nbd: generalize usage of nbd_read
[qemu/ar7.git] / hw / misc / imx6ul_ccm.c
blob90bc3742713c3b814a47a0c7279a89bec39699f8
1 /*
2 * IMX6UL Clock Control Module
4 * Copyright (c) 2018 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 * To get the timer frequencies right, we need to emulate at least part of
10 * the CCM.
13 #include "qemu/osdep.h"
14 #include "hw/registerfields.h"
15 #include "hw/misc/imx6ul_ccm.h"
16 #include "qemu/log.h"
18 #include "trace.h"
20 static const char *imx6ul_ccm_reg_name(uint32_t reg)
22 static char unknown[20];
24 switch (reg) {
25 case CCM_CCR:
26 return "CCR";
27 case CCM_CCDR:
28 return "CCDR";
29 case CCM_CSR:
30 return "CSR";
31 case CCM_CCSR:
32 return "CCSR";
33 case CCM_CACRR:
34 return "CACRR";
35 case CCM_CBCDR:
36 return "CBCDR";
37 case CCM_CBCMR:
38 return "CBCMR";
39 case CCM_CSCMR1:
40 return "CSCMR1";
41 case CCM_CSCMR2:
42 return "CSCMR2";
43 case CCM_CSCDR1:
44 return "CSCDR1";
45 case CCM_CS1CDR:
46 return "CS1CDR";
47 case CCM_CS2CDR:
48 return "CS2CDR";
49 case CCM_CDCDR:
50 return "CDCDR";
51 case CCM_CHSCCDR:
52 return "CHSCCDR";
53 case CCM_CSCDR2:
54 return "CSCDR2";
55 case CCM_CSCDR3:
56 return "CSCDR3";
57 case CCM_CDHIPR:
58 return "CDHIPR";
59 case CCM_CTOR:
60 return "CTOR";
61 case CCM_CLPCR:
62 return "CLPCR";
63 case CCM_CISR:
64 return "CISR";
65 case CCM_CIMR:
66 return "CIMR";
67 case CCM_CCOSR:
68 return "CCOSR";
69 case CCM_CGPR:
70 return "CGPR";
71 case CCM_CCGR0:
72 return "CCGR0";
73 case CCM_CCGR1:
74 return "CCGR1";
75 case CCM_CCGR2:
76 return "CCGR2";
77 case CCM_CCGR3:
78 return "CCGR3";
79 case CCM_CCGR4:
80 return "CCGR4";
81 case CCM_CCGR5:
82 return "CCGR5";
83 case CCM_CCGR6:
84 return "CCGR6";
85 case CCM_CMEOR:
86 return "CMEOR";
87 default:
88 sprintf(unknown, "%d ?", reg);
89 return unknown;
93 static const char *imx6ul_analog_reg_name(uint32_t reg)
95 static char unknown[20];
97 switch (reg) {
98 case CCM_ANALOG_PLL_ARM:
99 return "PLL_ARM";
100 case CCM_ANALOG_PLL_ARM_SET:
101 return "PLL_ARM_SET";
102 case CCM_ANALOG_PLL_ARM_CLR:
103 return "PLL_ARM_CLR";
104 case CCM_ANALOG_PLL_ARM_TOG:
105 return "PLL_ARM_TOG";
106 case CCM_ANALOG_PLL_USB1:
107 return "PLL_USB1";
108 case CCM_ANALOG_PLL_USB1_SET:
109 return "PLL_USB1_SET";
110 case CCM_ANALOG_PLL_USB1_CLR:
111 return "PLL_USB1_CLR";
112 case CCM_ANALOG_PLL_USB1_TOG:
113 return "PLL_USB1_TOG";
114 case CCM_ANALOG_PLL_USB2:
115 return "PLL_USB2";
116 case CCM_ANALOG_PLL_USB2_SET:
117 return "PLL_USB2_SET";
118 case CCM_ANALOG_PLL_USB2_CLR:
119 return "PLL_USB2_CLR";
120 case CCM_ANALOG_PLL_USB2_TOG:
121 return "PLL_USB2_TOG";
122 case CCM_ANALOG_PLL_SYS:
123 return "PLL_SYS";
124 case CCM_ANALOG_PLL_SYS_SET:
125 return "PLL_SYS_SET";
126 case CCM_ANALOG_PLL_SYS_CLR:
127 return "PLL_SYS_CLR";
128 case CCM_ANALOG_PLL_SYS_TOG:
129 return "PLL_SYS_TOG";
130 case CCM_ANALOG_PLL_SYS_SS:
131 return "PLL_SYS_SS";
132 case CCM_ANALOG_PLL_SYS_NUM:
133 return "PLL_SYS_NUM";
134 case CCM_ANALOG_PLL_SYS_DENOM:
135 return "PLL_SYS_DENOM";
136 case CCM_ANALOG_PLL_AUDIO:
137 return "PLL_AUDIO";
138 case CCM_ANALOG_PLL_AUDIO_SET:
