hw/arm/virt-acpi-build: Generate GTDT table
[qemu/ar7.git] / hw / arm / virt.c
bloba6a399d03e0034ccd06f934637ef31ecd2d89ca5
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
36 #include "net/net.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
48 /* Number of external interrupt lines to configure the GIC with */
49 #define NUM_IRQS 128
51 #define GIC_FDT_IRQ_TYPE_SPI 0
52 #define GIC_FDT_IRQ_TYPE_PPI 1
54 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
55 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
56 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
57 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
59 #define GIC_FDT_IRQ_PPI_CPU_START 8
60 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
62 typedef struct VirtBoardInfo {
63 struct arm_boot_info bootinfo;
64 const char *cpu_model;
65 const MemMapEntry *memmap;
66 const int *irqmap;
67 int smp_cpus;
68 void *fdt;
69 int fdt_size;
70 uint32_t clock_phandle;
71 } VirtBoardInfo;
73 typedef struct {
74 MachineClass parent;
75 VirtBoardInfo *daughterboard;
76 } VirtMachineClass;
78 typedef struct {
79 MachineState parent;
80 bool secure;
81 } VirtMachineState;
83 #define TYPE_VIRT_MACHINE "virt"
84 #define VIRT_MACHINE(obj) \
85 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
86 #define VIRT_MACHINE_GET_CLASS(obj) \
87 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
88 #define VIRT_MACHINE_CLASS(klass) \
89 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
91 /* Addresses and sizes of our components.
92 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
93 * 128MB..256MB is used for miscellaneous device I/O.
94 * 256MB..1GB is reserved for possible future PCI support (ie where the
95 * PCI memory window will go if we add a PCI host controller).
96 * 1GB and up is RAM (which may happily spill over into the
97 * high memory region beyond 4GB).
98 * This represents a compromise between how much RAM can be given to
99 * a 32 bit VM and leaving space for expansion and in particular for PCI.
100 * Note that devices should generally be placed at multiples of 0x10000,
101 * to accommodate guests using 64K pages.
103 static const MemMapEntry a15memmap[] = {
104 /* Space up to 0x8000000 is reserved for a boot ROM */
105 [VIRT_FLASH] = { 0, 0x08000000 },
106 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
107 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
108 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
109 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
110 [VIRT_UART] = { 0x09000000, 0x00001000 },
111 [VIRT_RTC] = { 0x09010000, 0x00001000 },
112 [VIRT_FW_CFG] = { 0x09020000, 0x0000000a },
113 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
114 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
115 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
116 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
117 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
118 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
121 static const int a15irqmap[] = {
122 [VIRT_UART] = 1,
123 [VIRT_RTC] = 2,
124 [VIRT_PCIE] = 3, /* ... to 6 */
125 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
128 static VirtBoardInfo machines[] = {
130 .cpu_model = "cortex-a15",
131 .memmap = a15memmap,
132 .irqmap = a15irqmap,
135 .cpu_model = "cortex-a57",
136 .memmap = a15memmap,
137 .irqmap = a15irqmap,
140 .cpu_model = "host",
141 .memmap = a15memmap,
142 .irqmap = a15irqmap,
146 static VirtBoardInfo *find_machine_info(const char *cpu)
148 int i;
150 for (i = 0; i < ARRAY_SIZE(machines); i++) {
151 if (strcmp(cpu, machines[i].cpu_model) == 0) {
152 return &machines[i];
155 return NULL;
158 static void create_fdt(VirtBoardInfo *vbi)
160 void *fdt = create_device_tree(&vbi->fdt_size);
162 if (!fdt) {
163 error_report("create_device_tree() failed");
164 exit(1);
167 vbi->fdt = fdt;
169 /* Header */
170 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
171 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
172 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
175 * /chosen and /memory nodes must exist for load_dtb
176 * to fill in necessary properties later
178 qemu_fdt_add_subnode(fdt, "/chosen");
179 qemu_fdt_add_subnode(fdt, "/memory");
180 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
182 /* Clock node, for the benefit of the UART. The kernel device tree
183 * binding documentation claims the PL011 node clock properties are
184 * optional but in practice if you omit them the kernel refuses to
185 * probe for the device.
