Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / hw / intc / arm_gic.c
blob074cf50af25da0321eecf1e42c0d4d9fc86e2a04
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/irq.h"
23 #include "hw/sysbus.h"
24 #include "gic_internal.h"
25 #include "qapi/error.h"
26 #include "hw/core/cpu.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "trace.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/qtest.h"
33 /* #define DEBUG_GIC */
35 #ifdef DEBUG_GIC
36 #define DEBUG_GIC_GATE 1
37 #else
38 #define DEBUG_GIC_GATE 0
39 #endif
41 #define DPRINTF(fmt, ...) do { \
42 if (DEBUG_GIC_GATE) { \
43 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
44 } \
45 } while (0)
47 static const uint8_t gic_id_11mpcore[] = {
48 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
51 static const uint8_t gic_id_gicv1[] = {
52 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
55 static const uint8_t gic_id_gicv2[] = {
56 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
59 static inline int gic_get_current_cpu(GICState *s)
61 if (!qtest_enabled() && s->num_cpu > 1) {
62 return current_cpu->cpu_index;
64 return 0;
67 static inline int gic_get_current_vcpu(GICState *s)
69 return gic_get_current_cpu(s) + GIC_NCPU;
72 /* Return true if this GIC config has interrupt groups, which is
73 * true if we're a GICv2, or a GICv1 with the security extensions.
75 static inline bool gic_has_groups(GICState *s)
77 return s->revision == 2 || s->security_extn;
80 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
82 return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
85 static inline void gic_get_best_irq(GICState *s, int cpu,
86 int *best_irq, int *best_prio, int *group)
88 int irq;
89 int cm = 1 << cpu;
91 *best_irq = 1023;
92 *best_prio = 0x100;
94 for (irq = 0; irq < s->num_irq; irq++) {
95 if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
96 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
97 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
98 if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
99 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
100 *best_irq = irq;
105 if (*best_irq < 1023) {
106 *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
110 static inline void gic_get_best_virq(GICState *s, int cpu,
111 int *best_irq, int *best_prio, int *group)
113 int lr_idx = 0;
115 *best_irq = 1023;
116 *best_prio = 0x100;
118 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
119 uint32_t lr_entry = s->h_lr[lr_idx][cpu];
120 int state = GICH_LR_STATE(lr_entry);
122 if (state == GICH_LR_STATE_PENDING) {
123 int prio = GICH_LR_PRIORITY(lr_entry);
125 if (prio < *best_prio) {
126 *best_prio = prio;
127 *best_irq = GICH_LR_VIRT_ID(lr_entry);
128 *group = GICH_LR_GROUP(lr_entry);
134 /* Return true if IRQ signaling is enabled for the given cpu and at least one
135 * of the given groups:
136 * - in the non-virt case, the distributor must be enabled for one of the
137 * given groups
138 * - in the virt case, the virtual interface must be enabled.
139 * - in all cases, the (v)CPU interface must be enabled for one of the given
140 * groups.
142 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
143 int group_mask)
145 int cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
147 if (!virt && !(s->ctlr & group_mask)) {
148 return false;
151 if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
152 return false;
155 if (!(s->cpu_ctlr[cpu_iface] & group_mask)) {
156 return false;
159 return true;
162 /* TODO: Many places that call this routine could be optimized. */
163 /* Update interrupt status after enabled or pending bits have been changed. */
164 static inline void gic_update_internal(GICState *s, bool virt)
166 int best_irq;
167 int best_prio;
168 int irq_level, fiq_level;
169 int cpu, cpu_iface;
170 int group = 0;
171 qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
172 qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
174 for (cpu = 0; cpu < s->num_cpu; cpu++) {
175 cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
177 s->current_pending[cpu_iface] = 1023;
178 if (!gic_irq_signaling_enabled(s, cpu, virt,
179 GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
180 qemu_irq_lower(irq_lines[cpu]);
181 qemu_irq_lower(fiq_lines[cpu]);
182 continue;
185 if (virt) {
186 gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
187 } else {
188 gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
191 if (best_irq != 1023) {
192 trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
193 best_irq, best_prio,
194 s->priority_mask[cpu_iface],
195 s->running_priority[cpu_iface]);
198 irq_level = fiq_level = 0;
200 if (best_prio < s->priority_mask[cpu_iface]) {
201 s->current_pending[cpu_iface] = best_irq;
202 if (best_prio < s->running_priority[cpu_iface]) {
203 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
204 if (group == 0 &&
205 s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
206 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
207 best_irq, cpu_iface);
208 fiq_level = 1;
209 trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
210 fiq_level);
211 } else {
212 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
213 best_irq, cpu_iface);
214 irq_level = 1;
215 trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
216 irq_level);
222 qemu_set_irq(irq_lines[cpu], irq_level);
223 qemu_set_irq(fiq_lines[cpu], fiq_level);
227 static void gic_update(GICState *s)
229 gic_update_internal(s, false);
232 /* Return true if this LR is empty, i.e. the corresponding bit
233 * in ELRSR is set.
235 static inline bool gic_lr_entry_is_free(uint32_t entry)
237 return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
238 && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
241 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
242 * corresponding bit in EISR is set.
244 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
246 return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
247 && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
250 static inline void gic_extract_lr_info(GICState *s, int cpu,
251 int *num_eoi, int *num_valid, int *num_pending)
253 int lr_idx;
255 *num_eoi = 0;
256 *num_valid = 0;
257 *num_pending = 0;
259 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
260 uint32_t *entry = &s->h_lr[lr_idx][cpu];
262 if (gic_lr_entry_is_eoi(*entry)) {
263 (*num_eoi)++;
266 if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
267 (*num_valid)++;
270 if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
271 (*num_pending)++;
276 static void gic_compute_misr(GICState *s, int cpu)
278 uint32_t value = 0;
279 int vcpu = cpu + GIC_NCPU;
281 int num_eoi, num_valid, num_pending;
283 gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
285 /* EOI */
286 if (num_eoi) {
287 value |= R_GICH_MISR_EOI_MASK;
290 /* U: true if only 0 or 1 LR entry is valid */
291 if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
292 value |= R_GICH_MISR_U_MASK;
295 /* LRENP: EOICount is not 0 */
296 if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
297 ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
298 value |= R_GICH_MISR_LRENP_MASK;
301 /* NP: no pending interrupts */
302 if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
303 value |= R_GICH_MISR_NP_MASK;
306 /* VGrp0E: group0 virq signaling enabled */
307 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
308 (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
309 value |= R_GICH_MISR_VGrp0E_MASK;
312 /* VGrp0D: group0 virq signaling disabled */
313 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
314 !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
315 value |= R_GICH_MISR_VGrp0D_MASK;
318 /* VGrp1E: group1 virq signaling enabled */
319 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
320 (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
321 value |= R_GICH_MISR_VGrp1E_MASK;
324 /* VGrp1D: group1 virq signaling disabled */
325 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
326 !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
327 value |= R_GICH_MISR_VGrp1D_MASK;
330 s->h_misr[cpu] = value;
333 static void gic_update_maintenance(GICState *s)
335 int cpu = 0;
336 int maint_level;
338 for (cpu = 0; cpu < s->num_cpu; cpu++) {
339 gic_compute_misr(s, cpu);
340 maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
342 trace_gic_update_maintenance_irq(cpu, maint_level);
343 qemu_set_irq(s->maintenance_irq[cpu], maint_level);
347 static void gic_update_virt(GICState *s)
349 gic_update_internal(s, true);
350 gic_update_maintenance(s);
353 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
354 int cm, int target)
356 if (level) {
357 GIC_DIST_SET_LEVEL(irq, cm);
358 if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
359 DPRINTF("Set %d pending mask %x\n", irq, target);
360 GIC_DIST_SET_PENDING(irq, target);
362 } else {
363 GIC_DIST_CLEAR_LEVEL(irq, cm);
367 static void gic_set_irq_generic(GICState *s, int irq, int level,
368 int cm, int target)
370 if (level) {
371 GIC_DIST_SET_LEVEL(irq, cm);
372 DPRINTF("Set %d pending mask %x\n", irq, target);
373 if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
374 GIC_DIST_SET_PENDING(irq, target);
376 } else {
377 GIC_DIST_CLEAR_LEVEL(irq, cm);
381 /* Process a change in an external IRQ input. */
382 static void gic_set_irq(void *opaque, int irq, int level)
384 /* Meaning of the 'irq' parameter:
385 * [0..N-1] : external interrupts
386 * [N..N+31] : PPI (internal) interrupts for CPU 0
387 * [N+32..N+63] : PPI (internal interrupts for CPU 1
388 * ...
