hw/arm/virt: add linux, stdout-path to /chosen DT node
[qemu/ar7.git] / hw / arm / virt.c
blobe8f231eddc9fbd38445f237de79114e2d0030d93
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/sysemu.h"
38 #include "sysemu/kvm.h"
39 #include "hw/boards.h"
40 #include "exec/address-spaces.h"
41 #include "qemu/bitops.h"
42 #include "qemu/error-report.h"
44 #define NUM_VIRTIO_TRANSPORTS 32
46 /* Number of external interrupt lines to configure the GIC with */
47 #define NUM_IRQS 128
49 #define GIC_FDT_IRQ_TYPE_SPI 0
50 #define GIC_FDT_IRQ_TYPE_PPI 1
52 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
53 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
54 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
55 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
57 #define GIC_FDT_IRQ_PPI_CPU_START 8
58 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
60 enum {
61 VIRT_FLASH,
62 VIRT_MEM,
63 VIRT_CPUPERIPHS,
64 VIRT_GIC_DIST,
65 VIRT_GIC_CPU,
66 VIRT_UART,
67 VIRT_MMIO,
68 VIRT_RTC,
71 typedef struct MemMapEntry {
72 hwaddr base;
73 hwaddr size;
74 } MemMapEntry;
76 typedef struct VirtBoardInfo {
77 struct arm_boot_info bootinfo;
78 const char *cpu_model;
79 const MemMapEntry *memmap;
80 const int *irqmap;
81 int smp_cpus;
82 void *fdt;
83 int fdt_size;
84 uint32_t clock_phandle;
85 } VirtBoardInfo;
87 /* Addresses and sizes of our components.
88 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
89 * 128MB..256MB is used for miscellaneous device I/O.
90 * 256MB..1GB is reserved for possible future PCI support (ie where the
91 * PCI memory window will go if we add a PCI host controller).
92 * 1GB and up is RAM (which may happily spill over into the
93 * high memory region beyond 4GB).
94 * This represents a compromise between how much RAM can be given to
95 * a 32 bit VM and leaving space for expansion and in particular for PCI.
96 * Note that devices should generally be placed at multiples of 0x10000,
97 * to accommodate guests using 64K pages.
99 static const MemMapEntry a15memmap[] = {
100 /* Space up to 0x8000000 is reserved for a boot ROM */
101 [VIRT_FLASH] = { 0, 0x08000000 },
102 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
103 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
104 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
105 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
106 [VIRT_UART] = { 0x09000000, 0x00001000 },
107 [VIRT_RTC] = { 0x09010000, 0x00001000 },
108 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
109 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
110 /* 0x10000000 .. 0x40000000 reserved for PCI */
111 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
114 static const int a15irqmap[] = {
115 [VIRT_UART] = 1,
116 [VIRT_RTC] = 2,
117 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
120 static VirtBoardInfo machines[] = {
122 .cpu_model = "cortex-a15",
123 .memmap = a15memmap,
124 .irqmap = a15irqmap,
127 .cpu_model = "cortex-a57",
128 .memmap = a15memmap,
129 .irqmap = a15irqmap,
132 .cpu_model = "host",
133 .memmap = a15memmap,
134 .irqmap = a15irqmap,
138 static VirtBoardInfo *find_machine_info(const char *cpu)
140 int i;
142 for (i = 0; i < ARRAY_SIZE(machines); i++) {
143 if (strcmp(cpu, machines[i].cpu_model) == 0) {
144 return &machines[i];
147 return NULL;
150 static void create_fdt(VirtBoardInfo *vbi)
152 void *fdt = create_device_tree(&vbi->fdt_size);
154 if (!fdt) {
155 error_report("create_device_tree() failed");
156 exit(1);
159 vbi->fdt = fdt;
161 /* Header */
162 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
163 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
164 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
167 * /chosen and /memory nodes must exist for load_dtb
168 * to fill in necessary properties later
170 qemu_fdt_add_subnode(fdt, "/chosen");
171 qemu_fdt_add_subnode(fdt, "/memory");
172 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
174 /* Clock node, for the benefit of the UART. The kernel device tree
175 * binding documentation claims the PL011 node clock properties are
176 * optional but in practice if you omit them the kernel refuses to
177 * probe for the device.
