Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / linux-user / mmap.c
blobbe3b9a68ebcdafd74f18485a579d5a87802035a8
1 /*
2 * mmap support for qemu
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include <sys/shm.h>
21 #include "trace.h"
22 #include "exec/log.h"
23 #include "qemu.h"
24 #include "user-internals.h"
25 #include "user-mmap.h"
26 #include "target_mman.h"
27 #include "qemu/interval-tree.h"
29 #ifdef TARGET_ARM
30 #include "target/arm/cpu-features.h"
31 #endif
33 static pthread_mutex_t mmap_mutex = PTHREAD_MUTEX_INITIALIZER;
34 static __thread int mmap_lock_count;
36 void mmap_lock(void)
38 if (mmap_lock_count++ == 0) {
39 pthread_mutex_lock(&mmap_mutex);
43 void mmap_unlock(void)
45 assert(mmap_lock_count > 0);
46 if (--mmap_lock_count == 0) {
47 pthread_mutex_unlock(&mmap_mutex);
51 bool have_mmap_lock(void)
53 return mmap_lock_count > 0 ? true : false;
56 /* Grab lock to make sure things are in a consistent state after fork(). */
57 void mmap_fork_start(void)
59 if (mmap_lock_count)
60 abort();
61 pthread_mutex_lock(&mmap_mutex);
64 void mmap_fork_end(int child)
66 if (child) {
67 pthread_mutex_init(&mmap_mutex, NULL);
68 } else {
69 pthread_mutex_unlock(&mmap_mutex);
73 /* Protected by mmap_lock. */
74 static IntervalTreeRoot shm_regions;
76 static void shm_region_add(abi_ptr start, abi_ptr last)
78 IntervalTreeNode *i = g_new0(IntervalTreeNode, 1);
80 i->start = start;
81 i->last = last;
82 interval_tree_insert(i, &shm_regions);
85 static abi_ptr shm_region_find(abi_ptr start)
87 IntervalTreeNode *i;
89 for (i = interval_tree_iter_first(&shm_regions, start, start); i;
90 i = interval_tree_iter_next(i, start, start)) {
91 if (i->start == start) {
92 return i->last;
95 return 0;
98 static void shm_region_rm_complete(abi_ptr start, abi_ptr last)
100 IntervalTreeNode *i, *n;
102 for (i = interval_tree_iter_first(&shm_regions, start, last); i; i = n) {
103 n = interval_tree_iter_next(i, start, last);
104 if (i->start >= start && i->last <= last) {
105 interval_tree_remove(i, &shm_regions);
106 g_free(i);
112 * Validate target prot bitmask.
113 * Return the prot bitmask for the host in *HOST_PROT.
114 * Return 0 if the target prot bitmask is invalid, otherwise
115 * the internal qemu page_flags (which will include PAGE_VALID).
117 static int validate_prot_to_pageflags(int prot)
119 int valid = PROT_READ | PROT_WRITE | PROT_EXEC | TARGET_PROT_SEM;
120 int page_flags = (prot & PAGE_BITS) | PAGE_VALID;
122 #ifdef TARGET_AARCH64
124 ARMCPU *cpu = ARM_CPU(thread_cpu);
127 * The PROT_BTI bit is only accepted if the cpu supports the feature.
128 * Since this is the unusual case, don't bother checking unless
129 * the bit has been requested. If set and valid, record the bit
130 * within QEMU's page_flags.
132 if ((prot & TARGET_PROT_BTI) && cpu_isar_feature(aa64_bti, cpu)) {
133 valid |= TARGET_PROT_BTI;
134 page_flags |= PAGE_BTI;
136 /* Similarly for the PROT_MTE bit. */
137 if ((prot & TARGET_PROT_MTE) && cpu_isar_feature(aa64_mte, cpu)) {
138 valid |= TARGET_PROT_MTE;
139 page_flags |= PAGE_MTE;
142 #elif defined(TARGET_HPPA)
143 valid |= PROT_GROWSDOWN | PROT_GROWSUP;
144 #endif
146 return prot & ~valid ? 0 : page_flags;
150 * For the host, we need not pass anything except read/write/exec.
151 * While PROT_SEM is allowed by all hosts, it is also ignored, so
152 * don't bother transforming guest bit to host bit. Any other
153 * target-specific prot bits will not be understood by the host
154 * and will need to be encoded into page_flags for qemu emulation.
156 * Pages that are executable by the guest will never be executed
157 * by the host, but the host will need to be able to read them.
