hw/arm/virt: Disable pl011 clock migration if needed
[qemu/ar7.git] / target / m68k / op_helper.c
blobae1ba4b4375736cb88a3265cc04e96e7801394e4
1 /*
2 * M68K helper routines
4 * Copyright (c) 2007 CodeSourcery
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "semihosting/semihost.h"
26 #if defined(CONFIG_USER_ONLY)
28 void m68k_cpu_do_interrupt(CPUState *cs)
30 cs->exception_index = -1;
33 static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
37 #else
39 static void cf_rte(CPUM68KState *env)
41 uint32_t sp;
42 uint32_t fmt;
44 sp = env->aregs[7];
45 fmt = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
46 env->pc = cpu_ldl_mmuidx_ra(env, sp + 4, MMU_KERNEL_IDX, 0);
47 sp |= (fmt >> 28) & 3;
48 env->aregs[7] = sp + 8;
50 cpu_m68k_set_sr(env, fmt);
53 static void m68k_rte(CPUM68KState *env)
55 uint32_t sp;
56 uint16_t fmt;
57 uint16_t sr;
59 sp = env->aregs[7];
60 throwaway:
61 sr = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
62 sp += 2;
63 env->pc = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
64 sp += 4;
65 if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
66 /* all except 68000 */
67 fmt = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
68 sp += 2;
69 switch (fmt >> 12) {
70 case 0:
71 break;
72 case 1:
73 env->aregs[7] = sp;
74 cpu_m68k_set_sr(env, sr);
75 goto throwaway;
76 case 2:
77 case 3:
78 sp += 4;
79 break;
80 case 4:
81 sp += 8;
82 break;
83 case 7:
84 sp += 52;
85 break;
88 env->aregs[7] = sp;
89 cpu_m68k_set_sr(env, sr);
92 static const char *m68k_exception_name(int index)
94 switch (index) {
95 case EXCP_ACCESS:
96 return "Access Fault";
97 case EXCP_ADDRESS:
98 return "Address Error";
99 case EXCP_ILLEGAL:
100 return "Illegal Instruction";
101 case EXCP_DIV0:
102 return "Divide by Zero";
103 case EXCP_CHK:
104 return "CHK/CHK2";
105 case EXCP_TRAPCC:
106 return "FTRAPcc, TRAPcc, TRAPV";
107 case EXCP_PRIVILEGE:
108 return "Privilege Violation";
109 case EXCP_TRACE:
110 return "Trace";
111 case EXCP_LINEA:
112 return "A-Line";
113 case EXCP_LINEF:
114 return "F-Line";
115 case EXCP_DEBEGBP: /* 68020/030 only */
116 return "Copro Protocol Violation";
117 case EXCP_FORMAT:
118 return "Format Error";
119 case EXCP_UNINITIALIZED:
120 return "Uninitialized Interrupt";
121 case EXCP_SPURIOUS:
122 return "Spurious Interrupt";
123 case EXCP_INT_LEVEL_1:
124 return "Level 1 Interrupt";
125 case EXCP_INT_LEVEL_1 + 1:
126 return "Level 2 Interrupt";
127 case EXCP_INT_LEVEL_1 + 2:
128 return "Level 3 Interrupt";
129 case EXCP_INT_LEVEL_1 + 3:
130 return "Level 4 Interrupt";
131 case EXCP_INT_LEVEL_1 + 4:
132 return "Level 5 Interrupt";
133 case EXCP_INT_LEVEL_1 + 5:
134 return "Level 6 Interrupt";
135 case EXCP_INT_LEVEL_1 + 6:
136 return "Level 7 Interrupt";
137 case EXCP_TRAP0:
138 return "TRAP #0";
139 case EXCP_TRAP0 + 1:
140 return "TRAP #1";
141 case EXCP_TRAP0 + 2:
142 return "TRAP #2";
143 case EXCP_TRAP0 + 3:
144 return "TRAP #3";
145 case EXCP_TRAP0 + 4:
146 return "TRAP #4";
147 case EXCP_TRAP0 + 5:
148 return "TRAP #5";
149 case EXCP_TRAP0 + 6:
150 return "TRAP #6";
151 case EXCP_TRAP0 + 7:
152 return "TRAP #7";
153 case EXCP_TRAP0 + 8:
154 return "TRAP #8";
155 case EXCP_TRAP0 + 9:
156 return "TRAP #9";
157 case EXCP_TRAP0 + 10:
158 return "TRAP #10";
159 case EXCP_TRAP0 + 11:
160 return "TRAP #11";
