2 * mmap support for qemu
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
23 #include "user-internals.h"
24 #include "user-mmap.h"
25 #include "target_mman.h"
27 static pthread_mutex_t mmap_mutex
= PTHREAD_MUTEX_INITIALIZER
;
28 static __thread
int mmap_lock_count
;
32 if (mmap_lock_count
++ == 0) {
33 pthread_mutex_lock(&mmap_mutex
);
37 void mmap_unlock(void)
39 if (--mmap_lock_count
== 0) {
40 pthread_mutex_unlock(&mmap_mutex
);
44 bool have_mmap_lock(void)
46 return mmap_lock_count
> 0 ? true : false;
49 /* Grab lock to make sure things are in a consistent state after fork(). */
50 void mmap_fork_start(void)
54 pthread_mutex_lock(&mmap_mutex
);
57 void mmap_fork_end(int child
)
60 pthread_mutex_init(&mmap_mutex
, NULL
);
62 pthread_mutex_unlock(&mmap_mutex
);
66 * Validate target prot bitmask.
67 * Return the prot bitmask for the host in *HOST_PROT.
68 * Return 0 if the target prot bitmask is invalid, otherwise
69 * the internal qemu page_flags (which will include PAGE_VALID).
71 static int validate_prot_to_pageflags(int *host_prot
, int prot
)
73 int valid
= PROT_READ
| PROT_WRITE
| PROT_EXEC
| TARGET_PROT_SEM
;
74 int page_flags
= (prot
& PAGE_BITS
) | PAGE_VALID
;
77 * For the host, we need not pass anything except read/write/exec.
78 * While PROT_SEM is allowed by all hosts, it is also ignored, so
79 * don't bother transforming guest bit to host bit. Any other
80 * target-specific prot bits will not be understood by the host
81 * and will need to be encoded into page_flags for qemu emulation.
83 * Pages that are executable by the guest will never be executed
84 * by the host, but the host will need to be able to read them.
86 *host_prot
= (prot
& (PROT_READ
| PROT_WRITE
))
87 | (prot
& PROT_EXEC
? PROT_READ
: 0);
91 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
94 * The PROT_BTI bit is only accepted if the cpu supports the feature.
95 * Since this is the unusual case, don't bother checking unless
96 * the bit has been requested. If set and valid, record the bit
97 * within QEMU's page_flags.
99 if ((prot
& TARGET_PROT_BTI
) && cpu_isar_feature(aa64_bti
, cpu
)) {
100 valid
|= TARGET_PROT_BTI
;
101 page_flags
|= PAGE_BTI
;
103 /* Similarly for the PROT_MTE bit. */
104 if ((prot
& TARGET_PROT_MTE
) && cpu_isar_feature(aa64_mte
, cpu
)) {
105 valid
|= TARGET_PROT_MTE
;
106 page_flags
|= PAGE_MTE
;
109 #elif defined(TARGET_HPPA)
110 valid
|= PROT_GROWSDOWN
| PROT_GROWSUP
;
113 return prot
& ~valid
? 0 : page_flags
;
116 /* NOTE: all the constants are the HOST ones, but addresses are target. */
117 int target_mprotect(abi_ulong start
, abi_ulong len
, int target_prot
)
119 abi_ulong end
, host_start
, host_end
, addr
;
120 int prot1
, ret
, page_flags
, host_prot
;
122 trace_target_mprotect(start
, len
, target_prot
);
124 if ((start
& ~TARGET_PAGE_MASK
) != 0) {
125 return -TARGET_EINVAL
;
127 page_flags
= validate_prot_to_pageflags(&host_prot
, target_prot
);
129 return -TARGET_EINVAL
;
131 len
= TARGET_PAGE_ALIGN(len
);
133 if (!guest_range_valid_untagged(start
, len
)) {
134 return -TARGET_ENOMEM
;
141 host_start
= start
& qemu_host_page_mask
;
142 host_end
= HOST_PAGE_ALIGN(end
);
143 if (start
> host_start
) {
144 /* handle host page containing start */
146 for (addr
= host_start
; addr
< start
; addr
+= TARGET_PAGE_SIZE
) {
147 prot1
|= page_get_flags(addr
);
149 if (host_end
== host_start
+ qemu_host_page_size
) {
150 for (addr
= end
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
151 prot1
|= page_get_flags(addr
);
155 ret
= mprotect(g2h_untagged(host_start
), qemu_host_page_size
,
160 host_start
+= qemu_host_page_size
