2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/boards.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/runstate.h"
49 #include "sysemu/sysemu.h"
50 #include "sysemu/kvm.h"
51 #include "hw/loader.h"
52 #include "exec/address-spaces.h"
53 #include "qemu/bitops.h"
54 #include "qemu/error-report.h"
55 #include "qemu/module.h"
56 #include "hw/pci-host/gpex.h"
57 #include "hw/arm/sysbus-fdt.h"
58 #include "hw/platform-bus.h"
59 #include "hw/qdev-properties.h"
60 #include "hw/arm/fdt.h"
61 #include "hw/intc/arm_gic.h"
62 #include "hw/intc/arm_gicv3_common.h"
65 #include "hw/firmware/smbios.h"
66 #include "qapi/visitor.h"
67 #include "standard-headers/linux/input.h"
68 #include "hw/arm/smmuv3.h"
69 #include "hw/acpi/acpi.h"
70 #include "target/arm/internals.h"
71 #include "hw/mem/pc-dimm.h"
72 #include "hw/mem/nvdimm.h"
73 #include "hw/acpi/generic_event_device.h"
75 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
76 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
79 MachineClass *mc = MACHINE_CLASS(oc); \
80 virt_machine_##major##_##minor##_options(mc); \
81 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
86 static const TypeInfo machvirt_##major##_##minor##_info = { \
87 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
88 .parent = TYPE_VIRT_MACHINE, \
89 .class_init = virt_##major##_##minor##_class_init, \
91 static void machvirt_machine_##major##_##minor##_init(void) \
93 type_register_static(&machvirt_##major##_##minor##_info); \
95 type_init(machvirt_machine_##major##_##minor##_init);
97 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
98 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
99 #define DEFINE_VIRT_MACHINE(major, minor) \
100 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
103 /* Number of external interrupt lines to configure the GIC with */
106 #define PLATFORM_BUS_NUM_IRQS 64
108 /* Legacy RAM limit in GB (< version 4.0) */
109 #define LEGACY_RAMLIMIT_GB 255
110 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
112 /* Addresses and sizes of our components.
113 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
114 * 128MB..256MB is used for miscellaneous device I/O.
115 * 256MB..1GB is reserved for possible future PCI support (ie where the
116 * PCI memory window will go if we add a PCI host controller).
117 * 1GB and up is RAM (which may happily spill over into the
118 * high memory region beyond 4GB).
119 * This represents a compromise between how much RAM can be given to
120 * a 32 bit VM and leaving space for expansion and in particular for PCI.
121 * Note that devices should generally be placed at multiples of 0x10000,
122 * to accommodate guests using 64K pages.
124 static const MemMapEntry base_memmap
[] = {
125 /* Space up to 0x8000000 is reserved for a boot ROM */
126 [VIRT_FLASH
] = { 0, 0x08000000 },
127 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
128 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
129 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
130 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
131 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
132 [VIRT_GIC_HYP
] = { 0x08030000, 0x00010000 },
133 [VIRT_GIC_VCPU
] = { 0x08040000, 0x00010000 },
134 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
135 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
136 /* This redistributor space allows up to 2*64kB*123 CPUs */
137 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
138 [VIRT_UART
] = { 0x09000000, 0x00001000 },
139 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
140 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
141 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
142 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
143 [VIRT_SMMU
] = { 0x09050000, 0x00020000 },
144 [VIRT_PCDIMM_ACPI
] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN
},
145 [VIRT_ACPI_GED
] = { 0x09080000, ACPI_GED_EVT_SEL_LEN
},
146 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
148 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
149 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
150 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
151 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
152 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
153 /* Actual RAM size depends on initial RAM and device memory settings */
154 [VIRT_MEM
] = { GiB
, LEGACY_RAMLIMIT_BYTES
},
158 * Highmem IO Regions: This memory map is floating, located after the RAM.
159 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
160 * top of the RAM, so that its base get the same alignment as the size,
161 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
162 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
163 * Note the extended_memmap is sized so that it eventually also includes the
164 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
165 * index of base_memmap).
167 static MemMapEntry extended_memmap
[] = {
168 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
169 [VIRT_HIGH_GIC_REDIST2
] = { 0x0, 64 * MiB
},
170 [VIRT_HIGH_PCIE_ECAM
] = { 0x0, 256 * MiB
},
171 /* Second PCIe window */
172 [VIRT_HIGH_PCIE_MMIO
] = { 0x0, 512 * GiB
},
175 static const int a15irqmap
[] = {
178 [VIRT_PCIE
] = 3, /* ... to 6 */
180 [VIRT_SECURE_UART
] = 8,
182 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
183 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
184 [VIRT_SMMU
] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
185 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
188 static const char *valid_cpus
[] = {
189 ARM_CPU_TYPE_NAME("cortex-a7"),
190 ARM_CPU_TYPE_NAME("cortex-a15"),
191 ARM_CPU_TYPE_NAME("cortex-a53"),
192 ARM_CPU_TYPE_NAME("cortex-a57"),
193 ARM_CPU_TYPE_NAME("cortex-a72"),
194 ARM_CPU_TYPE_NAME("host"),
195 ARM_CPU_TYPE_NAME("max"),
198 static bool cpu_type_valid(const char *cpu
)
202 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
203 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
210 static void create_fdt(VirtMachineState
*vms
)
212 MachineState
*ms
= MACHINE(vms
);
213 int nb_numa_nodes
= ms
->numa_state
->num_nodes
;
214 void *fdt
= create_device_tree(&vms
->fdt_size
);
217 error_report("create_device_tree() failed");
224 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
225 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
226 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
228 /* /chosen must exist for load_dtb to fill in necessary properties later */
229 qemu_fdt_add_subnode(fdt
, "/chosen");
231 /* Clock node, for the benefit of the UART. The kernel device tree
232 * binding documentation claims the PL011 node clock properties are
233 * optional but in practice if you omit them the kernel refuses to
234 * probe for the device.
236 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
237 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
238 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
239 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
240 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
241 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
243 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
245 if (nb_numa_nodes
> 0 && ms
->numa_state
->have_numa_distance
) {
246 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
247 uint32_t *matrix
= g_malloc0(size
);
250 for (i
= 0; i
< nb_numa_nodes
; i
++) {
251 for (j
= 0; j
< nb_numa_nodes
; j
++) {
252 idx
= (i
* nb_numa_nodes
+ j
) * 3;
253 matrix
[idx
+ 0] = cpu_to_be32(i
);
254 matrix
[idx
+ 1] = cpu_to_be32(j
);
256 cpu_to_be32(ms
->numa_state
->nodes
[i
].distance
[j
]);
260 qemu_fdt_add_subnode(fdt
, "/distance-map");
261 qemu_fdt_setprop_string(fdt
, "/distance-map", "compatible",
262 "numa-distance-map-v1");
263 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
269 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
271 /* On real hardware these interrupts are level-triggered.
272 * On KVM they were edge-triggered before host kernel version 4.4,
273 * and level-triggered afterwards.
274 * On emulated QEMU they are level-triggered.
276 * Getting the DTB info about them wrong is awkward for some
278 * pre-4.8 ignore the DT and leave the interrupt configured
279 * with whatever the GIC reset value (or the bootloader) left it at
280 * 4.8 before rc6 honour the incorrect data by programming it back
281 * into the GIC, causing problems
282 * 4.8rc6 and later ignore the DT and always write "level triggered"
285 * For backwards-compatibility, virt-2.8 and earlier will continue
286 * to say these are edge-triggered, but later machines will report
287 * the correct information.