159 static int target_to_host_prot(int prot)
161 return (prot & (PROT_READ | PROT_WRITE)) |
162 (prot & PROT_EXEC ? PROT_READ : 0);
165 /* NOTE: all the constants are the HOST ones, but addresses are target. */
166 int target_mprotect(abi_ulong start, abi_ulong len, int target_prot)
168 int host_page_size = qemu_real_host_page_size();
169 abi_ulong starts[3];
170 abi_ulong lens[3];
171 int prots[3];
172 abi_ulong host_start, host_last, last;
173 int prot1, ret, page_flags, nranges;
175 trace_target_mprotect(start, len, target_prot);
177 if ((start & ~TARGET_PAGE_MASK) != 0) {
178 return -TARGET_EINVAL;
180 page_flags = validate_prot_to_pageflags(target_prot);
181 if (!page_flags) {
182 return -TARGET_EINVAL;
184 if (len == 0) {
185 return 0;
187 len = TARGET_PAGE_ALIGN(len);
188 if (!guest_range_valid_untagged(start, len)) {
189 return -TARGET_ENOMEM;
192 last = start + len - 1;
193 host_start = start & -host_page_size;
194 host_last = ROUND_UP(last, host_page_size) - 1;
195 nranges = 0;
197 mmap_lock();
199 if (host_last - host_start < host_page_size) {
200 /* Single host page contains all guest pages: sum the prot. */
201 prot1 = target_prot;
202 for (abi_ulong a = host_start; a < start; a += TARGET_PAGE_SIZE) {
203 prot1 |= page_get_flags(a);
205 for (abi_ulong a = last; a < host_last; a += TARGET_PAGE_SIZE) {
206 prot1 |= page_get_flags(a + 1);
208 starts[nranges] = host_start;
209 lens[nranges] = host_page_size;
210 prots[nranges] = prot1;
211 nranges++;
212 } else {
213 if (host_start < start) {
214 /* Host page contains more than one guest page: sum the prot. */
215 prot1 = target_prot;
216 for (abi_ulong a = host_start; a < start; a += TARGET_PAGE_SIZE) {
217 prot1 |= page_get_flags(a);
219 /* If the resulting sum differs, create a new range. */
220 if (prot1 != target_prot) {
221 starts[nranges] = host_start;
222 lens[nranges] = host_page_size;
223 prots[nranges] = prot1;
224 nranges++;
225 host_start += host_page_size;
229 if (last < host_last) {
230 /* Host page contains more than one guest page: sum the prot. */
231 prot1 = target_prot;
232 for (abi_ulong a = last; a < host_last; a += TARGET_PAGE_SIZE) {
233 prot1 |= page_get_flags(a + 1);
235 /* If the resulting sum differs, create a new range. */
236 if (prot1 != target_prot) {
237 host_last -= host_page_size;
238 starts[nranges] = host_last + 1;
239 lens[nranges] = host_page_size;
240 prots[nranges] = prot1;
241 nranges++;
245 /* Create a range for the middle, if any remains. */
246 if (host_start < host_last) {
247 starts[nranges] = host_start;
248 lens[nranges] = host_last - host_start + 1;
249 prots[nranges] = target_prot;
250 nranges++;
254 for (int i = 0; i < nranges; ++i) {
255 ret = mprotect(g2h_untagged(starts[i]), lens[i],
256 target_to_host_prot(prots[i]));
257 if (ret != 0) {
258 goto error;
262 page_set_flags(start, last, page_flags);
263 ret = 0;
265 error:
266 mmap_unlock();
267 return ret;
271 * Perform munmap on behalf of the target, with host parameters.
272 * If reserved_va, we must replace the memory reservation.
274 static int do_munmap(void *addr, size_t len)
276 if (reserved_va) {
277 void *ptr = mmap(addr, len, PROT_NONE,
278 MAP_FIXED | MAP_ANONYMOUS
279 | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
280 return ptr == addr ? 0 : -1;
282 return munmap(addr, len);
286 * Map an incomplete host page.
288 * Here be dragons. This case will not work if there is an existing
289 * overlapping host page, which is file mapped, and for which the mapping
290 * is beyond the end of the file. In that case, we will see SIGBUS when
291 * trying to write a portion of this page.
293 * FIXME: Work around this with a temporary signal handler and longjmp.
295 static bool mmap_frag(abi_ulong real_start, abi_ulong start, abi_ulong last,
296 int prot, int flags, int fd, off_t offset)
298 int host_page_size = qemu_real_host_page_size();
299 abi_ulong real_last;
300 void *host_start;
301 int prot_old, prot_new;
302 int host_prot_old, host_prot_new;
304 if (!(flags & MAP_ANONYMOUS)
305 && (flags & MAP_TYPE) == MAP_SHARED
306 && (prot & PROT_WRITE)) {
308 * msync() won't work with the partial page, so we return an
309 * error if write is possible while it is a shared mapping.
311 errno = EINVAL;
312 return false;
315 real_last = real_start + host_page_size - 1;
316 host_start = g2h_untagged(real_start);
318 /* Get the protection of the target pages outside the mapping. */
319 prot_old = 0;
320 for (abi_ulong a = real_start; a < start; a += TARGET_PAGE_SIZE) {
321 prot_old |= page_get_flags(a);
323 for (abi_ulong a = real_last; a > last; a -= TARGET_PAGE_SIZE) {
324 prot_old |= page_get_flags(a);
327 if (prot_old == 0) {
329 * Since !(prot_old & PAGE_VALID), there were no guest pages
330 * outside of the fragment we need to map. Allocate a new host
331 * page to cover, discarding whatever else may have been present.
333 void *p = mmap(host_start, host_page_size,
334 target_to_host_prot(prot),
335 flags | MAP_ANONYMOUS, -1, 0);
336 if (p != host_start) {
337 if (p != MAP_FAILED) {
338 do_munmap(p, host_page_size);
339 errno = EEXIST;
341 return false;
343 prot_old = prot;
345 prot_new = prot | prot_old;
347 host_prot_old = target_to_host_prot(prot_old);
348 host_prot_new = target_to_host_prot(prot_new);
350 /* Adjust protection to be able to write. */
351 if (!(host_prot_old & PROT_WRITE)) {
352 host_prot_old |= PROT_WRITE;
353 mprotect(host_start, host_page_size, host_prot_old);
356 /* Read or zero the new guest pages. */
357 if (flags & MAP_ANONYMOUS) {
358 memset(g2h_untagged(start), 0, last - start + 1);
359 } else {
360 if (pread(fd, g2h_untagged(start), last - start + 1, offset) == -1) {
361 return false;
365 /* Put final protection */
366 if (host_prot_new != host_prot_old) {
367 mprotect(host_start, host_page_size, host_prot_new);
369 return true;
372 abi_ulong task_unmapped_base;
373 abi_ulong elf_et_dyn_base;
374 abi_ulong mmap_next_start;
377 * Subroutine of mmap_find_vma, used when we have pre-allocated
378 * a chunk of guest address space.