187 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
188 qemu_fdt_add_subnode(fdt, "/apb-pclk");
189 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
190 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
191 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
192 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
193 "clk24mhz");
194 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
198 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
200 uint32_t cpu_suspend_fn;
201 uint32_t cpu_off_fn;
202 uint32_t cpu_on_fn;
203 uint32_t migrate_fn;
204 void *fdt = vbi->fdt;
205 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
207 qemu_fdt_add_subnode(fdt, "/psci");
208 if (armcpu->psci_version == 2) {
209 const char comp[] = "arm,psci-0.2\0arm,psci";
210 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
212 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
213 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
214 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
215 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
216 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
217 } else {
218 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
219 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
220 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
222 } else {
223 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
225 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
226 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
227 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
228 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
231 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
232 * to the instruction that should be used to invoke PSCI functions.
233 * However, the device tree binding uses 'method' instead, so that is
234 * what we should use here.
236 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
238 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
239 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
240 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
241 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
244 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
246 /* Note that on A15 h/w these interrupts are level-triggered,
247 * but for the GIC implementation provided by both QEMU and KVM
248 * they are edge-triggered.
250 ARMCPU *armcpu;
251 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
253 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
254 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
256 qemu_fdt_add_subnode(vbi->fdt, "/timer");
258 armcpu = ARM_CPU(qemu_get_cpu(0));
259 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
260 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
261 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
262 compat, sizeof(compat));
263 } else {
264 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
265 "arm,armv7-timer");
267 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
268 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
269 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
270 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
271 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
274 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
276 int cpu;
278 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
279 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
280 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
282 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
283 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
284 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
286 qemu_fdt_add_subnode(vbi->fdt, nodename);
287 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
288 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
289 armcpu->dtb_compatible);
291 if (vbi->smp_cpus > 1) {
292 qemu_fdt_setprop_string(vbi->fdt, nodename,
293 "enable-method", "psci");
296 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
297 g_free(nodename);
301 static uint32_t fdt_add_gic_node(const VirtBoardInfo *vbi)
303 uint32_t gic_phandle;
305 gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
306 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
308 qemu_fdt_add_subnode(vbi->fdt, "/intc");
309 /* 'cortex-a15-gic' means 'GIC v2' */
310 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
311 "arm,cortex-a15-gic");
312 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
313 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
314 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
315 2, vbi->memmap[VIRT_GIC_DIST].base,
316 2, vbi->memmap[VIRT_GIC_DIST].size,
317 2, vbi->memmap[VIRT_GIC_CPU].base,
318 2, vbi->memmap[VIRT_GIC_CPU].size);
319 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
321 return gic_phandle;
324 static uint32_t create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
326 /* We create a standalone GIC v2 */
327 DeviceState *gicdev;
328 SysBusDevice *gicbusdev;
329 const char *gictype = "arm_gic";
330 int i;
332 if (kvm_irqchip_in_kernel()) {
333 gictype = "kvm-arm-gic";
336 gicdev = qdev_create(NULL, gictype);
337 qdev_prop_set_uint32(gicdev, "revision", 2);
338 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
339 /* Note that the num-irq property counts both internal and external
340 * interrupts; there are always 32 of the former (mandated by GIC spec).
342 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
343 qdev_init_nofail(gicdev);
344 gicbusdev = SYS_BUS_DEVICE(gicdev);
345 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
346 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
348 /* Wire the outputs from each CPU's generic timer to the
349 * appropriate GIC PPI inputs, and the GIC's IRQ output to
350 * the CPU's IRQ input.
352 for (i = 0; i < smp_cpus; i++) {
353 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
354 int ppibase = NUM_IRQS + i * 32;
355 /* physical timer; we wire it up to the non-secure timer's ID,
356 * since a real A15 always has TrustZone but QEMU doesn't.