;
162 if (end
< host_end
) {
164 for (addr
= end
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
165 prot1
|= page_get_flags(addr
);
167 ret
= mprotect(g2h_untagged(host_end
- qemu_host_page_size
),
168 qemu_host_page_size
, prot1
& PAGE_BITS
);
172 host_end
-= qemu_host_page_size
;
175 /* handle the pages in the middle */
176 if (host_start
< host_end
) {
177 ret
= mprotect(g2h_untagged(host_start
),
178 host_end
- host_start
, host_prot
);
184 page_set_flags(start
, start
+ len
, page_flags
);
192 /* map an incomplete host page */
193 static int mmap_frag(abi_ulong real_start
,
194 abi_ulong start
, abi_ulong end
,
195 int prot
, int flags
, int fd
, abi_ulong offset
)
197 abi_ulong real_end
, addr
;
201 real_end
= real_start
+ qemu_host_page_size
;
202 host_start
= g2h_untagged(real_start
);
204 /* get the protection of the target pages outside the mapping */
206 for(addr
= real_start
; addr
< real_end
; addr
++) {
207 if (addr
< start
|| addr
>= end
)
208 prot1
|= page_get_flags(addr
);
212 /* no page was there, so we allocate one */
213 void *p
= mmap(host_start
, qemu_host_page_size
, prot
,
214 flags
| MAP_ANONYMOUS
, -1, 0);
221 prot_new
= prot
| prot1
;
222 if (!(flags
& MAP_ANONYMOUS
)) {
223 /* msync() won't work here, so we return an error if write is
224 possible while it is a shared mapping */
225 if ((flags
& MAP_TYPE
) == MAP_SHARED
&&
229 /* adjust protection to be able to read */
230 if (!(prot1
& PROT_WRITE
))
231 mprotect(host_start
, qemu_host_page_size
, prot1
| PROT_WRITE
);
233 /* read the corresponding file data */
234 if (pread(fd
, g2h_untagged(start
), end
- start
, offset
) == -1)
237 /* put final protection */
238 if (prot_new
!= (prot1
| PROT_WRITE
))
239 mprotect(host_start
, qemu_host_page_size
, prot_new
);
241 if (prot_new
!= prot1
) {
242 mprotect(host_start
, qemu_host_page_size
, prot_new
);
244 if (prot_new
& PROT_WRITE
) {
245 memset(g2h_untagged(start
), 0, end
- start
);
251 #if HOST_LONG_BITS == 64 && TARGET_ABI_BITS == 64
252 #ifdef TARGET_AARCH64
253 # define TASK_UNMAPPED_BASE 0x5500000000
255 # define TASK_UNMAPPED_BASE (1ul << 38)
259 # define TASK_UNMAPPED_BASE 0xfa000000
261 # define TASK_UNMAPPED_BASE 0x40000000
264 abi_ulong mmap_next_start
= TASK_UNMAPPED_BASE
;
266 unsigned long last_brk
;
268 /* Subroutine of mmap_find_vma, used when we have pre-allocated a chunk
269 of guest address space. */
270 static abi_ulong
mmap_find_vma_reserved(abi_ulong start
, abi_ulong size
,
273 abi_ulong addr
, end_addr
, incr
= qemu_host_page_size
;
277 if (size
> reserved_va
) {
278 return (abi_ulong
)-1;
281 /* Note that start and size have already been aligned by mmap_find_vma. */
283 end_addr
= start
+ size
;
284 if (start
> reserved_va
- size
) {
285 /* Start at the top of the address space. */
286 end_addr
= ((reserved_va
- size
) & -align
) + size
;
290 /* Search downward from END_ADDR, checking to see if a page is in use. */
294 if (addr
> end_addr
) {
296 /* Failure. The entire address space has been searched. */
297 return (abi_ulong
)-1;
299 /* Re-start at the top of the address space. */
300 addr
= end_addr
= ((reserved_va
- size
) & -align
) + size
;
303 prot
= page_get_flags(addr
);
305 /* Page in use. Restart below this page. */
306 addr
= end_addr
= ((addr
- size
) & -align
) + size
;
307 } else if (addr
&& addr
+ size
== end_addr
) {
308 /* Success! All pages between ADDR and END_ADDR are free. */
309 if (start
== mmap_next_start
) {
310 mmap_next_start
= addr
;
319 * Find and reserve a free memory area of size 'size'. The search
321 * It must be called with mmap_lock() held.
