Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / hw / arm / virt.c
bloba9a913aeadb30cf324e29793c88f1de2e64dc6bb
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/qmp/qlist.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/cpu-qom.h"
77 #include "target/arm/internals.h"
78 #include "target/arm/multiprocessing.h"
79 #include "target/arm/gtimer.h"
80 #include "hw/mem/pc-dimm.h"
81 #include "hw/mem/nvdimm.h"
82 #include "hw/acpi/generic_event_device.h"
83 #include "hw/virtio/virtio-md-pci.h"
84 #include "hw/virtio/virtio-iommu.h"
85 #include "hw/char/pl011.h"
86 #include "qemu/guest-random.h"
88 static GlobalProperty arm_virt_compat[] = {
89 { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" },
91 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat);
94 * This cannot be called from the virt_machine_class_init() because
95 * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new()
96 * only is called on virt non abstract class init.
98 static void arm_virt_compat_set(MachineClass *mc)
100 compat_props_add(mc->compat_props, arm_virt_compat,
101 arm_virt_compat_len);
104 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
105 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
106 void *data) \
108 MachineClass *mc = MACHINE_CLASS(oc); \
109 arm_virt_compat_set(mc); \
110 virt_machine_##major##_##minor##_options(mc); \
111 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
112 if (latest) { \
113 mc->alias = "virt"; \
116 static const TypeInfo machvirt_##major##_##minor##_info = { \
117 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
118 .parent = TYPE_VIRT_MACHINE, \
119 .class_init = virt_##major##_##minor##_class_init, \
120 }; \
121 static void machvirt_machine_##major##_##minor##_init(void) \
123 type_register_static(&machvirt_##major##_##minor##_info); \
125 type_init(machvirt_machine_##major##_##minor##_init);
127 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
128 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
129 #define DEFINE_VIRT_MACHINE(major, minor) \
130 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
133 /* Number of external interrupt lines to configure the GIC with */
134 #define NUM_IRQS 256
136 #define PLATFORM_BUS_NUM_IRQS 64
138 /* Legacy RAM limit in GB (< version 4.0) */
139 #define LEGACY_RAMLIMIT_GB 255
140 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
142 /* Addresses and sizes of our components.
143 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
144 * 128MB..256MB is used for miscellaneous device I/O.
145 * 256MB..1GB is reserved for possible future PCI support (ie where the
146 * PCI memory window will go if we add a PCI host controller).
147 * 1GB and up is RAM (which may happily spill over into the
148 * high memory region beyond 4GB).
149 * This represents a compromise between how much RAM can be given to
150 * a 32 bit VM and leaving space for expansion and in particular for PCI.
151 * Note that devices should generally be placed at multiples of 0x10000,
152 * to accommodate guests using 64K pages.
154 static const MemMapEntry base_memmap[] = {
155 /* Space up to 0x8000000 is reserved for a boot ROM */
156 [VIRT_FLASH] = { 0, 0x08000000 },
157 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
158 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
159 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
160 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
161 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
162 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
163 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
164 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
165 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
166 /* This redistributor space allows up to 2*64kB*123 CPUs */
167 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
168 [VIRT_UART] = { 0x09000000, 0x00001000 },
169 [VIRT_RTC] = { 0x09010000, 0x00001000 },
170 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
171 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
172 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
173 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
174 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
175 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
176 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
177 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
178 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
179 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
180 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
181 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
182 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
183 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
184 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
185 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
186 /* Actual RAM size depends on initial RAM and device memory settings */
187 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
191 * Highmem IO Regions: This memory map is floating, located after the RAM.
192 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
193 * top of the RAM, so that its base get the same alignment as the size,
194 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
195 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
196 * Note the extended_memmap is sized so that it eventually also includes the
197 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
198 * index of base_memmap).
200 * The memory map for these Highmem IO Regions can be in legacy or compact
201 * layout, depending on 'compact-highmem' property. With legacy layout, the
202 * PA space for one specific region is always reserved, even if the region
203 * has been disabled or doesn't fit into the PA space. However, the PA space
204 * for the region won't be reserved in these circumstances with compact layout.
206 static MemMapEntry extended_memmap[] = {
207 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
208 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
209 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
210 /* Second PCIe window */
211 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
214 static const int a15irqmap[] = {
215 [VIRT_UART] = 1,
216 [VIRT_RTC] = 2,
217 [VIRT_PCIE] = 3, /* ... to 6 */
218 [VIRT_GPIO] = 7,
219 [VIRT_SECURE_UART] = 8,
220 [VIRT_ACPI_GED] = 9,
221 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
222 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
223 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
224 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
227 static void create_randomness(MachineState *ms, const char *node)
229 struct {
230 uint64_t kaslr;
231 uint8_t rng[32];
232 } seed;
234 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
235 return;
237 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
238 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
242 * The CPU object always exposes the NS EL2 virt timer IRQ line,
243 * but we don't want to advertise it to the guest in the dtb or ACPI
244 * table unless it's really going to do something.
246 static bool ns_el2_virt_timer_present(void)
248 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
249 CPUARMState *env = &cpu->env;
251 return arm_feature(env, ARM_FEATURE_AARCH64) &&
252 arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu);
255 static void create_fdt(VirtMachineState *vms)
257 MachineState *ms = MACHINE(vms);
258 int nb_numa_nodes = ms->numa_state->num_nodes;
259 void *fdt = create_device_tree(&vms->fdt_size);
261 if (!fdt) {
262 error_report("create_device_tree() failed");
263 exit(1);
266 ms->fdt = fdt;
268 /* Header */
269 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
270 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
271 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
272 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
274 /* /chosen must exist for load_dtb to fill in necessary properties later */
275 qemu_fdt_add_subnode(fdt, "/chosen");
276 if (vms->dtb_randomness) {
277 create_randomness(ms, "/chosen");
280 if (vms->secure) {
281 qemu_fdt_add_subnode(fdt, "/secure-chosen");
282 if (vms->dtb_randomness) {
283 create_randomness(ms, "/secure-chosen");
287 /* Clock node, for the benefit of the UART. The kernel device tree
288 * binding documentation claims the PL011 node clock properties are
289 * optional but in practice if you omit them the kernel refuses to
290 * probe for the device.
292 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
293 qemu_fdt_add_subnode(fdt, "/apb-pclk");
294 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
295 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
296 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
297 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
298 "clk24mhz");
299 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
301 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
302 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
303 uint32_t *matrix = g_malloc0(size);
304 int idx, i, j;
306 for (i = 0; i < nb_numa_nodes; i++) {
307 for (j = 0; j < nb_numa_nodes; j++) {
308 idx = (i * nb_numa_nodes + j) * 3;
309 matrix[idx + 0] = cpu_to_be32(i);
310 matrix[idx + 1] = cpu_to_be32(j);
311 matrix[idx + 2] =
312 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
316 qemu_fdt_add_subnode(fdt, "/distance-map");
317 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
318 "numa-distance-map-v1");
319 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
320 matrix, size);
321 g_free(matrix);
325 static void fdt_add_timer_nodes(const VirtMachineState *vms)
327 /* On real hardware these interrupts are level-triggered.
328 * On KVM they were edge-triggered before host kernel version 4.4,
329 * and level-triggered afterwards.
330 * On emulated QEMU they are level-triggered.
332 * Getting the DTB info about them wrong is awkward for some
333 * guest kernels:
334 * pre-4.8 ignore the DT and leave the interrupt configured
335 * with whatever the GIC reset value (or the bootloader) left it at
336 * 4.8 before rc6 honour the incorrect data by programming it back
337 * into the GIC, causing problems
338 * 4.8rc6 and later ignore the DT and always write "level triggered"
339 * into the GIC
341 * For backwards-compatibility, virt-2.8 and earlier will continue
342 * to say these are edge-triggered, but later machines will report
343 * the correct information.
345 ARMCPU *armcpu;
346 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
347 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
348 MachineState *ms = MACHINE(vms);
350 if (vmc->claim_edge_triggered_timers) {
351 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
354 if (vms->gic_version == VIRT_GIC_VERSION_2) {
355 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
356 GIC_FDT_IRQ_PPI_CPU_WIDTH,
357 (1 << MACHINE(vms)->smp.cpus) - 1);
360 qemu_fdt_add_subnode(ms->fdt, "/timer");
362 armcpu = ARM_CPU(qemu_get_cpu(0));
363 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
364 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
365 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
366 compat, sizeof(compat));
367 } else {
368 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
369 "arm,armv7-timer");
371 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
372 if (vms->ns_el2_virt_timer_irq) {
373 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
374 GIC_FDT_IRQ_TYPE_PPI,
375 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
376 GIC_FDT_IRQ_TYPE_PPI,
377 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
378 GIC_FDT_IRQ_TYPE_PPI,
379 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
380 GIC_FDT_IRQ_TYPE_PPI,
381 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags,
382 GIC_FDT_IRQ_TYPE_PPI,
383 INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags);
384 } else {
385 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
386 GIC_FDT_IRQ_TYPE_PPI,
387 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
388 GIC_FDT_IRQ_TYPE_PPI,
389 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
390 GIC_FDT_IRQ_TYPE_PPI,
391 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
392 GIC_FDT_IRQ_TYPE_PPI,
393 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
397 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
399 int cpu;
400 int addr_cells = 1;
401 const MachineState *ms = MACHINE(vms);
402 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
403 int smp_cpus = ms->smp.cpus;
406 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
407 * On ARM v8 64-bit systems value should be set to 2,
408 * that corresponds to the MPIDR_EL1 register size.
409 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
410 * in the system, #address-cells can be set to 1, since
411 * MPIDR_EL1[63:32] bits are not used for CPUs
412 * identification.
414 * Here we actually don't know whether our system is 32- or 64-bit one.
415 * The simplest way to go is to examine affinity IDs of all our CPUs. If
416 * at least one of them has Aff3 populated, we set #address-cells to 2.
418 for (cpu = 0; cpu < smp_cpus; cpu++) {
419 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
421 if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) {
422 addr_cells = 2;
423 break;
427 qemu_fdt_add_subnode(ms->fdt, "/cpus");
428 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
429 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
431 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
432 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
433 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
434 CPUState *cs = CPU(armcpu);
436 qemu_fdt_add_subnode(ms->fdt, nodename);
437 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
438 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
439 armcpu->dtb_compatible);
441 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
442 qemu_fdt_setprop_string(ms->fdt, nodename,
443 "enable-method", "psci");
446 if (addr_cells == 2) {
447 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
448 arm_cpu_mp_affinity(armcpu));
449 } else {
450 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
451 arm_cpu_mp_affinity(armcpu));
454 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
455 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
456 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
459 if (!vmc->no_cpu_topology) {
460 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
461 qemu_fdt_alloc_phandle(ms->fdt));
464 g_free(nodename);
467 if (!vmc->no_cpu_topology) {
469 * Add vCPU topology description through fdt node cpu-map.
471 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
472 * In a SMP system, the hierarchy of CPUs can be defined through
473 * four entities that are used to describe the layout of CPUs in
474 * the system: socket/cluster/core/thread.
476 * A socket node represents the boundary of system physical package
477 * and its child nodes must be one or more cluster nodes. A system
478 * can contain several layers of clustering within a single physical
479 * package and cluster nodes can be contained in parent cluster nodes.
481 * Note: currently we only support one layer of clustering within
482 * each physical package.