380 static abi_ulong mmap_find_vma_reserved(abi_ulong start, abi_ulong size,
381 abi_ulong align)
383 target_ulong ret;
385 ret = page_find_range_empty(start, reserved_va, size, align);
386 if (ret == -1 && start > mmap_min_addr) {
387 /* Restart at the beginning of the address space. */
388 ret = page_find_range_empty(mmap_min_addr, start - 1, size, align);
391 return ret;
395 * Find and reserve a free memory area of size 'size'. The search
396 * starts at 'start'.
397 * It must be called with mmap_lock() held.
398 * Return -1 if error.
400 abi_ulong mmap_find_vma(abi_ulong start, abi_ulong size, abi_ulong align)
402 int host_page_size = qemu_real_host_page_size();
403 void *ptr, *prev;
404 abi_ulong addr;
405 int wrapped, repeat;
407 align = MAX(align, host_page_size);
409 /* If 'start' == 0, then a default start address is used. */
410 if (start == 0) {
411 start = mmap_next_start;
412 } else {
413 start &= -host_page_size;
415 start = ROUND_UP(start, align);
416 size = ROUND_UP(size, host_page_size);
418 if (reserved_va) {
419 return mmap_find_vma_reserved(start, size, align);
422 addr = start;
423 wrapped = repeat = 0;
424 prev = 0;
426 for (;; prev = ptr) {
428 * Reserve needed memory area to avoid a race.
429 * It should be discarded using:
430 * - mmap() with MAP_FIXED flag
431 * - mremap() with MREMAP_FIXED flag
432 * - shmat() with SHM_REMAP flag
434 ptr = mmap(g2h_untagged(addr), size, PROT_NONE,
435 MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
437 /* ENOMEM, if host address space has no memory */
438 if (ptr == MAP_FAILED) {
439 return (abi_ulong)-1;
443 * Count the number of sequential returns of the same address.
444 * This is used to modify the search algorithm below.
446 repeat = (ptr == prev ? repeat + 1 : 0);
448 if (h2g_valid(ptr + size - 1)) {
449 addr = h2g(ptr);
451 if ((addr & (align - 1)) == 0) {
452 /* Success. */
453 if (start == mmap_next_start && addr >= task_unmapped_base) {
454 mmap_next_start = addr + size;
456 return addr;
459 /* The address is not properly aligned for the target. */
460 switch (repeat) {
461 case 0:
463 * Assume the result that the kernel gave us is the
464 * first with enough free space, so start again at the
465 * next higher target page.
467 addr = ROUND_UP(addr, align);
468 break;
469 case 1:
471 * Sometimes the kernel decides to perform the allocation
472 * at the top end of memory instead.
474 addr &= -align;
475 break;
476 case 2:
477 /* Start over at low memory. */
478 addr = 0;
479 break;
480 default:
481 /* Fail. This unaligned block must the last. */
482 addr = -1;
483 break;
485 } else {
487 * Since the result the kernel gave didn't fit, start
488 * again at low memory. If any repetition, fail.
490 addr = (repeat ? -1 : 0);
493 /* Unmap and try again. */
494 munmap(ptr, size);
496 /* ENOMEM if we checked the whole of the target address space. */
497 if (addr == (abi_ulong)-1) {
498 return (abi_ulong)-1;
499 } else if (addr == 0) {
500 if (wrapped) {
501 return (abi_ulong)-1;
503 wrapped = 1;
505 * Don't actually use 0 when wrapping, instead indicate
506 * that we'd truly like an allocation in low memory.
508 addr = (mmap_min_addr > TARGET_PAGE_SIZE
509 ? TARGET_PAGE_ALIGN(mmap_min_addr)
510 : TARGET_PAGE_SIZE);
511 } else if (wrapped && addr >= start) {
512 return (abi_ulong)-1;
518 * Record a successful mmap within the user-exec interval tree.
520 static abi_long mmap_end(abi_ulong start, abi_ulong last,
521 abi_ulong passthrough_start,
522 abi_ulong passthrough_last,
523 int flags, int page_flags)
525 if (flags & MAP_ANONYMOUS) {
526 page_flags |= PAGE_ANON;
528 page_flags |= PAGE_RESET;
529 if (passthrough_start > passthrough_last) {
530 page_set_flags(start, last, page_flags);
531 } else {
532 if (start < passthrough_start) {
533 page_set_flags(start, passthrough_start - 1, page_flags);
535 page_set_flags(passthrough_start, passthrough_last,
536 page_flags | PAGE_PASSTHROUGH);
537 if (passthrough_last < last) {
538 page_set_flags(passthrough_last + 1, last, page_flags);
541 shm_region_rm_complete(start, last);
542 trace_target_mmap_complete(start);
543 if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
544 FILE *f = qemu_log_trylock();
545 if (f) {
546 fprintf(f, "page layout changed following mmap\n");
547 page_dump(f);
548 qemu_log_unlock(f);
551 return start;
555 * Special case host page size == target page size,
556 * where there are no edge conditions.
558 static abi_long mmap_h_eq_g(abi_ulong start, abi_ulong len,
559 int host_prot, int flags, int page_flags,
560 int fd, off_t offset)
562 void *p, *want_p = g2h_untagged(start);
563 abi_ulong last;
565 p = mmap(want_p, len, host_prot, flags, fd, offset);
566 if (p == MAP_FAILED) {
567 return -1;
569 /* If the host kernel does not support MAP_FIXED_NOREPLACE, emulate. */
570 if ((flags & MAP_FIXED_NOREPLACE) && p != want_p) {
571 do_munmap(p, len);
572 errno = EEXIST;
573 return -1;
576 start = h2g(p);
577 last = start + len - 1;
578 return mmap_end(start, last, start, last, flags, page_flags);
582 * Special case host page size < target page size.