322 * Return -1 if error.
324 abi_ulong
mmap_find_vma(abi_ulong start
, abi_ulong size
, abi_ulong align
)
330 align
= MAX(align
, qemu_host_page_size
);
332 /* If 'start' == 0, then a default start address is used. */
334 start
= mmap_next_start
;
336 start
&= qemu_host_page_mask
;
338 start
= ROUND_UP(start
, align
);
340 size
= HOST_PAGE_ALIGN(size
);
343 return mmap_find_vma_reserved(start
, size
, align
);
347 wrapped
= repeat
= 0;
350 for (;; prev
= ptr
) {
352 * Reserve needed memory area to avoid a race.
353 * It should be discarded using:
354 * - mmap() with MAP_FIXED flag
355 * - mremap() with MREMAP_FIXED flag
356 * - shmat() with SHM_REMAP flag
358 ptr
= mmap(g2h_untagged(addr
), size
, PROT_NONE
,
359 MAP_ANONYMOUS
|MAP_PRIVATE
|MAP_NORESERVE
, -1, 0);
361 /* ENOMEM, if host address space has no memory */
362 if (ptr
== MAP_FAILED
) {
363 return (abi_ulong
)-1;
366 /* Count the number of sequential returns of the same address.
367 This is used to modify the search algorithm below. */
368 repeat
= (ptr
== prev
? repeat
+ 1 : 0);
370 if (h2g_valid(ptr
+ size
- 1)) {
373 if ((addr
& (align
- 1)) == 0) {
375 if (start
== mmap_next_start
&& addr
>= TASK_UNMAPPED_BASE
) {
376 mmap_next_start
= addr
+ size
;
381 /* The address is not properly aligned for the target. */
384 /* Assume the result that the kernel gave us is the
385 first with enough free space, so start again at the
386 next higher target page. */
387 addr
= ROUND_UP(addr
, align
);
390 /* Sometimes the kernel decides to perform the allocation
391 at the top end of memory instead. */
395 /* Start over at low memory. */
399 /* Fail. This unaligned block must the last. */
404 /* Since the result the kernel gave didn't fit, start
405 again at low memory. If any repetition, fail. */
406 addr
= (repeat
? -1 : 0);
409 /* Unmap and try again. */
412 /* ENOMEM if we checked the whole of the target address space. */
413 if (addr
== (abi_ulong
)-1) {
414 return (abi_ulong
)-1;
415 } else if (addr
== 0) {
417 return (abi_ulong
)-1;
420 /* Don't actually use 0 when wrapping, instead indicate
421 that we'd truly like an allocation in low memory. */
422 addr
= (mmap_min_addr
> TARGET_PAGE_SIZE
423 ? TARGET_PAGE_ALIGN(mmap_min_addr
)
425 } else if (wrapped
&& addr
>= start
) {
426 return (abi_ulong
)-1;
431 /* NOTE: all the constants are the HOST ones */
432 abi_long
target_mmap(abi_ulong start
, abi_ulong len
, int target_prot
,
433 int flags
, int fd
, abi_ulong offset
)
435 abi_ulong ret
, end
, real_start
, real_end
, retaddr
, host_offset
, host_len
,
436 passthrough_start
= -1, passthrough_end
= -1;
437 int page_flags
, host_prot
;
440 trace_target_mmap(start
, len
, target_prot
, flags
, fd
, offset
);
447 page_flags
= validate_prot_to_pageflags(&host_prot
, target_prot
);
453 /* Also check for overflows... */
454 len
= TARGET_PAGE_ALIGN(len
);
460 if (offset
& ~TARGET_PAGE_MASK
) {
466 * If we're mapping shared memory, ensure we generate code for parallel
467 * execution and flush old translations. This will work up to the level
468 * supported by the host -- anything that requires EXCP_ATOMIC will not
469 * be atomic with respect to an external process.