161 case EXCP_TRAP0 + 12:
162 return "TRAP #12";
163 case EXCP_TRAP0 + 13:
164 return "TRAP #13";
165 case EXCP_TRAP0 + 14:
166 return "TRAP #14";
167 case EXCP_TRAP0 + 15:
168 return "TRAP #15";
169 case EXCP_FP_BSUN:
170 return "FP Branch/Set on unordered condition";
171 case EXCP_FP_INEX:
172 return "FP Inexact Result";
173 case EXCP_FP_DZ:
174 return "FP Divide by Zero";
175 case EXCP_FP_UNFL:
176 return "FP Underflow";
177 case EXCP_FP_OPERR:
178 return "FP Operand Error";
179 case EXCP_FP_OVFL:
180 return "FP Overflow";
181 case EXCP_FP_SNAN:
182 return "FP Signaling NAN";
183 case EXCP_FP_UNIMP:
184 return "FP Unimplemented Data Type";
185 case EXCP_MMU_CONF: /* 68030/68851 only */
186 return "MMU Configuration Error";
187 case EXCP_MMU_ILLEGAL: /* 68851 only */
188 return "MMU Illegal Operation";
189 case EXCP_MMU_ACCESS: /* 68851 only */
190 return "MMU Access Level Violation";
191 case 64 ... 255:
192 return "User Defined Vector";
194 return "Unassigned";
197 static void cf_interrupt_all(CPUM68KState *env, int is_hw)
199 CPUState *cs = env_cpu(env);
200 uint32_t sp;
201 uint32_t sr;
202 uint32_t fmt;
203 uint32_t retaddr;
204 uint32_t vector;
206 fmt = 0;
207 retaddr = env->pc;
209 if (!is_hw) {
210 switch (cs->exception_index) {
211 case EXCP_RTE:
212 /* Return from an exception. */
213 cf_rte(env);
214 return;
215 case EXCP_HALT_INSN:
216 if (semihosting_enabled()
217 && (env->sr & SR_S) != 0
218 && (env->pc & 3) == 0
219 && cpu_lduw_code(env, env->pc - 4) == 0x4e71
220 && cpu_ldl_code(env, env->pc) == 0x4e7bf000) {
221 env->pc += 4;
222 do_m68k_semihosting(env, env->dregs[0]);
223 return;
225 cs->halted = 1;
226 cs->exception_index = EXCP_HLT;
227 cpu_loop_exit(cs);
228 return;
230 if (cs->exception_index >= EXCP_TRAP0
231 && cs->exception_index <= EXCP_TRAP15) {
232 /* Move the PC after the trap instruction. */
233 retaddr += 2;
237 vector = cs->exception_index << 2;
239 sr = env->sr | cpu_m68k_get_ccr(env);
240 if (qemu_loglevel_mask(CPU_LOG_INT)) {
241 static int count;
242 qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
243 ++count, m68k_exception_name(cs->exception_index),
244 vector, env->pc, env->aregs[7], sr);
247 fmt |= 0x40000000;
248 fmt |= vector << 16;
249 fmt |= sr;
251 env->sr |= SR_S;
252 if (is_hw) {
253 env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
254 env->sr &= ~SR_M;
256 m68k_switch_sp(env);
257 sp = env->aregs[7];
258 fmt |= (sp & 3) << 28;
260 /* ??? This could cause MMU faults. */
261 sp &= ~3;
262 sp -= 4;
263 cpu_stl_mmuidx_ra(env, sp, retaddr, MMU_KERNEL_IDX, 0);
264 sp -= 4;
265 cpu_stl_mmuidx_ra(env, sp, fmt, MMU_KERNEL_IDX, 0);
266 env->aregs[7] = sp;
267 /* Jump to vector. */
268 env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
271 static inline void do_stack_frame(CPUM68KState *env, uint32_t *sp,
272 uint16_t format, uint16_t sr,
273 uint32_t addr, uint32_t retaddr)
275 if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
276 /* all except 68000 */
277 CPUState *cs = env_cpu(env);
278 switch (format) {
279 case 4:
280 *sp -= 4;
281 cpu_stl_mmuidx_ra(env, *sp, env->pc, MMU_KERNEL_IDX, 0);
282 *sp -= 4;
283 cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
284 break;
285 case 3:
286 case 2:
287 *sp -= 4;
288 cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
289 break;
291 *sp -= 2;