390 GICState *s = (GICState *)opaque;
391 int cm, target;
392 if (irq < (s->num_irq - GIC_INTERNAL)) {
393 /* The first external input line is internal interrupt 32. */
394 cm = ALL_CPU_MASK;
395 irq += GIC_INTERNAL;
396 target = GIC_DIST_TARGET(irq);
397 } else {
398 int cpu;
399 irq -= (s->num_irq - GIC_INTERNAL);
400 cpu = irq / GIC_INTERNAL;
401 irq %= GIC_INTERNAL;
402 cm = 1 << cpu;
403 target = cm;
406 assert(irq >= GIC_NR_SGIS);
408 if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
409 return;
412 if (s->revision == REV_11MPCORE) {
413 gic_set_irq_11mpcore(s, irq, level, cm, target);
414 } else {
415 gic_set_irq_generic(s, irq, level, cm, target);
417 trace_gic_set_irq(irq, level, cm, target);
419 gic_update(s);
422 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
423 MemTxAttrs attrs)
425 uint16_t pending_irq = s->current_pending[cpu];
427 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
428 int group = gic_test_group(s, pending_irq, cpu);
430 /* On a GIC without the security extensions, reading this register
431 * behaves in the same way as a secure access to a GIC with them.
433 bool secure = !gic_cpu_ns_access(s, cpu, attrs);
435 if (group == 0 && !secure) {
436 /* Group0 interrupts hidden from Non-secure access */
437 return 1023;
439 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
440 /* Group1 interrupts only seen by Secure access if
441 * AckCtl bit set.
443 return 1022;
446 return pending_irq;
449 static int gic_get_group_priority(GICState *s, int cpu, int irq)
451 /* Return the group priority of the specified interrupt
452 * (which is the top bits of its priority, with the number
453 * of bits masked determined by the applicable binary point register).
455 int bpr;
456 uint32_t mask;
458 if (gic_has_groups(s) &&
459 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
460 gic_test_group(s, irq, cpu)) {
461 bpr = s->abpr[cpu] - 1;
462 assert(bpr >= 0);
463 } else {
464 bpr = s->bpr[cpu];
467 /* a BPR of 0 means the group priority bits are [7:1];
468 * a BPR of 1 means they are [7:2], and so on down to
469 * a BPR of 7 meaning no group priority bits at all.
471 mask = ~0U << ((bpr & 7) + 1);
473 return gic_get_priority(s, irq, cpu) & mask;
476 static void gic_activate_irq(GICState *s, int cpu, int irq)
478 /* Set the appropriate Active Priority Register bit for this IRQ,
479 * and update the running priority.
481 int prio = gic_get_group_priority(s, cpu, irq);
482 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
483 int preemption_level = prio >> (min_bpr + 1);
484 int regno = preemption_level / 32;
485 int bitno = preemption_level % 32;
486 uint32_t *papr = NULL;
488 if (gic_is_vcpu(cpu)) {
489 assert(regno == 0);
490 papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
491 } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
492 papr = &s->nsapr[regno][cpu];
493 } else {
494 papr = &s->apr[regno][cpu];
497 *papr |= (1 << bitno);
499 s->running_priority[cpu] = prio;
500 gic_set_active(s, irq, cpu);
503 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
505 /* Recalculate the current running priority for this CPU based
506 * on the set bits in the Active Priority Registers.
508 int i;
510 if (gic_is_vcpu(cpu)) {
511 uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
512 if (apr) {
513 return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
514 } else {
515 return 0x100;
519 for (i = 0; i < GIC_NR_APRS; i++) {
520 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
521 if (!apr) {
522 continue;
524 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
526 return 0x100;
529 static void gic_drop_prio(GICState *s, int cpu, int group)
531 /* Drop the priority of the currently active interrupt in the
532 * specified group.
534 * Note that we can guarantee (because of the requirement to nest
535 * GICC_IAR reads [which activate an interrupt and raise priority]
536 * with GICC_EOIR writes [which drop the priority for the interrupt])
537 * that the interrupt we're being called for is the highest priority
538 * active interrupt, meaning that it has the lowest set bit in the
539 * APR registers.
541 * If the guest does not honour the ordering constraints then the
542 * behaviour of the GIC is UNPREDICTABLE, which for us means that
543 * the values of the APR registers might become incorrect and the
544 * running priority will be wrong, so interrupts that should preempt
545 * might not do so, and interrupts that should not preempt might do so.
547 if (gic_is_vcpu(cpu)) {
548 int rcpu = gic_get_vcpu_real_id(cpu);
550 if (s->h_apr[rcpu]) {
551 /* Clear lowest set bit */
552 s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
554 } else {
555 int i;
557 for (i = 0; i < GIC_NR_APRS; i++) {
558 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
559 if (!*papr) {
560 continue;
562 /* Clear lowest set bit */
563 *papr &= *papr - 1;
564 break;
568 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
571 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
573 int src;
574 uint32_t ret;
576 if (!gic_is_vcpu(cpu)) {
577 /* Lookup the source CPU for the SGI and clear this in the
578 * sgi_pending map. Return the src and clear the overall pending
579 * state on this CPU if the SGI is not pending from any CPUs.
581 assert(s->sgi_pending[irq][cpu] != 0);
582 src = ctz32(s->sgi_pending[irq][cpu]);
583 s->sgi_pending[irq][cpu] &= ~(1 << src);
584 if (s->sgi_pending[irq][cpu] == 0) {
585 gic_clear_pending(s, irq, cpu);
587 ret = irq | ((src & 0x7) << 10);
588 } else {
589 uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
590 src = GICH_LR_CPUID(*lr_entry);
592 gic_clear_pending(s, irq, cpu);
593 ret = irq | (src << 10);
596 return ret;
599 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
601 int ret, irq;
603 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
604 * for the case where this GIC supports grouping and the pending interrupt
605 * is in the wrong group.