484 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
486 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
487 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
488 char *map_path;
490 if (ms->smp.threads > 1) {
491 map_path = g_strdup_printf(
492 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
493 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
494 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
495 (cpu / ms->smp.threads) % ms->smp.cores,
496 cpu % ms->smp.threads);
497 } else {
498 map_path = g_strdup_printf(
499 "/cpus/cpu-map/socket%d/cluster%d/core%d",
500 cpu / (ms->smp.clusters * ms->smp.cores),
501 (cpu / ms->smp.cores) % ms->smp.clusters,
502 cpu % ms->smp.cores);
504 qemu_fdt_add_path(ms->fdt, map_path);
505 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
507 g_free(map_path);
508 g_free(cpu_path);
513 static void fdt_add_its_gic_node(VirtMachineState *vms)
515 char *nodename;
516 MachineState *ms = MACHINE(vms);
518 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
519 nodename = g_strdup_printf("/intc/its@%" PRIx64,
520 vms->memmap[VIRT_GIC_ITS].base);
521 qemu_fdt_add_subnode(ms->fdt, nodename);
522 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
523 "arm,gic-v3-its");
524 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
525 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
526 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
527 2, vms->memmap[VIRT_GIC_ITS].base,
528 2, vms->memmap[VIRT_GIC_ITS].size);
529 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
530 g_free(nodename);
533 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
535 MachineState *ms = MACHINE(vms);
536 char *nodename;
538 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
539 vms->memmap[VIRT_GIC_V2M].base);
540 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
541 qemu_fdt_add_subnode(ms->fdt, nodename);
542 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
543 "arm,gic-v2m-frame");
544 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
545 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
546 2, vms->memmap[VIRT_GIC_V2M].base,
547 2, vms->memmap[VIRT_GIC_V2M].size);
548 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
549 g_free(nodename);
552 static void fdt_add_gic_node(VirtMachineState *vms)
554 MachineState *ms = MACHINE(vms);
555 char *nodename;
557 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
558 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
560 nodename = g_strdup_printf("/intc@%" PRIx64,
561 vms->memmap[VIRT_GIC_DIST].base);
562 qemu_fdt_add_subnode(ms->fdt, nodename);
563 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
564 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
565 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
566 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
567 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
568 if (vms->gic_version != VIRT_GIC_VERSION_2) {
569 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
571 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
572 "arm,gic-v3");
574 qemu_fdt_setprop_cell(ms->fdt, nodename,
575 "#redistributor-regions", nb_redist_regions);
577 if (nb_redist_regions == 1) {
578 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
579 2, vms->memmap[VIRT_GIC_DIST].base,
580 2, vms->memmap[VIRT_GIC_DIST].size,
581 2, vms->memmap[VIRT_GIC_REDIST].base,
582 2, vms->memmap[VIRT_GIC_REDIST].size);
583 } else {
584 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
585 2, vms->memmap[VIRT_GIC_DIST].base,
586 2, vms->memmap[VIRT_GIC_DIST].size,
587 2, vms->memmap[VIRT_GIC_REDIST].base,
588 2, vms->memmap[VIRT_GIC_REDIST].size,
589 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
590 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
593 if (vms->virt) {
594 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
595 GIC_FDT_IRQ_TYPE_PPI,
596 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
597 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
599 } else {
600 /* 'cortex-a15-gic' means 'GIC v2' */
601 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
602 "arm,cortex-a15-gic");
603 if (!vms->virt) {
604 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
605 2, vms->memmap[VIRT_GIC_DIST].base,
606 2, vms->memmap[VIRT_GIC_DIST].size,
607 2, vms->memmap[VIRT_GIC_CPU].base,
608 2, vms->memmap[VIRT_GIC_CPU].size);
609 } else {
610 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
611 2, vms->memmap[VIRT_GIC_DIST].base,
612 2, vms->memmap[VIRT_GIC_DIST].size,
613 2, vms->memmap[VIRT_GIC_CPU].base,
614 2, vms->memmap[VIRT_GIC_CPU].size,
615 2, vms->memmap[VIRT_GIC_HYP].base,
616 2, vms->memmap[VIRT_GIC_HYP].size,
617 2, vms->memmap[VIRT_GIC_VCPU].base,
618 2, vms->memmap[VIRT_GIC_VCPU].size);
619 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
620 GIC_FDT_IRQ_TYPE_PPI,
621 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
622 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
626 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
627 g_free(nodename);
630 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
632 ARMCPU *armcpu = ARM_CPU(first_cpu);
633 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
634 MachineState *ms = MACHINE(vms);
636 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
637 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
638 return;
641 if (vms->gic_version == VIRT_GIC_VERSION_2) {
642 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
643 GIC_FDT_IRQ_PPI_CPU_WIDTH,
644 (1 << MACHINE(vms)->smp.cpus) - 1);
647 qemu_fdt_add_subnode(ms->fdt, "/pmu");
648 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
649 const char compat[] = "arm,armv8-pmuv3";
650 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
651 compat, sizeof(compat));
652 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
653 GIC_FDT_IRQ_TYPE_PPI,
654 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
658 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
660 DeviceState *dev;
661 MachineState *ms = MACHINE(vms);
662 int irq = vms->irqmap[VIRT_ACPI_GED];
663 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
665 if (ms->ram_slots) {
666 event |= ACPI_GED_MEM_HOTPLUG_EVT;
669 if (ms->nvdimms_state->is_enabled) {
670 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
673 dev = qdev_new(TYPE_ACPI_GED);
674 qdev_prop_set_uint32(dev, "ged-event", event);
675 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
677 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
678 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
679 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
681 return dev;
684 static void create_its(VirtMachineState *vms)
686 const char *itsclass = its_class_name();
687 DeviceState *dev;
689 if (!strcmp(itsclass, "arm-gicv3-its")) {
690 if (!vms->tcg_its) {
691 itsclass = NULL;
695 if (!itsclass) {
696 /* Do nothing if not supported */
697 return;
700 dev = qdev_new(itsclass);
702 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
703 &error_abort);
704 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
705 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
707 fdt_add_its_gic_node(vms);
708 vms->msi_controller = VIRT_MSI_CTRL_ITS;
711 static void create_v2m(VirtMachineState *vms)
713 int i;
714 int irq = vms->irqmap[VIRT_GIC_V2M];
715 DeviceState *dev;
717 dev = qdev_new("arm-gicv2m");
718 qdev_prop_set_uint32(dev, "base-spi", irq);
719 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
720 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
721 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
723 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
724 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
725 qdev_get_gpio_in(vms->gic, irq + i));
728 fdt_add_v2m_gic_node(vms);
729 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
732 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
734 MachineState *ms = MACHINE(vms);
735 /* We create a standalone GIC */
736 SysBusDevice *gicbusdev;
737 const char *gictype;
738 int i;
739 unsigned int smp_cpus = ms->smp.cpus;
740 uint32_t nb_redist_regions = 0;
741 int revision;
743 if (vms->gic_version == VIRT_GIC_VERSION_2) {
744 gictype = gic_class_name();
745 } else {
746 gictype = gicv3_class_name();
749 switch (vms->gic_version) {
750 case VIRT_GIC_VERSION_2:
751 revision = 2;
752 break;
753 case VIRT_GIC_VERSION_3:
754 revision = 3;
755 break;
756 case VIRT_GIC_VERSION_4:
757 revision = 4;
758 break;
759 default:
760 g_assert_not_reached();
762 vms->gic = qdev_new(gictype);
763 qdev_prop_set_uint32(vms->gic, "revision", revision);
764 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
765 /* Note that the num-irq property counts both internal and external
766 * interrupts; there are always 32 of the former (mandated by GIC spec).
768 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
769 if (!kvm_irqchip_in_kernel()) {
770 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
773 if (vms->gic_version != VIRT_GIC_VERSION_2) {
774 QList *redist_region_count;
775 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
776 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
778 nb_redist_regions = virt_gicv3_redist_region_count(vms);
780 redist_region_count = qlist_new();
781 qlist_append_int(redist_region_count, redist0_count);
782 if (nb_redist_regions == 2) {
783 uint32_t redist1_capacity =
784 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
786 qlist_append_int(redist_region_count,
787 MIN(smp_cpus - redist0_count, redist1_capacity));
789 qdev_prop_set_array(vms->gic, "redist-region-count",
790 redist_region_count);
792 if (!kvm_irqchip_in_kernel()) {
793 if (vms->tcg_its) {
794 object_property_set_link(OBJECT(vms->gic), "sysmem",
795 OBJECT(mem), &error_fatal);
796 qdev_prop_set_bit(vms->gic, "has-lpi", true);
799 } else {
800 if (!kvm_irqchip_in_kernel()) {
801 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
802 vms->virt);
805 gicbusdev = SYS_BUS_DEVICE(vms->gic);
806 sysbus_realize_and_unref(gicbusdev, &error_fatal);
807 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
808 if (vms->gic_version != VIRT_GIC_VERSION_2) {
809 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
810 if (nb_redist_regions == 2) {
811 sysbus_mmio_map(gicbusdev, 2,
812 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
814 } else {
815 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
816 if (vms->virt) {
817 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
818 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
822 /* Wire the outputs from each CPU's generic timer and the GICv3
823 * maintenance interrupt signal to the appropriate GIC PPI inputs,
824 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
826 for (i = 0; i < smp_cpus; i++) {
827 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
828 int intidbase = NUM_IRQS + i * GIC_INTERNAL;
829 /* Mapping from the output timer irq lines from the CPU to the
830 * GIC PPI inputs we use for the virt board.