292 cpu_stw_mmuidx_ra(env, *sp, (format << 12) + (cs->exception_index << 2),
293 MMU_KERNEL_IDX, 0);
295 *sp -= 4;
296 cpu_stl_mmuidx_ra(env, *sp, retaddr, MMU_KERNEL_IDX, 0);
297 *sp -= 2;
298 cpu_stw_mmuidx_ra(env, *sp, sr, MMU_KERNEL_IDX, 0);
301 static void m68k_interrupt_all(CPUM68KState *env, int is_hw)
303 CPUState *cs = env_cpu(env);
304 uint32_t sp;
305 uint32_t retaddr;
306 uint32_t vector;
307 uint16_t sr, oldsr;
309 retaddr = env->pc;
311 if (!is_hw) {
312 switch (cs->exception_index) {
313 case EXCP_RTE:
314 /* Return from an exception. */
315 m68k_rte(env);
316 return;
317 case EXCP_TRAP0 ... EXCP_TRAP15:
318 /* Move the PC after the trap instruction. */
319 retaddr += 2;
320 break;
324 vector = cs->exception_index << 2;
326 sr = env->sr | cpu_m68k_get_ccr(env);
327 if (qemu_loglevel_mask(CPU_LOG_INT)) {
328 static int count;
329 qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
330 ++count, m68k_exception_name(cs->exception_index),
331 vector, env->pc, env->aregs[7], sr);
335 * MC68040UM/AD, chapter 9.3.10
338 /* "the processor first make an internal copy" */
339 oldsr = sr;
340 /* "set the mode to supervisor" */
341 sr |= SR_S;
342 /* "suppress tracing" */
343 sr &= ~SR_T;
344 /* "sets the processor interrupt mask" */
345 if (is_hw) {
346 sr |= (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
348 cpu_m68k_set_sr(env, sr);
349 sp = env->aregs[7];
351 if (!m68k_feature(env, M68K_FEATURE_UNALIGNED_DATA)) {
352 sp &= ~1;
355 if (cs->exception_index == EXCP_ACCESS) {
356 if (env->mmu.fault) {
357 cpu_abort(cs, "DOUBLE MMU FAULT\n");
359 env->mmu.fault = true;
360 /* push data 3 */
361 sp -= 4;
362 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
363 /* push data 2 */
364 sp -= 4;
365 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
366 /* push data 1 */
367 sp -= 4;
368 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
369 /* write back 1 / push data 0 */
370 sp -= 4;
371 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
372 /* write back 1 address */
373 sp -= 4;
374 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
375 /* write back 2 data */
376 sp -= 4;
377 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
378 /* write back 2 address */
379 sp -= 4;
380 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
381 /* write back 3 data */
382 sp -= 4;
383 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
384 /* write back 3 address */
385 sp -= 4;
386 cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
387 /* fault address */
388 sp -= 4;
389 cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
390 /* write back 1 status */
391 sp -= 2;
392 cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
393 /* write back 2 status */
394 sp -= 2;
395 cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
396 /* write back 3 status */
397 sp -= 2;
398 cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
399 /* special status word */
400 sp -= 2;
401 cpu_stw_mmuidx_ra(env, sp, env->mmu.ssw, MMU_KERNEL_IDX, 0);
402 /* effective address */
403 sp -= 4;
404 cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
406 do_stack_frame(env, &sp, 7, oldsr, 0, retaddr);
407 env->mmu.fault = false;
408 if (qemu_loglevel_mask(CPU_LOG_INT)) {
409 qemu_log(" "
410 "ssw: %08x ea: %08x sfc: %d dfc: %d\n",