290 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
291 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
293 if (vmc
->claim_edge_triggered_timers
) {
294 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
297 if (vms
->gic_version
== 2) {
298 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
299 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
300 (1 << vms
->smp_cpus
) - 1);
303 qemu_fdt_add_subnode(vms
->fdt
, "/timer");
305 armcpu
= ARM_CPU(qemu_get_cpu(0));
306 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
307 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
308 qemu_fdt_setprop(vms
->fdt
, "/timer", "compatible",
309 compat
, sizeof(compat
));
311 qemu_fdt_setprop_string(vms
->fdt
, "/timer", "compatible",
314 qemu_fdt_setprop(vms
->fdt
, "/timer", "always-on", NULL
, 0);
315 qemu_fdt_setprop_cells(vms
->fdt
, "/timer", "interrupts",
316 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
317 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
318 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
319 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
322 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
326 const MachineState
*ms
= MACHINE(vms
);
329 * From Documentation/devicetree/bindings/arm/cpus.txt
330 * On ARM v8 64-bit systems value should be set to 2,
331 * that corresponds to the MPIDR_EL1 register size.
332 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
333 * in the system, #address-cells can be set to 1, since
334 * MPIDR_EL1[63:32] bits are not used for CPUs
337 * Here we actually don't know whether our system is 32- or 64-bit one.
338 * The simplest way to go is to examine affinity IDs of all our CPUs. If
339 * at least one of them has Aff3 populated, we set #address-cells to 2.
341 for (cpu
= 0; cpu
< vms
->smp_cpus
; cpu
++) {
342 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
344 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
350 qemu_fdt_add_subnode(vms
->fdt
, "/cpus");
351 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#address-cells", addr_cells
);
352 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#size-cells", 0x0);
354 for (cpu
= vms
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
355 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
356 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
357 CPUState
*cs
= CPU(armcpu
);
359 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
360 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "cpu");
361 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
362 armcpu
->dtb_compatible
);
364 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
365 && vms
->smp_cpus
> 1) {
366 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
367 "enable-method", "psci");
370 if (addr_cells
== 2) {
371 qemu_fdt_setprop_u64(vms
->fdt
, nodename
, "reg",
372 armcpu
->mp_affinity
);
374 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "reg",
375 armcpu
->mp_affinity
);
378 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
379 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "numa-node-id",
380 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
387 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
391 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
392 nodename
= g_strdup_printf("/intc/its@%" PRIx64
,
393 vms
->memmap
[VIRT_GIC_ITS
].base
);
394 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
395 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
397 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
398 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
399 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
400 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
401 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
405 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
409 nodename
= g_strdup_printf("/intc/v2m@%" PRIx64
,
410 vms
->memmap
[VIRT_GIC_V2M
].base
);
411 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
412 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
413 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
414 "arm,gic-v2m-frame");
415 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
416 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
417 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
418 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
419 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
423 static void fdt_add_gic_node(VirtMachineState
*vms
)
427 vms
->gic_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
428 qemu_fdt_setprop_cell(vms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
430 nodename
= g_strdup_printf("/intc@%" PRIx64
,
431 vms
->memmap
[VIRT_GIC_DIST
].base
);
432 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
433 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 3);
434 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-controller", NULL
, 0);
435 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 0x2);
436 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 0x2);
437 qemu_fdt_setprop(vms
->fdt
, nodename
, "ranges", NULL
, 0);
438 if (vms
->gic_version
== 3) {
439 int nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
441 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
444 qemu_fdt_setprop_cell(vms
->fdt
, nodename
,
445 "#redistributor-regions", nb_redist_regions
);
447 if (nb_redist_regions
== 1) {
448 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
449 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
450 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
451 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
452 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
454 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
455 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
456 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
457 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
458 2, vms
->memmap
[VIRT_GIC_REDIST
].size
,
459 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
,
460 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
);
464 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
465 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
466 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
469 /* 'cortex-a15-gic' means 'GIC v2' */
470 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
471 "arm,cortex-a15-gic");
473 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
474 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
475 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
476 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
477 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
479 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
480 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
481 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
482 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
483 2, vms
->memmap
[VIRT_GIC_CPU
].size
,
484 2, vms
->memmap
[VIRT_GIC_HYP
].base
,
485 2, vms
->memmap
[VIRT_GIC_HYP
].size
,
486 2, vms
->memmap
[VIRT_GIC_VCPU
].base
,
487 2, vms
->memmap
[VIRT_GIC_VCPU
].size
);
488 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
489 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
490 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
494 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->gic_phandle
);
498 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
502 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
505 armcpu
= ARM_CPU(cpu
);
506 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
)) {
510 if (kvm_irqchip_in_kernel()) {
511 kvm_arm_pmu_set_irq(cpu
, PPI(VIRTUAL_PMU_IRQ
));
513 kvm_arm_pmu_init(cpu
);
517 if (vms
->gic_version
== 2) {
518 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
519 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
520 (1 << vms
->smp_cpus
) - 1);
523 armcpu
= ARM_CPU(qemu_get_cpu(0));
524 qemu_fdt_add_subnode(vms
->fdt
, "/pmu");
525 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
526 const char compat
[] = "arm,armv8-pmuv3";
527 qemu_fdt_setprop(vms
->fdt
, "/pmu", "compatible",
528 compat
, sizeof(compat
));
529 qemu_fdt_setprop_cells(vms
->fdt
, "/pmu", "interrupts",
530 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
534 static inline DeviceState
*create_acpi_ged(VirtMachineState
*vms
)
537 MachineState
*ms
= MACHINE(vms
);
538 int irq
= vms
->irqmap
[VIRT_ACPI_GED
];
539 uint32_t event
= ACPI_GED_PWR_DOWN_EVT
;
542 event
|= ACPI_GED_MEM_HOTPLUG_EVT
;
545 dev
= qdev_create(NULL
, TYPE_ACPI_GED
);
546 qdev_prop_set_uint32(dev
, "ged-event", event
);
548 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_ACPI_GED
].base
);
549 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 1, vms
->memmap
[VIRT_PCDIMM_ACPI
].base
);
550 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), 0, qdev_get_gpio_in(vms
->gic
, irq
));
552 qdev_init_nofail(dev
);
557 static void create_its(VirtMachineState
*vms
)
559 const char *itsclass
= its_class_name();
563 /* Do nothing if not supported */
567 dev
= qdev_create(NULL
, itsclass
);
569 object_property_set_link(OBJECT(dev
), OBJECT(vms
->gic
), "parent-gicv3",
571 qdev_init_nofail(dev
);
572 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
574 fdt_add_its_gic_node(vms
);
577 static void create_v2m(VirtMachineState
*vms
)
580 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
583 dev
= qdev_create(NULL
, "arm-gicv2m");
584 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
585 qdev_prop_set_uint32(dev
, "base-spi", irq
);
586 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
587 qdev_init_nofail(dev
);
589 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
590 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
591 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
594 fdt_add_v2m_gic_node(vms
);
597 static void create_gic(VirtMachineState
*vms
)
599 MachineState
*ms
= MACHINE(vms
);
600 /* We create a standalone GIC */
601 SysBusDevice
*gicbusdev
;
603 int type
= vms
->gic_version
, i
;
604 unsigned int smp_cpus
= ms
->smp
.cpus
;
605 uint32_t nb_redist_regions
= 0;
607 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
609 vms
->gic
= qdev_create(NULL
, gictype
);
610 qdev_prop_set_uint32(vms
->gic
, "revision", type
);
611 qdev_prop_set_uint32(vms
->gic
, "num-cpu", smp_cpus
);
612 /* Note that the num-irq property counts both internal and external
613 * interrupts; there are always 32 of the former (mandated by GIC spec).