139 return "PLL_AUDIO_SET";
140 case CCM_ANALOG_PLL_AUDIO_CLR:
141 return "PLL_AUDIO_CLR";
142 case CCM_ANALOG_PLL_AUDIO_TOG:
143 return "PLL_AUDIO_TOG";
144 case CCM_ANALOG_PLL_AUDIO_NUM:
145 return "PLL_AUDIO_NUM";
146 case CCM_ANALOG_PLL_AUDIO_DENOM:
147 return "PLL_AUDIO_DENOM";
148 case CCM_ANALOG_PLL_VIDEO:
149 return "PLL_VIDEO";
150 case CCM_ANALOG_PLL_VIDEO_SET:
151 return "PLL_VIDEO_SET";
152 case CCM_ANALOG_PLL_VIDEO_CLR:
153 return "PLL_VIDEO_CLR";
154 case CCM_ANALOG_PLL_VIDEO_TOG:
155 return "PLL_VIDEO_TOG";
156 case CCM_ANALOG_PLL_VIDEO_NUM:
157 return "PLL_VIDEO_NUM";
158 case CCM_ANALOG_PLL_VIDEO_DENOM:
159 return "PLL_VIDEO_DENOM";
160 case CCM_ANALOG_PLL_ENET:
161 return "PLL_ENET";
162 case CCM_ANALOG_PLL_ENET_SET:
163 return "PLL_ENET_SET";
164 case CCM_ANALOG_PLL_ENET_CLR:
165 return "PLL_ENET_CLR";
166 case CCM_ANALOG_PLL_ENET_TOG:
167 return "PLL_ENET_TOG";
168 case CCM_ANALOG_PFD_480:
169 return "PFD_480";
170 case CCM_ANALOG_PFD_480_SET:
171 return "PFD_480_SET";
172 case CCM_ANALOG_PFD_480_CLR:
173 return "PFD_480_CLR";
174 case CCM_ANALOG_PFD_480_TOG:
175 return "PFD_480_TOG";
176 case CCM_ANALOG_PFD_528:
177 return "PFD_528";
178 case CCM_ANALOG_PFD_528_SET:
179 return "PFD_528_SET";
180 case CCM_ANALOG_PFD_528_CLR:
181 return "PFD_528_CLR";
182 case CCM_ANALOG_PFD_528_TOG:
183 return "PFD_528_TOG";
184 case CCM_ANALOG_MISC0:
185 return "MISC0";
186 case CCM_ANALOG_MISC0_SET:
187 return "MISC0_SET";
188 case CCM_ANALOG_MISC0_CLR:
189 return "MISC0_CLR";
190 case CCM_ANALOG_MISC0_TOG:
191 return "MISC0_TOG";
192 case CCM_ANALOG_MISC2:
193 return "MISC2";
194 case CCM_ANALOG_MISC2_SET:
195 return "MISC2_SET";
196 case CCM_ANALOG_MISC2_CLR:
197 return "MISC2_CLR";
198 case CCM_ANALOG_MISC2_TOG:
199 return "MISC2_TOG";
200 case PMU_REG_1P1:
201 return "PMU_REG_1P1";
202 case PMU_REG_3P0:
203 return "PMU_REG_3P0";
204 case PMU_REG_2P5:
205 return "PMU_REG_2P5";
206 case PMU_REG_CORE:
207 return "PMU_REG_CORE";
208 case PMU_MISC1:
209 return "PMU_MISC1";
210 case PMU_MISC1_SET:
211 return "PMU_MISC1_SET";
212 case PMU_MISC1_CLR:
213 return "PMU_MISC1_CLR";
214 case PMU_MISC1_TOG:
215 return "PMU_MISC1_TOG";
216 case USB_ANALOG_DIGPROG:
217 return "USB_ANALOG_DIGPROG";
218 default:
219 sprintf(unknown, "%d ?", reg);
220 return unknown;
224 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
226 static const VMStateDescription vmstate_imx6ul_ccm = {
227 .name = TYPE_IMX6UL_CCM,
228 .version_id = 1,
229 .minimum_version_id = 1,
230 .fields = (VMStateField[]) {
231 VMSTATE_UINT32_ARRAY(ccm, IMX6ULCCMState, CCM_MAX),
232 VMSTATE_UINT32_ARRAY(analog, IMX6ULCCMState, CCM_ANALOG_MAX),
233 VMSTATE_END_OF_LIST()
237 static uint64_t imx6ul_analog_get_osc_clk(IMX6ULCCMState *dev)
239 uint64_t freq = CKIH_FREQ;
241 trace_ccm_freq((uint32_t)freq);
243 return freq;
246 static uint64_t imx6ul_analog_get_pll2_clk(IMX6ULCCMState *dev)
248 uint64_t freq = imx6ul_analog_get_osc_clk(dev);
250 if (FIELD_EX32(dev->analog[CCM_ANALOG_PLL_SYS],
251 ANALOG_PLL_SYS, DIV_SELECT)) {
252 freq *= 22;
253 } else {
254 freq *= 20;