411 env->mmu.ssw, env->mmu.ar, env->sfc, env->dfc);
413 } else if (cs->exception_index == EXCP_ADDRESS) {
414 do_stack_frame(env, &sp, 2, oldsr, 0, retaddr);
415 } else if (cs->exception_index == EXCP_ILLEGAL ||
416 cs->exception_index == EXCP_DIV0 ||
417 cs->exception_index == EXCP_CHK ||
418 cs->exception_index == EXCP_TRAPCC ||
419 cs->exception_index == EXCP_TRACE) {
420 /* FIXME: addr is not only env->pc */
421 do_stack_frame(env, &sp, 2, oldsr, env->pc, retaddr);
422 } else if (is_hw && oldsr & SR_M &&
423 cs->exception_index >= EXCP_SPURIOUS &&
424 cs->exception_index <= EXCP_INT_LEVEL_7) {
425 do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
426 oldsr = sr;
427 env->aregs[7] = sp;
428 cpu_m68k_set_sr(env, sr &= ~SR_M);
429 sp = env->aregs[7] & ~1;
430 do_stack_frame(env, &sp, 1, oldsr, 0, retaddr);
431 } else {
432 do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
435 env->aregs[7] = sp;
436 /* Jump to vector. */
437 env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
440 static void do_interrupt_all(CPUM68KState *env, int is_hw)
442 if (m68k_feature(env, M68K_FEATURE_M68000)) {
443 m68k_interrupt_all(env, is_hw);
444 return;
446 cf_interrupt_all(env, is_hw);
449 void m68k_cpu_do_interrupt(CPUState *cs)
451 M68kCPU *cpu = M68K_CPU(cs);
452 CPUM68KState *env = &cpu->env;
454 do_interrupt_all(env, 0);
457 static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
459 do_interrupt_all(env, 1);
462 void m68k_cpu_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr,
463 unsigned size, MMUAccessType access_type,
464 int mmu_idx, MemTxAttrs attrs,
465 MemTxResult response, uintptr_t retaddr)
467 M68kCPU *cpu = M68K_CPU(cs);
468 CPUM68KState *env = &cpu->env;
470 cpu_restore_state(cs, retaddr, true);
472 if (m68k_feature(env, M68K_FEATURE_M68040)) {
473 env->mmu.mmusr = 0;
476 * According to the MC68040 users manual the ATC bit of the SSW is
477 * used to distinguish between ATC faults and physical bus errors.
478 * In the case of a bus error e.g. during nubus read from an empty
479 * slot this bit should not be set
481 if (response != MEMTX_DECODE_ERROR) {
482 env->mmu.ssw |= M68K_ATC_040;
485 /* FIXME: manage MMU table access error */
486 env->mmu.ssw &= ~M68K_TM_040;
487 if (env->sr & SR_S) { /* SUPERVISOR */
488 env->mmu.ssw |= M68K_TM_040_SUPER;
490 if (access_type == MMU_INST_FETCH) { /* instruction or data */
491 env->mmu.ssw |= M68K_TM_040_CODE;
492 } else {
493 env->mmu.ssw |= M68K_TM_040_DATA;
495 env->mmu.ssw &= ~M68K_BA_SIZE_MASK;
496 switch (size) {
497 case 1:
498 env->mmu.ssw |= M68K_BA_SIZE_BYTE;
499 break;
500 case 2:
501 env->mmu.ssw |= M68K_BA_SIZE_WORD;
502 break;
503 case 4:
504 env->mmu.ssw |= M68K_BA_SIZE_LONG;
505 break;
508 if (access_type != MMU_DATA_STORE) {
509 env->mmu.ssw |= M68K_RW_040;
512 env->mmu.ar = addr;
514 cs->exception_index = EXCP_ACCESS;
515 cpu_loop_exit(cs);
518 #endif
520 bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
522 M68kCPU *cpu = M68K_CPU(cs);
523 CPUM68KState *env = &cpu->env;
525 if (interrupt_request & CPU_INTERRUPT_HARD
526 && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
528 * Real hardware gets the interrupt vector via an IACK cycle
529 * at this point. Current emulated hardware doesn't rely on
530 * this, so we provide/save the vector when the interrupt is
531 * first signalled.