615 qdev_prop_set_uint32(vms
->gic
, "num-irq", NUM_IRQS
+ 32);
616 if (!kvm_irqchip_in_kernel()) {
617 qdev_prop_set_bit(vms
->gic
, "has-security-extensions", vms
->secure
);
621 uint32_t redist0_capacity
=
622 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
623 uint32_t redist0_count
= MIN(smp_cpus
, redist0_capacity
);
625 nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
627 qdev_prop_set_uint32(vms
->gic
, "len-redist-region-count",
629 qdev_prop_set_uint32(vms
->gic
, "redist-region-count[0]", redist0_count
);
631 if (nb_redist_regions
== 2) {
632 uint32_t redist1_capacity
=
633 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
635 qdev_prop_set_uint32(vms
->gic
, "redist-region-count[1]",
636 MIN(smp_cpus
- redist0_count
, redist1_capacity
));
639 if (!kvm_irqchip_in_kernel()) {
640 qdev_prop_set_bit(vms
->gic
, "has-virtualization-extensions",
644 qdev_init_nofail(vms
->gic
);
645 gicbusdev
= SYS_BUS_DEVICE(vms
->gic
);
646 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
648 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
649 if (nb_redist_regions
== 2) {
650 sysbus_mmio_map(gicbusdev
, 2,
651 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
);
654 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
656 sysbus_mmio_map(gicbusdev
, 2, vms
->memmap
[VIRT_GIC_HYP
].base
);
657 sysbus_mmio_map(gicbusdev
, 3, vms
->memmap
[VIRT_GIC_VCPU
].base
);
661 /* Wire the outputs from each CPU's generic timer and the GICv3
662 * maintenance interrupt signal to the appropriate GIC PPI inputs,
663 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
665 for (i
= 0; i
< smp_cpus
; i
++) {
666 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
667 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
669 /* Mapping from the output timer irq lines from the CPU to the
670 * GIC PPI inputs we use for the virt board.
672 const int timer_irq
[] = {
673 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
674 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
675 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
676 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
679 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
680 qdev_connect_gpio_out(cpudev
, irq
,
681 qdev_get_gpio_in(vms
->gic
,
682 ppibase
+ timer_irq
[irq
]));
686 qemu_irq irq
= qdev_get_gpio_in(vms
->gic
,
687 ppibase
+ ARCH_GIC_MAINT_IRQ
);
688 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt",
690 } else if (vms
->virt
) {
691 qemu_irq irq
= qdev_get_gpio_in(vms
->gic
,
692 ppibase
+ ARCH_GIC_MAINT_IRQ
);
693 sysbus_connect_irq(gicbusdev
, i
+ 4 * smp_cpus
, irq
);
696 qdev_connect_gpio_out_named(cpudev
, "pmu-interrupt", 0,
697 qdev_get_gpio_in(vms
->gic
, ppibase
700 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
701 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
702 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
703 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
704 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
705 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
706 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
709 fdt_add_gic_node(vms
);
711 if (type
== 3 && vms
->its
) {
713 } else if (type
== 2) {
718 static void create_uart(const VirtMachineState
*vms
, int uart
,
719 MemoryRegion
*mem
, Chardev
*chr
)
722 hwaddr base
= vms
->memmap
[uart
].base
;
723 hwaddr size
= vms
->memmap
[uart
].size
;
724 int irq
= vms
->irqmap
[uart
];
725 const char compat
[] = "arm,pl011\0arm,primecell";
726 const char clocknames
[] = "uartclk\0apb_pclk";
727 DeviceState
*dev
= qdev_create(NULL
, "pl011");
728 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
730 qdev_prop_set_chr(dev
, "chardev", chr
);
731 qdev_init_nofail(dev
);
732 memory_region_add_subregion(mem
, base
,
733 sysbus_mmio_get_region(s
, 0));
734 sysbus_connect_irq(s
, 0, qdev_get_gpio_in(vms
->gic
, irq
));
736 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
737 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
738 /* Note that we can't use setprop_string because of the embedded NUL */
739 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible",
740 compat
, sizeof(compat
));
741 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
743 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
744 GIC_FDT_IRQ_TYPE_SPI
, irq
,
745 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
746 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "clocks",
747 vms
->clock_phandle
, vms
->clock_phandle
);
748 qemu_fdt_setprop(vms
->fdt
, nodename
, "clock-names",
749 clocknames
, sizeof(clocknames
));
751 if (uart
== VIRT_UART
) {
752 qemu_fdt_setprop_string(vms
->fdt
, "/chosen", "stdout-path", nodename
);
754 /* Mark as not usable by the normal world */
755 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
756 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
758 qemu_fdt_add_subnode(vms
->fdt
, "/secure-chosen");
759 qemu_fdt_setprop_string(vms
->fdt
, "/secure-chosen", "stdout-path",
766 static void create_rtc(const VirtMachineState
*vms
)
769 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
770 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
771 int irq
= vms
->irqmap
[VIRT_RTC
];
772 const char compat
[] = "arm,pl031\0arm,primecell";
774 sysbus_create_simple("pl031", base
, qdev_get_gpio_in(vms
->gic
, irq
));
776 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
777 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
778 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
779 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
781 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
782 GIC_FDT_IRQ_TYPE_SPI
, irq
,
783 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
784 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
785 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
789 static DeviceState
*gpio_key_dev
;
790 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
792 VirtMachineState
*s
= container_of(n
, VirtMachineState
, powerdown_notifier
);
795 acpi_send_event(s
->acpi_dev
, ACPI_POWER_DOWN_STATUS
);
797 /* use gpio Pin 3 for power button event */
798 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
802 static void create_gpio(const VirtMachineState
*vms
)
805 DeviceState
*pl061_dev
;
806 hwaddr base
= vms
->memmap
[VIRT_GPIO
].base
;
807 hwaddr size
= vms
->memmap
[VIRT_GPIO
].size
;
808 int irq
= vms
->irqmap
[VIRT_GPIO
];
809 const char compat
[] = "arm,pl061\0arm,primecell";
811 pl061_dev
= sysbus_create_simple("pl061", base
,
812 qdev_get_gpio_in(vms
->gic
, irq
));
814 uint32_t phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
815 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
816 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
817 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
819 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
820 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#gpio-cells", 2);
821 qemu_fdt_setprop(vms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
822 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
823 GIC_FDT_IRQ_TYPE_SPI
, irq
,
824 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
825 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
826 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
827 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", phandle
);
829 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
830 qdev_get_gpio_in(pl061_dev
, 3));
831 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys");
832 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
833 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#size-cells", 0);
834 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#address-cells", 1);
836 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys/poweroff");
837 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys/poweroff",
838 "label", "GPIO Key Poweroff");
839 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys/poweroff", "linux,code",
841 qemu_fdt_setprop_cells(vms
->fdt
, "/gpio-keys/poweroff",
842 "gpios", phandle
, 3, 0);
846 static void create_virtio_devices(const VirtMachineState
*vms
)
849 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
851 /* We create the transports in forwards order. Since qbus_realize()
852 * prepends (not appends) new child buses, the incrementing loop below will
853 * create a list of virtio-mmio buses with decreasing base addresses.
855 * When a -device option is processed from the command line,
856 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
857 * order. The upshot is that -device options in increasing command line
858 * order are mapped to virtio-mmio buses with decreasing base addresses.
860 * When this code was originally written, that arrangement ensured that the
861 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
862 * the first -device on the command line. (The end-to-end order is a
863 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
864 * guest kernel's name-to-address assignment strategy.)
866 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
867 * the message, if not necessarily the code, of commit 70161ff336.
868 * Therefore the loop now establishes the inverse of the original intent.
870 * Unfortunately, we can't counteract the kernel change by reversing the
871 * loop; it would break existing command lines.
873 * In any case, the kernel makes no guarantee about the stability of
874 * enumeration order of virtio devices (as demonstrated by it changing
875 * between kernel versions). For reliable and stable identification
876 * of disks users must use UUIDs or similar mechanisms.