607 irq = gic_get_current_pending_irq(s, cpu, attrs);
608 trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
609 gic_get_vcpu_real_id(cpu), irq);
611 if (irq >= GIC_MAXIRQ) {
612 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
613 return irq;
616 if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
617 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
618 return 1023;
621 gic_activate_irq(s, cpu, irq);
623 if (s->revision == REV_11MPCORE) {
624 /* Clear pending flags for both level and edge triggered interrupts.
625 * Level triggered IRQs will be reasserted once they become inactive.
627 gic_clear_pending(s, irq, cpu);
628 ret = irq;
629 } else {
630 if (irq < GIC_NR_SGIS) {
631 ret = gic_clear_pending_sgi(s, irq, cpu);
632 } else {
633 gic_clear_pending(s, irq, cpu);
634 ret = irq;
638 if (gic_is_vcpu(cpu)) {
639 gic_update_virt(s);
640 } else {
641 gic_update(s);
643 DPRINTF("ACK %d\n", irq);
644 return ret;
647 static uint32_t gic_fullprio_mask(GICState *s, int cpu)
650 * Return a mask word which clears the unimplemented priority
651 * bits from a priority value for an interrupt. (Not to be
652 * confused with the group priority, whose mask depends on BPR.)
654 int priBits;
656 if (gic_is_vcpu(cpu)) {
657 priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS;
658 } else {
659 priBits = s->n_prio_bits;
661 return ~0U << (8 - priBits);
664 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
665 MemTxAttrs attrs)
667 if (s->security_extn && !attrs.secure) {
668 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
669 return; /* Ignore Non-secure access of Group0 IRQ */
671 val = 0x80 | (val >> 1); /* Non-secure view */
674 val &= gic_fullprio_mask(s, cpu);
676 if (irq < GIC_INTERNAL) {
677 s->priority1[irq][cpu] = val;
678 } else {
679 s->priority2[(irq) - GIC_INTERNAL] = val;
683 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
684 MemTxAttrs attrs)
686 uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
688 if (s->security_extn && !attrs.secure) {
689 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
690 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
692 prio = (prio << 1) & 0xff; /* Non-secure view */
694 return prio & gic_fullprio_mask(s, cpu);
697 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
698 MemTxAttrs attrs)
700 if (gic_cpu_ns_access(s, cpu, attrs)) {
701 if (s->priority_mask[cpu] & 0x80) {
702 /* Priority Mask in upper half */
703 pmask = 0x80 | (pmask >> 1);
704 } else {
705 /* Non-secure write ignored if priority mask is in lower half */
706 return;
709 s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu);
712 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
714 uint32_t pmask = s->priority_mask[cpu];
716 if (gic_cpu_ns_access(s, cpu, attrs)) {
717 if (pmask & 0x80) {
718 /* Priority Mask in upper half, return Non-secure view */
719 pmask = (pmask << 1) & 0xff;
720 } else {
721 /* Priority Mask in lower half, RAZ */
722 pmask = 0;
725 return pmask;
728 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
730 uint32_t ret = s->cpu_ctlr[cpu];
732 if (gic_cpu_ns_access(s, cpu, attrs)) {
733 /* Construct the NS banked view of GICC_CTLR from the correct
734 * bits of the S banked view. We don't need to move the bypass
735 * control bits because we don't implement that (IMPDEF) part
736 * of the GIC architecture.
738 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
740 return ret;
743 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
744 MemTxAttrs attrs)
746 uint32_t mask;
748 if (gic_cpu_ns_access(s, cpu, attrs)) {
749 /* The NS view can only write certain bits in the register;
750 * the rest are unchanged
752 mask = GICC_CTLR_EN_GRP1;
753 if (s->revision == 2) {
754 mask |= GICC_CTLR_EOIMODE_NS;
756 s->cpu_ctlr[cpu] &= ~mask;
757 s->cpu_ctlr[cpu] |= (value << 1) & mask;
758 } else {
759 if (s->revision == 2) {
760 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
761 } else {
762 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
764 s->cpu_ctlr[cpu] = value & mask;
766 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
767 "Group1 Interrupts %sabled\n", cpu,
768 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
769 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
772 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
774 if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
775 /* Idle priority */
776 return 0xff;
779 if (gic_cpu_ns_access(s, cpu, attrs)) {
780 if (s->running_priority[cpu] & 0x80) {
781 /* Running priority in upper half of range: return the Non-secure
782 * view of the priority.
784 return s->running_priority[cpu] << 1;
785 } else {
786 /* Running priority in lower half of range: RAZ */
787 return 0;
789 } else {
790 return s->running_priority[cpu];
794 /* Return true if we should split priority drop and interrupt deactivation,
795 * ie whether the relevant EOIMode bit is set.
797 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
799 if (s->revision != 2) {
800 /* Before GICv2 prio-drop and deactivate are not separable */
801 return false;
803 if (gic_cpu_ns_access(s, cpu, attrs)) {
804 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
806 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
809 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
811 int group;
813 if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
815 * This handles two cases:
816 * 1. If software writes the ID of a spurious interrupt [ie 1023]
817 * to the GICC_DIR, the GIC ignores that write.
818 * 2. If software writes the number of a non-existent interrupt
819 * this must be a subcase of "value written is not an active interrupt"
820 * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
821 * all IRQs potentially exist, so this limit does not apply.
823 return;
826 if (!gic_eoi_split(s, cpu, attrs)) {
827 /* This is UNPREDICTABLE; we choose to ignore it */
828 qemu_log_mask(LOG_GUEST_ERROR,
829 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
830 return;
833 if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
834 /* This vIRQ does not have an LR entry which is either active or
835 * pending and active. Increment EOICount and ignore the write.
837 int rcpu = gic_get_vcpu_real_id(cpu);
838 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
840 /* Update the virtual interface in case a maintenance interrupt should
841 * be raised.
843 gic_update_virt(s);
844 return;
847 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
849 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
850 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
851 return;
854 gic_clear_active(s, irq, cpu);
857 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
859 int cm = 1 << cpu;
860 int group;
862 DPRINTF("EOI %d\n", irq);
863 if (gic_is_vcpu(cpu)) {
864 /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
865 * running prio is < 0x100.
867 bool prio_drop = s->running_priority[cpu] < 0x100;
869 if (irq >= GIC_MAXIRQ) {
870 /* Ignore spurious interrupt */
871 return;
874 gic_drop_prio(s, cpu, 0);
876 if (!gic_eoi_split(s, cpu, attrs)) {
877 bool valid = gic_virq_is_valid(s, irq, cpu);
878 if (prio_drop && !valid) {
879 /* We are in a situation where:
880 * - V_CTRL.EOIMode is false (no EOI split),
881 * - The call to gic_drop_prio() cleared a bit in GICH_APR,
882 * - This vIRQ does not have an LR entry which is either
883 * active or pending and active.