584 * The two special cases are increased guest alignment, and mapping
585 * past the end of a file.
587 * When mapping files into a memory area larger than the file,
588 * accesses to pages beyond the file size will cause a SIGBUS.
590 * For example, if mmaping a file of 100 bytes on a host with 4K
591 * pages emulating a target with 8K pages, the target expects to
592 * be able to access the first 8K. But the host will trap us on
593 * any access beyond 4K.
595 * When emulating a target with a larger page-size than the hosts,
596 * we may need to truncate file maps at EOF and add extra anonymous
597 * pages up to the targets page boundary.
599 * This workaround only works for files that do not change.
600 * If the file is later extended (e.g. ftruncate), the SIGBUS
601 * vanishes and the proper behaviour is that changes within the
602 * anon page should be reflected in the file.
604 * However, this case is rather common with executable images,
605 * so the workaround is important for even trivial tests, whereas
606 * the mmap of of a file being extended is less common.
608 static abi_long mmap_h_lt_g(abi_ulong start, abi_ulong len, int host_prot,
609 int mmap_flags, int page_flags, int fd,
610 off_t offset, int host_page_size)
612 void *p, *want_p = g2h_untagged(start);
613 off_t fileend_adj = 0;
614 int flags = mmap_flags;
615 abi_ulong last, pass_last;
617 if (!(flags & MAP_ANONYMOUS)) {
618 struct stat sb;
620 if (fstat(fd, &sb) == -1) {
621 return -1;
623 if (offset >= sb.st_size) {
625 * The entire map is beyond the end of the file.
626 * Transform it to an anonymous mapping.
628 flags |= MAP_ANONYMOUS;
629 fd = -1;
630 offset = 0;
631 } else if (offset + len > sb.st_size) {
633 * A portion of the map is beyond the end of the file.
634 * Truncate the file portion of the allocation.
636 fileend_adj = offset + len - sb.st_size;
640 if (flags & (MAP_FIXED | MAP_FIXED_NOREPLACE)) {
641 if (fileend_adj) {
642 p = mmap(want_p, len, host_prot, flags | MAP_ANONYMOUS, -1, 0);
643 } else {
644 p = mmap(want_p, len, host_prot, flags, fd, offset);
646 if (p != want_p) {
647 if (p != MAP_FAILED) {
648 /* Host does not support MAP_FIXED_NOREPLACE: emulate. */
649 do_munmap(p, len);
650 errno = EEXIST;
652 return -1;
655 if (fileend_adj) {
656 void *t = mmap(p, len - fileend_adj, host_prot,
657 (flags & ~MAP_FIXED_NOREPLACE) | MAP_FIXED,
658 fd, offset);
660 if (t == MAP_FAILED) {
661 int save_errno = errno;
664 * We failed a map over the top of the successful anonymous
665 * mapping above. The only failure mode is running out of VMAs,
666 * and there's nothing that we can do to detect that earlier.
667 * If we have replaced an existing mapping with MAP_FIXED,
668 * then we cannot properly recover. It's a coin toss whether
669 * it would be better to exit or continue here.
671 if (!(flags & MAP_FIXED_NOREPLACE) &&
672 !page_check_range_empty(start, start + len - 1)) {
673 qemu_log("QEMU target_mmap late failure: %s",
674 strerror(save_errno));
677 do_munmap(want_p, len);
678 errno = save_errno;
679 return -1;
682 } else {
683 size_t host_len, part_len;
686 * Take care to align the host memory. Perform a larger anonymous
687 * allocation and extract the aligned portion. Remap the file on
688 * top of that.
690 host_len = len + TARGET_PAGE_SIZE - host_page_size;
691 p = mmap(want_p, host_len, host_prot, flags | MAP_ANONYMOUS, -1, 0);
692 if (p == MAP_FAILED) {
693 return -1;
696 part_len = (uintptr_t)p & (TARGET_PAGE_SIZE - 1);
697 if (part_len) {
698 part_len = TARGET_PAGE_SIZE - part_len;
699 do_munmap(p, part_len);
700 p += part_len;
701 host_len -= part_len;
703 if (len < host_len) {
704 do_munmap(p + len, host_len - len);
707 if (!(flags & MAP_ANONYMOUS)) {
708 void *t = mmap(p, len - fileend_adj, host_prot,
709 flags | MAP_FIXED, fd, offset);
711 if (t == MAP_FAILED) {
712 int save_errno = errno;
713 do_munmap(p, len);
714 errno = save_errno;
715 return -1;
719 start = h2g(p);
722 last = start + len - 1;
723 if (fileend_adj) {
724 pass_last = ROUND_UP(last - fileend_adj, host_page_size) - 1;
725 } else {
726 pass_last = last;
728 return mmap_end(start, last, start, pass_last, mmap_flags, page_flags);
732 * Special case host page size > target page size.
734 * The two special cases are address and file offsets that are valid
735 * for the guest that cannot be directly represented by the host.
737 static abi_long mmap_h_gt_g(abi_ulong start, abi_ulong len,
738 int target_prot, int host_prot,
739 int flags, int page_flags, int fd,
740 off_t offset, int host_page_size)
742 void *p, *want_p = g2h_untagged(start);
743 off_t host_offset = offset & -host_page_size;
744 abi_ulong last, real_start, real_last;
745 bool misaligned_offset = false;
746 size_t host_len;
748 if (!(flags & (MAP_FIXED | MAP_FIXED_NOREPLACE))) {
750 * Adjust the offset to something representable on the host.