533 cs->exception_index = env->pending_vector;
534 do_interrupt_m68k_hardirq(env);
535 return true;
537 return false;
540 static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
542 CPUState *cs = env_cpu(env);
544 cs->exception_index = tt;
545 cpu_loop_exit_restore(cs, raddr);
548 static void raise_exception(CPUM68KState *env, int tt)
550 raise_exception_ra(env, tt, 0);
553 void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt)
555 raise_exception(env, tt);
558 void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den)
560 uint32_t num = env->dregs[destr];
561 uint32_t quot, rem;
563 if (den == 0) {
564 raise_exception_ra(env, EXCP_DIV0, GETPC());
566 quot = num / den;
567 rem = num % den;
569 env->cc_c = 0; /* always cleared, even if overflow */
570 if (quot > 0xffff) {
571 env->cc_v = -1;
573 * real 68040 keeps N and unset Z on overflow,
574 * whereas documentation says "undefined"
576 env->cc_z = 1;
577 return;
579 env->dregs[destr] = deposit32(quot, 16, 16, rem);
580 env->cc_z = (int16_t)quot;
581 env->cc_n = (int16_t)quot;
582 env->cc_v = 0;
585 void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den)
587 int32_t num = env->dregs[destr];
588 uint32_t quot, rem;
590 if (den == 0) {
591 raise_exception_ra(env, EXCP_DIV0, GETPC());
593 quot = num / den;
594 rem = num % den;
596 env->cc_c = 0; /* always cleared, even if overflow */
597 if (quot != (int16_t)quot) {
598 env->cc_v = -1;
599 /* nothing else is modified */
601 * real 68040 keeps N and unset Z on overflow,
602 * whereas documentation says "undefined"
604 env->cc_z = 1;
605 return;
607 env->dregs[destr] = deposit32(quot, 16, 16, rem);
608 env->cc_z = (int16_t)quot;
609 env->cc_n = (int16_t)quot;
610 env->cc_v = 0;
613 void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den)
615 uint32_t num = env->dregs[numr];
616 uint32_t quot, rem;
618 if (den == 0) {
619 raise_exception_ra(env, EXCP_DIV0, GETPC());
621 quot = num / den;
622 rem = num % den;
624 env->cc_c = 0;
625 env->cc_z = quot;
626 env->cc_n = quot;
627 env->cc_v = 0;
629 if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
630 if (numr == regr) {
631 env->dregs[numr] = quot;
632 } else {
633 env->dregs[regr] = rem;
635 } else {
636 env->dregs[regr] = rem;
637 env->dregs[numr] = quot;
641 void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den)
643 int32_t num = env->dregs[numr];
644 int32_t quot, rem;
646 if (den == 0) {
647 raise_exception_ra(env, EXCP_DIV0, GETPC());
649 quot = num / den;
650 rem = num % den;
652 env->cc_c = 0;
653 env->cc_z = quot;
654 env->cc_n = quot;
655 env->cc_v = 0;
657 if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
658 if (numr == regr) {
659 env->dregs[numr] = quot;
660 } else {
661 env->dregs[regr] = rem;
663 } else {
664 env->dregs[regr] = rem;
665 env->dregs[numr] = quot;
669 void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den)
671 uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
672 uint64_t quot;
673 uint32_t rem;
675 if (den == 0) {
676 raise_exception_ra(env, EXCP_DIV0, GETPC());
678 quot = num / den;
679 rem = num % den;
681 env->cc_c = 0; /* always cleared, even if overflow */
682 if (quot > 0xffffffffULL) {
683 env->cc_v = -1;
685 * real 68040 keeps N and unset Z on overflow,
686 * whereas documentation says "undefined"
688 env->cc_z = 1;
689 return;
691 env->cc_z = quot;
692 env->cc_n = quot;
693 env->cc_v = 0;
696 * If Dq and Dr are the same, the quotient is returned.
697 * therefore we set Dq last.