471 if (flags
& MAP_SHARED
) {
472 CPUState
*cpu
= thread_cpu
;
473 if (!(cpu
->tcg_cflags
& CF_PARALLEL
)) {
474 cpu
->tcg_cflags
|= CF_PARALLEL
;
479 real_start
= start
& qemu_host_page_mask
;
480 host_offset
= offset
& qemu_host_page_mask
;
482 /* If the user is asking for the kernel to find a location, do that
483 before we truncate the length for mapping files below. */
484 if (!(flags
& MAP_FIXED
)) {
485 host_len
= len
+ offset
- host_offset
;
486 host_len
= HOST_PAGE_ALIGN(host_len
);
487 start
= mmap_find_vma(real_start
, host_len
, TARGET_PAGE_SIZE
);
488 if (start
== (abi_ulong
)-1) {
494 /* When mapping files into a memory area larger than the file, accesses
495 to pages beyond the file size will cause a SIGBUS.
497 For example, if mmaping a file of 100 bytes on a host with 4K pages
498 emulating a target with 8K pages, the target expects to be able to
499 access the first 8K. But the host will trap us on any access beyond
502 When emulating a target with a larger page-size than the hosts, we
503 may need to truncate file maps at EOF and add extra anonymous pages
504 up to the targets page boundary. */
506 if ((qemu_real_host_page_size() < qemu_host_page_size
) &&
507 !(flags
& MAP_ANONYMOUS
)) {
510 if (fstat (fd
, &sb
) == -1)
513 /* Are we trying to create a map beyond EOF?. */
514 if (offset
+ len
> sb
.st_size
) {
515 /* If so, truncate the file map at eof aligned with
516 the hosts real pagesize. Additional anonymous maps
517 will be created beyond EOF. */
518 len
= REAL_HOST_PAGE_ALIGN(sb
.st_size
- offset
);
522 if (!(flags
& MAP_FIXED
)) {
523 unsigned long host_start
;
526 host_len
= len
+ offset
- host_offset
;
527 host_len
= HOST_PAGE_ALIGN(host_len
);
529 /* Note: we prefer to control the mapping address. It is
530 especially important if qemu_host_page_size >
531 qemu_real_host_page_size */
532 p
= mmap(g2h_untagged(start
), host_len
, host_prot
,
533 flags
| MAP_FIXED
| MAP_ANONYMOUS
, -1, 0);
534 if (p
== MAP_FAILED
) {
537 /* update start so that it points to the file position at 'offset' */
538 host_start
= (unsigned long)p
;
539 if (!(flags
& MAP_ANONYMOUS
)) {
540 p
= mmap(g2h_untagged(start
), len
, host_prot
,
541 flags
| MAP_FIXED
, fd
, host_offset
);
542 if (p
== MAP_FAILED
) {
543 munmap(g2h_untagged(start
), host_len
);
546 host_start
+= offset
- host_offset
;
548 start
= h2g(host_start
);
549 passthrough_start
= start
;
550 passthrough_end
= start
+ len
;
552 if (start
& ~TARGET_PAGE_MASK
) {
557 real_end
= HOST_PAGE_ALIGN(end
);
560 * Test if requested memory area fits target address space
561 * It can fail only on 64-bit host with 32-bit target.