832 const int timer_irq[] = {
833 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
834 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
835 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
836 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
837 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
840 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
841 qdev_connect_gpio_out(cpudev, irq,
842 qdev_get_gpio_in(vms->gic,
843 intidbase + timer_irq[irq]));
846 if (vms->gic_version != VIRT_GIC_VERSION_2) {
847 qemu_irq irq = qdev_get_gpio_in(vms->gic,
848 intidbase + ARCH_GIC_MAINT_IRQ);
849 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
850 0, irq);
851 } else if (vms->virt) {
852 qemu_irq irq = qdev_get_gpio_in(vms->gic,
853 intidbase + ARCH_GIC_MAINT_IRQ);
854 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
857 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
858 qdev_get_gpio_in(vms->gic, intidbase
859 + VIRTUAL_PMU_IRQ));
861 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
862 sysbus_connect_irq(gicbusdev, i + smp_cpus,
863 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
864 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
865 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
866 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
867 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
870 fdt_add_gic_node(vms);
872 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
873 create_its(vms);
874 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
875 create_v2m(vms);
879 static void create_uart(const VirtMachineState *vms, int uart,
880 MemoryRegion *mem, Chardev *chr)
882 char *nodename;
883 hwaddr base = vms->memmap[uart].base;
884 hwaddr size = vms->memmap[uart].size;
885 int irq = vms->irqmap[uart];
886 const char compat[] = "arm,pl011\0arm,primecell";
887 const char clocknames[] = "uartclk\0apb_pclk";
888 DeviceState *dev = qdev_new(TYPE_PL011);
889 SysBusDevice *s = SYS_BUS_DEVICE(dev);
890 MachineState *ms = MACHINE(vms);
892 qdev_prop_set_chr(dev, "chardev", chr);
893 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
894 memory_region_add_subregion(mem, base,
895 sysbus_mmio_get_region(s, 0));
896 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
898 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
899 qemu_fdt_add_subnode(ms->fdt, nodename);
900 /* Note that we can't use setprop_string because of the embedded NUL */
901 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
902 compat, sizeof(compat));
903 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
904 2, base, 2, size);
905 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
906 GIC_FDT_IRQ_TYPE_SPI, irq,
907 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
908 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
909 vms->clock_phandle, vms->clock_phandle);
910 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
911 clocknames, sizeof(clocknames));
913 if (uart == VIRT_UART) {
914 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
915 } else {
916 /* Mark as not usable by the normal world */
917 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
918 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
920 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
921 nodename);
924 g_free(nodename);
927 static void create_rtc(const VirtMachineState *vms)
929 char *nodename;
930 hwaddr base = vms->memmap[VIRT_RTC].base;
931 hwaddr size = vms->memmap[VIRT_RTC].size;
932 int irq = vms->irqmap[VIRT_RTC];
933 const char compat[] = "arm,pl031\0arm,primecell";
934 MachineState *ms = MACHINE(vms);
936 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
938 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
939 qemu_fdt_add_subnode(ms->fdt, nodename);
940 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
941 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
942 2, base, 2, size);
943 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
944 GIC_FDT_IRQ_TYPE_SPI, irq,
945 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
946 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
947 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
948 g_free(nodename);
951 static DeviceState *gpio_key_dev;
952 static void virt_powerdown_req(Notifier *n, void *opaque)
954 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
956 if (s->acpi_dev) {
957 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
958 } else {
959 /* use gpio Pin 3 for power button event */
960 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
964 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
965 uint32_t phandle)
967 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
968 qdev_get_gpio_in(pl061_dev, 3));
970 qemu_fdt_add_subnode(fdt, "/gpio-keys");
971 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
973 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
974 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
975 "label", "GPIO Key Poweroff");
976 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
977 KEY_POWER);
978 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
979 "gpios", phandle, 3, 0);
982 #define SECURE_GPIO_POWEROFF 0
983 #define SECURE_GPIO_RESET 1
985 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
986 uint32_t phandle)
988 DeviceState *gpio_pwr_dev;
990 /* gpio-pwr */
991 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
993 /* connect secure pl061 to gpio-pwr */
994 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
995 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
996 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
997 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
999 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
1000 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
1001 "gpio-poweroff");
1002 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
1003 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
1004 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
1005 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
1006 "okay");
1008 qemu_fdt_add_subnode(fdt, "/gpio-restart");
1009 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
1010 "gpio-restart");
1011 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
1012 "gpios", phandle, SECURE_GPIO_RESET, 0);
1013 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
1014 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
1015 "okay");
1018 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
1019 MemoryRegion *mem)
1021 char *nodename;
1022 DeviceState *pl061_dev;
1023 hwaddr base = vms->memmap[gpio].base;
1024 hwaddr size = vms->memmap[gpio].size;
1025 int irq = vms->irqmap[gpio];
1026 const char compat[] = "arm,pl061\0arm,primecell";
1027 SysBusDevice *s;
1028 MachineState *ms = MACHINE(vms);
1030 pl061_dev = qdev_new("pl061");
1031 /* Pull lines down to 0 if not driven by the PL061 */
1032 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1033 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1034 s = SYS_BUS_DEVICE(pl061_dev);
1035 sysbus_realize_and_unref(s, &error_fatal);
1036 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1037 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1039 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1040 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1041 qemu_fdt_add_subnode(ms->fdt, nodename);
1042 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1043 2, base, 2, size);
1044 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1045 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1046 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1047 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1048 GIC_FDT_IRQ_TYPE_SPI, irq,
1049 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1050 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1051 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1052 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1054 if (gpio != VIRT_GPIO) {
1055 /* Mark as not usable by the normal world */
1056 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1057 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1059 g_free(nodename);
1061 /* Child gpio devices */
1062 if (gpio == VIRT_GPIO) {
1063 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1064 } else {
1065 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1069 static void create_virtio_devices(const VirtMachineState *vms)
1071 int i;
1072 hwaddr size = vms->memmap[VIRT_MMIO].size;
1073 MachineState *ms = MACHINE(vms);
1075 /* We create the transports in forwards order. Since qbus_realize()
1076 * prepends (not appends) new child buses, the incrementing loop below will
1077 * create a list of virtio-mmio buses with decreasing base addresses.
1079 * When a -device option is processed from the command line,
1080 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1081 * order. The upshot is that -device options in increasing command line
1082 * order are mapped to virtio-mmio buses with decreasing base addresses.
1084 * When this code was originally written, that arrangement ensured that the
1085 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1086 * the first -device on the command line. (The end-to-end order is a
1087 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1088 * guest kernel's name-to-address assignment strategy.)
1090 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1091 * the message, if not necessarily the code, of commit 70161ff336.
1092 * Therefore the loop now establishes the inverse of the original intent.
1094 * Unfortunately, we can't counteract the kernel change by reversing the
1095 * loop; it would break existing command lines.
1097 * In any case, the kernel makes no guarantee about the stability of
1098 * enumeration order of virtio devices (as demonstrated by it changing
1099 * between kernel versions). For reliable and stable identification
1100 * of disks users must use UUIDs or similar mechanisms.
1102 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1103 int irq = vms->irqmap[VIRT_MMIO] + i;
1104 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1106 sysbus_create_simple("virtio-mmio", base,
1107 qdev_get_gpio_in(vms->gic, irq));
1110 /* We add dtb nodes in reverse order so that they appear in the finished
1111 * device tree lowest address first.
1113 * Note that this mapping is independent of the loop above. The previous
1114 * loop influences virtio device to virtio transport assignment, whereas
1115 * this loop controls how virtio transports are laid out in the dtb.
1117 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1118 char *nodename;
1119 int irq = vms->irqmap[VIRT_MMIO] + i;
1120 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1122 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1123 qemu_fdt_add_subnode(ms->fdt, nodename);
1124 qemu_fdt_setprop_string(ms->fdt, nodename,
1125 "compatible", "virtio,mmio");
1126 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1127 2, base, 2, size);
1128 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1129 GIC_FDT_IRQ_TYPE_SPI, irq,
1130 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1131 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1132 g_free(nodename);
1136 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1138 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1139 const char *name,
1140 const char *alias_prop_name)
1143 * Create a single flash device. We use the same parameters as
1144 * the flash devices on the Versatile Express board.
1146 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1148 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1149 qdev_prop_set_uint8(dev, "width", 4);
1150 qdev_prop_set_uint8(dev, "device-width", 2);
1151 qdev_prop_set_bit(dev, "big-endian", false);
1152 qdev_prop_set_uint16(dev, "id0", 0x89);
1153 qdev_prop_set_uint16(dev, "id1", 0x18);
1154 qdev_prop_set_uint16(dev, "id2", 0x00);
1155 qdev_prop_set_uint16(dev, "id3", 0x00);
1156 qdev_prop_set_string(dev, "name", name);
1157 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1158 object_property_add_alias(OBJECT(vms), alias_prop_name,
1159 OBJECT(dev), "drive");
1160 return PFLASH_CFI01(dev);
1163 static void virt_flash_create(VirtMachineState *vms)
1165 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1166 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1169 static void virt_flash_map1(PFlashCFI01 *flash,
1170 hwaddr base, hwaddr size,
1171 MemoryRegion *sysmem)
1173 DeviceState *dev = DEVICE(flash);
1175 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1176 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1177 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1178 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1180 memory_region_add_subregion(sysmem, base,
1181 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1182 0));
1185 static void virt_flash_map(VirtMachineState *vms,
1186 MemoryRegion *sysmem,
1187 MemoryRegion *secure_sysmem)
1190 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1191 * sysmem is the system memory space. secure_sysmem is the secure view
1192 * of the system, and the first flash device should be made visible only
1193 * there. The second flash device is visible to both secure and nonsecure.
1194 * If sysmem == secure_sysmem this means there is no separate Secure
1195 * address space and both flash devices are generally visible.
1197 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1198 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1200 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1201 secure_sysmem);
1202 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1203 sysmem);
1206 static void virt_flash_fdt(VirtMachineState *vms,
1207 MemoryRegion *sysmem,
1208 MemoryRegion *secure_sysmem)
1210 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1211 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1212 MachineState *ms = MACHINE(vms);
1213 char *nodename;
1215 if (sysmem == secure_sysmem) {
1216 /* Report both flash devices as a single node in the DT */
1217 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1218 qemu_fdt_add_subnode(ms->fdt, nodename);
1219 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1220 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1221 2, flashbase, 2, flashsize,
1222 2, flashbase + flashsize, 2, flashsize);
1223 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1224 g_free(nodename);
1225 } else {
1227 * Report the devices as separate nodes so we can mark one as
1228 * only visible to the secure world.