257 trace_ccm_freq((uint32_t)freq);
259 return freq;
262 static uint64_t imx6ul_analog_get_pll3_clk(IMX6ULCCMState *dev)
264 uint64_t freq = imx6ul_analog_get_osc_clk(dev) * 20;
266 trace_ccm_freq((uint32_t)freq);
268 return freq;
271 static uint64_t imx6ul_analog_get_pll2_pfd0_clk(IMX6ULCCMState *dev)
273 uint64_t freq = 0;
275 freq = imx6ul_analog_get_pll2_clk(dev) * 18
276 / FIELD_EX32(dev->analog[CCM_ANALOG_PFD_528],
277 ANALOG_PFD_528, PFD0_FRAC);
279 trace_ccm_freq((uint32_t)freq);
281 return freq;
284 static uint64_t imx6ul_analog_get_pll2_pfd2_clk(IMX6ULCCMState *dev)
286 uint64_t freq = 0;
288 freq = imx6ul_analog_get_pll2_clk(dev) * 18
289 / FIELD_EX32(dev->analog[CCM_ANALOG_PFD_528],
290 ANALOG_PFD_528, PFD2_FRAC);
292 trace_ccm_freq((uint32_t)freq);
294 return freq;
297 static uint64_t imx6ul_analog_pll2_bypass_clk(IMX6ULCCMState *dev)
299 uint64_t freq = 0;
301 trace_ccm_freq((uint32_t)freq);
303 return freq;
306 static uint64_t imx6ul_ccm_get_periph_clk2_sel_clk(IMX6ULCCMState *dev)
308 uint64_t freq = 0;
310 switch (FIELD_EX32(dev->ccm[CCM_CBCMR], CBCMR, PERIPH_CLK2_SEL)) {
311 case 0:
312 freq = imx6ul_analog_get_pll3_clk(dev);
313 break;
314 case 1:
315 freq = imx6ul_analog_get_osc_clk(dev);
316 break;
317 case 2:
318 freq = imx6ul_analog_pll2_bypass_clk(dev);
319 break;
320 case 3:
321 /* We should never get there as 3 is a reserved value */
322 qemu_log_mask(LOG_GUEST_ERROR,
323 "[%s]%s: unsupported PERIPH_CLK2_SEL value 3\n",
324 TYPE_IMX6UL_CCM, __func__);
325 /* freq is set to 0 as we don't know what it should be */
326 break;
327 default:
328 g_assert_not_reached();
331 trace_ccm_freq((uint32_t)freq);
333 return freq;
336 static uint64_t imx6ul_ccm_get_periph_clk_sel_clk(IMX6ULCCMState *dev)
338 uint64_t freq = 0;
340 switch (FIELD_EX32(dev->ccm[CCM_CBCMR], CBCMR, PRE_PERIPH_CLK_SEL)) {
341 case 0:
342 freq = imx6ul_analog_get_pll2_clk(dev);
343 break;
344 case 1:
345 freq = imx6ul_analog_get_pll2_pfd2_clk(dev);
346 break;
347 case 2:
348 freq = imx6ul_analog_get_pll2_pfd0_clk(dev);
349 break;
350 case 3:
351 freq = imx6ul_analog_get_pll2_pfd2_clk(dev) / 2;
352 break;
353 default:
354 g_assert_not_reached();
357 trace_ccm_freq((uint32_t)freq);
359 return freq;
362 static uint64_t imx6ul_ccm_get_periph_clk2_clk(IMX6ULCCMState *dev)
364 uint64_t freq = 0;
366 freq = imx6ul_ccm_get_periph_clk2_sel_clk(dev)
367 / (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, PERIPH_CLK2_PODF));
369 trace_ccm_freq((uint32_t)freq);
371 return freq;
374 static uint64_t imx6ul_ccm_get_periph_sel_clk(IMX6ULCCMState *dev)
376 uint64_t freq = 0;
378 switch (FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, PERIPH_CLK_SEL)) {
379 case 0:
380 freq = imx6ul_ccm_get_periph_clk_sel_clk(dev);
381 break;
382 case 1:
383 freq = imx6ul_ccm_get_periph_clk2_clk(dev);
384 break;
385 default:
386 g_assert_not_reached();
389 trace_ccm_freq((uint32_t)freq);
391 return freq;
394 static uint64_t imx6ul_ccm_get_ahb_clk(IMX6ULCCMState *dev)
396 uint64_t freq = 0;
398 freq = imx6ul_ccm_get_periph_sel_clk(dev)
399 / (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, AHB_PODF));