884 * In that case, we must increment EOICount.
886 int rcpu = gic_get_vcpu_real_id(cpu);
887 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
888 } else if (valid) {
889 gic_clear_active(s, irq, cpu);
893 gic_update_virt(s);
894 return;
897 if (irq >= s->num_irq) {
898 /* This handles two cases:
899 * 1. If software writes the ID of a spurious interrupt [ie 1023]
900 * to the GICC_EOIR, the GIC ignores that write.
901 * 2. If software writes the number of a non-existent interrupt
902 * this must be a subcase of "value written does not match the last
903 * valid interrupt value read from the Interrupt Acknowledge
904 * register" and so this is UNPREDICTABLE. We choose to ignore it.
906 return;
908 if (s->running_priority[cpu] == 0x100) {
909 return; /* No active IRQ. */
912 if (s->revision == REV_11MPCORE) {
913 /* Mark level triggered interrupts as pending if they are still
914 raised. */
915 if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
916 && GIC_DIST_TEST_LEVEL(irq, cm)
917 && (GIC_DIST_TARGET(irq) & cm) != 0) {
918 DPRINTF("Set %d pending mask %x\n", irq, cm);
919 GIC_DIST_SET_PENDING(irq, cm);
923 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
925 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
926 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
927 return;
930 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
931 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
932 * i.e. go ahead and complete the irq anyway.
935 gic_drop_prio(s, cpu, group);
937 /* In GICv2 the guest can choose to split priority-drop and deactivate */
938 if (!gic_eoi_split(s, cpu, attrs)) {
939 gic_clear_active(s, irq, cpu);
941 gic_update(s);
944 static uint8_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
946 GICState *s = (GICState *)opaque;
947 uint32_t res;
948 int irq;
949 int i;
950 int cpu;
951 int cm;
952 int mask;
954 cpu = gic_get_current_cpu(s);
955 cm = 1 << cpu;
956 if (offset < 0x100) {
957 if (offset == 0) { /* GICD_CTLR */
958 /* We rely here on the only non-zero bits being in byte 0 */
959 if (s->security_extn && !attrs.secure) {
960 /* The NS bank of this register is just an alias of the
961 * EnableGrp1 bit in the S bank version.
963 return extract32(s->ctlr, 1, 1);
964 } else {
965 return s->ctlr;
968 if (offset == 4) {
969 /* GICD_TYPER byte 0 */
970 return ((s->num_irq / 32) - 1) | ((s->num_cpu - 1) << 5);
972 if (offset == 5) {
973 /* GICD_TYPER byte 1 */
974 return (s->security_extn << 2);
976 if (offset == 8) {
977 /* GICD_IIDR byte 0 */
978 return 0x3b; /* Arm JEP106 identity */
980 if (offset == 9) {
981 /* GICD_IIDR byte 1 */
982 return 0x04; /* Arm JEP106 identity */
984 if (offset < 0x0c) {
985 /* All other bytes in this range are RAZ */
986 return 0;
988 if (offset >= 0x80) {
989 /* Interrupt Group Registers: these RAZ/WI if this is an NS
990 * access to a GIC with the security extensions, or if the GIC
991 * doesn't have groups at all.
993 res = 0;
994 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
995 /* Every byte offset holds 8 group status bits */
996 irq = (offset - 0x080) * 8;
997 if (irq >= s->num_irq) {
998 goto bad_reg;
1000 for (i = 0; i < 8; i++) {
1001 if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
1002 res |= (1 << i);
1006 return res;
1008 goto bad_reg;
1009 } else if (offset < 0x200) {
1010 /* Interrupt Set/Clear Enable. */
1011 if (offset < 0x180)
1012 irq = (offset - 0x100) * 8;
1013 else
1014 irq = (offset - 0x180) * 8;
1015 if (irq >= s->num_irq)
1016 goto bad_reg;
1017 res = 0;
1018 for (i = 0; i < 8; i++) {
1019 if (s->security_extn && !attrs.secure &&
1020 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1021 continue; /* Ignore Non-secure access of Group0 IRQ */
1024 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1025 res |= (1 << i);
1028 } else if (offset < 0x300) {
1029 /* Interrupt Set/Clear Pending. */
1030 if (offset < 0x280)
1031 irq = (offset - 0x200) * 8;
1032 else
1033 irq = (offset - 0x280) * 8;
1034 if (irq >= s->num_irq)
1035 goto bad_reg;
1036 res = 0;
1037 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
1038 for (i = 0; i < 8; i++) {
1039 if (s->security_extn && !attrs.secure &&
1040 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1041 continue; /* Ignore Non-secure access of Group0 IRQ */
1044 if (gic_test_pending(s, irq + i, mask)) {
1045 res |= (1 << i);
1048 } else if (offset < 0x400) {
1049 /* Interrupt Set/Clear Active. */
1050 if (offset < 0x380) {
1051 irq = (offset - 0x300) * 8;
1052 } else if (s->revision == 2) {
1053 irq = (offset - 0x380) * 8;
1054 } else {
1055 goto bad_reg;
1058 if (irq >= s->num_irq)
1059 goto bad_reg;
1060 res = 0;
1061 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
1062 for (i = 0; i < 8; i++) {
1063 if (s->security_extn && !attrs.secure &&
1064 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1065 continue; /* Ignore Non-secure access of Group0 IRQ */
1068 if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1069 res |= (1 << i);
1072 } else if (offset < 0x800) {
1073 /* Interrupt Priority. */
1074 irq = (offset - 0x400);
1075 if (irq >= s->num_irq)
1076 goto bad_reg;
1077 res = gic_dist_get_priority(s, cpu, irq, attrs);
1078 } else if (offset < 0xc00) {
1079 /* Interrupt CPU Target. */
1080 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1081 /* For uniprocessor GICs these RAZ/WI */
1082 res = 0;
1083 } else {
1084 irq = (offset - 0x800);
1085 if (irq >= s->num_irq) {
1086 goto bad_reg;
1088 if (irq < 29 && s->revision == REV_11MPCORE) {
1089 res = 0;
1090 } else if (irq < GIC_INTERNAL) {
1091 res = cm;
1092 } else {
1093 res = GIC_DIST_TARGET(irq);
1096 } else if (offset < 0xf00) {
1097 /* Interrupt Configuration. */
1098 irq = (offset - 0xc00) * 4;
1099 if (irq >= s->num_irq)
1100 goto bad_reg;
1101 res = 0;
1102 for (i = 0; i < 4; i++) {
1103 if (s->security_extn && !attrs.secure &&
1104 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1105 continue; /* Ignore Non-secure access of Group0 IRQ */
1108 if (GIC_DIST_TEST_MODEL(irq + i)) {
1109 res |= (1 << (i * 2));
1111 if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1112 res |= (2 << (i * 2));
1115 } else if (offset < 0xf10) {
1116 goto bad_reg;
1117 } else if (offset < 0xf30) {
1118 if (s->revision == REV_11MPCORE) {
1119 goto bad_reg;
1122 if (offset < 0xf20) {
1123 /* GICD_CPENDSGIRn */
1124 irq = (offset - 0xf10);
1125 } else {
1126 irq = (offset - 0xf20);
1127 /* GICD_SPENDSGIRn */
1130 if (s->security_extn && !attrs.secure &&
1131 !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1132 res = 0; /* Ignore Non-secure access of Group0 IRQ */
1133 } else {
1134 res = s->sgi_pending[irq][cpu];
1136 } else if (offset < 0xfd0) {
1137 goto bad_reg;
1138 } else if (offset < 0x1000) {
1139 if (offset & 3) {
1140 res = 0;
1141 } else {
1142 switch (s->revision) {
1143 case REV_11MPCORE:
1144 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1145 break;