562 * On any other target/host host mmap() handles this error correctly.
564 if (end
< start
|| !guest_range_valid_untagged(start
, len
)) {
569 /* worst case: we cannot map the file because the offset is not
570 aligned, so we read it */
571 if (!(flags
& MAP_ANONYMOUS
) &&
572 (offset
& ~qemu_host_page_mask
) != (start
& ~qemu_host_page_mask
)) {
573 /* msync() won't work here, so we return an error if write is
574 possible while it is a shared mapping */
575 if ((flags
& MAP_TYPE
) == MAP_SHARED
&&
576 (host_prot
& PROT_WRITE
)) {
580 retaddr
= target_mmap(start
, len
, target_prot
| PROT_WRITE
,
581 MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
,
585 if (pread(fd
, g2h_untagged(start
), len
, offset
) == -1)
587 if (!(host_prot
& PROT_WRITE
)) {
588 ret
= target_mprotect(start
, len
, target_prot
);
594 /* handle the start of the mapping */
595 if (start
> real_start
) {
596 if (real_end
== real_start
+ qemu_host_page_size
) {
597 /* one single host page */
598 ret
= mmap_frag(real_start
, start
, end
,
599 host_prot
, flags
, fd
, offset
);
604 ret
= mmap_frag(real_start
, start
, real_start
+ qemu_host_page_size
,
605 host_prot
, flags
, fd
, offset
);
608 real_start
+= qemu_host_page_size
;
610 /* handle the end of the mapping */
611 if (end
< real_end
) {
612 ret
= mmap_frag(real_end
- qemu_host_page_size
,
613 real_end
- qemu_host_page_size
, end
,
614 host_prot
, flags
, fd
,
615 offset
+ real_end
- qemu_host_page_size
- start
);
618 real_end
-= qemu_host_page_size
;
621 /* map the middle (easier) */
622 if (real_start
< real_end
) {
624 unsigned long offset1
;
625 if (flags
& MAP_ANONYMOUS
)
628 offset1
= offset
+ real_start
- start
;
629 p
= mmap(g2h_untagged(real_start
), real_end
- real_start
,
630 host_prot
, flags
, fd
, offset1
);
633 passthrough_start
= real_start
;
634 passthrough_end
= real_end
;
638 if (flags
& MAP_ANONYMOUS
) {
639 page_flags
|= PAGE_ANON
;
641 page_flags
|= PAGE_RESET
;
642 if (passthrough_start
== passthrough_end
) {
643 page_set_flags(start
, start
+ len
, page_flags
);
645 if (start
< passthrough_start
) {
646 page_set_flags(start
, passthrough_start
, page_flags
);
648 page_set_flags(passthrough_start
, passthrough_end
,
649 page_flags
| PAGE_PASSTHROUGH
);
650 if (passthrough_end
< start
+ len
) {
651 page_set_flags(passthrough_end
, start
+ len
, page_flags
);
655 trace_target_mmap_complete(start
);
656 if (qemu_loglevel_mask(CPU_LOG_PAGE
)) {
657 FILE *f
= qemu_log_trylock();
659 fprintf(f
, "page layout changed following mmap\n");
671 static void mmap_reserve(abi_ulong start
, abi_ulong size
)
673 abi_ulong real_start
;
679 real_start
= start
& qemu_host_page_mask
;
680 real_end
= HOST_PAGE_ALIGN(start
+ size
);
682 if (start
> real_start
) {
683 /* handle host page containing start */
685 for (addr
= real_start
; addr
< start
; addr
+= TARGET_PAGE_SIZE
) {
686 prot
|= page_get_flags(addr
);
688 if (real_end
== real_start
+ qemu_host_page_size