878 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
879 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
880 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
882 sysbus_create_simple("virtio-mmio", base
,
883 qdev_get_gpio_in(vms
->gic
, irq
));
886 /* We add dtb nodes in reverse order so that they appear in the finished
887 * device tree lowest address first.
889 * Note that this mapping is independent of the loop above. The previous
890 * loop influences virtio device to virtio transport assignment, whereas
891 * this loop controls how virtio transports are laid out in the dtb.
893 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
895 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
896 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
898 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
899 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
900 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
901 "compatible", "virtio,mmio");
902 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
904 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
905 GIC_FDT_IRQ_TYPE_SPI
, irq
,
906 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
907 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
912 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
914 static PFlashCFI01
*virt_flash_create1(VirtMachineState
*vms
,
916 const char *alias_prop_name
)
919 * Create a single flash device. We use the same parameters as
920 * the flash devices on the Versatile Express board.
922 DeviceState
*dev
= qdev_create(NULL
, TYPE_PFLASH_CFI01
);
924 qdev_prop_set_uint64(dev
, "sector-length", VIRT_FLASH_SECTOR_SIZE
);
925 qdev_prop_set_uint8(dev
, "width", 4);
926 qdev_prop_set_uint8(dev
, "device-width", 2);
927 qdev_prop_set_bit(dev
, "big-endian", false);
928 qdev_prop_set_uint16(dev
, "id0", 0x89);
929 qdev_prop_set_uint16(dev
, "id1", 0x18);
930 qdev_prop_set_uint16(dev
, "id2", 0x00);
931 qdev_prop_set_uint16(dev
, "id3", 0x00);
932 qdev_prop_set_string(dev
, "name", name
);
933 object_property_add_child(OBJECT(vms
), name
, OBJECT(dev
),
935 object_property_add_alias(OBJECT(vms
), alias_prop_name
,
936 OBJECT(dev
), "drive", &error_abort
);
937 return PFLASH_CFI01(dev
);
940 static void virt_flash_create(VirtMachineState
*vms
)
942 vms
->flash
[0] = virt_flash_create1(vms
, "virt.flash0", "pflash0");
943 vms
->flash
[1] = virt_flash_create1(vms
, "virt.flash1", "pflash1");
946 static void virt_flash_map1(PFlashCFI01
*flash
,
947 hwaddr base
, hwaddr size
,
948 MemoryRegion
*sysmem
)
950 DeviceState
*dev
= DEVICE(flash
);
952 assert(size
% VIRT_FLASH_SECTOR_SIZE
== 0);
953 assert(size
/ VIRT_FLASH_SECTOR_SIZE
<= UINT32_MAX
);
954 qdev_prop_set_uint32(dev
, "num-blocks", size
/ VIRT_FLASH_SECTOR_SIZE
);
955 qdev_init_nofail(dev
);
957 memory_region_add_subregion(sysmem
, base
,
958 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
),
962 static void virt_flash_map(VirtMachineState
*vms
,
963 MemoryRegion
*sysmem
,
964 MemoryRegion
*secure_sysmem
)
967 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
968 * sysmem is the system memory space. secure_sysmem is the secure view
969 * of the system, and the first flash device should be made visible only
970 * there. The second flash device is visible to both secure and nonsecure.
971 * If sysmem == secure_sysmem this means there is no separate Secure
972 * address space and both flash devices are generally visible.
974 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
975 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
977 virt_flash_map1(vms
->flash
[0], flashbase
, flashsize
,
979 virt_flash_map1(vms
->flash
[1], flashbase
+ flashsize
, flashsize
,
983 static void virt_flash_fdt(VirtMachineState
*vms
,
984 MemoryRegion
*sysmem
,
985 MemoryRegion
*secure_sysmem
)
987 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
988 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
991 if (sysmem
== secure_sysmem
) {
992 /* Report both flash devices as a single node in the DT */
993 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
994 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
995 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
996 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
997 2, flashbase
, 2, flashsize
,
998 2, flashbase
+ flashsize
, 2, flashsize
);
999 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1003 * Report the devices as separate nodes so we can mark one as
1004 * only visible to the secure world.
1006 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
1007 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1008 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1009 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1010 2, flashbase
, 2, flashsize
);
1011 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1012 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1013 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1016 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
1017 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1018 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1019 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1020 2, flashbase
+ flashsize
, 2, flashsize
);
1021 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1026 static bool virt_firmware_init(VirtMachineState
*vms
,
1027 MemoryRegion
*sysmem
,
1028 MemoryRegion
*secure_sysmem
)
1031 BlockBackend
*pflash_blk0
;
1033 /* Map legacy -drive if=pflash to machine properties */
1034 for (i
= 0; i
< ARRAY_SIZE(vms
->flash
); i
++) {
1035 pflash_cfi01_legacy_drive(vms
->flash
[i
],
1036 drive_get(IF_PFLASH
, 0, i
));
1039 virt_flash_map(vms
, sysmem
, secure_sysmem
);
1041 pflash_blk0
= pflash_cfi01_get_blk(vms
->flash
[0]);
1049 error_report("The contents of the first flash device may be "
1050 "specified with -bios or with -drive if=pflash... "
1051 "but you cannot use both options at once");
1055 /* Fall back to -bios */
1057 fname
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
1059 error_report("Could not find ROM image '%s'", bios_name
);
1062 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(vms
->flash
[0]), 0);
1063 image_size
= load_image_mr(fname
, mr
);
1065 if (image_size
< 0) {
1066 error_report("Could not load ROM image '%s'", bios_name
);
1071 return pflash_blk0
|| bios_name
;
1074 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
1076 MachineState
*ms
= MACHINE(vms
);
1077 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
1078 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
1082 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
1083 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)ms
->smp
.cpus
);
1085 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
1086 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1087 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1088 "compatible", "qemu,fw-cfg-mmio");
1089 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1091 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1096 static void create_pcie_irq_map(const VirtMachineState
*vms
,
1097 uint32_t gic_phandle
,
1098 int first_irq
, const char *nodename
)
1101 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
1102 uint32_t *irq_map
= full_irq_map
;
1104 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
1105 for (pin
= 0; pin
< 4; pin
++) {
1106 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
1107 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
1108 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
1112 devfn
<< 8, 0, 0, /* devfn */
1113 pin
+ 1, /* PCI pin */
1114 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
1116 /* Convert map to big endian */
1117 for (i
= 0; i
< 10; i
++) {
1118 irq_map
[i
] = cpu_to_be32(map
[i
]);
1124 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-map",
1125 full_irq_map
, sizeof(full_irq_map
));
1127 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupt-map-mask",
1128 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1132 static void create_smmu(const VirtMachineState
*vms
,
1136 const char compat
[] = "arm,smmu-v3";
1137 int irq
= vms
->irqmap
[VIRT_SMMU
];
1139 hwaddr base
= vms
->memmap
[VIRT_SMMU
].base
;
1140 hwaddr size
= vms
->memmap
[VIRT_SMMU
].size
;
1141 const char irq_names
[] = "eventq\0priq\0cmdq-sync\0gerror";
1144 if (vms
->iommu
!= VIRT_IOMMU_SMMUV3
|| !vms
->iommu_phandle
) {
1148 dev
= qdev_create(NULL
, "arm-smmuv3");
1150 object_property_set_link(OBJECT(dev
), OBJECT(bus
), "primary-bus",
1152 qdev_init_nofail(dev
);
1153 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, base
);
1154 for (i
= 0; i
< NUM_SMMU_IRQS
; i
++) {
1155 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
1156 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
1159 node
= g_strdup_printf("/smmuv3@%" PRIx64
, base
);
1160 qemu_fdt_add_subnode(vms
->fdt
, node
);
1161 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1162 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg", 2, base
, 2, size
);
1164 qemu_fdt_setprop_cells(vms
->fdt
, node
, "interrupts",
1165 GIC_FDT_IRQ_TYPE_SPI
, irq
, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1166 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1167 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1168 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
1170 qemu_fdt_setprop(vms
->fdt
, node
, "interrupt-names", irq_names
,
1173 qemu_fdt_setprop_cell(vms
->fdt
, node
, "clocks", vms
->clock_phandle
);
1174 qemu_fdt_setprop_string(vms
->fdt
, node
, "clock-names", "apb_pclk");
1175 qemu_fdt_setprop(vms
->fdt
, node
, "dma-coherent", NULL
, 0);
1177 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1179 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1183 static void create_pcie(VirtMachineState
*vms
)
1185 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
1186 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
1187 hwaddr base_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].base
;
1188 hwaddr size_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].size
;
1189 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
1190 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
1191 hwaddr base_ecam
, size_ecam
;
1192 hwaddr base
= base_mmio
;
1194 int irq
= vms
->irqmap
[VIRT_PCIE
];
1195 MemoryRegion
*mmio_alias
;
1196 MemoryRegion
*mmio_reg
;
1197 MemoryRegion
*ecam_alias
;
1198 MemoryRegion
*ecam_reg
;
1204 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
1205 qdev_init_nofail(dev
);
1207 ecam_id
= VIRT_ECAM_ID(vms
->highmem_ecam
);
1208 base_ecam
= vms
->memmap
[ecam_id
].base
;
1209 size_ecam
= vms
->memmap
[ecam_id
].size
;
1210 nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
1211 /* Map only the first size_ecam bytes of ECAM space */
1212 ecam_alias
= g_new0(MemoryRegion
, 1);
1213 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1214 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1215 ecam_reg
, 0, size_ecam
);
1216 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1218 /* Map the MMIO window into system address space so as to expose
1219 * the section of PCI MMIO space which starts at the same base address
1220 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1223 mmio_alias
= g_new0(MemoryRegion
, 1);
1224 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1225 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1226 mmio_reg
, base_mmio
, size_mmio
);
1227 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1230 /* Map high MMIO space */
1231 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1233 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1234 mmio_reg
, base_mmio_high
, size_mmio_high
);
1235 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1239 /* Map IO port space */
1240 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1242 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1243 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
1244 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
1245 gpex_set_irq_num(GPEX_HOST(dev
), i
, irq
+ i
);
1248 pci
= PCI_HOST_BRIDGE(dev
);
1250 for (i
= 0; i
< nb_nics
; i
++) {
1251 NICInfo
*nd
= &nd_table
[i
];
1254 nd
->model
= g_strdup("virtio");
1257 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1261 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1262 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1263 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1264 "compatible", "pci-host-ecam-generic");
1265 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "pci");
1266 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 3);
1267 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 2);
1268 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "linux,pci-domain", 0);
1269 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "bus-range", 0,
1271 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1273 if (vms
->msi_phandle
) {
1274 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "msi-parent",
1278 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1279 2, base_ecam
, 2, size_ecam
);
1282 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1283 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1284 2, base_pio
, 2, size_pio
,
1285 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1286 2, base_mmio
, 2, size_mmio
,
1287 1, FDT_PCI_RANGE_MMIO_64BIT
,
1289 2, base_mmio_high
, 2, size_mmio_high
);
1291 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1292 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1293 2, base_pio
, 2, size_pio
,
1294 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1295 2, base_mmio
, 2, size_mmio
);
1298 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 1);
1299 create_pcie_irq_map(vms
, vms
->gic_phandle
, irq
, nodename
);
1302 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1304 create_smmu(vms
, pci
->bus
);
1306 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "iommu-map",
1307 0x0, vms
->iommu_phandle
, 0x0, 0x10000);
1313 static void create_platform_bus(VirtMachineState
*vms
)
1318 MemoryRegion
*sysmem
= get_system_memory();
1320 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1321 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1322 qdev_prop_set_uint32(dev
, "num_irqs", PLATFORM_BUS_NUM_IRQS
);
1323 qdev_prop_set_uint32(dev
, "mmio_size", vms
->memmap
[VIRT_PLATFORM_BUS
].size
);
1324 qdev_init_nofail(dev
);
1325 vms
->platform_bus_dev
= dev
;
1327 s
= SYS_BUS_DEVICE(dev
);
1328 for (i
= 0; i
< PLATFORM_BUS_NUM_IRQS
; i
++) {
1329 int irq
= vms
->irqmap
[VIRT_PLATFORM_BUS
] + i
;
1330 sysbus_connect_irq(s
, i
, qdev_get_gpio_in(vms
->gic
, irq
));
1333 memory_region_add_subregion(sysmem
,
1334 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1335 sysbus_mmio_get_region(s
, 0));
1338 static void create_secure_ram(VirtMachineState
*vms
,
1339 MemoryRegion
*secure_sysmem
)
1341 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1343 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1344 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1346 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
,
1348 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1350 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1351 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1352 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "memory");
1353 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1354 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1355 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1360 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1362 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1365 *fdt_size
= board
->fdt_size
;
1369 static void virt_build_smbios(VirtMachineState
*vms
)
1371 MachineClass
*mc
= MACHINE_GET_CLASS(vms
);
1372 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1373 uint8_t *smbios_tables
, *smbios_anchor
;
1374 size_t smbios_tables_len
, smbios_anchor_len
;
1375 const char *product
= "QEMU Virtual Machine";
1377 if (kvm_enabled()) {
1378 product
= "KVM Virtual Machine";
1381 smbios_set_defaults("QEMU", product
,
1382 vmc
->smbios_old_sys_ver
? "1.0" : mc
->name
, false,
1383 true, SMBIOS_ENTRY_POINT_30
);
1385 smbios_get_tables(MACHINE(vms
), NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1386 &smbios_anchor
, &smbios_anchor_len
);
1388 if (smbios_anchor
) {
1389 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1390 smbios_tables
, smbios_tables_len
);
1391 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1392 smbios_anchor
, smbios_anchor_len
);
1397 void virt_machine_done(Notifier
*notifier
, void *data
)
1399 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1401 MachineState
*ms
= MACHINE(vms
);
1402 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1403 struct arm_boot_info
*info
= &vms
->bootinfo
;
1404 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1407 * If the user provided a dtb, we assume the dynamic sysbus nodes
1408 * already are integrated there. This corresponds to a use case where
1409 * the dynamic sysbus nodes are complex and their generation is not yet
1410 * supported. In that case the user can take charge of the guest dt
1411 * while qemu takes charge of the qom stuff.
1413 if (info
->dtb_filename
== NULL
) {
1414 platform_bus_add_all_fdt_nodes(vms
->fdt
, "/intc",
1415 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1416 vms
->memmap
[VIRT_PLATFORM_BUS
].size
,
1417 vms
->irqmap
[VIRT_PLATFORM_BUS
]);
1419 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
, ms
) < 0) {
1423 virt_acpi_setup(vms
);
1424 virt_build_smbios(vms
);
1427 static uint64_t virt_cpu_mp_affinity(VirtMachineState
*vms
, int idx
)
1429 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
1430 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1432 if (!vmc
->disallow_affinity_adjustment
) {
1433 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1434 * GIC's target-list limitations. 32-bit KVM hosts currently
1435 * always create clusters of 4 CPUs, but that is expected to
1436 * change when they gain support for gicv3. When KVM is enabled
1437 * it will override the changes we make here, therefore our
1438 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1439 * and to improve SGI efficiency.