1146 case 1:
1147 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1148 break;
1149 case 2:
1150 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1151 break;
1152 default:
1153 res = 0;
1156 } else {
1157 g_assert_not_reached();
1159 return res;
1160 bad_reg:
1161 qemu_log_mask(LOG_GUEST_ERROR,
1162 "gic_dist_readb: Bad offset %x\n", (int)offset);
1163 return 0;
1166 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1167 unsigned size, MemTxAttrs attrs)
1169 switch (size) {
1170 case 1:
1171 *data = gic_dist_readb(opaque, offset, attrs);
1172 break;
1173 case 2:
1174 *data = gic_dist_readb(opaque, offset, attrs);
1175 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1176 break;
1177 case 4:
1178 *data = gic_dist_readb(opaque, offset, attrs);
1179 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1180 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1181 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1182 break;
1183 default:
1184 return MEMTX_ERROR;
1187 trace_gic_dist_read(offset, size, *data);
1188 return MEMTX_OK;
1191 static void gic_dist_writeb(void *opaque, hwaddr offset,
1192 uint32_t value, MemTxAttrs attrs)
1194 GICState *s = (GICState *)opaque;
1195 int irq;
1196 int i;
1197 int cpu;
1199 cpu = gic_get_current_cpu(s);
1200 if (offset < 0x100) {
1201 if (offset == 0) {
1202 if (s->security_extn && !attrs.secure) {
1203 /* NS version is just an alias of the S version's bit 1 */
1204 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1205 } else if (gic_has_groups(s)) {
1206 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1207 } else {
1208 s->ctlr = value & GICD_CTLR_EN_GRP0;
1210 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1211 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1212 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1213 } else if (offset < 4) {
1214 /* ignored. */
1215 } else if (offset >= 0x80) {
1216 /* Interrupt Group Registers: RAZ/WI for NS access to secure
1217 * GIC, or for GICs without groups.
1219 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1220 /* Every byte offset holds 8 group status bits */
1221 irq = (offset - 0x80) * 8;
1222 if (irq >= s->num_irq) {
1223 goto bad_reg;
1225 for (i = 0; i < 8; i++) {
1226 /* Group bits are banked for private interrupts */
1227 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1228 if (value & (1 << i)) {
1229 /* Group1 (Non-secure) */
1230 GIC_DIST_SET_GROUP(irq + i, cm);
1231 } else {
1232 /* Group0 (Secure) */
1233 GIC_DIST_CLEAR_GROUP(irq + i, cm);
1237 } else {
1238 goto bad_reg;
1240 } else if (offset < 0x180) {
1241 /* Interrupt Set Enable. */
1242 irq = (offset - 0x100) * 8;
1243 if (irq >= s->num_irq)
1244 goto bad_reg;
1245 if (irq < GIC_NR_SGIS) {
1246 value = 0xff;
1249 for (i = 0; i < 8; i++) {
1250 if (value & (1 << i)) {
1251 int mask =
1252 (irq < GIC_INTERNAL) ? (1 << cpu)
1253 : GIC_DIST_TARGET(irq + i);
1254 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1256 if (s->security_extn && !attrs.secure &&
1257 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1258 continue; /* Ignore Non-secure access of Group0 IRQ */
1261 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1262 DPRINTF("Enabled IRQ %d\n", irq + i);
1263 trace_gic_enable_irq(irq + i);
1265 GIC_DIST_SET_ENABLED(irq + i, cm);
1266 /* If a raised level triggered IRQ enabled then mark
1267 is as pending. */
1268 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1269 && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1270 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1271 GIC_DIST_SET_PENDING(irq + i, mask);
1275 } else if (offset < 0x200) {
1276 /* Interrupt Clear Enable. */
1277 irq = (offset - 0x180) * 8;
1278 if (irq >= s->num_irq)
1279 goto bad_reg;
1280 if (irq < GIC_NR_SGIS) {
1281 value = 0;
1284 for (i = 0; i < 8; i++) {
1285 if (value & (1 << i)) {
1286 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1288 if (s->security_extn && !attrs.secure &&
1289 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1290 continue; /* Ignore Non-secure access of Group0 IRQ */
1293 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1294 DPRINTF("Disabled IRQ %d\n", irq + i);
1295 trace_gic_disable_irq(irq + i);
1297 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1300 } else if (offset < 0x280) {
1301 /* Interrupt Set Pending. */
1302 irq = (offset - 0x200) * 8;
1303 if (irq >= s->num_irq)
1304 goto bad_reg;
1305 if (irq < GIC_NR_SGIS) {
1306 value = 0;
1309 for (i = 0; i < 8; i++) {
1310 if (value & (1 << i)) {
1311 if (s->security_extn && !attrs.secure &&
1312 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1313 continue; /* Ignore Non-secure access of Group0 IRQ */
1316 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1319 } else if (offset < 0x300) {
1320 /* Interrupt Clear Pending. */
1321 irq = (offset - 0x280) * 8;
1322 if (irq >= s->num_irq)
1323 goto bad_reg;
1324 if (irq < GIC_NR_SGIS) {
1325 value = 0;
1328 for (i = 0; i < 8; i++) {
1329 if (s->security_extn && !attrs.secure &&
1330 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1331 continue; /* Ignore Non-secure access of Group0 IRQ */
1334 /* ??? This currently clears the pending bit for all CPUs, even
1335 for per-CPU interrupts. It's unclear whether this is the
1336 correct behavior. */
1337 if (value & (1 << i)) {
1338 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1341 } else if (offset < 0x380) {
1342 /* Interrupt Set Active. */
1343 if (s->revision != 2) {
1344 goto bad_reg;
1347 irq = (offset - 0x300) * 8;
1348 if (irq >= s->num_irq) {
1349 goto bad_reg;
1352 /* This register is banked per-cpu for PPIs */
1353 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1355 for (i = 0; i < 8; i++) {
1356 if (s->security_extn && !attrs.secure &&
1357 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1358 continue; /* Ignore Non-secure access of Group0 IRQ */
1361 if (value & (1 << i)) {
1362 GIC_DIST_SET_ACTIVE(irq + i, cm);
1365 } else if (offset < 0x400) {
1366 /* Interrupt Clear Active. */
1367 if (s->revision != 2) {
1368 goto bad_reg;
1371 irq = (offset - 0x380) * 8;
1372 if (irq >= s->num_irq) {
1373 goto bad_reg;
1376 /* This register is banked per-cpu for PPIs */
1377 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1379 for (i = 0; i < 8; i++) {
1380 if (s->security_extn && !attrs.secure &&
1381 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1382 continue; /* Ignore Non-secure access of Group0 IRQ */
1385 if (value & (1 << i)) {
1386 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1389 } else if (offset < 0x800) {
1390 /* Interrupt Priority. */
1391 irq = (offset - 0x400);
1392 if (irq >= s->num_irq)
1393 goto bad_reg;
1394 gic_dist_set_priority(s, cpu, irq, value, attrs);
1395 } else if (offset < 0xc00) {
1396 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1397 * annoying exception of the 11MPCore's GIC.