1230 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1231 qemu_fdt_add_subnode(ms->fdt, nodename);
1232 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1233 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1234 2, flashbase, 2, flashsize);
1235 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1236 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1237 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1238 g_free(nodename);
1240 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1241 qemu_fdt_add_subnode(ms->fdt, nodename);
1242 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1243 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1244 2, flashbase + flashsize, 2, flashsize);
1245 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1246 g_free(nodename);
1250 static bool virt_firmware_init(VirtMachineState *vms,
1251 MemoryRegion *sysmem,
1252 MemoryRegion *secure_sysmem)
1254 int i;
1255 const char *bios_name;
1256 BlockBackend *pflash_blk0;
1258 /* Map legacy -drive if=pflash to machine properties */
1259 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1260 pflash_cfi01_legacy_drive(vms->flash[i],
1261 drive_get(IF_PFLASH, 0, i));
1264 virt_flash_map(vms, sysmem, secure_sysmem);
1266 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1268 bios_name = MACHINE(vms)->firmware;
1269 if (bios_name) {
1270 char *fname;
1271 MemoryRegion *mr;
1272 int image_size;
1274 if (pflash_blk0) {
1275 error_report("The contents of the first flash device may be "
1276 "specified with -bios or with -drive if=pflash... "
1277 "but you cannot use both options at once");
1278 exit(1);
1281 /* Fall back to -bios */
1283 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1284 if (!fname) {
1285 error_report("Could not find ROM image '%s'", bios_name);
1286 exit(1);
1288 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1289 image_size = load_image_mr(fname, mr);
1290 g_free(fname);
1291 if (image_size < 0) {
1292 error_report("Could not load ROM image '%s'", bios_name);
1293 exit(1);
1297 return pflash_blk0 || bios_name;
1300 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1302 MachineState *ms = MACHINE(vms);
1303 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1304 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1305 FWCfgState *fw_cfg;
1306 char *nodename;
1308 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1309 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1311 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1312 qemu_fdt_add_subnode(ms->fdt, nodename);
1313 qemu_fdt_setprop_string(ms->fdt, nodename,
1314 "compatible", "qemu,fw-cfg-mmio");
1315 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1316 2, base, 2, size);
1317 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1318 g_free(nodename);
1319 return fw_cfg;
1322 static void create_pcie_irq_map(const MachineState *ms,
1323 uint32_t gic_phandle,
1324 int first_irq, const char *nodename)
1326 int devfn, pin;
1327 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1328 uint32_t *irq_map = full_irq_map;
1330 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1331 for (pin = 0; pin < 4; pin++) {
1332 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1333 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1334 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1335 int i;
1337 uint32_t map[] = {
1338 devfn << 8, 0, 0, /* devfn */
1339 pin + 1, /* PCI pin */
1340 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1342 /* Convert map to big endian */
1343 for (i = 0; i < 10; i++) {
1344 irq_map[i] = cpu_to_be32(map[i]);
1346 irq_map += 10;
1350 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1351 full_irq_map, sizeof(full_irq_map));
1353 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1354 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1355 0, 0,
1356 0x7 /* PCI irq */);
1359 static void create_smmu(const VirtMachineState *vms,
1360 PCIBus *bus)
1362 char *node;
1363 const char compat[] = "arm,smmu-v3";
1364 int irq = vms->irqmap[VIRT_SMMU];
1365 int i;
1366 hwaddr base = vms->memmap[VIRT_SMMU].base;
1367 hwaddr size = vms->memmap[VIRT_SMMU].size;
1368 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1369 DeviceState *dev;
1370 MachineState *ms = MACHINE(vms);
1372 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1373 return;
1376 dev = qdev_new(TYPE_ARM_SMMUV3);
1378 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1379 &error_abort);
1380 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1381 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1382 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1383 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1384 qdev_get_gpio_in(vms->gic, irq + i));
1387 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1388 qemu_fdt_add_subnode(ms->fdt, node);
1389 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1390 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1392 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1393 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1394 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1395 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1396 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1398 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1399 sizeof(irq_names));
1401 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1403 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1405 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1406 g_free(node);
1409 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1411 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1412 uint16_t bdf = vms->virtio_iommu_bdf;
1413 MachineState *ms = MACHINE(vms);
1414 char *node;
1416 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1418 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1419 PCI_SLOT(bdf), PCI_FUNC(bdf));
1420 qemu_fdt_add_subnode(ms->fdt, node);
1421 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1422 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1423 1, bdf << 8, 1, 0, 1, 0,
1424 1, 0, 1, 0);
1426 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1427 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1428 g_free(node);
1430 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1431 0x0, vms->iommu_phandle, 0x0, bdf,
1432 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1435 static void create_pcie(VirtMachineState *vms)
1437 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1438 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1439 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1440 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1441 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1442 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1443 hwaddr base_ecam, size_ecam;
1444 hwaddr base = base_mmio;
1445 int nr_pcie_buses;
1446 int irq = vms->irqmap[VIRT_PCIE];
1447 MemoryRegion *mmio_alias;
1448 MemoryRegion *mmio_reg;
1449 MemoryRegion *ecam_alias;
1450 MemoryRegion *ecam_reg;
1451 DeviceState *dev;
1452 char *nodename;
1453 int i, ecam_id;
1454 PCIHostState *pci;
1455 MachineState *ms = MACHINE(vms);
1456 MachineClass *mc = MACHINE_GET_CLASS(ms);
1458 dev = qdev_new(TYPE_GPEX_HOST);
1459 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1461 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1462 base_ecam = vms->memmap[ecam_id].base;
1463 size_ecam = vms->memmap[ecam_id].size;
1464 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1465 /* Map only the first size_ecam bytes of ECAM space */
1466 ecam_alias = g_new0(MemoryRegion, 1);
1467 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1468 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1469 ecam_reg, 0, size_ecam);
1470 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1472 /* Map the MMIO window into system address space so as to expose
1473 * the section of PCI MMIO space which starts at the same base address
1474 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1475 * the window).
1477 mmio_alias = g_new0(MemoryRegion, 1);
1478 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1479 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1480 mmio_reg, base_mmio, size_mmio);
1481 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1483 if (vms->highmem_mmio) {
1484 /* Map high MMIO space */
1485 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1487 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1488 mmio_reg, base_mmio_high, size_mmio_high);
1489 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1490 high_mmio_alias);
1493 /* Map IO port space */
1494 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1496 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1497 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1498 qdev_get_gpio_in(vms->gic, irq + i));
1499 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1502 pci = PCI_HOST_BRIDGE(dev);
1503 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1504 vms->bus = pci->bus;
1505 if (vms->bus) {
1506 pci_init_nic_devices(pci->bus, mc->default_nic);
1509 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1510 qemu_fdt_add_subnode(ms->fdt, nodename);
1511 qemu_fdt_setprop_string(ms->fdt, nodename,
1512 "compatible", "pci-host-ecam-generic");
1513 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1514 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1515 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1516 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1517 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1518 nr_pcie_buses - 1);
1519 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1521 if (vms->msi_phandle) {
1522 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1523 0, vms->msi_phandle, 0, 0x10000);
1526 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1527 2, base_ecam, 2, size_ecam);
1529 if (vms->highmem_mmio) {
1530 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1531 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1532 2, base_pio, 2, size_pio,
1533 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1534 2, base_mmio, 2, size_mmio,
1535 1, FDT_PCI_RANGE_MMIO_64BIT,
1536 2, base_mmio_high,
1537 2, base_mmio_high, 2, size_mmio_high);
1538 } else {
1539 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1540 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1541 2, base_pio, 2, size_pio,
1542 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1543 2, base_mmio, 2, size_mmio);
1546 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1547 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1549 if (vms->iommu) {
1550 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1552 switch (vms->iommu) {
1553 case VIRT_IOMMU_SMMUV3:
1554 create_smmu(vms, vms->bus);
1555 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1556 0x0, vms->iommu_phandle, 0x0, 0x10000);
1557 break;
1558 default:
1559 g_assert_not_reached();
1564 static void create_platform_bus(VirtMachineState *vms)
1566 DeviceState *dev;
1567 SysBusDevice *s;
1568 int i;
1569 MemoryRegion *sysmem = get_system_memory();
1571 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1572 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1573 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1574 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1575 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1576 vms->platform_bus_dev = dev;
1578 s = SYS_BUS_DEVICE(dev);
1579 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1580 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1581 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1584 memory_region_add_subregion(sysmem,
1585 vms->memmap[VIRT_PLATFORM_BUS].base,
1586 sysbus_mmio_get_region(s, 0));
1589 static void create_tag_ram(MemoryRegion *tag_sysmem,
1590 hwaddr base, hwaddr size,
1591 const char *name)
1593 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1595 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1596 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1599 static void create_secure_ram(VirtMachineState *vms,
1600 MemoryRegion *secure_sysmem,
1601 MemoryRegion *secure_tag_sysmem)
1603 MemoryRegion *secram = g_new(MemoryRegion, 1);
1604 char *nodename;
1605 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1606 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1607 MachineState *ms = MACHINE(vms);
1609 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1610 &error_fatal);
1611 memory_region_add_subregion(secure_sysmem, base, secram);
1613 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1614 qemu_fdt_add_subnode(ms->fdt, nodename);
1615 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1616 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1617 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1618 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1620 if (secure_tag_sysmem) {
1621 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1624 g_free(nodename);
1627 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1629 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1630 bootinfo);
1631 MachineState *ms = MACHINE(board);
1634 *fdt_size = board->fdt_size;
1635 return ms->fdt;
1638 static void virt_build_smbios(VirtMachineState *vms)
1640 MachineClass *mc = MACHINE_GET_CLASS(vms);
1641 MachineState *ms = MACHINE(vms);
1642 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1643 uint8_t *smbios_tables, *smbios_anchor;
1644 size_t smbios_tables_len, smbios_anchor_len;
1645 struct smbios_phys_mem_area mem_array;
1646 const char *product = "QEMU Virtual Machine";
1648 if (kvm_enabled()) {
1649 product = "KVM Virtual Machine";
1652 smbios_set_defaults("QEMU", product,
1653 vmc->smbios_old_sys_ver ? "1.0" : mc->name,
1654 true);
1656 /* build the array of physical mem area from base_memmap */
1657 mem_array.address = vms->memmap[VIRT_MEM].base;
1658 mem_array.length = ms->ram_size;
1660 smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1,
1661 &smbios_tables, &smbios_tables_len,
1662 &smbios_anchor, &smbios_anchor_len,
1663 &error_fatal);
1665 if (smbios_anchor) {
1666 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1667 smbios_tables, smbios_tables_len);
1668 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1669 smbios_anchor, smbios_anchor_len);
1673 static
1674 void virt_machine_done(Notifier *notifier, void *data)
1676 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1677 machine_done);
1678 MachineState *ms = MACHINE(vms);
1679 ARMCPU *cpu = ARM_CPU(first_cpu);
1680 struct arm_boot_info *info = &vms->bootinfo;
1681 AddressSpace *as = arm_boot_address_space(cpu, info);
1684 * If the user provided a dtb, we assume the dynamic sysbus nodes
1685 * already are integrated there. This corresponds to a use case where
1686 * the dynamic sysbus nodes are complex and their generation is not yet
1687 * supported. In that case the user can take charge of the guest dt
1688 * while qemu takes charge of the qom stuff.
1690 if (info->dtb_filename == NULL) {
1691 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1692 vms->memmap[VIRT_PLATFORM_BUS].base,
1693 vms->memmap[VIRT_PLATFORM_BUS].size,
1694 vms->irqmap[VIRT_PLATFORM_BUS]);
1696 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1697 exit(1);
1700 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1702 virt_acpi_setup(vms);
1703 virt_build_smbios(vms);
1706 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1708 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1709 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1711 if (!vmc->disallow_affinity_adjustment) {
1712 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1713 * GIC's target-list limitations. 32-bit KVM hosts currently
1714 * always create clusters of 4 CPUs, but that is expected to
1715 * change when they gain support for gicv3. When KVM is enabled
1716 * it will override the changes we make here, therefore our
1717 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1718 * and to improve SGI efficiency.
1720 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1721 clustersz = GIC_TARGETLIST_BITS;
1722 } else {
1723 clustersz = GICV3_TARGETLIST_BITS;
1726 return arm_build_mp_affinity(idx, clustersz);
1729 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1730 int index)
1732 bool *enabled_array[] = {
1733 &vms->highmem_redists,
1734 &vms->highmem_ecam,
1735 &vms->highmem_mmio,
1738 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1739 ARRAY_SIZE(enabled_array));
1740 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1742 return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1745 static void virt_set_high_memmap(VirtMachineState *vms,
1746 hwaddr base, int pa_bits)
1748 hwaddr region_base, region_size;
1749 bool *region_enabled, fits;
1750 int i;
1752 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1753 region_enabled = virt_get_high_memmap_enabled(vms, i);
1754 region_base = ROUND_UP(base, extended_memmap[i].size);
1755 region_size = extended_memmap[i].size;
1757 vms->memmap[i].base = region_base;
1758 vms->memmap[i].size = region_size;
1761 * Check each device to see if it fits in the PA space,
1762 * moving highest_gpa as we go. For compatibility, move
1763 * highest_gpa for disabled fitting devices as well, if
1764 * the compact layout has been disabled.
1766 * For each device that doesn't fit, disable it.
1768 fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1769 *region_enabled &= fits;
1770 if (vms->highmem_compact && !*region_enabled) {
1771 continue;
1774 base = region_base + region_size;
1775 if (fits) {
1776 vms->highest_gpa = base - 1;
1781 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1783 MachineState *ms = MACHINE(vms);
1784 hwaddr base, device_memory_base, device_memory_size, memtop;
1785 int i;
1787 vms->memmap = extended_memmap;
1789 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1790 vms->memmap[i] = base_memmap[i];
1793 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1794 error_report("unsupported number of memory slots: %"PRIu64,
1795 ms->ram_slots);
1796 exit(EXIT_FAILURE);
1800 * !highmem is exactly the same as limiting the PA space to 32bit,
1801 * irrespective of the underlying capabilities of the HW.
