nbd: generalize usage of nbd_read
[qemu/ar7.git] / hw / misc / imx25_ccm.c
blob19e948a52d5cbfc1308d7be3971c06d6e4da5a08
1 /*
2 * IMX25 Clock Control Module
4 * Copyright (C) 2012 NICTA
5 * Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
10 * To get the timer frequencies right, we need to emulate at least part of
11 * the CCM.
14 #include "qemu/osdep.h"
15 #include "hw/misc/imx25_ccm.h"
16 #include "qemu/log.h"
18 #ifndef DEBUG_IMX25_CCM
19 #define DEBUG_IMX25_CCM 0
20 #endif
22 #define DPRINTF(fmt, args...) \
23 do { \
24 if (DEBUG_IMX25_CCM) { \
25 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX25_CCM, \
26 __func__, ##args); \
27 } \
28 } while (0)
30 static const char *imx25_ccm_reg_name(uint32_t reg)
32 static char unknown[20];
34 switch (reg) {
35 case IMX25_CCM_MPCTL_REG:
36 return "mpctl";
37 case IMX25_CCM_UPCTL_REG:
38 return "upctl";
39 case IMX25_CCM_CCTL_REG:
40 return "cctl";
41 case IMX25_CCM_CGCR0_REG:
42 return "cgcr0";
43 case IMX25_CCM_CGCR1_REG:
44 return "cgcr1";
45 case IMX25_CCM_CGCR2_REG:
46 return "cgcr2";
47 case IMX25_CCM_PCDR0_REG:
48 return "pcdr0";
49 case IMX25_CCM_PCDR1_REG:
50 return "pcdr1";
51 case IMX25_CCM_PCDR2_REG:
52 return "pcdr2";
53 case IMX25_CCM_PCDR3_REG:
54 return "pcdr3";
55 case IMX25_CCM_RCSR_REG:
56 return "rcsr";
57 case IMX25_CCM_CRDR_REG:
58 return "crdr";
59 case IMX25_CCM_DCVR0_REG:
60 return "dcvr0";
61 case IMX25_CCM_DCVR1_REG:
62 return "dcvr1";
63 case IMX25_CCM_DCVR2_REG:
64 return "dcvr2";
65 case IMX25_CCM_DCVR3_REG:
66 return "dcvr3";
67 case IMX25_CCM_LTR0_REG:
68 return "ltr0";
69 case IMX25_CCM_LTR1_REG:
70 return "ltr1";
71 case IMX25_CCM_LTR2_REG:
72 return "ltr2";
73 case IMX25_CCM_LTR3_REG:
74 return "ltr3";
75 case IMX25_CCM_LTBR0_REG:
76 return "ltbr0";
77 case IMX25_CCM_LTBR1_REG:
78 return "ltbr1";
79 case IMX25_CCM_PMCR0_REG:
80 return "pmcr0";
81 case IMX25_CCM_PMCR1_REG:
82 return "pmcr1";
83 case IMX25_CCM_PMCR2_REG:
84 return "pmcr2";
85 case IMX25_CCM_MCR_REG:
86 return "mcr";
87 case IMX25_CCM_LPIMR0_REG:
88 return "lpimr0";
89 case IMX25_CCM_LPIMR1_REG:
90 return "lpimr1";
91 default:
92 sprintf(unknown, "[%d ?]", reg);
93 return unknown;
96 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
98 static const VMStateDescription vmstate_imx25_ccm = {
99 .name = TYPE_IMX25_CCM,
100 .version_id = 1,
101 .minimum_version_id = 1,
102 .fields = (VMStateField[]) {
103 VMSTATE_UINT32_ARRAY(reg, IMX25CCMState, IMX25_CCM_MAX_REG),
104 VMSTATE_END_OF_LIST()
108 static uint32_t imx25_ccm_get_mpll_clk(IMXCCMState *dev)
110 uint32_t freq;
111 IMX25CCMState *s = IMX25_CCM(dev);
113 if (EXTRACT(s->reg[IMX25_CCM_CCTL_REG], MPLL_BYPASS)) {
114 freq = CKIH_FREQ;
115 } else {
116 freq = imx_ccm_calc_pll(s->reg[IMX25_CCM_MPCTL_REG], CKIH_FREQ);
119 DPRINTF("freq = %d\n", freq);
121 return freq;
124 static uint32_t imx25_ccm_get_mcu_clk(IMXCCMState *dev)
126 uint32_t freq;
127 IMX25CCMState *s = IMX25_CCM(dev);
129 freq = imx25_ccm_get_mpll_clk(dev);
131 if (EXTRACT(s->reg[IMX25_CCM_CCTL_REG], ARM_SRC)) {
132 freq = (freq * 3 / 4);
135 freq = freq / (1 + EXTRACT(s->reg[IMX25_CCM_CCTL_REG], ARM_CLK_DIV));
137 DPRINTF("freq = %d\n", freq);
139 return freq;
142 static uint32_t imx25_ccm_get_ahb_clk(IMXCCMState *dev)
144 uint32_t freq;
145 IMX25CCMState *s = IMX25_CCM(dev);
147 freq = imx25_ccm_get_mcu_clk(dev)
148 / (1 + EXTRACT(s->reg[IMX25_CCM_CCTL_REG], AHB_CLK_DIV));
150 DPRINTF("freq = %d\n", freq);
152 return freq;
155 static uint32_t imx25_ccm_get_ipg_clk(IMXCCMState *dev)
157 uint32_t freq;
159 freq = imx25_ccm_get_ahb_clk(dev) / 2;
161 DPRINTF("freq = %d\n", freq);
163 return freq;
166 static uint32_t imx25_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
168 uint32_t freq = 0;
169 DPRINTF("Clock = %d)\n", clock);
171 switch (clock) {
172 case CLK_NONE:
173 break;
174 case CLK_IPG:
175 case CLK_IPG_HIGH:
176 freq = imx25_ccm_get_ipg_clk(dev);
177 break;
178 case CLK_32k:
179 freq = CKIL_FREQ;
180 break;
181 default:
182 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
183 TYPE_IMX25_CCM, __func__, clock);
184 break;
187 DPRINTF("Clock = %d) = %d\n", clock, freq);
189 return freq;
192 static void imx25_ccm_reset(DeviceState *dev)
194 IMX25CCMState *s = IMX25_CCM(dev);
196 DPRINTF("\n");
198 memset(s->reg, 0, IMX25_CCM_MAX_REG * sizeof(uint32_t));
199 s->reg[IMX25_CCM_MPCTL_REG] = 0x800b2c01;
200 s->reg[IMX25_CCM_UPCTL_REG] = 0x84042800;
202 * The value below gives:
203 * CPU = 133 MHz, AHB = 66,5 MHz, IPG = 33 MHz.