752 host_len = len + offset - host_offset;
753 p = mmap(want_p, host_len, host_prot, flags, fd, host_offset);
754 if (p == MAP_FAILED) {
755 return -1;
758 /* Update start to the file position at offset. */
759 p += offset - host_offset;
761 start = h2g(p);
762 last = start + len - 1;
763 return mmap_end(start, last, start, last, flags, page_flags);
766 if (!(flags & MAP_ANONYMOUS)) {
767 misaligned_offset = (start ^ offset) & (host_page_size - 1);
770 * The fallback for misalignment is a private mapping + read.
771 * This carries none of semantics required of MAP_SHARED.
773 if (misaligned_offset && (flags & MAP_TYPE) != MAP_PRIVATE) {
774 errno = EINVAL;
775 return -1;
779 last = start + len - 1;
780 real_start = start & -host_page_size;
781 real_last = ROUND_UP(last, host_page_size) - 1;
784 * Handle the start and end of the mapping.
786 if (real_start < start) {
787 abi_ulong real_page_last = real_start + host_page_size - 1;
788 if (last <= real_page_last) {
789 /* Entire allocation a subset of one host page. */
790 if (!mmap_frag(real_start, start, last, target_prot,
791 flags, fd, offset)) {
792 return -1;
794 return mmap_end(start, last, -1, 0, flags, page_flags);
797 if (!mmap_frag(real_start, start, real_page_last, target_prot,
798 flags, fd, offset)) {
799 return -1;
801 real_start = real_page_last + 1;
804 if (last < real_last) {
805 abi_ulong real_page_start = real_last - host_page_size + 1;
806 if (!mmap_frag(real_page_start, real_page_start, last,
807 target_prot, flags, fd,
808 offset + real_page_start - start)) {
809 return -1;
811 real_last = real_page_start - 1;
814 if (real_start > real_last) {
815 return mmap_end(start, last, -1, 0, flags, page_flags);
819 * Handle the middle of the mapping.
822 host_len = real_last - real_start + 1;
823 want_p += real_start - start;
825 if (flags & MAP_ANONYMOUS) {
826 p = mmap(want_p, host_len, host_prot, flags, -1, 0);
827 } else if (!misaligned_offset) {
828 p = mmap(want_p, host_len, host_prot, flags, fd,
829 offset + real_start - start);
830 } else {
831 p = mmap(want_p, host_len, host_prot | PROT_WRITE,
832 flags | MAP_ANONYMOUS, -1, 0);
834 if (p != want_p) {
835 if (p != MAP_FAILED) {
836 do_munmap(p, host_len);
837 errno = EEXIST;
839 return -1;
842 if (misaligned_offset) {
843 /* TODO: The read could be short. */
844 if (pread(fd, p, host_len, offset + real_start - start) != host_len) {
845 do_munmap(p, host_len);
846 return -1;
848 if (!(host_prot & PROT_WRITE)) {
849 mprotect(p, host_len, host_prot);
853 return mmap_end(start, last, -1, 0, flags, page_flags);
856 static abi_long target_mmap__locked(abi_ulong start, abi_ulong len,
857 int target_prot, int flags, int page_flags,
858 int fd, off_t offset)
860 int host_page_size = qemu_real_host_page_size();
861 int host_prot;
864 * For reserved_va, we are in full control of the allocation.
865 * Find a suitable hole and convert to MAP_FIXED.
867 if (reserved_va) {
868 if (flags & MAP_FIXED_NOREPLACE) {
869 /* Validate that the chosen range is empty. */
870 if (!page_check_range_empty(start, start + len - 1)) {
871 errno = EEXIST;
872 return -1;
874 flags = (flags & ~MAP_FIXED_NOREPLACE) | MAP_FIXED;
875 } else if (!(flags & MAP_FIXED)) {
876 abi_ulong real_start = start & -host_page_size;
877 off_t host_offset = offset & -host_page_size;
878 size_t real_len = len + offset - host_offset;
879 abi_ulong align = MAX(host_page_size, TARGET_PAGE_SIZE);
881 start = mmap_find_vma(real_start, real_len, align);
882 if (start == (abi_ulong)-1) {
883 errno = ENOMEM;
884 return -1;
886 start += offset - host_offset;
887 flags |= MAP_FIXED;
891 host_prot = target_to_host_prot(target_prot);
893 if (host_page_size == TARGET_PAGE_SIZE) {
894 return mmap_h_eq_g(start, len, host_prot, flags,
895 page_flags, fd, offset);
896 } else if (host_page_size < TARGET_PAGE_SIZE) {
897 return mmap_h_lt_g(start, len, host_prot, flags,
898 page_flags, fd, offset, host_page_size);
899 } else {
900 return mmap_h_gt_g(start, len, target_prot, host_prot, flags,
901 page_flags, fd, offset, host_page_size);
905 /* NOTE: all the constants are the HOST ones */
906 abi_long target_mmap(abi_ulong start, abi_ulong len, int target_prot,
907 int flags, int fd, off_t offset)
909 abi_long ret;
910 int page_flags;
912 trace_target_mmap(start, len, target_prot, flags, fd, offset);
914 if (!len) {
915 errno = EINVAL;
916 return -1;
919 page_flags = validate_prot_to_pageflags(target_prot);
920 if (!page_flags) {
921 errno = EINVAL;
922 return -1;
925 /* Also check for overflows... */
926 len = TARGET_PAGE_ALIGN(len);
927 if (!len || len != (size_t)len) {
928 errno = ENOMEM;
929 return -1;
932 if (offset & ~TARGET_PAGE_MASK) {
933 errno = EINVAL;
934 return -1;
936 if (flags & (MAP_FIXED | MAP_FIXED_NOREPLACE)) {
937 if (start & ~TARGET_PAGE_MASK) {
938 errno = EINVAL;
939 return -1;
941 if (!guest_range_valid_untagged(start, len)) {
942 errno = ENOMEM;
943 return -1;
947 mmap_lock();
949 ret = target_mmap__locked(start, len, target_prot, flags,
950 page_flags, fd, offset);
952 mmap_unlock();
955 * If we're mapping shared memory, ensure we generate code for parallel
956 * execution and flush old translations. This will work up to the level
957 * supported by the host -- anything that requires EXCP_ATOMIC will not
958 * be atomic with respect to an external process.