700 env->dregs[regr] = rem;
701 env->dregs[numr] = quot;
704 void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den)
706 int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
707 int64_t quot;
708 int32_t rem;
710 if (den == 0) {
711 raise_exception_ra(env, EXCP_DIV0, GETPC());
713 quot = num / den;
714 rem = num % den;
716 env->cc_c = 0; /* always cleared, even if overflow */
717 if (quot != (int32_t)quot) {
718 env->cc_v = -1;
720 * real 68040 keeps N and unset Z on overflow,
721 * whereas documentation says "undefined"
723 env->cc_z = 1;
724 return;
726 env->cc_z = quot;
727 env->cc_n = quot;
728 env->cc_v = 0;
731 * If Dq and Dr are the same, the quotient is returned.
732 * therefore we set Dq last.
735 env->dregs[regr] = rem;
736 env->dregs[numr] = quot;
739 /* We're executing in a serial context -- no need to be atomic. */
740 void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
742 uint32_t Dc1 = extract32(regs, 9, 3);
743 uint32_t Dc2 = extract32(regs, 6, 3);
744 uint32_t Du1 = extract32(regs, 3, 3);
745 uint32_t Du2 = extract32(regs, 0, 3);
746 int16_t c1 = env->dregs[Dc1];
747 int16_t c2 = env->dregs[Dc2];
748 int16_t u1 = env->dregs[Du1];
749 int16_t u2 = env->dregs[Du2];
750 int16_t l1, l2;
751 uintptr_t ra = GETPC();
753 l1 = cpu_lduw_data_ra(env, a1, ra);
754 l2 = cpu_lduw_data_ra(env, a2, ra);
755 if (l1 == c1 && l2 == c2) {
756 cpu_stw_data_ra(env, a1, u1, ra);
757 cpu_stw_data_ra(env, a2, u2, ra);
760 if (c1 != l1) {
761 env->cc_n = l1;
762 env->cc_v = c1;
763 } else {
764 env->cc_n = l2;
765 env->cc_v = c2;
767 env->cc_op = CC_OP_CMPW;
768 env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1);
769 env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2);
772 static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2,
773 bool parallel)
775 uint32_t Dc1 = extract32(regs, 9, 3);
776 uint32_t Dc2 = extract32(regs, 6, 3);
777 uint32_t Du1 = extract32(regs, 3, 3);
778 uint32_t Du2 = extract32(regs, 0, 3);
779 uint32_t c1 = env->dregs[Dc1];
780 uint32_t c2 = env->dregs[Dc2];
781 uint32_t u1 = env->dregs[Du1];
782 uint32_t u2 = env->dregs[Du2];
783 uint32_t l1, l2;
784 uintptr_t ra = GETPC();
785 #if defined(CONFIG_ATOMIC64) && !defined(CONFIG_USER_ONLY)
786 int mmu_idx = cpu_mmu_index(env, 0);
787 TCGMemOpIdx oi;
788 #endif
790 if (parallel) {
791 /* We're executing in a parallel context -- must be atomic. */
792 #ifdef CONFIG_ATOMIC64
793 uint64_t c, u, l;
794 if ((a1 & 7) == 0 && a2 == a1 + 4) {
795 c = deposit64(c2, 32, 32, c1);
796 u = deposit64(u2, 32, 32, u1);
797 #ifdef CONFIG_USER_ONLY
798 l = helper_atomic_cmpxchgq_be(env, a1, c, u);
799 #else
800 oi = make_memop_idx(MO_BEQ, mmu_idx);
801 l = helper_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra);
802 #endif
803 l1 = l >> 32;
804 l2 = l;
805 } else if ((a2 & 7) == 0 && a1 == a2 + 4) {
806 c = deposit64(c1, 32, 32, c2);
807 u = deposit64(u1, 32, 32, u2);
808 #ifdef CONFIG_USER_ONLY
809 l = helper_atomic_cmpxchgq_be(env, a2, c, u);
810 #else
811 oi = make_memop_idx(MO_BEQ, mmu_idx);
812 l = helper_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra);
813 #endif
814 l2 = l >> 32;
815 l1 = l;
816 } else
817 #endif
819 /* Tell the main loop we need to serialize this insn. */
820 cpu_loop_exit_atomic(env_cpu(env), ra);
822 } else {
823 /* We're executing in a serial context -- no need to be atomic. */
824 l1 = cpu_ldl_data_ra(env, a1, ra);
825 l2 = cpu_ldl_data_ra(env, a2, ra);
826 if (l1 == c1 && l2 == c2) {
827 cpu_stl_data_ra(env, a1, u1, ra);
828 cpu_stl_data_ra(env, a2, u2, ra);
832 if (c1 != l1) {
833 env->cc_n = l1;
834 env->cc_v = c1;
835 } else {
836 env->cc_n = l2;
837 env->cc_v = c2;
839 env->cc_op = CC_OP_CMPL;
840 env->dregs[Dc1] = l1;
841 env->dregs[Dc2] = l2;
844 void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
846 do_cas2l(env, regs, a1, a2, false);
849 void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1,
850 uint32_t a2)
852 do_cas2l(env, regs, a1, a2, true);
855 struct bf_data {
856 uint32_t addr;
857 uint32_t bofs;
858 uint32_t blen;
859 uint32_t len;
862 static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
864 int bofs, blen;
866 /* Bound length; map 0 to 32. */
867 len = ((len - 1) & 31) + 1;
869 /* Note that ofs is signed. */
870 addr += ofs / 8;
871 bofs = ofs % 8;
872 if (bofs < 0) {
873 bofs += 8;
874 addr -= 1;
878 * Compute the number of bytes required (minus one) to
879 * satisfy the bitfield.