1441 if (vms
->gic_version
== 3) {
1442 clustersz
= GICV3_TARGETLIST_BITS
;
1444 clustersz
= GIC_TARGETLIST_BITS
;
1447 return arm_cpu_mp_affinity(idx
, clustersz
);
1450 static void virt_set_memmap(VirtMachineState
*vms
)
1452 MachineState
*ms
= MACHINE(vms
);
1453 hwaddr base
, device_memory_base
, device_memory_size
;
1456 vms
->memmap
= extended_memmap
;
1458 for (i
= 0; i
< ARRAY_SIZE(base_memmap
); i
++) {
1459 vms
->memmap
[i
] = base_memmap
[i
];
1462 if (ms
->ram_slots
> ACPI_MAX_RAM_SLOTS
) {
1463 error_report("unsupported number of memory slots: %"PRIu64
,
1469 * We compute the base of the high IO region depending on the
1470 * amount of initial and device memory. The device memory start/size
1471 * is aligned on 1GiB. We never put the high IO region below 256GiB
1472 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1473 * The device region size assumes 1GiB page max alignment per slot.
1475 device_memory_base
=
1476 ROUND_UP(vms
->memmap
[VIRT_MEM
].base
+ ms
->ram_size
, GiB
);
1477 device_memory_size
= ms
->maxram_size
- ms
->ram_size
+ ms
->ram_slots
* GiB
;
1479 /* Base address of the high IO region */
1480 base
= device_memory_base
+ ROUND_UP(device_memory_size
, GiB
);
1481 if (base
< device_memory_base
) {
1482 error_report("maxmem/slots too huge");
1485 if (base
< vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
) {
1486 base
= vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
;
1489 for (i
= VIRT_LOWMEMMAP_LAST
; i
< ARRAY_SIZE(extended_memmap
); i
++) {
1490 hwaddr size
= extended_memmap
[i
].size
;
1492 base
= ROUND_UP(base
, size
);
1493 vms
->memmap
[i
].base
= base
;
1494 vms
->memmap
[i
].size
= size
;
1497 vms
->highest_gpa
= base
- 1;
1498 if (device_memory_size
> 0) {
1499 ms
->device_memory
= g_malloc0(sizeof(*ms
->device_memory
));
1500 ms
->device_memory
->base
= device_memory_base
;
1501 memory_region_init(&ms
->device_memory
->mr
, OBJECT(vms
),
1502 "device-memory", device_memory_size
);
1506 static void machvirt_init(MachineState
*machine
)
1508 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1509 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1510 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1511 const CPUArchIdList
*possible_cpus
;
1512 MemoryRegion
*sysmem
= get_system_memory();
1513 MemoryRegion
*secure_sysmem
= NULL
;
1514 int n
, virt_max_cpus
;
1515 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1516 bool firmware_loaded
;
1517 bool aarch64
= true;
1518 bool has_ged
= !vmc
->no_ged
;
1519 unsigned int smp_cpus
= machine
->smp
.cpus
;
1520 unsigned int max_cpus
= machine
->smp
.max_cpus
;
1523 * In accelerated mode, the memory map is computed earlier in kvm_type()
1524 * to create a VM with the right number of IPA bits.
1527 virt_set_memmap(vms
);
1530 /* We can probe only here because during property set
1531 * KVM is not available yet
1533 if (vms
->gic_version
<= 0) {
1534 /* "host" or "max" */
1535 if (!kvm_enabled()) {
1536 if (vms
->gic_version
== 0) {
1537 error_report("gic-version=host requires KVM");
1540 /* "max": currently means 3 for TCG */
1541 vms
->gic_version
= 3;
1544 vms
->gic_version
= kvm_arm_vgic_probe();
1545 if (!vms
->gic_version
) {
1547 "Unable to determine GIC version supported by host");
1553 if (!cpu_type_valid(machine
->cpu_type
)) {
1554 error_report("mach-virt: CPU type %s not supported", machine
->cpu_type
);
1559 if (kvm_enabled()) {
1560 error_report("mach-virt: KVM does not support Security extensions");
1565 * The Secure view of the world is the same as the NonSecure,
1566 * but with a few extra devices. Create it as a container region
1567 * containing the system memory at low priority; any secure-only
1568 * devices go in at higher priority and take precedence.
1570 secure_sysmem
= g_new(MemoryRegion
, 1);
1571 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1573 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1576 firmware_loaded
= virt_firmware_init(vms
, sysmem
,
1577 secure_sysmem
?: sysmem
);
1579 /* If we have an EL3 boot ROM then the assumption is that it will
1580 * implement PSCI itself, so disable QEMU's internal implementation
1581 * so it doesn't get in the way. Instead of starting secondary
1582 * CPUs in PSCI powerdown state we will start them all running and
1583 * let the boot ROM sort them out.
1584 * The usual case is that we do use QEMU's PSCI implementation;
1585 * if the guest has EL2 then we will use SMC as the conduit,
1586 * and otherwise we will use HVC (for backwards compatibility and
1587 * because if we're using KVM then we must use HVC).
1589 if (vms
->secure
&& firmware_loaded
) {
1590 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1591 } else if (vms
->virt
) {
1592 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1594 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1597 /* The maximum number of CPUs depends on the GIC version, or on how
1598 * many redistributors we can fit into the memory map.
1600 if (vms
->gic_version
== 3) {
1602 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
1604 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
1606 virt_max_cpus
= GIC_NCPU
;
1609 if (max_cpus
> virt_max_cpus
) {
1610 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1611 "supported by machine 'mach-virt' (%d)",
1612 max_cpus
, virt_max_cpus
);
1616 vms
->smp_cpus
= smp_cpus
;
1618 if (vms
->virt
&& kvm_enabled()) {
1619 error_report("mach-virt: KVM does not support providing "
1620 "Virtualization extensions to the guest CPU");
1626 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1627 for (n
= 0; n
< possible_cpus
->len
; n
++) {
1631 if (n
>= smp_cpus
) {
1635 cpuobj
= object_new(possible_cpus
->cpus
[n
].type
);
1636 object_property_set_int(cpuobj
, possible_cpus
->cpus
[n
].arch_id
,
1637 "mp-affinity", NULL
);
1642 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
1645 aarch64
&= object_property_get_bool(cpuobj
, "aarch64", NULL
);
1648 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1651 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2", NULL
)) {
1652 object_property_set_bool(cpuobj
, false, "has_el2", NULL
);
1655 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1656 object_property_set_int(cpuobj
, vms
->psci_conduit
,
1657 "psci-conduit", NULL
);
1659 /* Secondary CPUs start in PSCI powered-down state */
1661 object_property_set_bool(cpuobj
, true,
1662 "start-powered-off", NULL
);
1666 if (vmc
->kvm_no_adjvtime
&&
1667 object_property_find(cpuobj
, "kvm-no-adjvtime", NULL
)) {
1668 object_property_set_bool(cpuobj
, true, "kvm-no-adjvtime", NULL
);
1671 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu", NULL
)) {
1672 object_property_set_bool(cpuobj
, false, "pmu", NULL
);
1675 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1676 object_property_set_int(cpuobj
, vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1677 "reset-cbar", &error_abort
);
1680 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1683 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1684 "secure-memory", &error_abort
);
1687 object_property_set_bool(cpuobj
, true, "realized", &error_fatal
);
1688 object_unref(cpuobj
);
1690 fdt_add_timer_nodes(vms
);
1691 fdt_add_cpu_nodes(vms
);
1693 if (!kvm_enabled()) {
1694 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1695 bool aarch64
= object_property_get_bool(OBJECT(cpu
), "aarch64", NULL
);
1697 if (aarch64
&& vms
->highmem
) {
1698 int requested_pa_size
, pamax
= arm_pamax(cpu
);
1700 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
1701 if (pamax
< requested_pa_size
) {
1702 error_report("VCPU supports less PA bits (%d) than requested "
1703 "by the memory map (%d)", pamax
, requested_pa_size
);
1709 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1711 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
, ram
);
1712 if (machine
->device_memory
) {
1713 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
1714 &machine
->device_memory
->mr
);
1717 virt_flash_fdt(vms
, sysmem
, secure_sysmem
?: sysmem
);
1721 fdt_add_pmu_nodes(vms
);
1723 create_uart(vms
, VIRT_UART
, sysmem
, serial_hd(0));
1726 create_secure_ram(vms
, secure_sysmem
);
1727 create_uart(vms
, VIRT_SECURE_UART
, secure_sysmem
, serial_hd(1));
1730 vms
->highmem_ecam
&= vms
->highmem
&& (!firmware_loaded
|| aarch64
);
1736 if (has_ged
&& aarch64
&& firmware_loaded
&& acpi_enabled
) {
1737 vms
->acpi_dev
= create_acpi_ged(vms
);
1742 /* connect powerdown request */
1743 vms
->powerdown_notifier
.notify
= virt_powerdown_req
;
1744 qemu_register_powerdown_notifier(&vms
->powerdown_notifier
);
1746 /* Create mmio transports, so the user can create virtio backends
1747 * (which will be automatically plugged in to the transports). If
1748 * no backend is created the transport will just sit harmlessly idle.