358 qdev_connect_gpio_out(cpudev, 0,
359 qdev_get_gpio_in(gicdev, ppibase + 30));
360 /* virtual timer */
361 qdev_connect_gpio_out(cpudev, 1,
362 qdev_get_gpio_in(gicdev, ppibase + 27));
364 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
365 sysbus_connect_irq(gicbusdev, i + smp_cpus,
366 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
369 for (i = 0; i < NUM_IRQS; i++) {
370 pic[i] = qdev_get_gpio_in(gicdev, i);
373 return fdt_add_gic_node(vbi);
376 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
378 char *nodename;
379 hwaddr base = vbi->memmap[VIRT_UART].base;
380 hwaddr size = vbi->memmap[VIRT_UART].size;
381 int irq = vbi->irqmap[VIRT_UART];
382 const char compat[] = "arm,pl011\0arm,primecell";
383 const char clocknames[] = "uartclk\0apb_pclk";
385 sysbus_create_simple("pl011", base, pic[irq]);
387 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
388 qemu_fdt_add_subnode(vbi->fdt, nodename);
389 /* Note that we can't use setprop_string because of the embedded NUL */
390 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
391 compat, sizeof(compat));
392 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
393 2, base, 2, size);
394 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
395 GIC_FDT_IRQ_TYPE_SPI, irq,
396 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
397 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
398 vbi->clock_phandle, vbi->clock_phandle);
399 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
400 clocknames, sizeof(clocknames));
402 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
403 g_free(nodename);
406 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
408 char *nodename;
409 hwaddr base = vbi->memmap[VIRT_RTC].base;
410 hwaddr size = vbi->memmap[VIRT_RTC].size;
411 int irq = vbi->irqmap[VIRT_RTC];
412 const char compat[] = "arm,pl031\0arm,primecell";
414 sysbus_create_simple("pl031", base, pic[irq]);
416 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
417 qemu_fdt_add_subnode(vbi->fdt, nodename);
418 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
419 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
420 2, base, 2, size);
421 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
422 GIC_FDT_IRQ_TYPE_SPI, irq,
423 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
424 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
425 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
426 g_free(nodename);
429 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
431 int i;
432 hwaddr size = vbi->memmap[VIRT_MMIO].size;
434 /* We create the transports in forwards order. Since qbus_realize()
435 * prepends (not appends) new child buses, the incrementing loop below will
436 * create a list of virtio-mmio buses with decreasing base addresses.
438 * When a -device option is processed from the command line,
439 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
440 * order. The upshot is that -device options in increasing command line
441 * order are mapped to virtio-mmio buses with decreasing base addresses.
443 * When this code was originally written, that arrangement ensured that the
444 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
445 * the first -device on the command line. (The end-to-end order is a
446 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
447 * guest kernel's name-to-address assignment strategy.)
449 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
450 * the message, if not necessarily the code, of commit 70161ff336.
451 * Therefore the loop now establishes the inverse of the original intent.
453 * Unfortunately, we can't counteract the kernel change by reversing the
454 * loop; it would break existing command lines.
456 * In any case, the kernel makes no guarantee about the stability of
457 * enumeration order of virtio devices (as demonstrated by it changing
458 * between kernel versions). For reliable and stable identification
459 * of disks users must use UUIDs or similar mechanisms.
461 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
462 int irq = vbi->irqmap[VIRT_MMIO] + i;
463 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
465 sysbus_create_simple("virtio-mmio", base, pic[irq]);
468 /* We add dtb nodes in reverse order so that they appear in the finished
469 * device tree lowest address first.
471 * Note that this mapping is independent of the loop above. The previous
472 * loop influences virtio device to virtio transport assignment, whereas
473 * this loop controls how virtio transports are laid out in the dtb.
475 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
476 char *nodename;
477 int irq = vbi->irqmap[VIRT_MMIO] + i;
478 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
480 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
481 qemu_fdt_add_subnode(vbi->fdt, nodename);
482 qemu_fdt_setprop_string(vbi->fdt, nodename,
483 "compatible", "virtio,mmio");
484 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
485 2, base, 2, size);
486 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
487 GIC_FDT_IRQ_TYPE_SPI, irq,
488 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
489 g_free(nodename);
493 static void create_one_flash(const char *name, hwaddr flashbase,
494 hwaddr flashsize)
496 /* Create and map a single flash device. We use the same
497 * parameters as the flash devices on the Versatile Express board.
499 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
500 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
501 const uint64_t sectorlength = 256 * 1024;
503 if (dinfo) {
504 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
505 &error_abort);
508 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
509 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
510 qdev_prop_set_uint8(dev, "width", 4);
511 qdev_prop_set_uint8(dev, "device-width", 2);
512 qdev_prop_set_uint8(dev, "big-endian", 0);
513 qdev_prop_set_uint16(dev, "id0", 0x89);
514 qdev_prop_set_uint16(dev, "id1", 0x18);
515 qdev_prop_set_uint16(dev, "id2", 0x00);
516 qdev_prop_set_uint16(dev, "id3", 0x00);
517 qdev_prop_set_string(dev, "name", name);
518 qdev_init_nofail(dev);
520 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
523 static void create_flash(const VirtBoardInfo *vbi)
525 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
526 * Any file passed via -bios goes in the first of these.