179 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
180 qemu_fdt_add_subnode(fdt, "/apb-pclk");
181 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
182 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
183 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
184 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
185 "clk24mhz");
186 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
190 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
192 void *fdt = vbi->fdt;
193 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
195 /* No PSCI for TCG yet */
196 if (kvm_enabled()) {
197 uint32_t cpu_suspend_fn;
198 uint32_t cpu_off_fn;
199 uint32_t cpu_on_fn;
200 uint32_t migrate_fn;
202 qemu_fdt_add_subnode(fdt, "/psci");
203 if (armcpu->psci_version == 2) {
204 const char comp[] = "arm,psci-0.2\0arm,psci";
205 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
207 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
208 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
209 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
210 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
211 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
212 } else {
213 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
214 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
215 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
217 } else {
218 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
220 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
221 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
222 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
223 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
226 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
228 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
229 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
230 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
231 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
235 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
237 /* Note that on A15 h/w these interrupts are level-triggered,
238 * but for the GIC implementation provided by both QEMU and KVM
239 * they are edge-triggered.
241 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
243 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
244 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
246 qemu_fdt_add_subnode(vbi->fdt, "/timer");
247 qemu_fdt_setprop_string(vbi->fdt, "/timer",
248 "compatible", "arm,armv7-timer");
249 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
250 GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
251 GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
252 GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
253 GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
256 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
258 int cpu;
260 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
261 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
262 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
264 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
265 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
266 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
268 qemu_fdt_add_subnode(vbi->fdt, nodename);
269 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
270 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
271 armcpu->dtb_compatible);
273 if (vbi->smp_cpus > 1) {
274 qemu_fdt_setprop_string(vbi->fdt, nodename,
275 "enable-method", "psci");
278 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
279 g_free(nodename);
283 static void fdt_add_gic_node(const VirtBoardInfo *vbi)
285 uint32_t gic_phandle;
287 gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
288 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
290 qemu_fdt_add_subnode(vbi->fdt, "/intc");
291 /* 'cortex-a15-gic' means 'GIC v2' */
292 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
293 "arm,cortex-a15-gic");
294 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
295 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
296 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
297 2, vbi->memmap[VIRT_GIC_DIST].base,
298 2, vbi->memmap[VIRT_GIC_DIST].size,
299 2, vbi->memmap[VIRT_GIC_CPU].base,
300 2, vbi->memmap[VIRT_GIC_CPU].size);
301 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
304 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
306 /* We create a standalone GIC v2 */
307 DeviceState *gicdev;
308 SysBusDevice *gicbusdev;
309 const char *gictype = "arm_gic";
310 int i;
312 if (kvm_irqchip_in_kernel()) {
313 gictype = "kvm-arm-gic";
316 gicdev = qdev_create(NULL, gictype);
317 qdev_prop_set_uint32(gicdev, "revision", 2);
318 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
319 /* Note that the num-irq property counts both internal and external
320 * interrupts; there are always 32 of the former (mandated by GIC spec).
322 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
323 qdev_init_nofail(gicdev);
324 gicbusdev = SYS_BUS_DEVICE(gicdev);
325 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
326 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
328 /* Wire the outputs from each CPU's generic timer to the
329 * appropriate GIC PPI inputs, and the GIC's IRQ output to
330 * the CPU's IRQ input.
332 for (i = 0; i < smp_cpus; i++) {
333 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
334 int ppibase = NUM_IRQS + i * 32;
335 /* physical timer; we wire it up to the non-secure timer's ID,
336 * since a real A15 always has TrustZone but QEMU doesn't.
338 qdev_connect_gpio_out(cpudev, 0,
339 qdev_get_gpio_in(gicdev, ppibase + 30));
340 /* virtual timer */
341 qdev_connect_gpio_out(cpudev, 1,
342 qdev_get_gpio_in(gicdev, ppibase + 27));
344 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
347 for (i = 0; i < NUM_IRQS; i++) {
348 pic[i] = qdev_get_gpio_in(gicdev, i);
351 fdt_add_gic_node(vbi);
354 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
356 char *nodename;
357 hwaddr base = vbi->memmap[VIRT_UART].base;
358 hwaddr size = vbi->memmap[VIRT_UART].size;
359 int irq = vbi->irqmap[VIRT_UART];
360 const char compat[] = "arm,pl011\0arm,primecell";
361 const char clocknames[] = "uartclk\0apb_pclk";
363 sysbus_create_simple("pl011", base, pic[irq]);
365 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
366 qemu_fdt_add_subnode(vbi->fdt, nodename);
367 /* Note that we can't use setprop_string because of the embedded NUL */
368 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
369 compat, sizeof(compat));
370 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
371 2, base, 2, size);
372 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
373 GIC_FDT_IRQ_TYPE_SPI, irq,
374 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
375 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
376 vbi->clock_phandle, vbi->clock_phandle);
377 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
378 clocknames, sizeof(clocknames));
380 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "linux,stdout-path", nodename);
381 g_free(nodename);
384 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
386 char *nodename;
387 hwaddr base = vbi->memmap[VIRT_RTC].base;
388 hwaddr size = vbi->memmap[VIRT_RTC].size;
389 int irq = vbi->irqmap[VIRT_RTC];
390 const char compat[] = "arm,pl031\0arm,primecell";
392 sysbus_create_simple("pl031", base, pic[irq]);
394 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
395 qemu_fdt_add_subnode(vbi->fdt, nodename);
396 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
397 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
398 2, base, 2, size);
399 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
400 GIC_FDT_IRQ_TYPE_SPI, irq,
401 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
402 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
403 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
404 g_free(nodename);
407 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
409 int i;
410 hwaddr size = vbi->memmap[VIRT_MMIO].size;
412 /* Note that we have to create the transports in forwards order
413 * so that command line devices are inserted lowest address first,
414 * and then add dtb nodes in reverse order so that they appear in
415 * the finished device tree lowest address first.