) {
689 for (addr
= end
; addr
< real_end
; addr
+= TARGET_PAGE_SIZE
) {
690 prot
|= page_get_flags(addr
);
695 real_start
+= qemu_host_page_size
;
697 if (end
< real_end
) {
699 for (addr
= end
; addr
< real_end
; addr
+= TARGET_PAGE_SIZE
) {
700 prot
|= page_get_flags(addr
);
703 real_end
-= qemu_host_page_size
;
705 if (real_start
!= real_end
) {
706 mmap(g2h_untagged(real_start
), real_end
- real_start
, PROT_NONE
,
707 MAP_FIXED
| MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
,
712 int target_munmap(abi_ulong start
, abi_ulong len
)
714 abi_ulong end
, real_start
, real_end
, addr
;
717 trace_target_munmap(start
, len
);
719 if (start
& ~TARGET_PAGE_MASK
)
720 return -TARGET_EINVAL
;
721 len
= TARGET_PAGE_ALIGN(len
);
722 if (len
== 0 || !guest_range_valid_untagged(start
, len
)) {
723 return -TARGET_EINVAL
;
728 real_start
= start
& qemu_host_page_mask
;
729 real_end
= HOST_PAGE_ALIGN(end
);
731 if (start
> real_start
) {
732 /* handle host page containing start */
734 for(addr
= real_start
; addr
< start
; addr
+= TARGET_PAGE_SIZE
) {
735 prot
|= page_get_flags(addr
);
737 if (real_end
== real_start
+ qemu_host_page_size
) {
738 for(addr
= end
; addr
< real_end
; addr
+= TARGET_PAGE_SIZE
) {
739 prot
|= page_get_flags(addr
);
744 real_start
+= qemu_host_page_size
;
746 if (end
< real_end
) {
748 for(addr
= end
; addr
< real_end
; addr
+= TARGET_PAGE_SIZE
) {
749 prot
|= page_get_flags(addr
);
752 real_end
-= qemu_host_page_size
;
756 /* unmap what we can */
757 if (real_start
< real_end
) {
759 mmap_reserve(real_start
, real_end
- real_start
);
761 ret
= munmap(g2h_untagged(real_start
), real_end
- real_start
);
766 page_set_flags(start
, start
+ len
, 0);
772 abi_long
target_mremap(abi_ulong old_addr
, abi_ulong old_size
,
773 abi_ulong new_size
, unsigned long flags
,
779 if (!guest_range_valid_untagged(old_addr
, old_size
) ||
780 ((flags
& MREMAP_FIXED
) &&
781 !guest_range_valid_untagged(new_addr
, new_size
)) ||
782 ((flags
& MREMAP_MAYMOVE
) == 0 &&
783 !guest_range_valid_untagged(old_addr
, new_size
))) {
790 if (flags
& MREMAP_FIXED
) {
791 host_addr
= mremap(g2h_untagged(old_addr
), old_size
, new_size
,
792 flags
, g2h_untagged(new_addr
));
794 if (reserved_va
&& host_addr
!= MAP_FAILED
) {
795 /* If new and old addresses overlap then the above mremap will
796 already have failed with EINVAL. */
797 mmap_reserve(old_addr
, old_size
);
799 } else if (flags
& MREMAP_MAYMOVE
) {
800 abi_ulong mmap_start
;
802 mmap_start
= mmap_find_vma(0, new_size
, TARGET_PAGE_SIZE
);
804 if (mmap_start
== -1) {
806 host_addr
= MAP_FAILED
;
808 host_addr
= mremap(g2h_untagged(old_addr
), old_size
, new_size
,
809 flags
| MREMAP_FIXED
,
810 g2h_untagged(mmap_start
));
812 mmap_reserve(old_addr
, old_size
);
817 if (reserved_va
&& old_size
< new_size
) {
819 for (addr
= old_addr
+ old_size
;
820 addr
< old_addr
+ new_size
;
822 prot
|= page_get_flags(addr
);
826 host_addr
