attrs.secure) {
1070 /* BPR is banked. Non-secure copy stored in ABPR. */
1071 *data = s->abpr[cpu];
1072 } else {
1073 *data = s->bpr[cpu];
1075 break;
1076 case 0x0c: /* Acknowledge */
1077 *data = gic_acknowledge_irq(s, cpu, attrs);
1078 break;
1079 case 0x14: /* Running Priority */
1080 *data = gic_get_running_priority(s, cpu, attrs);
1081 break;
1082 case 0x18: /* Highest Pending Interrupt */
1083 *data = gic_get_current_pending_irq(s, cpu, attrs);
1084 break;
1085 case 0x1c: /* Aliased Binary Point */
1086 /* GIC v2, no security: ABPR
1087 * GIC v1, no security: not implemented (RAZ/WI)
1088 * With security extensions, secure access: ABPR (alias of NS BPR)
1089 * With security extensions, nonsecure access: RAZ/WI
1091 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1092 *data = 0;
1093 } else {
1094 *data = s->abpr[cpu];
1096 break;
1097 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1099 int regno = (offset - 0xd0) / 4;
1101 if (regno >= GIC_NR_APRS || s->revision != 2) {
1102 *data = 0;
1103 } else if (s->security_extn && !attrs.secure) {
1104 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1105 *data = gic_apr_ns_view(s, regno, cpu);
1106 } else {
1107 *data = s->apr[regno][cpu];
1109 break;
1111 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1113 int regno = (offset - 0xe0) / 4;
1115 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1116 (s->security_extn && !attrs.secure)) {
1117 *data = 0;
1118 } else {
1119 *data = s->nsapr[regno][cpu];
1121 break;
1123 default:
1124 qemu_log_mask(LOG_GUEST_ERROR,
1125 "gic_cpu_read: Bad offset %x\n", (int)offset);
1126 return MEMTX_ERROR;
1128 return MEMTX_OK;
1131 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1132 uint32_t value, MemTxAttrs attrs)
1134 switch (offset) {
1135 case 0x00: /* Control */
1136 gic_set_cpu_control(s, cpu, value, attrs);
1137 break;
1138 case 0x04: /* Priority mask */
1139 gic_set_priority_mask(s, cpu, value, attrs);
1140 break;
1141 case 0x08: /* Binary Point */
1142 if (s->security_extn && !attrs.secure) {
1143 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1144 } else {
1145 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1147 break;
1148 case 0x10: /* End Of Interrupt */
1149 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1150 return MEMTX_OK;
1151 case 0x1c: /* Aliased Binary Point */
1152 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1153 /* unimplemented, or NS access: RAZ/WI */
1154 return MEMTX_OK;
1155 } else {
1156 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1158 break;
1159 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1161 int regno = (offset - 0xd0) / 4;
1163 if (regno >= GIC_NR_APRS || s->revision != 2) {
1164 return MEMTX_OK;
1166 if (s->security_extn && !attrs.secure) {
1167 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1168 gic_apr_write_ns_view(s, regno, cpu, value);
1169 } else {
1170 s->apr[regno][cpu] = value;
1172 break;
1174 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1176 int regno = (offset - 0xe0) / 4;
1178 if (regno >= GIC_NR_APRS || s->revision != 2) {
1179 return MEMTX_OK;
1181 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1182 return MEMTX_OK;
1184 s->nsapr[regno][cpu] = value;
1185 break;
1187 default:
1188 qemu_log_mask(LOG_GUEST_ERROR,
1189 "gic_cpu_write: Bad offset %x\n", (int)offset);
1190 return MEMTX_ERROR;
1192 gic_update(s);
1193 return MEMTX_OK;
1196 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1197 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1198 unsigned size, MemTxAttrs attrs)
1200 GICState *s = (GICState *)opaque;
1201 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1204 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1205 uint64_t value, unsigned size,
1206 MemTxAttrs attrs)
1208 GICState *s = (GICState *)opaque;
1209 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1212 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1213 * These just decode the opaque pointer into GICState* + cpu id.
1215 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1216 unsigned size, MemTxAttrs attrs)
1218 GICState **backref = (GICState **)opaque;
1219 GICState *s = *backref;
1220 int id = (backref - s->backref);
1221 return gic_cpu_read(s, id, addr, data, attrs);
1224 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1225 uint64_t value, unsigned size,
1226 MemTxAttrs attrs)
1228 GICState **backref = (GICState **)opaque;
1229 GICState *s = *backref;
1230 int id = (backref - s->backref);
1231 return gic_cpu_write(s, id, addr, value, attrs);
1234 static const MemoryRegionOps gic_ops[2] = {
1236 .read_with_attrs = gic_dist_read,
1237 .write_with_attrs = gic_dist_write,
1238 .endianness = DEVICE_NATIVE_ENDIAN,
1241 .read_with_attrs = gic_thiscpu_read,
1242 .write_with_attrs = gic_thiscpu_write,
1243 .endianness = DEVICE_NATIVE_ENDIAN,
1247 static const MemoryRegionOps gic_cpu_ops = {
1248 .read_with_attrs = gic_do_cpu_read,
1249 .write_with_attrs = gic_do_cpu_write,
1250 .endianness = DEVICE_NATIVE_ENDIAN,
1253 /* This function is used by nvic model */
1254 void gic_init_irqs_and_distributor(GICState *s)
1256 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1259 static void arm_gic_realize(DeviceState *dev, Error **errp)
1261 /* Device instance realize function for the GIC sysbus device */
1262 int i;
1263 GICState *s = ARM_GIC(dev);
1264 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1265 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1266 Error *local_err = NULL;
1268 agc->parent_realize(dev, &local_err);
1269 if (local_err) {
1270 error_propagate(errp, local_err);
1271 return;
1274 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1275 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1277 /* Extra core-specific regions for the CPU interfaces. This is
1278 * necessary for "franken-GIC" implementations, for example on
1279 * Exynos 4.
1280 * NB that the memory region size of 0x100 applies for the 11MPCore
1281 * and also cores following the GIC v1 spec (ie A9).
1282 * GIC v2 defines a larger memory region (0x1000) so this will need
1283 * to be extended when we implement A15.
1285 for (i = 0; i < s->num_cpu; i++) {
1286 s->backref[i] = s;
1287 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1288 &s->backref[i], "gic_cpu", 0x100);
1289 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1293 static void arm_gic_class_init(ObjectClass *klass, void *data)
1295 DeviceClass *dc = DEVICE_CLASS(klass);
1296 ARMGICClass *agc = ARM_GIC_CLASS(klass);
1298 agc->parent_realize = dc->realize;
1299 dc->realize = arm_gic_realize;
1302 static const TypeInfo arm_gic_info = {
1303 .name = TYPE_ARM_GIC,
1304 .parent = TYPE_ARM_GIC_COMMON,
1305 .instance_size = sizeof(GICState),
1306 .class_init = arm_gic_class_init,
1307 .class_size = sizeof(ARMGICClass),
1310 static void arm_gic_register_types(void)
1312 type_register_static(&arm_gic_info);
1315 type_init(arm_gic_register_types)