1803 if (!vms->highmem) {
1804 pa_bits = 32;
1808 * We compute the base of the high IO region depending on the
1809 * amount of initial and device memory. The device memory start/size
1810 * is aligned on 1GiB. We never put the high IO region below 256GiB
1811 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1812 * The device region size assumes 1GiB page max alignment per slot.
1814 device_memory_base =
1815 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1816 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1818 /* Base address of the high IO region */
1819 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1820 if (memtop > BIT_ULL(pa_bits)) {
1821 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes",
1822 pa_bits, memtop - BIT_ULL(pa_bits));
1823 exit(EXIT_FAILURE);
1825 if (base < device_memory_base) {
1826 error_report("maxmem/slots too huge");
1827 exit(EXIT_FAILURE);
1829 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1830 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1833 /* We know for sure that at least the memory fits in the PA space */
1834 vms->highest_gpa = memtop - 1;
1836 virt_set_high_memmap(vms, base, pa_bits);
1838 if (device_memory_size > 0) {
1839 machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1843 static VirtGICType finalize_gic_version_do(const char *accel_name,
1844 VirtGICType gic_version,
1845 int gics_supported,
1846 unsigned int max_cpus)
1848 /* Convert host/max/nosel to GIC version number */
1849 switch (gic_version) {
1850 case VIRT_GIC_VERSION_HOST:
1851 if (!kvm_enabled()) {
1852 error_report("gic-version=host requires KVM");
1853 exit(1);
1856 /* For KVM, gic-version=host means gic-version=max */
1857 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1858 gics_supported, max_cpus);
1859 case VIRT_GIC_VERSION_MAX:
1860 if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1861 gic_version = VIRT_GIC_VERSION_4;
1862 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1863 gic_version = VIRT_GIC_VERSION_3;
1864 } else {
1865 gic_version = VIRT_GIC_VERSION_2;
1867 break;
1868 case VIRT_GIC_VERSION_NOSEL:
1869 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1870 max_cpus <= GIC_NCPU) {
1871 gic_version = VIRT_GIC_VERSION_2;
1872 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1874 * in case the host does not support v2 emulation or
1875 * the end-user requested more than 8 VCPUs we now default
1876 * to v3. In any case defaulting to v2 would be broken.
1878 gic_version = VIRT_GIC_VERSION_3;
1879 } else if (max_cpus > GIC_NCPU) {
1880 error_report("%s only supports GICv2 emulation but more than 8 "
1881 "vcpus are requested", accel_name);
1882 exit(1);
1884 break;
1885 case VIRT_GIC_VERSION_2:
1886 case VIRT_GIC_VERSION_3:
1887 case VIRT_GIC_VERSION_4:
1888 break;
1891 /* Check chosen version is effectively supported */
1892 switch (gic_version) {
1893 case VIRT_GIC_VERSION_2:
1894 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1895 error_report("%s does not support GICv2 emulation", accel_name);
1896 exit(1);
1898 break;
1899 case VIRT_GIC_VERSION_3:
1900 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1901 error_report("%s does not support GICv3 emulation", accel_name);
1902 exit(1);
1904 break;
1905 case VIRT_GIC_VERSION_4:
1906 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1907 error_report("%s does not support GICv4 emulation, is virtualization=on?",
1908 accel_name);
1909 exit(1);
1911 break;
1912 default:
1913 error_report("logic error in finalize_gic_version");
1914 exit(1);
1915 break;
1918 return gic_version;
1922 * finalize_gic_version - Determines the final gic_version
1923 * according to the gic-version property
1925 * Default GIC type is v2
1927 static void finalize_gic_version(VirtMachineState *vms)
1929 const char *accel_name = current_accel_name();
1930 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1931 int gics_supported = 0;
1933 /* Determine which GIC versions the current environment supports */
1934 if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1935 int probe_bitmap = kvm_arm_vgic_probe();
1937 if (!probe_bitmap) {
1938 error_report("Unable to determine GIC version supported by host");
1939 exit(1);
1942 if (probe_bitmap & KVM_ARM_VGIC_V2) {
1943 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1945 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1946 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1948 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1949 /* KVM w/o kernel irqchip can only deal with GICv2 */
1950 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1951 accel_name = "KVM with kernel-irqchip=off";
1952 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
1953 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1954 if (module_object_class_by_name("arm-gicv3")) {
1955 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1956 if (vms->virt) {
1957 /* GICv4 only makes sense if CPU has EL2 */
1958 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1961 } else {
1962 error_report("Unsupported accelerator, can not determine GIC support");
1963 exit(1);
1967 * Then convert helpers like host/max to concrete GIC versions and ensure
1968 * the desired version is supported
1970 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1971 gics_supported, max_cpus);
1975 * virt_cpu_post_init() must be called after the CPUs have
1976 * been realized and the GIC has been created.
1978 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1980 int max_cpus = MACHINE(vms)->smp.max_cpus;
1981 bool aarch64, pmu, steal_time;
1982 CPUState *cpu;
1984 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1985 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1986 steal_time = object_property_get_bool(OBJECT(first_cpu),
1987 "kvm-steal-time", NULL);
1989 if (kvm_enabled()) {
1990 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1991 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1993 if (steal_time) {
1994 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1995 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1997 /* The memory region size must be a multiple of host page size. */
1998 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
2000 if (pvtime_size > pvtime_reg_size) {
2001 error_report("pvtime requires a %" HWADDR_PRId
2002 " byte memory region for %d CPUs,"
2003 " but only %" HWADDR_PRId " has been reserved",
2004 pvtime_size, max_cpus, pvtime_reg_size);
2005 exit(1);
2008 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
2009 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
2012 CPU_FOREACH(cpu) {
2013 if (pmu) {
2014 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
2015 if (kvm_irqchip_in_kernel()) {
2016 kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
2018 kvm_arm_pmu_init(ARM_CPU(cpu));
2020 if (steal_time) {
2021 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
2022 + cpu->cpu_index
2023 * PVTIME_SIZE_PER_CPU);
2026 } else {
2027 if (aarch64 && vms->highmem) {
2028 int requested_pa_size = 64 - clz64(vms->highest_gpa);
2029 int pamax = arm_pamax(ARM_CPU(first_cpu));
2031 if (pamax < requested_pa_size) {
2032 error_report("VCPU supports less PA bits (%d) than "
2033 "requested by the memory map (%d)",
2034 pamax, requested_pa_size);
2035 exit(1);
2041 static void machvirt_init(MachineState *machine)
2043 VirtMachineState *vms = VIRT_MACHINE(machine);
2044 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2045 MachineClass *mc = MACHINE_GET_CLASS(machine);
2046 const CPUArchIdList *possible_cpus;
2047 MemoryRegion *sysmem = get_system_memory();
2048 MemoryRegion *secure_sysmem = NULL;
2049 MemoryRegion *tag_sysmem = NULL;
2050 MemoryRegion *secure_tag_sysmem = NULL;
2051 int n, virt_max_cpus;
2052 bool firmware_loaded;
2053 bool aarch64 = true;
2054 bool has_ged = !vmc->no_ged;
2055 unsigned int smp_cpus = machine->smp.cpus;
2056 unsigned int max_cpus = machine->smp.max_cpus;
2058 possible_cpus = mc->possible_cpu_arch_ids(machine);
2061 * In accelerated mode, the memory map is computed earlier in kvm_type()
2062 * to create a VM with the right number of IPA bits.
2064 if (!vms->memmap) {
2065 Object *cpuobj;
2066 ARMCPU *armcpu;
2067 int pa_bits;
2070 * Instantiate a temporary CPU object to find out about what
2071 * we are about to deal with. Once this is done, get rid of
2072 * the object.
2074 cpuobj = object_new(possible_cpus->cpus[0].type);
2075 armcpu = ARM_CPU(cpuobj);
2077 pa_bits = arm_pamax(armcpu);
2079 object_unref(cpuobj);
2081 virt_set_memmap(vms, pa_bits);
2084 /* We can probe only here because during property set
2085 * KVM is not available yet
2087 finalize_gic_version(vms);
2089 if (vms->secure) {
2091 * The Secure view of the world is the same as the NonSecure,
2092 * but with a few extra devices. Create it as a container region
2093 * containing the system memory at low priority; any secure-only
2094 * devices go in at higher priority and take precedence.
2096 secure_sysmem = g_new(MemoryRegion, 1);
2097 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2098 UINT64_MAX);
2099 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2102 firmware_loaded = virt_firmware_init(vms, sysmem,
2103 secure_sysmem ?: sysmem);
2105 /* If we have an EL3 boot ROM then the assumption is that it will
2106 * implement PSCI itself, so disable QEMU's internal implementation
2107 * so it doesn't get in the way. Instead of starting secondary
2108 * CPUs in PSCI powerdown state we will start them all running and
2109 * let the boot ROM sort them out.
2110 * The usual case is that we do use QEMU's PSCI implementation;
2111 * if the guest has EL2 then we will use SMC as the conduit,
2112 * and otherwise we will use HVC (for backwards compatibility and
2113 * because if we're using KVM then we must use HVC).
2115 if (vms->secure && firmware_loaded) {
2116 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2117 } else if (vms->virt) {
2118 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2119 } else {
2120 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2124 * The maximum number of CPUs depends on the GIC version, or on how
2125 * many redistributors we can fit into the memory map (which in turn
2126 * depends on whether this is a GICv3 or v4).
2128 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2129 virt_max_cpus = GIC_NCPU;
2130 } else {
2131 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2132 if (vms->highmem_redists) {
2133 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2137 if (max_cpus > virt_max_cpus) {
2138 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2139 "supported by machine 'mach-virt' (%d)",
2140 max_cpus, virt_max_cpus);
2141 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2142 error_printf("Try 'highmem-redists=on' for more CPUs\n");
2145 exit(1);
2148 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2149 error_report("mach-virt: %s does not support providing "
2150 "Security extensions (TrustZone) to the guest CPU",
2151 current_accel_name());
2152 exit(1);
2155 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2156 error_report("mach-virt: %s does not support providing "
2157 "Virtualization extensions to the guest CPU",
2158 current_accel_name());
2159 exit(1);
2162 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2163 error_report("mach-virt: %s does not support providing "
2164 "MTE to the guest CPU",
2165 current_accel_name());
2166 exit(1);
2169 create_fdt(vms);
2171 assert(possible_cpus->len == max_cpus);
2172 for (n = 0; n < possible_cpus->len; n++) {
2173 Object *cpuobj;
2174 CPUState *cs;
2176 if (n >= smp_cpus) {
2177 break;
2180 cpuobj = object_new(possible_cpus->cpus[n].type);
2181 object_property_set_int(cpuobj, "mp-affinity",
2182 possible_cpus->cpus[n].arch_id, NULL);
2184 cs = CPU(cpuobj);
2185 cs->cpu_index = n;
2187 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2188 &error_fatal);
2190 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2192 if (!vms->secure) {
2193 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2196 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2197 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2200 if (vmc->kvm_no_adjvtime &&
2201 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2202 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2205 if (vmc->no_kvm_steal_time &&
2206 object_property_find(cpuobj, "kvm-steal-time")) {
2207 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2210 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2211 object_property_set_bool(cpuobj, "pmu", false, NULL);
2214 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2215 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2218 if (object_property_find(cpuobj, "reset-cbar")) {
2219 object_property_set_int(cpuobj, "reset-cbar",
2220 vms->memmap[VIRT_CPUPERIPHS].base,
2221 &error_abort);
2224 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2225 &error_abort);
2226 if (vms->secure) {
2227 object_property_set_link(cpuobj, "secure-memory",
2228 OBJECT(secure_sysmem), &error_abort);
2231 if (vms->mte) {
2232 /* Create the memory region only once, but link to all cpus. */
2233 if (!tag_sysmem) {
2235 * The property exists only if MemTag is supported.