881 blen = (bofs + len - 1) / 8;
884 * Canonicalize the bit offset for data loaded into a 64-bit big-endian
885 * word. For the cases where BLEN is not a power of 2, adjust ADDR so
886 * that we can use the next power of two sized load without crossing a
887 * page boundary, unless the field itself crosses the boundary.
889 switch (blen) {
890 case 0:
891 bofs += 56;
892 break;
893 case 1:
894 bofs += 48;
895 break;
896 case 2:
897 if (addr & 1) {
898 bofs += 8;
899 addr -= 1;
901 /* fallthru */
902 case 3:
903 bofs += 32;
904 break;
905 case 4:
906 if (addr & 3) {
907 bofs += 8 * (addr & 3);
908 addr &= -4;
910 break;
911 default:
912 g_assert_not_reached();
915 return (struct bf_data){
916 .addr = addr,
917 .bofs = bofs,
918 .blen = blen,
919 .len = len,
923 static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen,
924 uintptr_t ra)
926 switch (blen) {
927 case 0:
928 return cpu_ldub_data_ra(env, addr, ra);
929 case 1:
930 return cpu_lduw_data_ra(env, addr, ra);
931 case 2:
932 case 3:
933 return cpu_ldl_data_ra(env, addr, ra);
934 case 4:
935 return cpu_ldq_data_ra(env, addr, ra);
936 default:
937 g_assert_not_reached();
941 static void bf_store(CPUM68KState *env, uint32_t addr, int blen,
942 uint64_t data, uintptr_t ra)
944 switch (blen) {
945 case 0:
946 cpu_stb_data_ra(env, addr, data, ra);
947 break;
948 case 1:
949 cpu_stw_data_ra(env, addr, data, ra);
950 break;
951 case 2:
952 case 3:
953 cpu_stl_data_ra(env, addr, data, ra);
954 break;
955 case 4:
956 cpu_stq_data_ra(env, addr, data, ra);
957 break;
958 default:
959 g_assert_not_reached();
963 uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr,
964 int32_t ofs, uint32_t len)
966 uintptr_t ra = GETPC();
967 struct bf_data d = bf_prep(addr, ofs, len);
968 uint64_t data = bf_load(env, d.addr, d.blen, ra);
970 return (int64_t)(data << d.bofs) >> (64 - d.len);
973 uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
974 int32_t ofs, uint32_t len)
976 uintptr_t ra = GETPC();
977 struct bf_data d = bf_prep(addr, ofs, len);
978 uint64_t data = bf_load(env, d.addr, d.blen, ra);
981 * Put CC_N at the top of the high word; put the zero-extended value
982 * at the bottom of the low word.