528 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
529 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
530 char *nodename;
532 if (bios_name) {
533 char *fn;
534 int image_size;
536 if (drive_get(IF_PFLASH, 0, 0)) {
537 error_report("The contents of the first flash device may be "
538 "specified with -bios or with -drive if=pflash... "
539 "but you cannot use both options at once");
540 exit(1);
542 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
543 if (!fn) {
544 error_report("Could not find ROM image '%s'", bios_name);
545 exit(1);
547 image_size = load_image_targphys(fn, flashbase, flashsize);
548 g_free(fn);
549 if (image_size < 0) {
550 error_report("Could not load ROM image '%s'", bios_name);
551 exit(1);
555 create_one_flash("virt.flash0", flashbase, flashsize);
556 create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
558 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
559 qemu_fdt_add_subnode(vbi->fdt, nodename);
560 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
561 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
562 2, flashbase, 2, flashsize,
563 2, flashbase + flashsize, 2, flashsize);
564 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
565 g_free(nodename);
568 static void create_fw_cfg(const VirtBoardInfo *vbi)
570 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
571 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
572 char *nodename;
574 fw_cfg_init_mem_wide(base + 8, base, 8);
576 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
577 qemu_fdt_add_subnode(vbi->fdt, nodename);
578 qemu_fdt_setprop_string(vbi->fdt, nodename,
579 "compatible", "qemu,fw-cfg-mmio");
580 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
581 2, base, 2, size);
582 g_free(nodename);
585 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
586 int first_irq, const char *nodename)
588 int devfn, pin;
589 uint32_t full_irq_map[4 * 4 * 8] = { 0 };
590 uint32_t *irq_map = full_irq_map;
592 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
593 for (pin = 0; pin < 4; pin++) {
594 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
595 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
596 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
597 int i;
599 uint32_t map[] = {
600 devfn << 8, 0, 0, /* devfn */
601 pin + 1, /* PCI pin */
602 gic_phandle, irq_type, irq_nr, irq_level }; /* GIC irq */
604 /* Convert map to big endian */
605 for (i = 0; i < 8; i++) {
606 irq_map[i] = cpu_to_be32(map[i]);
608 irq_map += 8;
612 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
613 full_irq_map, sizeof(full_irq_map));
615 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
616 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
617 0x7 /* PCI irq */);
620 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
621 uint32_t gic_phandle)
623 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
624 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
625 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
626 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
627 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
628 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
629 hwaddr base = base_mmio;
630 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
631 int irq = vbi->irqmap[VIRT_PCIE];
632 MemoryRegion *mmio_alias;
633 MemoryRegion *mmio_reg;
634 MemoryRegion *ecam_alias;
635 MemoryRegion *ecam_reg;
636 DeviceState *dev;
637 char *nodename;
638 int i;
640 dev = qdev_create(NULL, TYPE_GPEX_HOST);
641 qdev_init_nofail(dev);
643 /* Map only the first size_ecam bytes of ECAM space */
644 ecam_alias = g_new0(MemoryRegion, 1);
645 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
646 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
647 ecam_reg, 0, size_ecam);
648 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
650 /* Map the MMIO window into system address space so as to expose
651 * the section of PCI MMIO space which starts at the same base address
652 * (ie 1:1 mapping for that part of PCI MMIO space visible through
653 * the window).
655 mmio_alias = g_new0(MemoryRegion, 1);
656 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
657 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
658 mmio_reg, base_mmio, size_mmio);
659 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
661 /* Map IO port space */
662 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
664 for (i = 0; i < GPEX_NUM_IRQS; i++) {
665 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
668 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
669 qemu_fdt_add_subnode(vbi->fdt, nodename);
670 qemu_fdt_setprop_string(vbi->fdt, nodename,
671 "compatible", "pci-host-ecam-generic");
672 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
673 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
674 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
675 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
676 nr_pcie_buses - 1);