960 if (ret != -1 && (flags & MAP_TYPE) != MAP_PRIVATE) {
961 CPUState *cpu = thread_cpu;
962 if (!(cpu->tcg_cflags & CF_PARALLEL)) {
963 cpu->tcg_cflags |= CF_PARALLEL;
964 tb_flush(cpu);
968 return ret;
971 static int mmap_reserve_or_unmap(abi_ulong start, abi_ulong len)
973 int host_page_size = qemu_real_host_page_size();
974 abi_ulong real_start;
975 abi_ulong real_last;
976 abi_ulong real_len;
977 abi_ulong last;
978 abi_ulong a;
979 void *host_start;
980 int prot;
982 last = start + len - 1;
983 real_start = start & -host_page_size;
984 real_last = ROUND_UP(last, host_page_size) - 1;
987 * If guest pages remain on the first or last host pages,
988 * adjust the deallocation to retain those guest pages.
989 * The single page special case is required for the last page,
990 * lest real_start overflow to zero.
992 if (real_last - real_start < host_page_size) {
993 prot = 0;
994 for (a = real_start; a < start; a += TARGET_PAGE_SIZE) {
995 prot |= page_get_flags(a);
997 for (a = last; a < real_last; a += TARGET_PAGE_SIZE) {
998 prot |= page_get_flags(a + 1);
1000 if (prot != 0) {
1001 return 0;
1003 } else {
1004 for (prot = 0, a = real_start; a < start; a += TARGET_PAGE_SIZE) {
1005 prot |= page_get_flags(a);
1007 if (prot != 0) {
1008 real_start += host_page_size;
1011 for (prot = 0, a = last; a < real_last; a += TARGET_PAGE_SIZE) {
1012 prot |= page_get_flags(a + 1);
1014 if (prot != 0) {
1015 real_last -= host_page_size;
1018 if (real_last < real_start) {
1019 return 0;
1023 real_len = real_last - real_start + 1;
1024 host_start = g2h_untagged(real_start);
1026 return do_munmap(host_start, real_len);
1029 int target_munmap(abi_ulong start, abi_ulong len)
1031 int ret;
1033 trace_target_munmap(start, len);
1035 if (start & ~TARGET_PAGE_MASK) {
1036 errno = EINVAL;
1037 return -1;
1039 len = TARGET_PAGE_ALIGN(len);
1040 if (len == 0 || !guest_range_valid_untagged(start, len)) {
1041 errno = EINVAL;
1042 return -1;
1045 mmap_lock();
1046 ret = mmap_reserve_or_unmap(start, len);
1047 if (likely(ret == 0)) {
1048 page_set_flags(start, start + len - 1, 0);
1049 shm_region_rm_complete(start, start + len - 1);
1051 mmap_unlock();
1053 return ret;
1056 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
1057 abi_ulong new_size, unsigned long flags,
1058 abi_ulong new_addr)
1060 int prot;
1061 void *host_addr;
1063 if (!guest_range_valid_untagged(old_addr, old_size) ||
1064 ((flags & MREMAP_FIXED) &&
1065 !guest_range_valid_untagged(new_addr, new_size)) ||
1066 ((flags & MREMAP_MAYMOVE) == 0 &&
1067 !guest_range_valid_untagged(old_addr, new_size))) {
1068 errno = ENOMEM;
1069 return -1;
1072 mmap_lock();
1074 if (flags & MREMAP_FIXED) {
1075 host_addr = mremap(g2h_untagged(old_addr), old_size, new_size,
1076 flags, g2h_untagged(new_addr));
1078 if (reserved_va && host_addr != MAP_FAILED) {
1080 * If new and old addresses overlap then the above mremap will
1081 * already have failed with EINVAL.