2236 * If it is, we must allocate the ram to back that up.
2238 if (!object_property_find(cpuobj, "tag-memory")) {
2239 error_report("MTE requested, but not supported "
2240 "by the guest CPU");
2241 exit(1);
2244 tag_sysmem = g_new(MemoryRegion, 1);
2245 memory_region_init(tag_sysmem, OBJECT(machine),
2246 "tag-memory", UINT64_MAX / 32);
2248 if (vms->secure) {
2249 secure_tag_sysmem = g_new(MemoryRegion, 1);
2250 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2251 "secure-tag-memory", UINT64_MAX / 32);
2253 /* As with ram, secure-tag takes precedence over tag. */
2254 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2255 tag_sysmem, -1);
2259 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2260 &error_abort);
2261 if (vms->secure) {
2262 object_property_set_link(cpuobj, "secure-tag-memory",
2263 OBJECT(secure_tag_sysmem),
2264 &error_abort);
2268 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2269 object_unref(cpuobj);
2272 /* Now we've created the CPUs we can see if they have the hypvirt timer */
2273 vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() &&
2274 !vmc->no_ns_el2_virt_timer_irq;
2276 fdt_add_timer_nodes(vms);
2277 fdt_add_cpu_nodes(vms);
2279 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2280 machine->ram);
2282 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2284 create_gic(vms, sysmem);
2286 virt_cpu_post_init(vms, sysmem);
2288 fdt_add_pmu_nodes(vms);
2290 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2292 if (vms->secure) {
2293 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2294 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2297 if (tag_sysmem) {
2298 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2299 machine->ram_size, "mach-virt.tag");
2302 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2304 create_rtc(vms);
2306 create_pcie(vms);
2308 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2309 vms->acpi_dev = create_acpi_ged(vms);
2310 } else {
2311 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2314 if (vms->secure && !vmc->no_secure_gpio) {
2315 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2318 /* connect powerdown request */
2319 vms->powerdown_notifier.notify = virt_powerdown_req;
2320 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2322 /* Create mmio transports, so the user can create virtio backends
2323 * (which will be automatically plugged in to the transports). If
2324 * no backend is created the transport will just sit harmlessly idle.
2326 create_virtio_devices(vms);
2328 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2329 rom_set_fw(vms->fw_cfg);
2331 create_platform_bus(vms);
2333 if (machine->nvdimms_state->is_enabled) {
2334 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2335 .space_id = AML_AS_SYSTEM_MEMORY,
2336 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2337 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2340 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2341 arm_virt_nvdimm_acpi_dsmio,
2342 vms->fw_cfg, OBJECT(vms));
2345 vms->bootinfo.ram_size = machine->ram_size;
2346 vms->bootinfo.board_id = -1;
2347 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2348 vms->bootinfo.get_dtb = machvirt_dtb;
2349 vms->bootinfo.skip_dtb_autoload = true;
2350 vms->bootinfo.firmware_loaded = firmware_loaded;
2351 vms->bootinfo.psci_conduit = vms->psci_conduit;
2352 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2354 vms->machine_done.notify = virt_machine_done;
2355 qemu_add_machine_init_done_notifier(&vms->machine_done);
2358 static bool virt_get_secure(Object *obj, Error **errp)
2360 VirtMachineState *vms = VIRT_MACHINE(obj);
2362 return vms->secure;
2365 static void virt_set_secure(Object *obj, bool value, Error **errp)
2367 VirtMachineState *vms = VIRT_MACHINE(obj);
2369 vms->secure = value;
2372 static bool virt_get_virt(Object *obj, Error **errp)
2374 VirtMachineState *vms = VIRT_MACHINE(obj);
2376 return vms->virt;
2379 static void virt_set_virt(Object *obj, bool value, Error **errp)
2381 VirtMachineState *vms = VIRT_MACHINE(obj);
2383 vms->virt = value;
2386 static bool virt_get_highmem(Object *obj, Error **errp)
2388 VirtMachineState *vms = VIRT_MACHINE(obj);
2390 return vms->highmem;
2393 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2395 VirtMachineState *vms = VIRT_MACHINE(obj);
2397 vms->highmem = value;
2400 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2402 VirtMachineState *vms = VIRT_MACHINE(obj);
2404 return vms->highmem_compact;
2407 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2409 VirtMachineState *vms = VIRT_MACHINE(obj);
2411 vms->highmem_compact = value;
2414 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2416 VirtMachineState *vms = VIRT_MACHINE(obj);
2418 return vms->highmem_redists;
2421 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2423 VirtMachineState *vms = VIRT_MACHINE(obj);
2425 vms->highmem_redists = value;
2428 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2430 VirtMachineState *vms = VIRT_MACHINE(obj);
2432 return vms->highmem_ecam;
2435 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2437 VirtMachineState *vms = VIRT_MACHINE(obj);
2439 vms->highmem_ecam = value;
2442 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2444 VirtMachineState *vms = VIRT_MACHINE(obj);
2446 return vms->highmem_mmio;
2449 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2451 VirtMachineState *vms = VIRT_MACHINE(obj);
2453 vms->highmem_mmio = value;
2457 static bool virt_get_its(Object *obj, Error **errp)
2459 VirtMachineState *vms = VIRT_MACHINE(obj);
2461 return vms->its;
2464 static void virt_set_its(Object *obj, bool value, Error **errp)
2466 VirtMachineState *vms = VIRT_MACHINE(obj);
2468 vms->its = value;
2471 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2473 VirtMachineState *vms = VIRT_MACHINE(obj);
2475 return vms->dtb_randomness;
2478 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2480 VirtMachineState *vms = VIRT_MACHINE(obj);
2482 vms->dtb_randomness = value;
2485 static char *virt_get_oem_id(Object *obj, Error **errp)
2487 VirtMachineState *vms = VIRT_MACHINE(obj);
2489 return g_strdup(vms->oem_id);
2492 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2494 VirtMachineState *vms = VIRT_MACHINE(obj);
2495 size_t len = strlen(value);
2497 if (len > 6) {
2498 error_setg(errp,
2499 "User specified oem-id value is bigger than 6 bytes in size");
2500 return;
2503 strncpy(vms->oem_id, value, 6);
2506 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2508 VirtMachineState *vms = VIRT_MACHINE(obj);
2510 return g_strdup(vms->oem_table_id);
2513 static void virt_set_oem_table_id(Object *obj, const char *value,
2514 Error **errp)
2516 VirtMachineState *vms = VIRT_MACHINE(obj);
2517 size_t len = strlen(value);
2519 if (len > 8) {
2520 error_setg(errp,
2521 "User specified oem-table-id value is bigger than 8 bytes in size");
2522 return;
2524 strncpy(vms->oem_table_id, value, 8);
2528 bool virt_is_acpi_enabled(VirtMachineState *vms)
2530 if (vms->acpi == ON_OFF_AUTO_OFF) {
2531 return false;
2533 return true;
2536 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2537 void *opaque, Error **errp)
2539 VirtMachineState *vms = VIRT_MACHINE(obj);
2540 OnOffAuto acpi = vms->acpi;
2542 visit_type_OnOffAuto(v, name, &acpi, errp);
2545 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2546 void *opaque, Error **errp)
2548 VirtMachineState *vms = VIRT_MACHINE(obj);
2550 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2553 static bool virt_get_ras(Object *obj, Error **errp)
2555 VirtMachineState *vms = VIRT_MACHINE(obj);
2557 return vms->ras;
2560 static void virt_set_ras(Object *obj, bool value, Error **errp)
2562 VirtMachineState *vms = VIRT_MACHINE(obj);
2564 vms->ras = value;
2567 static bool virt_get_mte(Object *obj, Error **errp)
2569 VirtMachineState *vms = VIRT_MACHINE(obj);
2571 return vms->mte;
2574 static void virt_set_mte(Object *obj, bool value, Error **errp)
2576 VirtMachineState *vms = VIRT_MACHINE(obj);
2578 vms->mte = value;
2581 static char *virt_get_gic_version(Object *obj, Error **errp)
2583 VirtMachineState *vms = VIRT_MACHINE(obj);
2584 const char *val;
2586 switch (vms->gic_version) {
2587 case VIRT_GIC_VERSION_4:
2588 val = "4";
2589 break;
2590 case VIRT_GIC_VERSION_3:
2591 val = "3";
2592 break;
2593 default:
2594 val = "2";
2595 break;
2597 return g_strdup(val);
2600 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2602 VirtMachineState *vms = VIRT_MACHINE(obj);
2604 if (!strcmp(value, "4")) {
2605 vms->gic_version = VIRT_GIC_VERSION_4;
2606 } else if (!strcmp(value, "3")) {
2607 vms->gic_version = VIRT_GIC_VERSION_3;
2608 } else if (!strcmp(value, "2")) {
2609 vms->gic_version = VIRT_GIC_VERSION_2;
2610 } else if (!strcmp(value, "host")) {
2611 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2612 } else if (!strcmp(value, "max")) {
2613 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2614 } else {
2615 error_setg(errp, "Invalid gic-version value");
2616 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2620 static char *virt_get_iommu(Object *obj, Error **errp)
2622 VirtMachineState *vms = VIRT_MACHINE(obj);
2624 switch (vms->iommu) {
2625 case VIRT_IOMMU_NONE:
2626 return g_strdup("none");
2627 case VIRT_IOMMU_SMMUV3:
2628 return g_strdup("smmuv3");
2629 default:
2630 g_assert_not_reached();
2634 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2636 VirtMachineState *vms = VIRT_MACHINE(obj);
2638 if (!strcmp(value, "smmuv3")) {
2639 vms->iommu = VIRT_IOMMU_SMMUV3;
2640 } else if (!strcmp(value, "none")) {
2641 vms->iommu = VIRT_IOMMU_NONE;
2642 } else {
2643 error_setg(errp, "Invalid iommu value");
2644 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2648 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2650 VirtMachineState *vms = VIRT_MACHINE(obj);
2652 return vms->default_bus_bypass_iommu;
2655 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2656 Error **errp)
2658 VirtMachineState *vms = VIRT_MACHINE(obj);
2660 vms->default_bus_bypass_iommu = value;
2663 static CpuInstanceProperties
2664 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2666 MachineClass *mc = MACHINE_GET_CLASS(ms);
2667 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2669 assert(cpu_index < possible_cpus->len);
2670 return possible_cpus->cpus[cpu_index].props;
2673 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2675 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2677 return socket_id % ms->numa_state->num_nodes;
2680 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2682 int n;
2683 unsigned int max_cpus = ms->smp.max_cpus;
2684 VirtMachineState *vms = VIRT_MACHINE(ms);
2685 MachineClass *mc = MACHINE_GET_CLASS(vms);
2687 if (ms->possible_cpus) {
2688 assert(ms->possible_cpus->len == max_cpus);
2689 return ms->possible_cpus;
2692 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2693 sizeof(CPUArchId) * max_cpus);
2694 ms->possible_cpus->len = max_cpus;
2695 for (n = 0; n < ms->possible_cpus->len; n++) {
2696 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2697 ms->possible_cpus->cpus[n].arch_id =
2698 virt_cpu_mp_affinity(vms, n);
2700 assert(!mc->smp_props.dies_supported);
2701 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2702 ms->possible_cpus->cpus[n].props.socket_id =
2703 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2704 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2705 ms->possible_cpus->cpus[n].props.cluster_id =
2706 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2707 ms->possible_cpus->cpus[n].props.has_core_id = true;
2708 ms->possible_cpus->cpus[n].props.core_id =
2709 (n / ms->smp.threads) % ms->smp.cores;
2710 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2711 ms->possible_cpus->cpus[n].props.thread_id =
2712 n % ms->smp.threads;
2714 return ms->possible_cpus;
2717 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2718 Error **errp)
2720 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2721 const MachineState *ms = MACHINE(hotplug_dev);
2722 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2724 if (!vms->acpi_dev) {
2725 error_setg(errp,
2726 "memory hotplug is not enabled: missing acpi-ged device");
2727 return;
2730 if (vms->mte) {
2731 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2732 return;
2735 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2736 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2737 return;
2740 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2743 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2744 DeviceState *dev, Error **errp)
2746 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2747 MachineState *ms = MACHINE(hotplug_dev);
2748 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2750 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2752 if (is_nvdimm) {