401 trace_ccm_freq((uint32_t)freq);
403 return freq;
406 static uint64_t imx6ul_ccm_get_ipg_clk(IMX6ULCCMState *dev)
408 uint64_t freq = 0;
410 freq = imx6ul_ccm_get_ahb_clk(dev)
411 / (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, IPG_PODF));
413 trace_ccm_freq((uint32_t)freq);
415 return freq;
418 static uint64_t imx6ul_ccm_get_per_sel_clk(IMX6ULCCMState *dev)
420 uint64_t freq = 0;
422 switch (FIELD_EX32(dev->ccm[CCM_CSCMR1], CSCMR1, PERCLK_CLK_SEL)) {
423 case 0:
424 freq = imx6ul_ccm_get_ipg_clk(dev);
425 break;
426 case 1:
427 freq = imx6ul_analog_get_osc_clk(dev);
428 break;
429 default:
430 g_assert_not_reached();
433 trace_ccm_freq((uint32_t)freq);
435 return freq;
438 static uint64_t imx6ul_ccm_get_per_clk(IMX6ULCCMState *dev)
440 uint64_t freq = 0;
442 freq = imx6ul_ccm_get_per_sel_clk(dev)
443 / (1 + FIELD_EX32(dev->ccm[CCM_CSCMR1], CSCMR1, PERCLK_PODF));
445 trace_ccm_freq((uint32_t)freq);
447 return freq;
450 static uint32_t imx6ul_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
452 uint32_t freq = 0;
453 IMX6ULCCMState *s = IMX6UL_CCM(dev);
455 switch (clock) {
456 case CLK_NONE:
457 break;
458 case CLK_IPG:
459 freq = imx6ul_ccm_get_ipg_clk(s);
460 break;
461 case CLK_IPG_HIGH:
462 freq = imx6ul_ccm_get_per_clk(s);
463 break;
464 case CLK_32k:
465 freq = CKIL_FREQ;
466 break;
467 case CLK_HIGH:
468 freq = CKIH_FREQ;
469 break;
470 case CLK_HIGH_DIV:
471 freq = CKIH_FREQ / 8;
472 break;
473 default:
474 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
475 TYPE_IMX6UL_CCM, __func__, clock);
476 break;
479 trace_ccm_clock_freq(clock, freq);
481 return freq;
484 static void imx6ul_ccm_reset(DeviceState *dev)
486 IMX6ULCCMState *s = IMX6UL_CCM(dev);
488 trace_ccm_entry();
490 s->ccm[CCM_CCR] = 0x0401167F;
491 s->ccm[CCM_CCDR] = 0x00000000;
492 s->ccm[CCM_CSR] = 0x00000010;
493 s->ccm[CCM_CCSR] = 0x00000100;
494 s->ccm[CCM_CACRR] = 0x00000000;
495 s->ccm[CCM_CBCDR] = 0x00018D00;
496 s->ccm[CCM_CBCMR] = 0x24860324;
497 s->ccm[CCM_CSCMR1] = 0x04900080;
498 s->ccm[CCM_CSCMR2] = 0x03192F06;
499 s->ccm[CCM_CSCDR1] = 0x00490B00;
500 s->ccm[CCM_CS1CDR] = 0x0EC102C1;
501 s->ccm[CCM_CS2CDR] = 0x000336C1;
502 s->ccm[CCM_CDCDR] = 0x33F71F92;
503 s->ccm[CCM_CHSCCDR] = 0x000248A4;
504 s->ccm[CCM_CSCDR2] = 0x00029B48;
505 s->ccm[CCM_CSCDR3] = 0x00014841;
506 s->ccm[CCM_CDHIPR] = 0x00000000;
507 s->ccm[CCM_CTOR] = 0x00000000;
508 s->ccm[CCM_CLPCR] = 0x00000079;
509 s->ccm[CCM_CISR] = 0x00000000;
510 s->ccm[CCM_CIMR] = 0xFFFFFFFF;
511 s->ccm[CCM_CCOSR] = 0x000A0001;
512 s->ccm[CCM_CGPR] = 0x0000FE62;
513 s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
514 s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
515 s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
516 s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
517 s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
518 s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
519 s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
520 s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
522 s->analog[CCM_ANALOG_PLL_ARM] = 0x00013063;