1083 mmap_reserve_or_unmap(old_addr, old_size);
1085 } else if (flags & MREMAP_MAYMOVE) {
1086 abi_ulong mmap_start;
1088 mmap_start = mmap_find_vma(0, new_size, TARGET_PAGE_SIZE);
1090 if (mmap_start == -1) {
1091 errno = ENOMEM;
1092 host_addr = MAP_FAILED;
1093 } else {
1094 host_addr = mremap(g2h_untagged(old_addr), old_size, new_size,
1095 flags | MREMAP_FIXED,
1096 g2h_untagged(mmap_start));
1097 if (reserved_va) {
1098 mmap_reserve_or_unmap(old_addr, old_size);
1101 } else {
1102 int page_flags = 0;
1103 if (reserved_va && old_size < new_size) {
1104 abi_ulong addr;
1105 for (addr = old_addr + old_size;
1106 addr < old_addr + new_size;
1107 addr++) {
1108 page_flags |= page_get_flags(addr);
1111 if (page_flags == 0) {
1112 host_addr = mremap(g2h_untagged(old_addr),
1113 old_size, new_size, flags);
1115 if (host_addr != MAP_FAILED) {
1116 /* Check if address fits target address space */
1117 if (!guest_range_valid_untagged(h2g(host_addr), new_size)) {
1118 /* Revert mremap() changes */
1119 host_addr = mremap(g2h_untagged(old_addr),
1120 new_size, old_size, flags);
1121 errno = ENOMEM;
1122 host_addr = MAP_FAILED;
1123 } else if (reserved_va && old_size > new_size) {
1124 mmap_reserve_or_unmap(old_addr + old_size,
1125 old_size - new_size);
1128 } else {
1129 errno = ENOMEM;
1130 host_addr = MAP_FAILED;
1134 if (host_addr == MAP_FAILED) {
1135 new_addr = -1;
1136 } else {
1137 new_addr = h2g(host_addr);
1138 prot = page_get_flags(old_addr);
1139 page_set_flags(old_addr, old_addr + old_size - 1, 0);
1140 shm_region_rm_complete(old_addr, old_addr + old_size - 1);
1141 page_set_flags(new_addr, new_addr + new_size - 1,
1142 prot | PAGE_VALID | PAGE_RESET);
1143 shm_region_rm_complete(new_addr, new_addr + new_size - 1);
1145 mmap_unlock();
1146 return new_addr;
1149 abi_long target_madvise(abi_ulong start, abi_ulong len_in, int advice)
1151 abi_ulong len;
1152 int ret = 0;
1154 if (start & ~TARGET_PAGE_MASK) {
1155 return -TARGET_EINVAL;
1157 if (len_in == 0) {
1158 return 0;
1160 len = TARGET_PAGE_ALIGN(len_in);
1161 if (len == 0 || !guest_range_valid_untagged(start, len)) {
1162 return -TARGET_EINVAL;
1165 /* Translate for some architectures which have different MADV_xxx values */
1166 switch (advice) {
1167 case TARGET_MADV_DONTNEED: /* alpha */
1168 advice = MADV_DONTNEED;
1169 break;
1170 case TARGET_MADV_WIPEONFORK: /* parisc */
1171 advice = MADV_WIPEONFORK;
1172 break;
1173 case TARGET_MADV_KEEPONFORK: /* parisc */
1174 advice = MADV_KEEPONFORK;
1175 break;
1176 /* we do not care about the other MADV_xxx values yet */
1180 * Most advice values are hints, so ignoring and returning success is ok.
1182 * However, some advice values such as MADV_DONTNEED, MADV_WIPEONFORK and
1183 * MADV_KEEPONFORK are not hints and need to be emulated.
1185 * A straight passthrough for those may not be safe because qemu sometimes
1186 * turns private file-backed mappings into anonymous mappings.
1187 * If all guest pages have PAGE_PASSTHROUGH set, mappings have the
1188 * same semantics for the host as for the guest.
1190 * We pass through MADV_WIPEONFORK and MADV_KEEPONFORK if possible and
1191 * return failure if not.
1193 * MADV_DONTNEED is passed through as well, if possible.
1194 * If passthrough isn't possible, we nevertheless (wrongly!) return
1195 * success, which is broken but some userspace programs fail to work
1196 * otherwise. Completely implementing such emulation is quite complicated
1197 * though.
1199 mmap_lock();
1200 switch (advice) {
1201 case MADV_WIPEONFORK:
1202 case MADV_KEEPONFORK:
1203 ret = -EINVAL;
1204 /* fall through */
1205 case MADV_DONTNEED:
1206 if (page_check_range(start, len, PAGE_PASSTHROUGH)) {
1207 ret = get_errno(madvise(g2h_untagged(start), len, advice));
1208 if ((advice == MADV_DONTNEED) && (ret == 0)) {
1209 page_reset_target_data(start, start + len - 1);
1213 mmap_unlock();
1215 return ret;
1218 #ifndef TARGET_FORCE_SHMLBA
1220 * For most architectures, SHMLBA is the same as the page size;
1221 * some architectures have larger values, in which case they should
1222 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
1223 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
1224 * and defining its own value for SHMLBA.
1226 * The kernel also permits SHMLBA to be set by the architecture to a
1227 * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
1228 * this means that addresses are rounded to the large size if
1229 * SHM_RND is set but addresses not aligned to that size are not rejected
1230 * as long as they are at least page-aligned. Since the only architecture
1231 * which uses this is ia64 this code doesn't provide for that oddity.
1233 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
1235 return TARGET_PAGE_SIZE;
1237 #endif
1239 #if defined(__arm__) || defined(__mips__) || defined(__sparc__)
1240 #define HOST_FORCE_SHMLBA 1
1241 #else
1242 #define HOST_FORCE_SHMLBA 0
1243 #endif
1245 abi_ulong target_shmat(CPUArchState *cpu_env, int shmid,
1246 abi_ulong shmaddr, int shmflg)
1248 CPUState *cpu = env_cpu(cpu_env);
1249 struct shmid_ds shm_info;
1250 int ret;
1251 int h_pagesize;
1252 int t_shmlba, h_shmlba, m_shmlba;
1253 size_t t_len, h_len, m_len;
1255 /* shmat pointers are always untagged */
1258 * Because we can't use host shmat() unless the address is sufficiently
1259 * aligned for the host, we'll need to check both.
1260 * TODO: Could be fixed with softmmu.
1262 t_shmlba = target_shmlba(cpu_env);
1263 h_pagesize = qemu_real_host_page_size();
1264 h_shmlba = (HOST_FORCE_SHMLBA ? SHMLBA : h_pagesize);
1265 m_shmlba = MAX(t_shmlba, h_shmlba);
1267 if (shmaddr) {
1268 if (shmaddr & (m_shmlba - 1)) {
1269 if (shmflg & SHM_RND) {
1271 * The guest is allowing the kernel to round the address.