1750 create_virtio_devices(vms
);
1752 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
1753 rom_set_fw(vms
->fw_cfg
);
1755 create_platform_bus(vms
);
1757 vms
->bootinfo
.ram_size
= machine
->ram_size
;
1758 vms
->bootinfo
.nb_cpus
= smp_cpus
;
1759 vms
->bootinfo
.board_id
= -1;
1760 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
1761 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
1762 vms
->bootinfo
.skip_dtb_autoload
= true;
1763 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
1764 arm_load_kernel(ARM_CPU(first_cpu
), machine
, &vms
->bootinfo
);
1766 vms
->machine_done
.notify
= virt_machine_done
;
1767 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
1770 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1772 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1777 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1779 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1781 vms
->secure
= value
;
1784 static bool virt_get_virt(Object
*obj
, Error
**errp
)
1786 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1791 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
1793 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1798 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1800 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1802 return vms
->highmem
;
1805 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1807 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1809 vms
->highmem
= value
;
1812 static bool virt_get_its(Object
*obj
, Error
**errp
)
1814 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1819 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
1821 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1826 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1828 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1829 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1831 return g_strdup(val
);
1834 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1836 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1838 if (!strcmp(value
, "3")) {
1839 vms
->gic_version
= 3;
1840 } else if (!strcmp(value
, "2")) {
1841 vms
->gic_version
= 2;
1842 } else if (!strcmp(value
, "host")) {
1843 vms
->gic_version
= 0; /* Will probe later */
1844 } else if (!strcmp(value
, "max")) {
1845 vms
->gic_version
= -1; /* Will probe later */
1847 error_setg(errp
, "Invalid gic-version value");
1848 error_append_hint(errp
, "Valid values are 3, 2, host, max.\n");
1852 static char *virt_get_iommu(Object
*obj
, Error
**errp
)
1854 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1856 switch (vms
->iommu
) {
1857 case VIRT_IOMMU_NONE
:
1858 return g_strdup("none");
1859 case VIRT_IOMMU_SMMUV3
:
1860 return g_strdup("smmuv3");
1862 g_assert_not_reached();
1866 static void virt_set_iommu(Object
*obj
, const char *value
, Error
**errp
)
1868 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1870 if (!strcmp(value
, "smmuv3")) {
1871 vms
->iommu
= VIRT_IOMMU_SMMUV3
;
1872 } else if (!strcmp(value
, "none")) {
1873 vms
->iommu
= VIRT_IOMMU_NONE
;
1875 error_setg(errp
, "Invalid iommu value");
1876 error_append_hint(errp
, "Valid values are none, smmuv3.\n");
1880 static CpuInstanceProperties
1881 virt_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
1883 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1884 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
1886 assert(cpu_index
< possible_cpus
->len
);
1887 return possible_cpus
->cpus
[cpu_index
].props
;
1890 static int64_t virt_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
1892 return idx
% ms
->numa_state
->num_nodes
;
1895 static const CPUArchIdList
*virt_possible_cpu_arch_ids(MachineState
*ms
)
1898 unsigned int max_cpus
= ms
->smp
.max_cpus
;
1899 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
1901 if (ms
->possible_cpus
) {
1902 assert(ms
->possible_cpus
->len
== max_cpus
);
1903 return ms
->possible_cpus
;
1906 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
1907 sizeof(CPUArchId
) * max_cpus
);
1908 ms
->possible_cpus
->len
= max_cpus
;
1909 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
1910 ms
->possible_cpus
->cpus
[n
].type
= ms
->cpu_type
;
1911 ms
->possible_cpus
->cpus
[n
].arch_id
=
1912 virt_cpu_mp_affinity(vms
, n
);
1913 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
1914 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
1916 return ms
->possible_cpus
;
1919 static void virt_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
1922 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
1923 const bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
1926 error_setg(errp
, "nvdimm is not yet supported");
1930 if (!vms
->acpi_dev
) {
1932 "memory hotplug is not enabled: missing acpi-ged device");
1936 pc_dimm_pre_plug(PC_DIMM(dev
), MACHINE(hotplug_dev
), NULL
, errp
);
1939 static void virt_memory_plug(HotplugHandler
*hotplug_dev
,
1940 DeviceState
*dev
, Error
**errp
)
1942 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
1943 Error
*local_err
= NULL
;
1945 pc_dimm_plug(PC_DIMM(dev
), MACHINE(vms
), &local_err
);
1950 hotplug_handler_plug(HOTPLUG_HANDLER(vms
->acpi_dev
),
1954 error_propagate(errp
, local_err
);
1957 static void virt_machine_device_pre_plug_cb(HotplugHandler
*hotplug_dev
,
1958 DeviceState
*dev
, Error
**errp
)
1960 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
1961 virt_memory_pre_plug(hotplug_dev
, dev
, errp
);
1965 static void virt_machine_device_plug_cb(HotplugHandler
*hotplug_dev
,
1966 DeviceState
*dev
, Error
**errp
)
1968 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
1970 if (vms
->platform_bus_dev
) {
1971 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
1972 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms
->platform_bus_dev
),
1973 SYS_BUS_DEVICE(dev
));
1976 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
1977 virt_memory_plug(hotplug_dev
, dev
, errp
);
1981 static void virt_machine_device_unplug_request_cb(HotplugHandler
*hotplug_dev
,
1982 DeviceState
*dev
, Error
**errp
)
1984 error_setg(errp
, "device unplug request for unsupported device"
1985 " type: %s", object_get_typename(OBJECT(dev
)));
1988 static HotplugHandler
*virt_machine_get_hotplug_handler(MachineState
*machine
,
1991 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
) ||
1992 (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
))) {
1993 return HOTPLUG_HANDLER(machine
);
2000 * for arm64 kvm_type [7-0] encodes the requested number of bits
2001 * in the IPA address space
2003 static int virt_kvm_type(MachineState
*ms
, const char *type_str
)
2005 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
2006 int max_vm_pa_size
= kvm_arm_get_max_vm_ipa_size(ms
);
2007 int requested_pa_size
;
2009 /* we freeze the memory map to compute the highest gpa */
2010 virt_set_memmap(vms
);
2012 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
2014 if (requested_pa_size
> max_vm_pa_size
) {
2015 error_report("-m and ,maxmem option values "
2016 "require an IPA range (%d bits) larger than "
2017 "the one supported by the host (%d bits)",
2018 requested_pa_size
, max_vm_pa_size
);
2022 * By default we return 0 which corresponds to an implicit legacy
2023 * 40b IPA setting. Otherwise we return the actual requested PA
2026 return requested_pa_size
> 40 ? requested_pa_size
: 0;
2029 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
2031 MachineClass
*mc
= MACHINE_CLASS(oc
);
2032 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
2034 mc
->init
= machvirt_init
;
2035 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2036 * The value may be reduced later when we have more information about the
2037 * configuration of the particular instance.