523 s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
524 s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
525 s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
526 s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
527 s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
528 s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
529 s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
530 s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
531 s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
532 s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
533 s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
534 s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
535 s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
536 s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
537 s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
539 s->analog[PMU_REG_1P1] = 0x00001073;
540 s->analog[PMU_REG_3P0] = 0x00000F74;
541 s->analog[PMU_REG_2P5] = 0x00001073;
542 s->analog[PMU_REG_CORE] = 0x00482012;
543 s->analog[PMU_MISC0] = 0x04000000;
544 s->analog[PMU_MISC1] = 0x00000000;
545 s->analog[PMU_MISC2] = 0x00272727;
546 s->analog[PMU_LOWPWR_CTRL] = 0x00004009;
548 s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x01000004;
549 s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
550 s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
551 s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
552 s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
553 s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x01000004;
554 s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
555 s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
556 s->analog[USB_ANALOG_DIGPROG] = 0x00640000;
558 /* all PLLs need to be locked */
559 s->analog[CCM_ANALOG_PLL_ARM] |= CCM_ANALOG_PLL_LOCK;
560 s->analog[CCM_ANALOG_PLL_USB1] |= CCM_ANALOG_PLL_LOCK;
561 s->analog[CCM_ANALOG_PLL_USB2] |= CCM_ANALOG_PLL_LOCK;
562 s->analog[CCM_ANALOG_PLL_SYS] |= CCM_ANALOG_PLL_LOCK;
563 s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
564 s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
565 s->analog[CCM_ANALOG_PLL_ENET] |= CCM_ANALOG_PLL_LOCK;
567 s->analog[TEMPMON_TEMPSENSE0] = 0x00000001;
568 s->analog[TEMPMON_TEMPSENSE1] = 0x00000001;
569 s->analog[TEMPMON_TEMPSENSE2] = 0x00000000;
572 static uint64_t imx6ul_ccm_read(void *opaque, hwaddr offset, unsigned size)
574 uint32_t value = 0;
575 uint32_t index = offset >> 2;
576 IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
578 assert(index < CCM_MAX);
580 value = s->ccm[index];
582 trace_ccm_read_reg(imx6ul_ccm_reg_name(index), (uint32_t)value);
584 return (uint64_t)value;
587 static void imx6ul_ccm_write(void *opaque, hwaddr offset, uint64_t value,
588 unsigned size)
590 uint32_t index = offset >> 2;
591 IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
593 assert(index < CCM_MAX);
595 trace_ccm_write_reg(imx6ul_ccm_reg_name(index), (uint32_t)value);
598 * We will do a better implementation later. In particular some bits
599 * cannot be written to.