1272 * Assume that the guest is ok with us rounding to the
1273 * host required alignment too. Anyway if we don't, we'll
1274 * get an error from the kernel.
1276 shmaddr &= ~(m_shmlba - 1);
1277 if (shmaddr == 0 && (shmflg & SHM_REMAP)) {
1278 return -TARGET_EINVAL;
1280 } else {
1281 int require = TARGET_PAGE_SIZE;
1282 #ifdef TARGET_FORCE_SHMLBA
1283 require = t_shmlba;
1284 #endif
1286 * Include host required alignment, as otherwise we cannot
1287 * use host shmat at all.
1289 require = MAX(require, h_shmlba);
1290 if (shmaddr & (require - 1)) {
1291 return -TARGET_EINVAL;
1295 } else {
1296 if (shmflg & SHM_REMAP) {
1297 return -TARGET_EINVAL;
1300 /* All rounding now manually concluded. */
1301 shmflg &= ~SHM_RND;
1303 /* Find out the length of the shared memory segment. */
1304 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
1305 if (is_error(ret)) {
1306 /* can't get length, bail out */
1307 return ret;
1309 t_len = TARGET_PAGE_ALIGN(shm_info.shm_segsz);
1310 h_len = ROUND_UP(shm_info.shm_segsz, h_pagesize);
1311 m_len = MAX(t_len, h_len);
1313 if (!guest_range_valid_untagged(shmaddr, m_len)) {
1314 return -TARGET_EINVAL;
1317 WITH_MMAP_LOCK_GUARD() {
1318 bool mapped = false;
1319 void *want, *test;
1320 abi_ulong last;
1322 if (!shmaddr) {
1323 shmaddr = mmap_find_vma(0, m_len, m_shmlba);
1324 if (shmaddr == -1) {
1325 return -TARGET_ENOMEM;
1327 mapped = !reserved_va;
1328 } else if (shmflg & SHM_REMAP) {
1330 * If host page size > target page size, the host shmat may map
1331 * more memory than the guest expects. Reject a mapping that
1332 * would replace memory in the unexpected gap.
1333 * TODO: Could be fixed with softmmu.
1335 if (t_len < h_len &&
1336 !page_check_range_empty(shmaddr + t_len,
1337 shmaddr + h_len - 1)) {
1338 return -TARGET_EINVAL;
1340 } else {
1341 if (!page_check_range_empty(shmaddr, shmaddr + m_len - 1)) {
1342 return -TARGET_EINVAL;
1346 /* All placement is now complete. */
1347 want = (void *)g2h_untagged(shmaddr);
1350 * Map anonymous pages across the entire range, then remap with
1351 * the shared memory. This is required for a number of corner
1352 * cases for which host and guest page sizes differ.
1354 if (h_len != t_len) {
1355 int mmap_p = PROT_READ | (shmflg & SHM_RDONLY ? 0 : PROT_WRITE);
1356 int mmap_f = MAP_PRIVATE | MAP_ANONYMOUS
1357 | (reserved_va || mapped || (shmflg & SHM_REMAP)
1358 ? MAP_FIXED : MAP_FIXED_NOREPLACE);
1360 test = mmap(want, m_len, mmap_p, mmap_f, -1, 0);
1361 if (unlikely(test != want)) {
1362 /* shmat returns EINVAL not EEXIST like mmap. */
1363 ret = (test == MAP_FAILED && errno != EEXIST
1364 ? get_errno(-1) : -TARGET_EINVAL);
1365 if (mapped) {
1366 do_munmap(want, m_len);
1368 return ret;
1370 mapped = true;
1373 if (reserved_va || mapped) {
1374 shmflg |= SHM_REMAP;
1376 test = shmat(shmid, want, shmflg);
1377 if (test == MAP_FAILED) {
1378 ret = get_errno(-1);
1379 if (mapped) {
1380 do_munmap(want, m_len);
1382 return ret;
1384 assert(test == want);
1386 last = shmaddr + m_len - 1;
1387 page_set_flags(shmaddr, last,
1388 PAGE_VALID | PAGE_RESET | PAGE_READ |
1389 (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE) |
1390 (shmflg & SHM_EXEC ? PAGE_EXEC : 0));
1392 shm_region_rm_complete(shmaddr, last);
1393 shm_region_add(shmaddr, last);
1397 * We're mapping shared memory, so ensure we generate code for parallel
1398 * execution and flush old translations. This will work up to the level
1399 * supported by the host -- anything that requires EXCP_ATOMIC will not
1400 * be atomic with respect to an external process.
1402 if (!(cpu->tcg_cflags & CF_PARALLEL)) {
1403 cpu->tcg_cflags |= CF_PARALLEL;
1404 tb_flush(cpu);
1407 if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
1408 FILE *f = qemu_log_trylock();
1409 if (f) {
1410 fprintf(f, "page layout changed following shmat\n");
1411 page_dump(f);
1412 qemu_log_unlock(f);
1415 return shmaddr;
1418 abi_long target_shmdt(abi_ulong shmaddr)
1420 abi_long rv;
1422 /* shmdt pointers are always untagged */
1424 WITH_MMAP_LOCK_GUARD() {
1425 abi_ulong last = shm_region_find(shmaddr);
1426 if (last == 0) {
1427 return -TARGET_EINVAL;
1430 rv = get_errno(shmdt(g2h_untagged(shmaddr)));
1431 if (rv == 0) {
1432 abi_ulong size = last - shmaddr + 1;
1434 page_set_flags(shmaddr, last, 0);
1435 shm_region_rm_complete(shmaddr, last);
1436 mmap_reserve_or_unmap(shmaddr, size);
1439 return rv;