= mremap(g2h_untagged(old_addr
),
827 old_size
, new_size
, flags
);
829 if (host_addr
!= MAP_FAILED
) {
830 /* Check if address fits target address space */
831 if (!guest_range_valid_untagged(h2g(host_addr
), new_size
)) {
832 /* Revert mremap() changes */
833 host_addr
= mremap(g2h_untagged(old_addr
),
834 new_size
, old_size
, flags
);
836 host_addr
= MAP_FAILED
;
837 } else if (reserved_va
&& old_size
> new_size
) {
838 mmap_reserve(old_addr
+ old_size
, old_size
- new_size
);
843 host_addr
= MAP_FAILED
;
847 if (host_addr
== MAP_FAILED
) {
850 new_addr
= h2g(host_addr
);
851 prot
= page_get_flags(old_addr
);
852 page_set_flags(old_addr
, old_addr
+ old_size
, 0);
853 page_set_flags(new_addr
, new_addr
+ new_size
,
854 prot
| PAGE_VALID
| PAGE_RESET
);
860 static bool can_passthrough_madvise(abi_ulong start
, abi_ulong end
)
864 if ((start
| end
) & ~qemu_host_page_mask
) {
868 for (addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
869 if (!(page_get_flags(addr
) & PAGE_PASSTHROUGH
)) {
877 abi_long
target_madvise(abi_ulong start
, abi_ulong len_in
, int advice
)
882 if (start
& ~TARGET_PAGE_MASK
) {
883 return -TARGET_EINVAL
;
885 len
= TARGET_PAGE_ALIGN(len_in
);
887 if (len_in
&& !len
) {
888 return -TARGET_EINVAL
;
893 return -TARGET_EINVAL
;
900 if (!guest_range_valid_untagged(start
, len
)) {
901 return -TARGET_EINVAL
;
904 /* Translate for some architectures which have different MADV_xxx values */
906 case TARGET_MADV_DONTNEED
: /* alpha */
907 advice
= MADV_DONTNEED
;
909 case TARGET_MADV_WIPEONFORK
: /* parisc */
910 advice
= MADV_WIPEONFORK
;
912 case TARGET_MADV_KEEPONFORK
: /* parisc */
913 advice
= MADV_KEEPONFORK
;
915 /* we do not care about the other MADV_xxx values yet */
919 * Most advice values are hints, so ignoring and returning success is ok.
921 * However, some advice values such as MADV_DONTNEED, MADV_WIPEONFORK and
922 * MADV_KEEPONFORK are not hints and need to be emulated.
924 * A straight passthrough for those may not be safe because qemu sometimes
925 * turns private file-backed mappings into anonymous mappings.
926 * can_passthrough_madvise() helps to check if a passthrough is possible by
927 * comparing mappings that are known to have the same semantics in the host
928 * and the guest. In this case passthrough is safe.
930 * We pass through MADV_WIPEONFORK and MADV_KEEPONFORK if possible and
931 * return failure if not.
933 * MADV_DONTNEED is passed through as well, if possible.
934 * If passthrough isn't possible, we nevertheless (wrongly!) return
935 * success, which is broken but some userspace programs fail to work
936 * otherwise. Completely implementing such emulation is quite complicated
941 case MADV_WIPEONFORK
:
942 case MADV_KEEPONFORK
:
946 if (can_passthrough_madvise(start
, end
)) {
947 ret
= get_errno(madvise(g2h_untagged(start
), len
, advice
));
948 if ((advice
== MADV_DONTNEED
) && (ret
== 0)) {
949 page_reset_target_data(start
, start
+ len
);