2753 nvdimm_plug(ms->nvdimms_state);
2756 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2757 dev, &error_abort);
2760 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2761 DeviceState *dev, Error **errp)
2763 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2765 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2766 virt_memory_pre_plug(hotplug_dev, dev, errp);
2767 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2768 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2769 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2770 hwaddr db_start = 0, db_end = 0;
2771 QList *reserved_regions;
2772 char *resv_prop_str;
2774 if (vms->iommu != VIRT_IOMMU_NONE) {
2775 error_setg(errp, "virt machine does not support multiple IOMMUs");
2776 return;
2779 switch (vms->msi_controller) {
2780 case VIRT_MSI_CTRL_NONE:
2781 return;
2782 case VIRT_MSI_CTRL_ITS:
2783 /* GITS_TRANSLATER page */
2784 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2785 db_end = base_memmap[VIRT_GIC_ITS].base +
2786 base_memmap[VIRT_GIC_ITS].size - 1;
2787 break;
2788 case VIRT_MSI_CTRL_GICV2M:
2789 /* MSI_SETSPI_NS page */
2790 db_start = base_memmap[VIRT_GIC_V2M].base;
2791 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2792 break;
2794 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2795 db_start, db_end,
2796 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2798 reserved_regions = qlist_new();
2799 qlist_append_str(reserved_regions, resv_prop_str);
2800 qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2801 g_free(resv_prop_str);
2805 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2806 DeviceState *dev, Error **errp)
2808 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2810 if (vms->platform_bus_dev) {
2811 MachineClass *mc = MACHINE_GET_CLASS(vms);
2813 if (device_is_dynamic_sysbus(mc, dev)) {
2814 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2815 SYS_BUS_DEVICE(dev));
2819 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2820 virt_memory_plug(hotplug_dev, dev, errp);
2821 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2822 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2825 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2826 PCIDevice *pdev = PCI_DEVICE(dev);
2828 vms->iommu = VIRT_IOMMU_VIRTIO;
2829 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2830 create_virtio_iommu_dt_bindings(vms);
2834 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2835 DeviceState *dev, Error **errp)
2837 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2839 if (!vms->acpi_dev) {
2840 error_setg(errp,
2841 "memory hotplug is not enabled: missing acpi-ged device");
2842 return;
2845 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2846 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2847 return;
2850 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2851 errp);
2854 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2855 DeviceState *dev, Error **errp)
2857 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2858 Error *local_err = NULL;
2860 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2861 if (local_err) {
2862 goto out;
2865 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2866 qdev_unrealize(dev);
2868 out:
2869 error_propagate(errp, local_err);
2872 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2873 DeviceState *dev, Error **errp)
2875 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2876 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2877 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2878 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2879 errp);
2880 } else {
2881 error_setg(errp, "device unplug request for unsupported device"
2882 " type: %s", object_get_typename(OBJECT(dev)));
2886 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2887 DeviceState *dev, Error **errp)
2889 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2890 virt_dimm_unplug(hotplug_dev, dev, errp);
2891 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2892 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2893 } else {
2894 error_setg(errp, "virt: device unplug for unsupported device"
2895 " type: %s", object_get_typename(OBJECT(dev)));
2899 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2900 DeviceState *dev)
2902 MachineClass *mc = MACHINE_GET_CLASS(machine);
2904 if (device_is_dynamic_sysbus(mc, dev) ||
2905 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2906 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2907 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2908 return HOTPLUG_HANDLER(machine);
2910 return NULL;
2914 * for arm64 kvm_type [7-0] encodes the requested number of bits
2915 * in the IPA address space
2917 static int virt_kvm_type(MachineState *ms, const char *type_str)
2919 VirtMachineState *vms = VIRT_MACHINE(ms);
2920 int max_vm_pa_size, requested_pa_size;
2921 bool fixed_ipa;
2923 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2925 /* we freeze the memory map to compute the highest gpa */
2926 virt_set_memmap(vms, max_vm_pa_size);
2928 requested_pa_size = 64 - clz64(vms->highest_gpa);
2931 * KVM requires the IPA size to be at least 32 bits.
2933 if (requested_pa_size < 32) {
2934 requested_pa_size = 32;
2937 if (requested_pa_size > max_vm_pa_size) {
2938 error_report("-m and ,maxmem option values "
2939 "require an IPA range (%d bits) larger than "
2940 "the one supported by the host (%d bits)",
2941 requested_pa_size, max_vm_pa_size);
2942 return -1;
2945 * We return the requested PA log size, unless KVM only supports
2946 * the implicit legacy 40b IPA setting, in which case the kvm_type
2947 * must be 0.
2949 return fixed_ipa ? 0 : requested_pa_size;
2952 static void virt_machine_class_init(ObjectClass *oc, void *data)
2954 MachineClass *mc = MACHINE_CLASS(oc);
2955 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2956 static const char * const valid_cpu_types[] = {
2957 #ifdef CONFIG_TCG
2958 ARM_CPU_TYPE_NAME("cortex-a7"),
2959 ARM_CPU_TYPE_NAME("cortex-a15"),
2960 #ifdef TARGET_AARCH64
2961 ARM_CPU_TYPE_NAME("cortex-a35"),
2962 ARM_CPU_TYPE_NAME("cortex-a55"),
2963 ARM_CPU_TYPE_NAME("cortex-a72"),
2964 ARM_CPU_TYPE_NAME("cortex-a76"),
2965 ARM_CPU_TYPE_NAME("cortex-a710"),
2966 ARM_CPU_TYPE_NAME("a64fx"),
2967 ARM_CPU_TYPE_NAME("neoverse-n1"),
2968 ARM_CPU_TYPE_NAME("neoverse-v1"),
2969 ARM_CPU_TYPE_NAME("neoverse-n2"),
2970 #endif /* TARGET_AARCH64 */
2971 #endif /* CONFIG_TCG */
2972 #ifdef TARGET_AARCH64
2973 ARM_CPU_TYPE_NAME("cortex-a53"),
2974 ARM_CPU_TYPE_NAME("cortex-a57"),
2975 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2976 ARM_CPU_TYPE_NAME("host"),
2977 #endif /* CONFIG_KVM || CONFIG_HVF */
2978 #endif /* TARGET_AARCH64 */
2979 ARM_CPU_TYPE_NAME("max"),
2980 NULL
2983 mc->init = machvirt_init;
2984 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2985 * The value may be reduced later when we have more information about the
2986 * configuration of the particular instance.
2988 mc->max_cpus = 512;
2989 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2990 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2991 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2992 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2993 #ifdef CONFIG_TPM
2994 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2995 #endif
2996 mc->block_default_type = IF_VIRTIO;
2997 mc->no_cdrom = 1;
2998 mc->pci_allow_0_address = true;
2999 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
3000 mc->minimum_page_bits = 12;
3001 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
3002 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
3003 #ifdef CONFIG_TCG
3004 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
3005 #else
3006 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
3007 #endif
3008 mc->valid_cpu_types = valid_cpu_types;
3009 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
3010 mc->kvm_type = virt_kvm_type;
3011 assert(!mc->get_hotplug_handler);
3012 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
3013 hc->pre_plug = virt_machine_device_pre_plug_cb;
3014 hc->plug = virt_machine_device_plug_cb;
3015 hc->unplug_request = virt_machine_device_unplug_request_cb;
3016 hc->unplug = virt_machine_device_unplug_cb;
3017 mc->nvdimm_supported = true;
3018 mc->smp_props.clusters_supported = true;
3019 mc->auto_enable_numa_with_memhp = true;
3020 mc->auto_enable_numa_with_memdev = true;
3021 /* platform instead of architectural choice */
3022 mc->cpu_cluster_has_numa_boundary = true;
3023 mc->default_ram_id = "mach-virt.ram";
3024 mc->default_nic = "virtio-net-pci";
3026 object_class_property_add(oc, "acpi", "OnOffAuto",
3027 virt_get_acpi, virt_set_acpi,
3028 NULL, NULL);
3029 object_class_property_set_description(oc, "acpi",
3030 "Enable ACPI");
3031 object_class_property_add_bool(oc, "secure", virt_get_secure,
3032 virt_set_secure);
3033 object_class_property_set_description(oc, "secure",
3034 "Set on/off to enable/disable the ARM "
3035 "Security Extensions (TrustZone)");
3037 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3038 virt_set_virt);
3039 object_class_property_set_description(oc, "virtualization",
3040 "Set on/off to enable/disable emulating a "
3041 "guest CPU which implements the ARM "
3042 "Virtualization Extensions");
3044 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3045 virt_set_highmem);
3046 object_class_property_set_description(oc, "highmem",
3047 "Set on/off to enable/disable using "
3048 "physical address space above 32 bits");
3050 object_class_property_add_bool(oc, "compact-highmem",
3051 virt_get_compact_highmem,
3052 virt_set_compact_highmem);
3053 object_class_property_set_description(oc, "compact-highmem",
3054 "Set on/off to enable/disable compact "
3055 "layout for high memory regions");
3057 object_class_property_add_bool(oc, "highmem-redists",
3058 virt_get_highmem_redists,
3059 virt_set_highmem_redists);
3060 object_class_property_set_description(oc, "highmem-redists",
3061 "Set on/off to enable/disable high "
3062 "memory region for GICv3 or GICv4 "
3063 "redistributor");
3065 object_class_property_add_bool(oc, "highmem-ecam",
3066 virt_get_highmem_ecam,
3067 virt_set_highmem_ecam);
3068 object_class_property_set_description(oc, "highmem-ecam",
3069 "Set on/off to enable/disable high "
3070 "memory region for PCI ECAM");
3072 object_class_property_add_bool(oc, "highmem-mmio",
3073 virt_get_highmem_mmio,
3074 virt_set_highmem_mmio);
3075 object_class_property_set_description(oc, "highmem-mmio",
3076 "Set on/off to enable/disable high "
3077 "memory region for PCI MMIO");
3079 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3080 virt_set_gic_version);
3081 object_class_property_set_description(oc, "gic-version",
3082 "Set GIC version. "
3083 "Valid values are 2, 3, 4, host and max");
3085 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3086 object_class_property_set_description(oc, "iommu",
3087 "Set the IOMMU type. "
3088 "Valid values are none and smmuv3");
3090 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3091 virt_get_default_bus_bypass_iommu,
3092 virt_set_default_bus_bypass_iommu);
3093 object_class_property_set_description(oc, "default-bus-bypass-iommu",
3094 "Set on/off to enable/disable "
3095 "bypass_iommu for default root bus");
3097 object_class_property_add_bool(oc, "ras", virt_get_ras,
3098 virt_set_ras);
3099 object_class_property_set_description(oc, "ras",
3100 "Set on/off to enable/disable reporting host memory errors "
3101 "to a KVM guest using ACPI and guest external abort exceptions");
3103 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3104 object_class_property_set_description(oc, "mte",
3105 "Set on/off to enable/disable emulating a "
3106 "guest CPU which implements the ARM "
3107 "Memory Tagging Extension");
3109 object_class_property_add_bool(oc, "its", virt_get_its,
3110 virt_set_its);
3111 object_class_property_set_description(oc, "its",
3112 "Set on/off to enable/disable "
3113 "ITS instantiation");
3115 object_class_property_add_bool(oc, "dtb-randomness",
3116 virt_get_dtb_randomness,
3117 virt_set_dtb_randomness);
3118 object_class_property_set_description(oc, "dtb-randomness",
3119 "Set off to disable passing random or "
3120 "non-deterministic dtb nodes to guest");
3122 object_class_property_add_bool(oc, "dtb-kaslr-seed",
3123 virt_get_dtb_randomness,
3124 virt_set_dtb_randomness);
3125 object_class_property_set_description(oc, "dtb-kaslr-seed",
3126 "Deprecated synonym of dtb-randomness");
3128 object_class_property_add_str(oc, "x-oem-id",
3129 virt_get_oem_id,
3130 virt_set_oem_id);
3131 object_class_property_set_description(oc, "x-oem-id",
3132 "Override the default value of field OEMID "
3133 "in ACPI table header."