601 s->ccm[index] = (uint32_t)value;
604 static uint64_t imx6ul_analog_read(void *opaque, hwaddr offset, unsigned size)
606 uint32_t value;
607 uint32_t index = offset >> 2;
608 IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
610 assert(index < CCM_ANALOG_MAX);
612 switch (index) {
613 case CCM_ANALOG_PLL_ARM_SET:
614 case CCM_ANALOG_PLL_USB1_SET:
615 case CCM_ANALOG_PLL_USB2_SET:
616 case CCM_ANALOG_PLL_SYS_SET:
617 case CCM_ANALOG_PLL_AUDIO_SET:
618 case CCM_ANALOG_PLL_VIDEO_SET:
619 case CCM_ANALOG_PLL_ENET_SET:
620 case CCM_ANALOG_PFD_480_SET:
621 case CCM_ANALOG_PFD_528_SET:
622 case CCM_ANALOG_MISC0_SET:
623 case PMU_MISC1_SET:
624 case CCM_ANALOG_MISC2_SET:
625 case USB_ANALOG_USB1_VBUS_DETECT_SET:
626 case USB_ANALOG_USB1_CHRG_DETECT_SET:
627 case USB_ANALOG_USB1_MISC_SET:
628 case USB_ANALOG_USB2_VBUS_DETECT_SET:
629 case USB_ANALOG_USB2_CHRG_DETECT_SET:
630 case USB_ANALOG_USB2_MISC_SET:
631 case TEMPMON_TEMPSENSE0_SET:
632 case TEMPMON_TEMPSENSE1_SET:
633 case TEMPMON_TEMPSENSE2_SET:
635 * All REG_NAME_SET register access are in fact targeting
636 * the REG_NAME register.
638 value = s->analog[index - 1];
639 break;
640 case CCM_ANALOG_PLL_ARM_CLR:
641 case CCM_ANALOG_PLL_USB1_CLR:
642 case CCM_ANALOG_PLL_USB2_CLR:
643 case CCM_ANALOG_PLL_SYS_CLR:
644 case CCM_ANALOG_PLL_AUDIO_CLR:
645 case CCM_ANALOG_PLL_VIDEO_CLR:
646 case CCM_ANALOG_PLL_ENET_CLR:
647 case CCM_ANALOG_PFD_480_CLR:
648 case CCM_ANALOG_PFD_528_CLR:
649 case CCM_ANALOG_MISC0_CLR:
650 case PMU_MISC1_CLR:
651 case CCM_ANALOG_MISC2_CLR:
652 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
653 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
654 case USB_ANALOG_USB1_MISC_CLR:
655 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
656 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
657 case USB_ANALOG_USB2_MISC_CLR:
658 case TEMPMON_TEMPSENSE0_CLR:
659 case TEMPMON_TEMPSENSE1_CLR:
660 case TEMPMON_TEMPSENSE2_CLR:
662 * All REG_NAME_CLR register access are in fact targeting
663 * the REG_NAME register.