1399 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1400 irq = (offset - 0x800);
1401 if (irq >= s->num_irq) {
1402 goto bad_reg;
1404 if (irq < 29 && s->revision == REV_11MPCORE) {
1405 value = 0;
1406 } else if (irq < GIC_INTERNAL) {
1407 value = ALL_CPU_MASK;
1409 s->irq_target[irq] = value & ALL_CPU_MASK;
1411 } else if (offset < 0xf00) {
1412 /* Interrupt Configuration. */
1413 irq = (offset - 0xc00) * 4;
1414 if (irq >= s->num_irq)
1415 goto bad_reg;
1416 if (irq < GIC_NR_SGIS)
1417 value |= 0xaa;
1418 for (i = 0; i < 4; i++) {
1419 if (s->security_extn && !attrs.secure &&
1420 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1421 continue; /* Ignore Non-secure access of Group0 IRQ */
1424 if (s->revision == REV_11MPCORE) {
1425 if (value & (1 << (i * 2))) {
1426 GIC_DIST_SET_MODEL(irq + i);
1427 } else {
1428 GIC_DIST_CLEAR_MODEL(irq + i);
1431 if (value & (2 << (i * 2))) {
1432 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1433 } else {
1434 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1437 } else if (offset < 0xf10) {
1438 /* 0xf00 is only handled for 32-bit writes. */
1439 goto bad_reg;
1440 } else if (offset < 0xf20) {
1441 /* GICD_CPENDSGIRn */
1442 if (s->revision == REV_11MPCORE) {
1443 goto bad_reg;
1445 irq = (offset - 0xf10);
1447 if (!s->security_extn || attrs.secure ||
1448 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1449 s->sgi_pending[irq][cpu] &= ~value;
1450 if (s->sgi_pending[irq][cpu] == 0) {
1451 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1454 } else if (offset < 0xf30) {
1455 /* GICD_SPENDSGIRn */
1456 if (s->revision == REV_11MPCORE) {
1457 goto bad_reg;
1459 irq = (offset - 0xf20);
1461 if (!s->security_extn || attrs.secure ||
1462 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1463 GIC_DIST_SET_PENDING(irq, 1 << cpu);
1464 s->sgi_pending[irq][cpu] |= value;
1466 } else {
1467 goto bad_reg;
1469 gic_update(s);
1470 return;
1471 bad_reg:
1472 qemu_log_mask(LOG_GUEST_ERROR,
1473 "gic_dist_writeb: Bad offset %x\n", (int)offset);
1476 static void gic_dist_writew(void *opaque, hwaddr offset,
1477 uint32_t value, MemTxAttrs attrs)
1479 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1480 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1483 static void gic_dist_writel(void *opaque, hwaddr offset,
1484 uint32_t value, MemTxAttrs attrs)
1486 GICState *s = (GICState *)opaque;
1487 if (offset == 0xf00) {
1488 int cpu;
1489 int irq;
1490 int mask;
1491 int target_cpu;
1493 cpu = gic_get_current_cpu(s);
1494 irq = value & 0xf;
1495 switch ((value >> 24) & 3) {
1496 case 0:
1497 mask = (value >> 16) & ALL_CPU_MASK;
1498 break;
1499 case 1:
1500 mask = ALL_CPU_MASK ^ (1 << cpu);
1501 break;
1502 case 2:
1503 mask = 1 << cpu;
1504 break;
1505 default:
1506 DPRINTF("Bad Soft Int target filter\n");
1507 mask = ALL_CPU_MASK;
1508 break;
1510 GIC_DIST_SET_PENDING(irq, mask);
1511 target_cpu = ctz32(mask);
1512 while (target_cpu < GIC_NCPU) {
1513 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1514 mask &= ~(1 << target_cpu);
1515 target_cpu = ctz32(mask);
1517 gic_update(s);
1518 return;
1520 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1521 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1524 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1525 unsigned size, MemTxAttrs attrs)
1527 trace_gic_dist_write(offset, size, data);
1529 switch (size) {
1530 case 1:
1531 gic_dist_writeb(opaque, offset, data, attrs);
1532 return MEMTX_OK;
1533 case 2:
1534 gic_dist_writew(opaque, offset, data, attrs);
1535 return MEMTX_OK;
1536 case 4:
1537 gic_dist_writel(opaque, offset, data, attrs);
1538 return MEMTX_OK;
1539 default:
1540 return MEMTX_ERROR;
1544 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1546 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1547 * second half of GICC_NSAPR.