3134 "The string may be up to 6 bytes in size");
3137 object_class_property_add_str(oc, "x-oem-table-id",
3138 virt_get_oem_table_id,
3139 virt_set_oem_table_id);
3140 object_class_property_set_description(oc, "x-oem-table-id",
3141 "Override the default value of field OEM Table ID "
3142 "in ACPI table header."
3143 "The string may be up to 8 bytes in size");
3147 static void virt_instance_init(Object *obj)
3149 VirtMachineState *vms = VIRT_MACHINE(obj);
3150 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3152 /* EL3 is disabled by default on virt: this makes us consistent
3153 * between KVM and TCG for this board, and it also allows us to
3154 * boot UEFI blobs which assume no TrustZone support.
3156 vms->secure = false;
3158 /* EL2 is also disabled by default, for similar reasons */
3159 vms->virt = false;
3161 /* High memory is enabled by default */
3162 vms->highmem = true;
3163 vms->highmem_compact = !vmc->no_highmem_compact;
3164 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3166 vms->highmem_ecam = !vmc->no_highmem_ecam;
3167 vms->highmem_mmio = true;
3168 vms->highmem_redists = true;
3170 if (vmc->no_its) {
3171 vms->its = false;
3172 } else {
3173 /* Default allows ITS instantiation */
3174 vms->its = true;
3176 if (vmc->no_tcg_its) {
3177 vms->tcg_its = false;
3178 } else {
3179 vms->tcg_its = true;
3183 /* Default disallows iommu instantiation */
3184 vms->iommu = VIRT_IOMMU_NONE;
3186 /* The default root bus is attached to iommu by default */
3187 vms->default_bus_bypass_iommu = false;
3189 /* Default disallows RAS instantiation */
3190 vms->ras = false;
3192 /* MTE is disabled by default. */
3193 vms->mte = false;
3195 /* Supply kaslr-seed and rng-seed by default */
3196 vms->dtb_randomness = true;
3198 vms->irqmap = a15irqmap;
3200 virt_flash_create(vms);
3202 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3203 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3206 static const TypeInfo virt_machine_info = {
3207 .name = TYPE_VIRT_MACHINE,
3208 .parent = TYPE_MACHINE,
3209 .abstract = true,
3210 .instance_size = sizeof(VirtMachineState),
3211 .class_size = sizeof(VirtMachineClass),
3212 .class_init = virt_machine_class_init,
3213 .instance_init = virt_instance_init,
3214 .interfaces = (InterfaceInfo[]) {
3215 { TYPE_HOTPLUG_HANDLER },
3220 static void machvirt_machine_init(void)
3222 type_register_static(&virt_machine_info);
3224 type_init(machvirt_machine_init);
3226 static void virt_machine_9_0_options(MachineClass *mc)
3229 DEFINE_VIRT_MACHINE_AS_LATEST(9, 0)
3231 static void virt_machine_8_2_options(MachineClass *mc)
3233 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3235 virt_machine_9_0_options(mc);
3236 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
3238 * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and
3239 * earlier machines. (Exposing it tickles a bug in older EDK2
3240 * guest BIOS binaries.)
3242 vmc->no_ns_el2_virt_timer_irq = true;
3244 DEFINE_VIRT_MACHINE(8, 2)
3246 static void virt_machine_8_1_options(MachineClass *mc)
3248 virt_machine_8_2_options(mc);
3249 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3251 DEFINE_VIRT_MACHINE(8, 1)
3253 static void virt_machine_8_0_options(MachineClass *mc)
3255 virt_machine_8_1_options(mc);
3256 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3258 DEFINE_VIRT_MACHINE(8, 0)
3260 static void virt_machine_7_2_options(MachineClass *mc)
3262 virt_machine_8_0_options(mc);
3263 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3265 DEFINE_VIRT_MACHINE(7, 2)
3267 static void virt_machine_7_1_options(MachineClass *mc)
3269 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3271 virt_machine_7_2_options(mc);
3272 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3273 /* Compact layout for high memory regions was introduced with 7.2 */
3274 vmc->no_highmem_compact = true;
3276 DEFINE_VIRT_MACHINE(7, 1)
3278 static void virt_machine_7_0_options(MachineClass *mc)
3280 virt_machine_7_1_options(mc);
3281 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3283 DEFINE_VIRT_MACHINE(7, 0)
3285 static void virt_machine_6_2_options(MachineClass *mc)
3287 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3289 virt_machine_7_0_options(mc);
3290 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3291 vmc->no_tcg_lpa2 = true;
3293 DEFINE_VIRT_MACHINE(6, 2)
3295 static void virt_machine_6_1_options(MachineClass *mc)
3297 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3299 virt_machine_6_2_options(mc);
3300 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3301 mc->smp_props.prefer_sockets = true;
3302 vmc->no_cpu_topology = true;
3304 /* qemu ITS was introduced with 6.2 */
3305 vmc->no_tcg_its = true;
3307 DEFINE_VIRT_MACHINE(6, 1)
3309 static void virt_machine_6_0_options(MachineClass *mc)
3311 virt_machine_6_1_options(mc);
3312 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3314 DEFINE_VIRT_MACHINE(6, 0)
3316 static void virt_machine_5_2_options(MachineClass *mc)
3318 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3320 virt_machine_6_0_options(mc);
3321 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3322 vmc->no_secure_gpio = true;
3324 DEFINE_VIRT_MACHINE(5, 2)
3326 static void virt_machine_5_1_options(MachineClass *mc)
3328 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3330 virt_machine_5_2_options(mc);
3331 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3332 vmc->no_kvm_steal_time = true;
3334 DEFINE_VIRT_MACHINE(5, 1)
3336 static void virt_machine_5_0_options(MachineClass *mc)
3338 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3340 virt_machine_5_1_options(mc);
3341 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3342 mc->numa_mem_supported = true;
3343 vmc->acpi_expose_flash = true;
3344 mc->auto_enable_numa_with_memdev = false;
3346 DEFINE_VIRT_MACHINE(5, 0)
3348 static void virt_machine_4_2_options(MachineClass *mc)
3350 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3352 virt_machine_5_0_options(mc);
3353 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3354 vmc->kvm_no_adjvtime = true;
3356 DEFINE_VIRT_MACHINE(4, 2)
3358 static void virt_machine_4_1_options(MachineClass *mc)
3360 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3362 virt_machine_4_2_options(mc);
3363 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3364 vmc->no_ged = true;
3365 mc->auto_enable_numa_with_memhp = false;
3367 DEFINE_VIRT_MACHINE(4, 1)
3369 static void virt_machine_4_0_options(MachineClass *mc)
3371 virt_machine_4_1_options(mc);
3372 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3374 DEFINE_VIRT_MACHINE(4, 0)
3376 static void virt_machine_3_1_options(MachineClass *mc)
3378 virt_machine_4_0_options(mc);
3379 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3381 DEFINE_VIRT_MACHINE(3, 1)
3383 static void virt_machine_3_0_options(MachineClass *mc)
3385 virt_machine_3_1_options(mc);
3386 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3388 DEFINE_VIRT_MACHINE(3, 0)
3390 static void virt_machine_2_12_options(MachineClass *mc)
3392 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3394 virt_machine_3_0_options(mc);
3395 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3396 vmc->no_highmem_ecam = true;
3397 mc->max_cpus = 255;
3399 DEFINE_VIRT_MACHINE(2, 12)
3401 static void virt_machine_2_11_options(MachineClass *mc)
3403 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3405 virt_machine_2_12_options(mc);
3406 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3407 vmc->smbios_old_sys_ver = true;
3409 DEFINE_VIRT_MACHINE(2, 11)
3411 static void virt_machine_2_10_options(MachineClass *mc)
3413 virt_machine_2_11_options(mc);
3414 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3415 /* before 2.11 we never faulted accesses to bad addresses */
3416 mc->ignore_memory_transaction_failures = true;
3418 DEFINE_VIRT_MACHINE(2, 10)
3420 static void virt_machine_2_9_options(MachineClass *mc)
3422 virt_machine_2_10_options(mc);
3423 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3425 DEFINE_VIRT_MACHINE(2, 9)
3427 static void virt_machine_2_8_options(MachineClass *mc)
3429 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3431 virt_machine_2_9_options(mc);
3432 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3433 /* For 2.8 and earlier we falsely claimed in the DT that
3434 * our timers were edge-triggered, not level-triggered.
3436 vmc->claim_edge_triggered_timers = true;
3438 DEFINE_VIRT_MACHINE(2, 8)
3440 static void virt_machine_2_7_options(MachineClass *mc)
3442 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3444 virt_machine_2_8_options(mc);
3445 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3446 /* ITS was introduced with 2.8 */
3447 vmc->no_its = true;
3448 /* Stick with 1K pages for migration compatibility */
3449 mc->minimum_page_bits = 0;
3451 DEFINE_VIRT_MACHINE(2, 7)
3453 static void virt_machine_2_6_options(MachineClass *mc)
3455 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3457 virt_machine_2_7_options(mc);
3458 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3459 vmc->disallow_affinity_adjustment = true;
3460 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3461 vmc->no_pmu = true;
3463 DEFINE_VIRT_MACHINE(2, 6)