417 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
418 int irq = vbi->irqmap[VIRT_MMIO] + i;
419 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
421 sysbus_create_simple("virtio-mmio", base, pic[irq]);
424 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
425 char *nodename;
426 int irq = vbi->irqmap[VIRT_MMIO] + i;
427 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
429 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
430 qemu_fdt_add_subnode(vbi->fdt, nodename);
431 qemu_fdt_setprop_string(vbi->fdt, nodename,
432 "compatible", "virtio,mmio");
433 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
434 2, base, 2, size);
435 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
436 GIC_FDT_IRQ_TYPE_SPI, irq,
437 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
438 g_free(nodename);
442 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
444 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
446 *fdt_size = board->fdt_size;
447 return board->fdt;
450 static void machvirt_init(MachineState *machine)
452 qemu_irq pic[NUM_IRQS];
453 MemoryRegion *sysmem = get_system_memory();
454 int n;
455 MemoryRegion *ram = g_new(MemoryRegion, 1);
456 const char *cpu_model = machine->cpu_model;
457 VirtBoardInfo *vbi;
459 if (!cpu_model) {
460 cpu_model = "cortex-a15";
463 vbi = find_machine_info(cpu_model);
465 if (!vbi) {
466 error_report("mach-virt: CPU %s not supported", cpu_model);
467 exit(1);
470 vbi->smp_cpus = smp_cpus;
473 * Only supported method of starting secondary CPUs is PSCI and
474 * PSCI is not yet supported with TCG, so limit smp_cpus to 1
475 * if we're not using KVM.
477 if (!kvm_enabled() && smp_cpus > 1) {
478 error_report("mach-virt: must enable KVM to use multiple CPUs");
479 exit(1);
482 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
483 error_report("mach-virt: cannot model more than 30GB RAM");
484 exit(1);
487 create_fdt(vbi);
488 fdt_add_timer_nodes(vbi);
490 for (n = 0; n < smp_cpus; n++) {
491 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
492 Object *cpuobj;
494 if (!oc) {
495 fprintf(stderr, "Unable to find CPU definition\n");
496 exit(1);
498 cpuobj = object_new(object_class_get_name(oc));
500 /* Secondary CPUs start in PSCI powered-down state */
501 if (n > 0) {
502 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
505 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
506 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
507 "reset-cbar", &error_abort);
510 object_property_set_bool(cpuobj, true, "realized", NULL);
512 fdt_add_cpu_nodes(vbi);
513 fdt_add_psci_node(vbi);
515 memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size);
516 vmstate_register_ram_global(ram);
517 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
519 create_gic(vbi, pic);
521 create_uart(vbi, pic);
523 create_rtc(vbi, pic);
525 /* Create mmio transports, so the user can create virtio backends
526 * (which will be automatically plugged in to the transports). If
527 * no backend is created the transport will just sit harmlessly idle.
529 create_virtio_devices(vbi, pic);
531 vbi->bootinfo.ram_size = machine->ram_size;
532 vbi->bootinfo.kernel_filename = machine->kernel_filename;
533 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
534 vbi->bootinfo.initrd_filename = machine->initrd_filename;
535 vbi->bootinfo.nb_cpus = smp_cpus;
536 vbi->bootinfo.board_id = -1;
537 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
538 vbi->bootinfo.get_dtb = machvirt_dtb;
539 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
542 static QEMUMachine machvirt_a15_machine = {
543 .name = "virt",
544 .desc = "ARM Virtual Machine",
545 .init = machvirt_init,
546 .max_cpus = 8,
549 static void machvirt_machine_init(void)
551 qemu_register_machine(&machvirt_a15_machine);
554 machine_init(machvirt_machine_init);