665 value = s->analog[index - 2];
666 break;
667 case CCM_ANALOG_PLL_ARM_TOG:
668 case CCM_ANALOG_PLL_USB1_TOG:
669 case CCM_ANALOG_PLL_USB2_TOG:
670 case CCM_ANALOG_PLL_SYS_TOG:
671 case CCM_ANALOG_PLL_AUDIO_TOG:
672 case CCM_ANALOG_PLL_VIDEO_TOG:
673 case CCM_ANALOG_PLL_ENET_TOG:
674 case CCM_ANALOG_PFD_480_TOG:
675 case CCM_ANALOG_PFD_528_TOG:
676 case CCM_ANALOG_MISC0_TOG:
677 case PMU_MISC1_TOG:
678 case CCM_ANALOG_MISC2_TOG:
679 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
680 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
681 case USB_ANALOG_USB1_MISC_TOG:
682 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
683 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
684 case USB_ANALOG_USB2_MISC_TOG:
685 case TEMPMON_TEMPSENSE0_TOG:
686 case TEMPMON_TEMPSENSE1_TOG:
687 case TEMPMON_TEMPSENSE2_TOG:
689 * All REG_NAME_TOG register access are in fact targeting
690 * the REG_NAME register.
692 value = s->analog[index - 3];
693 break;
694 default:
695 value = s->analog[index];
696 break;
699 trace_ccm_read_reg(imx6ul_analog_reg_name(index), (uint32_t)value);
701 return (uint64_t)value;
704 static void imx6ul_analog_write(void *opaque, hwaddr offset, uint64_t value,
705 unsigned size)
707 uint32_t index = offset >> 2;
708 IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
710 assert(index < CCM_ANALOG_MAX);
712 trace_ccm_write_reg(imx6ul_analog_reg_name(index), (uint32_t)value);
714 switch (index) {
715 case CCM_ANALOG_PLL_ARM_SET:
716 case CCM_ANALOG_PLL_USB1_SET:
717 case CCM_ANALOG_PLL_USB2_SET:
718 case CCM_ANALOG_PLL_SYS_SET:
719 case CCM_ANALOG_PLL_AUDIO_SET:
720 case CCM_ANALOG_PLL_VIDEO_SET:
721 case CCM_ANALOG_PLL_ENET_SET:
722 case CCM_ANALOG_PFD_480_SET:
723 case CCM_ANALOG_PFD_528_SET:
724 case CCM_ANALOG_MISC0_SET:
725 case PMU_MISC1_SET:
726 case CCM_ANALOG_MISC2_SET:
727 case USB_ANALOG_USB1_VBUS_DETECT_SET:
728 case USB_ANALOG_USB1_CHRG_DETECT_SET:
729 case USB_ANALOG_USB1_MISC_SET:
730 case USB_ANALOG_USB2_VBUS_DETECT_SET:
731 case USB_ANALOG_USB2_CHRG_DETECT_SET:
732 case USB_ANALOG_USB2_MISC_SET:
734 * All REG_NAME_SET register access are in fact targeting
735 * the REG_NAME register. So we change the value of the
736 * REG_NAME register, setting bits passed in the value.
738 s->analog[index - 1] |= value;
739 break;
740 case CCM_ANALOG_PLL_ARM_CLR:
741 case CCM_ANALOG_PLL_USB1_CLR:
742 case CCM_ANALOG_PLL_USB2_CLR:
743 case CCM_ANALOG_PLL_SYS_CLR:
744 case CCM_ANALOG_PLL_AUDIO_CLR:
745 case CCM_ANALOG_PLL_VIDEO_CLR:
746 case CCM_ANALOG_PLL_ENET_CLR:
747 case CCM_ANALOG_PFD_480_CLR:
748 case CCM_ANALOG_PFD_528_CLR:
749 case CCM_ANALOG_MISC0_CLR:
750 case PMU_MISC1_CLR:
751 case CCM_ANALOG_MISC2_CLR:
752 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
753 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
754 case USB_ANALOG_USB1_MISC_CLR:
755 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
756 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
757 case USB_ANALOG_USB2_MISC_CLR:
759 * All REG_NAME_CLR register access are in fact targeting
760 * the REG_NAME register. So we change the value of the
761 * REG_NAME register, unsetting bits passed in the value.