1549 switch (GIC_MIN_BPR) {
1550 case 0:
1551 if (regno < 2) {
1552 return s->nsapr[regno + 2][cpu];
1554 break;
1555 case 1:
1556 if (regno == 0) {
1557 return s->nsapr[regno + 1][cpu];
1559 break;
1560 case 2:
1561 if (regno == 0) {
1562 return extract32(s->nsapr[0][cpu], 16, 16);
1564 break;
1565 case 3:
1566 if (regno == 0) {
1567 return extract32(s->nsapr[0][cpu], 8, 8);
1569 break;
1570 default:
1571 g_assert_not_reached();
1573 return 0;
1576 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1577 uint32_t value)
1579 /* Write the Nonsecure view of GICC_APR<regno>. */
1580 switch (GIC_MIN_BPR) {
1581 case 0:
1582 if (regno < 2) {
1583 s->nsapr[regno + 2][cpu] = value;
1585 break;
1586 case 1:
1587 if (regno == 0) {
1588 s->nsapr[regno + 1][cpu] = value;
1590 break;
1591 case 2:
1592 if (regno == 0) {
1593 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1595 break;
1596 case 3:
1597 if (regno == 0) {
1598 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1600 break;
1601 default:
1602 g_assert_not_reached();
1606 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1607 uint64_t *data, MemTxAttrs attrs)
1609 switch (offset) {
1610 case 0x00: /* Control */
1611 *data = gic_get_cpu_control(s, cpu, attrs);
1612 break;
1613 case 0x04: /* Priority mask */
1614 *data = gic_get_priority_mask(s, cpu, attrs);
1615 break;
1616 case 0x08: /* Binary Point */
1617 if (gic_cpu_ns_access(s, cpu, attrs)) {
1618 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1619 /* NS view of BPR when CBPR is 1 */
1620 *data = MIN(s->bpr[cpu] + 1, 7);
1621 } else {
1622 /* BPR is banked. Non-secure copy stored in ABPR. */
1623 *data = s->abpr[cpu];
1625 } else {
1626 *data = s->bpr[cpu];
1628 break;
1629 case 0x0c: /* Acknowledge */
1630 *data = gic_acknowledge_irq(s, cpu, attrs);
1631 break;
1632 case 0x14: /* Running Priority */
1633 *data = gic_get_running_priority(s, cpu, attrs);
1634 break;
1635 case 0x18: /* Highest Pending Interrupt */
1636 *data = gic_get_current_pending_irq(s, cpu, attrs);
1637 break;
1638 case 0x1c: /* Aliased Binary Point */
1639 /* GIC v2, no security: ABPR
1640 * GIC v1, no security: not implemented (RAZ/WI)
1641 * With security extensions, secure access: ABPR (alias of NS BPR)
1642 * With security extensions, nonsecure access: RAZ/WI
1644 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1645 *data = 0;
1646 } else {
1647 *data = s->abpr[cpu];
1649 break;
1650 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1652 int regno = (offset - 0xd0) / 4;
1653 int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1655 if (regno >= nr_aprs || s->revision != 2) {
1656 *data = 0;
1657 } else if (gic_is_vcpu(cpu)) {
1658 *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1659 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1660 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1661 *data = gic_apr_ns_view(s, regno, cpu);
1662 } else {
1663 *data = s->apr[regno][cpu];
1665 break;
1667 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1669 int regno = (offset - 0xe0) / 4;
1671 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1672 gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1673 *data = 0;
1674 } else {
1675 *data = s->nsapr[regno][cpu];
1677 break;
1679 case 0xfc:
1680 if (s->revision == REV_11MPCORE) {
1681 /* Reserved on 11MPCore */
1682 *data = 0;
1683 } else {
1684 /* GICv1 or v2; Arm implementation */
1685 *data = (s->revision << 16) | 0x43b;
1687 break;
1688 default:
1689 qemu_log_mask(LOG_GUEST_ERROR,
1690 "gic_cpu_read: Bad offset %x\n", (int)offset);
1691 *data = 0;
1692 break;
1695 trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1696 gic_get_vcpu_real_id(cpu), offset, *data);
1697 return MEMTX_OK;
1700 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1701 uint32_t value, MemTxAttrs attrs)
1703 trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1704 gic_get_vcpu_real_id(cpu), offset, value);
1706 switch (offset) {
1707 case 0x00: /* Control */
1708 gic_set_cpu_control(s, cpu, value, attrs);
1709 break;
1710 case 0x04: /* Priority mask */
1711 gic_set_priority_mask(s, cpu, value, attrs);
1712 break;
1713 case 0x08: /* Binary Point */
1714 if (gic_cpu_ns_access(s, cpu, attrs)) {
1715 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1716 /* WI when CBPR is 1 */
1717 return MEMTX_OK;
1718 } else {
1719 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1721 } else {
1722 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1723 s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1725 break;
1726 case 0x10: /* End Of Interrupt */
1727 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1728 return MEMTX_OK;
1729 case 0x1c: /* Aliased Binary Point */
1730 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1731 /* unimplemented, or NS access: RAZ/WI */
1732 return MEMTX_OK;
1733 } else {
1734 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1736 break;
1737 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1739 int regno = (offset - 0xd0) / 4;
1740 int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1742 if (regno >= nr_aprs || s->revision != 2) {
1743 return MEMTX_OK;
1745 if (gic_is_vcpu(cpu)) {
1746 s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1747 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1748 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1749 gic_apr_write_ns_view(s, regno, cpu, value);
1750 } else {
1751 s->apr[regno][cpu] = value;
1753 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
1754 break;
1756 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1758 int regno = (offset - 0xe0) / 4;
1760 if (regno >= GIC_NR_APRS || s->revision != 2) {
1761 return MEMTX_OK;
1763 if (gic_is_vcpu(cpu)) {
1764 return MEMTX_OK;
1766 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1767 return MEMTX_OK;
1769 s->nsapr[regno][cpu] = value;
1770 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
1771 break;
1773 case 0x1000:
1774 /* GICC_DIR */
1775 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1776 break;
1777 default:
1778 qemu_log_mask(LOG_GUEST_ERROR,
1779 "gic_cpu_write: Bad offset %x\n", (int)offset);
1780 return MEMTX_OK;
1783 if (gic_is_vcpu(cpu)) {
1784 gic_update_virt(s);
1785 } else {
1786 gic_update(s);
1789 return MEMTX_OK;
1792 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1793 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1794 unsigned size, MemTxAttrs attrs)
1796 GICState *s = (GICState *)opaque;
1797 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1800 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1801 uint64_t value, unsigned size,
1802 MemTxAttrs attrs)
1804 GICState *s = (GICState *)opaque;
1805 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1808 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1809 * These just decode the opaque pointer into GICState* + cpu id.
1811 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1812 unsigned size, MemTxAttrs attrs)
1814 GICState **backref = (GICState **)opaque;
1815 GICState *s = *backref;
1816 int id = (backref - s->backref);
1817 return gic_cpu_read(s, id, addr, data, attrs);
1820 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1821 uint64_t value, unsigned size,
1822 MemTxAttrs attrs)
1824 GICState **backref = (GICState **)opaque;
1825 GICState *s = *backref;
1826 int id = (backref - s->backref);
1827 return gic_cpu_write(s, id, addr, value, attrs);
1830 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1831 unsigned size, MemTxAttrs attrs)
1833 GICState *s = (GICState *)opaque;
1835 return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1838 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1839 uint64_t value, unsigned size,
1840 MemTxAttrs attrs)
1842 GICState *s = (GICState *)opaque;
1844 return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1847 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1849 int lr_idx;
1850 uint32_t ret = 0;
1852 for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1853 uint32_t *entry = &s->h_lr[lr_idx][cpu];
1854 ret = deposit32(ret, lr_idx - lr_start, 1,
1855 gic_lr_entry_is_eoi(*entry));
1858 return ret;
1861 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1863 int lr_idx;
1864 uint32_t ret = 0;
1866 for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1867 uint32_t *entry = &s->h_lr[lr_idx][cpu];
1868 ret = deposit32(ret, lr_idx - lr_start, 1,
1869 gic_lr_entry_is_free(*entry));