678 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
679 2, base_ecam, 2, size_ecam);
680 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
681 1, FDT_PCI_RANGE_IOPORT, 2, 0,
682 2, base_pio, 2, size_pio,
683 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
684 2, base_mmio, 2, size_mmio);
686 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
687 create_pcie_irq_map(vbi, gic_phandle, irq, nodename);
689 g_free(nodename);
692 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
694 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
696 *fdt_size = board->fdt_size;
697 return board->fdt;
700 static void machvirt_init(MachineState *machine)
702 VirtMachineState *vms = VIRT_MACHINE(machine);
703 qemu_irq pic[NUM_IRQS];
704 MemoryRegion *sysmem = get_system_memory();
705 int n;
706 MemoryRegion *ram = g_new(MemoryRegion, 1);
707 const char *cpu_model = machine->cpu_model;
708 VirtBoardInfo *vbi;
709 uint32_t gic_phandle;
710 char **cpustr;
712 if (!cpu_model) {
713 cpu_model = "cortex-a15";
716 /* Separate the actual CPU model name from any appended features */
717 cpustr = g_strsplit(cpu_model, ",", 2);
719 vbi = find_machine_info(cpustr[0]);
721 if (!vbi) {
722 error_report("mach-virt: CPU %s not supported", cpustr[0]);
723 exit(1);
726 vbi->smp_cpus = smp_cpus;
728 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
729 error_report("mach-virt: cannot model more than 30GB RAM");
730 exit(1);
733 create_fdt(vbi);
735 for (n = 0; n < smp_cpus; n++) {
736 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
737 CPUClass *cc = CPU_CLASS(oc);
738 Object *cpuobj;
739 Error *err = NULL;
740 char *cpuopts = g_strdup(cpustr[1]);
742 if (!oc) {
743 fprintf(stderr, "Unable to find CPU definition\n");
744 exit(1);
746 cpuobj = object_new(object_class_get_name(oc));
748 /* Handle any CPU options specified by the user */
749 cc->parse_features(CPU(cpuobj), cpuopts, &err);
750 g_free(cpuopts);
751 if (err) {
752 error_report_err(err);
753 exit(1);
756 if (!vms->secure) {
757 object_property_set_bool(cpuobj, false, "has_el3", NULL);
760 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
761 NULL);
763 /* Secondary CPUs start in PSCI powered-down state */
764 if (n > 0) {
765 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
768 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
769 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
770 "reset-cbar", &error_abort);
773 object_property_set_bool(cpuobj, true, "realized", NULL);
775 g_strfreev(cpustr);
776 fdt_add_timer_nodes(vbi);
777 fdt_add_cpu_nodes(vbi);
778 fdt_add_psci_node(vbi);
780 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
781 machine->ram_size);
782 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
784 create_flash(vbi);
786 gic_phandle = create_gic(vbi, pic);
788 create_uart(vbi, pic);
790 create_rtc(vbi, pic);
792 create_pcie(vbi, pic, gic_phandle);
794 /* Create mmio transports, so the user can create virtio backends
795 * (which will be automatically plugged in to the transports). If
796 * no backend is created the transport will just sit harmlessly idle.
798 create_virtio_devices(vbi, pic);
800 create_fw_cfg(vbi);
802 vbi->bootinfo.ram_size = machine->ram_size;
803 vbi->bootinfo.kernel_filename = machine->kernel_filename;
804 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
805 vbi->bootinfo.initrd_filename = machine->initrd_filename;
806 vbi->bootinfo.nb_cpus = smp_cpus;
807 vbi->bootinfo.board_id = -1;
808 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
809 vbi->bootinfo.get_dtb = machvirt_dtb;
810 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
811 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
814 static bool virt_get_secure(Object *obj, Error **errp)
816 VirtMachineState *vms = VIRT_MACHINE(obj);
818 return vms->secure;
821 static void virt_set_secure(Object *obj, bool value, Error **errp)
823 VirtMachineState *vms = VIRT_MACHINE(obj);
825 vms->secure = value;
828 static void virt_instance_init(Object *obj)
830 VirtMachineState *vms = VIRT_MACHINE(obj);
832 /* EL3 is enabled by default on virt */
833 vms->secure = true;
834 object_property_add_bool(obj, "secure", virt_get_secure,
835 virt_set_secure, NULL);
836 object_property_set_description(obj, "secure",
837 "Set on/off to enable/disable the ARM "
838 "Security Extensions (TrustZone)",
839 NULL);
842 static void virt_class_init(ObjectClass *oc, void *data)
844 MachineClass *mc = MACHINE_CLASS(oc);
846 mc->name = TYPE_VIRT_MACHINE;
847 mc->desc = "ARM Virtual Machine",
848 mc->init = machvirt_init;
849 mc->max_cpus = 8;
852 static const TypeInfo machvirt_info = {
853 .name = TYPE_VIRT_MACHINE,
854 .parent = TYPE_MACHINE,
855 .instance_size = sizeof(VirtMachineState),
856 .instance_init = virt_instance_init,
857 .class_size = sizeof(VirtMachineClass),
858 .class_init = virt_class_init,
861 static void machvirt_machine_init(void)
863 type_register_static(&machvirt_info);
866 machine_init(machvirt_machine_init);