984 data <<= d.bofs;
985 data >>= 64 - d.len;
986 data |= data << (64 - d.len);
988 return data;
991 uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val,
992 int32_t ofs, uint32_t len)
994 uintptr_t ra = GETPC();
995 struct bf_data d = bf_prep(addr, ofs, len);
996 uint64_t data = bf_load(env, d.addr, d.blen, ra);
997 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
999 data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs);
1001 bf_store(env, d.addr, d.blen, data, ra);
1003 /* The field at the top of the word is also CC_N for CC_OP_LOGIC. */
1004 return val << (32 - d.len);
1007 uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr,
1008 int32_t ofs, uint32_t len)
1010 uintptr_t ra = GETPC();
1011 struct bf_data d = bf_prep(addr, ofs, len);
1012 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1013 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1015 bf_store(env, d.addr, d.blen, data ^ mask, ra);
1017 return ((data & mask) << d.bofs) >> 32;
1020 uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr,
1021 int32_t ofs, uint32_t len)
1023 uintptr_t ra = GETPC();
1024 struct bf_data d = bf_prep(addr, ofs, len);
1025 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1026 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1028 bf_store(env, d.addr, d.blen, data & ~mask, ra);
1030 return ((data & mask) << d.bofs) >> 32;
1033 uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr,
1034 int32_t ofs, uint32_t len)
1036 uintptr_t ra = GETPC();
1037 struct bf_data d = bf_prep(addr, ofs, len);
1038 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1039 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1041 bf_store(env, d.addr, d.blen, data | mask, ra);
1043 return ((data & mask) << d.bofs) >> 32;
1046 uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len)
1048 return (n ? clz32(n) : len) + ofs;
1051 uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
1052 int32_t ofs, uint32_t len)
1054 uintptr_t ra = GETPC();
1055 struct bf_data d = bf_prep(addr, ofs, len);
1056 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1057 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1058 uint64_t n = (data & mask) << d.bofs;
1059 uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);
1062 * Return FFO in the low word and N in the high word.
1063 * Note that because of MASK and the shift, the low word
1064 * is already zero.
1066 return n | ffo;
1069 void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub)
1072 * From the specs:
1073 * X: Not affected, C,V,Z: Undefined,
1074 * N: Set if val < 0; cleared if val > ub, undefined otherwise
1075 * We implement here values found from a real MC68040:
1076 * X,V,Z: Not affected
1077 * N: Set if val < 0; cleared if val >= 0
1078 * C: if 0 <= ub: set if val < 0 or val > ub, cleared otherwise
1079 * if 0 > ub: set if val > ub and val < 0, cleared otherwise
1081 env->cc_n = val;
1082 env->cc_c = 0 <= ub ? val < 0 || val > ub : val > ub && val < 0;
1084 if (val < 0 || val > ub) {
1085 CPUState *cs = env_cpu(env);
1087 /* Recover PC and CC_OP for the beginning of the insn. */
1088 cpu_restore_state(cs, GETPC(), true);
1090 /* flags have been modified by gen_flush_flags() */
1091 env->cc_op = CC_OP_FLAGS;
1092 /* Adjust PC to end of the insn. */
1093 env->pc += 2;
1095 cs->exception_index = EXCP_CHK;
1096 cpu_loop_exit(cs);
1100 void HELPER(chk2)(CPUM68KState *env, int32_t val, int32_t lb, int32_t ub)
1103 * From the specs:
1104 * X: Not affected, N,V: Undefined,
1105 * Z: Set if val is equal to lb or ub
1106 * C: Set if val < lb or val > ub, cleared otherwise
1107 * We implement here values found from a real MC68040:
1108 * X,N,V: Not affected
1109 * Z: Set if val is equal to lb or ub
1110 * C: if lb <= ub: set if val < lb or val > ub, cleared otherwise
1111 * if lb > ub: set if val > ub and val < lb, cleared otherwise
1113 env->cc_z = val != lb && val != ub;
1114 env->cc_c = lb <= ub ? val < lb || val > ub : val > ub && val < lb;
1116 if (env->cc_c) {
1117 CPUState *cs = env_cpu(env);
1119 /* Recover PC and CC_OP for the beginning of the insn. */
1120 cpu_restore_state(cs, GETPC(), true);
1122 /* flags have been modified by gen_flush_flags() */
1123 env->cc_op = CC_OP_FLAGS;
1124 /* Adjust PC to end of the insn. */
1125 env->pc += 4;
1127 cs->exception_index = EXCP_CHK;
1128 cpu_loop_exit(cs);