205 s->reg[IMX25_CCM_CCTL_REG] = 0xd0030000;
206 s->reg[IMX25_CCM_CGCR0_REG] = 0x028A0100;
207 s->reg[IMX25_CCM_CGCR1_REG] = 0x04008100;
208 s->reg[IMX25_CCM_CGCR2_REG] = 0x00000438;
209 s->reg[IMX25_CCM_PCDR0_REG] = 0x01010101;
210 s->reg[IMX25_CCM_PCDR1_REG] = 0x01010101;
211 s->reg[IMX25_CCM_PCDR2_REG] = 0x01010101;
212 s->reg[IMX25_CCM_PCDR3_REG] = 0x01010101;
213 s->reg[IMX25_CCM_PMCR0_REG] = 0x00A00000;
214 s->reg[IMX25_CCM_PMCR1_REG] = 0x0000A030;
215 s->reg[IMX25_CCM_PMCR2_REG] = 0x0000A030;
216 s->reg[IMX25_CCM_MCR_REG] = 0x43000000;
219 * default boot will change the reset values to allow:
220 * CPU = 399 MHz, AHB = 133 MHz, IPG = 66,5 MHz.
221 * For some reason, this doesn't work. With the value below, linux
222 * detects a 88 MHz IPG CLK instead of 66,5 MHz.
223 s->reg[IMX25_CCM_CCTL_REG] = 0x20032000;
227 static uint64_t imx25_ccm_read(void *opaque, hwaddr offset, unsigned size)
229 uint32_t value = 0;
230 IMX25CCMState *s = (IMX25CCMState *)opaque;
232 if (offset < 0x70) {
233 value = s->reg[offset >> 2];
234 } else {
235 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
236 HWADDR_PRIx "\n", TYPE_IMX25_CCM, __func__, offset);
239 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx25_ccm_reg_name(offset >> 2),
240 value);
242 return value;
245 static void imx25_ccm_write(void *opaque, hwaddr offset, uint64_t value,
246 unsigned size)
248 IMX25CCMState *s = (IMX25CCMState *)opaque;
250 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx25_ccm_reg_name(offset >> 2),
251 (uint32_t)value);
253 if (offset < 0x70) {
255 * We will do a better implementation later. In particular some bits
256 * cannot be written to.
258 s->reg[offset >> 2] = value;
259 } else {
260 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
261 HWADDR_PRIx "\n", TYPE_IMX25_CCM, __func__, offset);
265 static const struct MemoryRegionOps imx25_ccm_ops = {
266 .read = imx25_ccm_read,
267 .write = imx25_ccm_write,
268 .endianness = DEVICE_NATIVE_ENDIAN,
269 .valid = {
271 * Our device would not work correctly if the guest was doing
272 * unaligned access. This might not be a limitation on the real
273 * device but in practice there is no reason for a guest to access
274 * this device unaligned.
276 .min_access_size = 4,
277 .max_access_size = 4,
278 .unaligned = false,
282 static void imx25_ccm_init(Object *obj)
284 DeviceState *dev = DEVICE(obj);
285 SysBusDevice *sd = SYS_BUS_DEVICE(obj);
286 IMX25CCMState *s = IMX25_CCM(obj);
288 memory_region_init_io(&s->iomem, OBJECT(dev), &imx25_ccm_ops, s,
289 TYPE_IMX25_CCM, 0x1000);
290 sysbus_init_mmio(sd, &s->iomem);
293 static void imx25_ccm_class_init(ObjectClass *klass, void *data)
295 DeviceClass *dc = DEVICE_CLASS(klass);
296 IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
298 dc->reset = imx25_ccm_reset;
299 dc->vmsd = &vmstate_imx25_ccm;
300 dc->desc = "i.MX25 Clock Control Module";
302 ccm->get_clock_frequency = imx25_ccm_get_clock_frequency;
305 static const TypeInfo imx25_ccm_info = {
306 .name = TYPE_IMX25_CCM,
307 .parent = TYPE_IMX_CCM,
308 .instance_size = sizeof(IMX25CCMState),
309 .instance_init = imx25_ccm_init,
310 .class_init = imx25_ccm_class_init,
313 static void imx25_ccm_register_types(void)
315 type_register_static(&imx25_ccm_info);
318 type_init(imx25_ccm_register_types)