1872 return ret;
1875 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1877 int vcpu = gic_get_current_vcpu(s);
1878 uint32_t ctlr;
1879 uint32_t abpr;
1880 uint32_t bpr;
1881 uint32_t prio_mask;
1883 ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1884 abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1885 bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1886 prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1888 gic_set_cpu_control(s, vcpu, ctlr, attrs);
1889 s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1890 s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1891 gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1894 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1895 uint64_t *data, MemTxAttrs attrs)
1897 GICState *s = ARM_GIC(opaque);
1898 int vcpu = cpu + GIC_NCPU;
1900 switch (addr) {
1901 case A_GICH_HCR: /* Hypervisor Control */
1902 *data = s->h_hcr[cpu];
1903 break;
1905 case A_GICH_VTR: /* VGIC Type */
1906 *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1907 *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1908 GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1909 *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1910 (7 - GIC_VIRT_MIN_BPR) - 1);
1911 break;
1913 case A_GICH_VMCR: /* Virtual Machine Control */
1914 *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1915 extract32(s->cpu_ctlr[vcpu], 0, 10));
1916 *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1917 *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1918 *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1919 extract32(s->priority_mask[vcpu], 3, 5));
1920 break;
1922 case A_GICH_MISR: /* Maintenance Interrupt Status */
1923 *data = s->h_misr[cpu];
1924 break;
1926 case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1927 case A_GICH_EISR1:
1928 *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1929 break;
1931 case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1932 case A_GICH_ELRSR1:
1933 *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1934 break;
1936 case A_GICH_APR: /* Active Priorities */
1937 *data = s->h_apr[cpu];
1938 break;
1940 case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1942 int lr_idx = (addr - A_GICH_LR0) / 4;
1944 if (lr_idx > s->num_lrs) {
1945 *data = 0;
1946 } else {
1947 *data = s->h_lr[lr_idx][cpu];
1949 break;
1952 default:
1953 qemu_log_mask(LOG_GUEST_ERROR,
1954 "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1955 return MEMTX_OK;
1958 trace_gic_hyp_read(addr, *data);
1959 return MEMTX_OK;
1962 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1963 uint64_t value, MemTxAttrs attrs)
1965 GICState *s = ARM_GIC(opaque);
1966 int vcpu = cpu + GIC_NCPU;
1968 trace_gic_hyp_write(addr, value);
1970 switch (addr) {
1971 case A_GICH_HCR: /* Hypervisor Control */
1972 s->h_hcr[cpu] = value & GICH_HCR_MASK;
1973 break;
1975 case A_GICH_VMCR: /* Virtual Machine Control */
1976 gic_vmcr_write(s, value, attrs);
1977 break;
1979 case A_GICH_APR: /* Active Priorities */
1980 s->h_apr[cpu] = value;
1981 s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1982 break;
1984 case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1986 int lr_idx = (addr - A_GICH_LR0) / 4;
1988 if (lr_idx > s->num_lrs) {
1989 return MEMTX_OK;
1992 s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1993 trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1994 break;
1997 default:
1998 qemu_log_mask(LOG_GUEST_ERROR,
1999 "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
2000 return MEMTX_OK;
2003 gic_update_virt(s);
2004 return MEMTX_OK;
2007 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
2008 unsigned size, MemTxAttrs attrs)
2010 GICState *s = (GICState *)opaque;
2012 return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
2015 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
2016 uint64_t value, unsigned size,
2017 MemTxAttrs attrs)
2019 GICState *s = (GICState *)opaque;
2021 return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
2024 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
2025 unsigned size, MemTxAttrs attrs)
2027 GICState **backref = (GICState **)opaque;
2028 GICState *s = *backref;
2029 int id = (backref - s->backref);
2031 return gic_hyp_read(s, id, addr, data, attrs);
2034 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
2035 uint64_t value, unsigned size,
2036 MemTxAttrs attrs)
2038 GICState **backref = (GICState **)opaque;
2039 GICState *s = *backref;
2040 int id = (backref - s->backref);
2042 return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
2046 static const MemoryRegionOps gic_ops[2] = {
2048 .read_with_attrs = gic_dist_read,
2049 .write_with_attrs = gic_dist_write,
2050 .endianness = DEVICE_NATIVE_ENDIAN,
2053 .read_with_attrs = gic_thiscpu_read,
2054 .write_with_attrs = gic_thiscpu_write,
2055 .endianness = DEVICE_NATIVE_ENDIAN,
2059 static const MemoryRegionOps gic_cpu_ops = {
2060 .read_with_attrs = gic_do_cpu_read,
2061 .write_with_attrs = gic_do_cpu_write,
2062 .endianness = DEVICE_NATIVE_ENDIAN,
2065 static const MemoryRegionOps gic_virt_ops[2] = {
2067 .read_with_attrs = gic_thiscpu_hyp_read,
2068 .write_with_attrs = gic_thiscpu_hyp_write,
2069 .endianness = DEVICE_NATIVE_ENDIAN,
2072 .read_with_attrs = gic_thisvcpu_read,
2073 .write_with_attrs = gic_thisvcpu_write,
2074 .endianness = DEVICE_NATIVE_ENDIAN,
2078 static const MemoryRegionOps gic_viface_ops = {
2079 .read_with_attrs = gic_do_hyp_read,
2080 .write_with_attrs = gic_do_hyp_write,
2081 .endianness = DEVICE_NATIVE_ENDIAN,
2084 static void arm_gic_realize(DeviceState *dev, Error **errp)
2086 /* Device instance realize function for the GIC sysbus device */
2087 int i;
2088 GICState *s = ARM_GIC(dev);
2089 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2090 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2091 Error *local_err = NULL;
2093 agc->parent_realize(dev, &local_err);
2094 if (local_err) {
2095 error_propagate(errp, local_err);
2096 return;
2099 if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2100 error_setg(errp, "KVM with user space irqchip only works when the "
2101 "host kernel supports KVM_CAP_ARM_USER_IRQ");
2102 return;
2105 if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS ||
2106 (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS :
2107 s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) {
2108 error_setg(errp, "num-priority-bits cannot be greater than %d"
2109 " or less than %d", GIC_MAX_PRIORITY_BITS,
2110 s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS :
2111 GIC_MIN_PRIORITY_BITS);
2112 return;
2115 /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2116 * enabled, virtualization extensions related interfaces (main virtual
2117 * interface (s->vifaceiomem[0]) and virtual CPU interface).
2119 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2121 /* Extra core-specific regions for the CPU interfaces. This is
2122 * necessary for "franken-GIC" implementations, for example on
2123 * Exynos 4.
2124 * NB that the memory region size of 0x100 applies for the 11MPCore
2125 * and also cores following the GIC v1 spec (ie A9).
2126 * GIC v2 defines a larger memory region (0x1000) so this will need
2127 * to be extended when we implement A15.
2129 for (i = 0; i < s->num_cpu; i++) {
2130 s->backref[i] = s;
2131 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2132 &s->backref[i], "gic_cpu", 0x100);
2133 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2136 /* Extra core-specific regions for virtual interfaces. This is required by
2137 * the GICv2 specification.
2139 if (s->virt_extn) {
2140 for (i = 0; i < s->num_cpu; i++) {
2141 memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2142 &gic_viface_ops, &s->backref[i],
2143 "gic_viface", 0x200);
2144 sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2150 static void arm_gic_class_init(ObjectClass *klass, void *data)
2152 DeviceClass *dc = DEVICE_CLASS(klass);
2153 ARMGICClass *agc = ARM_GIC_CLASS(klass);
2155 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2158 static const TypeInfo arm_gic_info = {
2159 .name = TYPE_ARM_GIC,
2160 .parent = TYPE_ARM_GIC_COMMON,
2161 .instance_size = sizeof(GICState),
2162 .class_init = arm_gic_class_init,
2163 .class_size = sizeof(ARMGICClass),
2166 static void arm_gic_register_types(void)
2168 type_register_static(&arm_gic_info);
2171 type_init(arm_gic_register_types)