2040 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_CALXEDA_XGMAC
);
2041 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_AMD_XGBE
);
2042 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_RAMFB_DEVICE
);
2043 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_PLATFORM
);
2044 mc
->block_default_type
= IF_VIRTIO
;
2046 mc
->pci_allow_0_address
= true;
2047 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2048 mc
->minimum_page_bits
= 12;
2049 mc
->possible_cpu_arch_ids
= virt_possible_cpu_arch_ids
;
2050 mc
->cpu_index_to_instance_props
= virt_cpu_index_to_props
;
2051 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-a15");
2052 mc
->get_default_cpu_node_id
= virt_get_default_cpu_node_id
;
2053 mc
->kvm_type
= virt_kvm_type
;
2054 assert(!mc
->get_hotplug_handler
);
2055 mc
->get_hotplug_handler
= virt_machine_get_hotplug_handler
;
2056 hc
->pre_plug
= virt_machine_device_pre_plug_cb
;
2057 hc
->plug
= virt_machine_device_plug_cb
;
2058 hc
->unplug_request
= virt_machine_device_unplug_request_cb
;
2059 mc
->numa_mem_supported
= true;
2060 mc
->auto_enable_numa_with_memhp
= true;
2063 static void virt_instance_init(Object
*obj
)
2065 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2066 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
2068 /* EL3 is disabled by default on virt: this makes us consistent
2069 * between KVM and TCG for this board, and it also allows us to
2070 * boot UEFI blobs which assume no TrustZone support.
2072 vms
->secure
= false;
2073 object_property_add_bool(obj
, "secure", virt_get_secure
,
2074 virt_set_secure
, NULL
);
2075 object_property_set_description(obj
, "secure",
2076 "Set on/off to enable/disable the ARM "
2077 "Security Extensions (TrustZone)",
2080 /* EL2 is also disabled by default, for similar reasons */
2082 object_property_add_bool(obj
, "virtualization", virt_get_virt
,
2083 virt_set_virt
, NULL
);
2084 object_property_set_description(obj
, "virtualization",
2085 "Set on/off to enable/disable emulating a "
2086 "guest CPU which implements the ARM "
2087 "Virtualization Extensions",
2090 /* High memory is enabled by default */
2091 vms
->highmem
= true;
2092 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
2093 virt_set_highmem
, NULL
);
2094 object_property_set_description(obj
, "highmem",
2095 "Set on/off to enable/disable using "
2096 "physical address space above 32 bits",
2098 /* Default GIC type is v2 */
2099 vms
->gic_version
= 2;
2100 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
2101 virt_set_gic_version
, NULL
);
2102 object_property_set_description(obj
, "gic-version",
2104 "Valid values are 2, 3 and host", NULL
);
2106 vms
->highmem_ecam
= !vmc
->no_highmem_ecam
;
2111 /* Default allows ITS instantiation */
2113 object_property_add_bool(obj
, "its", virt_get_its
,
2114 virt_set_its
, NULL
);
2115 object_property_set_description(obj
, "its",
2116 "Set on/off to enable/disable "
2117 "ITS instantiation",
2121 /* Default disallows iommu instantiation */
2122 vms
->iommu
= VIRT_IOMMU_NONE
;
2123 object_property_add_str(obj
, "iommu", virt_get_iommu
, virt_set_iommu
, NULL
);
2124 object_property_set_description(obj
, "iommu",
2125 "Set the IOMMU type. "
2126 "Valid values are none and smmuv3",
2129 vms
->irqmap
= a15irqmap
;
2131 virt_flash_create(vms
);
2134 static const TypeInfo virt_machine_info
= {
2135 .name
= TYPE_VIRT_MACHINE
,
2136 .parent
= TYPE_MACHINE
,
2138 .instance_size
= sizeof(VirtMachineState
),
2139 .class_size
= sizeof(VirtMachineClass
),
2140 .class_init
= virt_machine_class_init
,
2141 .instance_init
= virt_instance_init
,
2142 .interfaces
= (InterfaceInfo
[]) {
2143 { TYPE_HOTPLUG_HANDLER
},
2148 static void machvirt_machine_init(void)
2150 type_register_static(&virt_machine_info
);
2152 type_init(machvirt_machine_init
);
2154 static void virt_machine_5_0_options(MachineClass
*mc
)
2157 DEFINE_VIRT_MACHINE_AS_LATEST(5, 0)
2159 static void virt_machine_4_2_options(MachineClass
*mc
)
2161 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2163 virt_machine_5_0_options(mc
);
2164 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
2165 vmc
->kvm_no_adjvtime
= true;
2167 DEFINE_VIRT_MACHINE(4, 2)
2169 static void virt_machine_4_1_options(MachineClass
*mc
)
2171 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2173 virt_machine_4_2_options(mc
);
2174 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
2176 mc
->auto_enable_numa_with_memhp
= false;
2178 DEFINE_VIRT_MACHINE(4, 1)
2180 static void virt_machine_4_0_options(MachineClass
*mc
)
2182 virt_machine_4_1_options(mc
);
2183 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
2185 DEFINE_VIRT_MACHINE(4, 0)
2187 static void virt_machine_3_1_options(MachineClass
*mc
)
2189 virt_machine_4_0_options(mc
);
2190 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
2192 DEFINE_VIRT_MACHINE(3, 1)
2194 static void virt_machine_3_0_options(MachineClass
*mc
)
2196 virt_machine_3_1_options(mc
);
2197 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
2199 DEFINE_VIRT_MACHINE(3, 0)
2201 static void virt_machine_2_12_options(MachineClass
*mc
)
2203 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2205 virt_machine_3_0_options(mc
);
2206 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
2207 vmc
->no_highmem_ecam
= true;
2210 DEFINE_VIRT_MACHINE(2, 12)
2212 static void virt_machine_2_11_options(MachineClass
*mc
)
2214 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2216 virt_machine_2_12_options(mc
);
2217 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
2218 vmc
->smbios_old_sys_ver
= true;
2220 DEFINE_VIRT_MACHINE(2, 11)
2222 static void virt_machine_2_10_options(MachineClass
*mc
)
2224 virt_machine_2_11_options(mc
);
2225 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
2226 /* before 2.11 we never faulted accesses to bad addresses */
2227 mc
->ignore_memory_transaction_failures
= true;
2229 DEFINE_VIRT_MACHINE(2, 10)
2231 static void virt_machine_2_9_options(MachineClass
*mc
)
2233 virt_machine_2_10_options(mc
);
2234 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
2236 DEFINE_VIRT_MACHINE(2, 9)
2238 static void virt_machine_2_8_options(MachineClass
*mc
)
2240 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2242 virt_machine_2_9_options(mc
);
2243 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
2244 /* For 2.8 and earlier we falsely claimed in the DT that
2245 * our timers were edge-triggered, not level-triggered.
2247 vmc
->claim_edge_triggered_timers
= true;
2249 DEFINE_VIRT_MACHINE(2, 8)
2251 static void virt_machine_2_7_options(MachineClass
*mc
)
2253 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2255 virt_machine_2_8_options(mc
);
2256 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
2257 /* ITS was introduced with 2.8 */
2259 /* Stick with 1K pages for migration compatibility */
2260 mc
->minimum_page_bits
= 0;
2262 DEFINE_VIRT_MACHINE(2, 7)
2264 static void virt_machine_2_6_options(MachineClass
*mc
)
2266 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2268 virt_machine_2_7_options(mc
);
2269 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
2270 vmc
->disallow_affinity_adjustment
= true;
2271 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2274 DEFINE_VIRT_MACHINE(2, 6)