763 s->analog[index - 2] &= ~value;
764 break;
765 case CCM_ANALOG_PLL_ARM_TOG:
766 case CCM_ANALOG_PLL_USB1_TOG:
767 case CCM_ANALOG_PLL_USB2_TOG:
768 case CCM_ANALOG_PLL_SYS_TOG:
769 case CCM_ANALOG_PLL_AUDIO_TOG:
770 case CCM_ANALOG_PLL_VIDEO_TOG:
771 case CCM_ANALOG_PLL_ENET_TOG:
772 case CCM_ANALOG_PFD_480_TOG:
773 case CCM_ANALOG_PFD_528_TOG:
774 case CCM_ANALOG_MISC0_TOG:
775 case PMU_MISC1_TOG:
776 case CCM_ANALOG_MISC2_TOG:
777 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
778 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
779 case USB_ANALOG_USB1_MISC_TOG:
780 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
781 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
782 case USB_ANALOG_USB2_MISC_TOG:
784 * All REG_NAME_TOG register access are in fact targeting
785 * the REG_NAME register. So we change the value of the
786 * REG_NAME register, toggling bits passed in the value.
788 s->analog[index - 3] ^= value;
789 break;
790 default:
792 * We will do a better implementation later. In particular some bits
793 * cannot be written to.
795 s->analog[index] = value;
796 break;
800 static const struct MemoryRegionOps imx6ul_ccm_ops = {
801 .read = imx6ul_ccm_read,
802 .write = imx6ul_ccm_write,
803 .endianness = DEVICE_NATIVE_ENDIAN,
804 .valid = {
806 * Our device would not work correctly if the guest was doing
807 * unaligned access. This might not be a limitation on the real
808 * device but in practice there is no reason for a guest to access
809 * this device unaligned.
811 .min_access_size = 4,
812 .max_access_size = 4,
813 .unaligned = false,
817 static const struct MemoryRegionOps imx6ul_analog_ops = {
818 .read = imx6ul_analog_read,
819 .write = imx6ul_analog_write,
820 .endianness = DEVICE_NATIVE_ENDIAN,
821 .valid = {
823 * Our device would not work correctly if the guest was doing
824 * unaligned access. This might not be a limitation on the real
825 * device but in practice there is no reason for a guest to access
826 * this device unaligned.
828 .min_access_size = 4,
829 .max_access_size = 4,
830 .unaligned = false,
834 static void imx6ul_ccm_init(Object *obj)
836 DeviceState *dev = DEVICE(obj);
837 SysBusDevice *sd = SYS_BUS_DEVICE(obj);
838 IMX6ULCCMState *s = IMX6UL_CCM(obj);
840 /* initialize a container for the all memory range */
841 memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6UL_CCM, 0x8000);
843 /* We initialize an IO memory region for the CCM part */
844 memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6ul_ccm_ops, s,
845 TYPE_IMX6UL_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
847 /* Add the CCM as a subregion at offset 0 */
848 memory_region_add_subregion(&s->container, 0, &s->ioccm);
850 /* We initialize an IO memory region for the ANALOG part */
851 memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6ul_analog_ops, s,
852 TYPE_IMX6UL_CCM ".analog",
853 CCM_ANALOG_MAX * sizeof(uint32_t));
855 /* Add the ANALOG as a subregion at offset 0x4000 */
856 memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
858 sysbus_init_mmio(sd, &s->container);
861 static void imx6ul_ccm_class_init(ObjectClass *klass, void *data)
863 DeviceClass *dc = DEVICE_CLASS(klass);
864 IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
866 dc->reset = imx6ul_ccm_reset;
867 dc->vmsd = &vmstate_imx6ul_ccm;
868 dc->desc = "i.MX6UL Clock Control Module";
870 ccm->get_clock_frequency = imx6ul_ccm_get_clock_frequency;
873 static const TypeInfo imx6ul_ccm_info = {
874 .name = TYPE_IMX6UL_CCM,
875 .parent = TYPE_IMX_CCM,
876 .instance_size = sizeof(IMX6ULCCMState),
877 .instance_init = imx6ul_ccm_init,
878 .class_init = imx6ul_ccm_class_init,
881 static void imx6ul_ccm_register_types(void)
883 type_register_static(&imx6ul_ccm_info);
886 type_init(imx6ul_ccm_register_types)