2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/display/ramfb.h"
40 #include "hw/devices.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/sysbus-fdt.h"
52 #include "hw/platform-bus.h"
53 #include "hw/arm/fdt.h"
54 #include "hw/intc/arm_gic.h"
55 #include "hw/intc/arm_gicv3_common.h"
57 #include "hw/firmware/smbios.h"
58 #include "qapi/visitor.h"
59 #include "standard-headers/linux/input.h"
60 #include "hw/arm/smmuv3.h"
62 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
63 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
66 MachineClass *mc = MACHINE_CLASS(oc); \
67 virt_machine_##major##_##minor##_options(mc); \
68 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
73 static const TypeInfo machvirt_##major##_##minor##_info = { \
74 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
75 .parent = TYPE_VIRT_MACHINE, \
76 .class_init = virt_##major##_##minor##_class_init, \
78 static void machvirt_machine_##major##_##minor##_init(void) \
80 type_register_static(&machvirt_##major##_##minor##_info); \
82 type_init(machvirt_machine_##major##_##minor##_init);
84 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
85 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
86 #define DEFINE_VIRT_MACHINE(major, minor) \
87 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
90 /* Number of external interrupt lines to configure the GIC with */
93 #define PLATFORM_BUS_NUM_IRQS 64
95 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
96 * RAM can go up to the 256GB mark, leaving 256GB of the physical
97 * address space unallocated and free for future use between 256G and 512G.
98 * If we need to provide more RAM to VMs in the future then we need to:
99 * * allocate a second bank of RAM starting at 2TB and working up
100 * * fix the DT and ACPI table generation code in QEMU to correctly
101 * report two split lumps of RAM to the guest
102 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
103 * (We don't want to fill all the way up to 512GB with RAM because
104 * we might want it for non-RAM purposes later. Conversely it seems
105 * reasonable to assume that anybody configuring a VM with a quarter
106 * of a terabyte of RAM will be doing it on a host with more than a
107 * terabyte of physical address space.)
109 #define RAMLIMIT_GB 255
110 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
112 /* Addresses and sizes of our components.
113 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
114 * 128MB..256MB is used for miscellaneous device I/O.
115 * 256MB..1GB is reserved for possible future PCI support (ie where the
116 * PCI memory window will go if we add a PCI host controller).
117 * 1GB and up is RAM (which may happily spill over into the
118 * high memory region beyond 4GB).
119 * This represents a compromise between how much RAM can be given to
120 * a 32 bit VM and leaving space for expansion and in particular for PCI.
121 * Note that devices should generally be placed at multiples of 0x10000,
122 * to accommodate guests using 64K pages.
124 static const MemMapEntry a15memmap
[] = {
125 /* Space up to 0x8000000 is reserved for a boot ROM */
126 [VIRT_FLASH
] = { 0, 0x08000000 },
127 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
128 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
129 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
130 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
131 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
132 [VIRT_GIC_HYP
] = { 0x08030000, 0x00010000 },
133 [VIRT_GIC_VCPU
] = { 0x08040000, 0x00010000 },
134 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
135 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
136 /* This redistributor space allows up to 2*64kB*123 CPUs */
137 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
138 [VIRT_UART
] = { 0x09000000, 0x00001000 },
139 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
140 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
141 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
142 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
143 [VIRT_SMMU
] = { 0x09050000, 0x00020000 },
144 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
145 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
146 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
147 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
148 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
149 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
150 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
151 [VIRT_MEM
] = { 0x40000000, RAMLIMIT_BYTES
},
152 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
153 [VIRT_GIC_REDIST2
] = { 0x4000000000ULL
, 0x4000000 },
154 [VIRT_PCIE_ECAM_HIGH
] = { 0x4010000000ULL
, 0x10000000 },
155 /* Second PCIe window, 512GB wide at the 512GB boundary */
156 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
159 static const int a15irqmap
[] = {
162 [VIRT_PCIE
] = 3, /* ... to 6 */
164 [VIRT_SECURE_UART
] = 8,
165 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
166 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
167 [VIRT_SMMU
] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
168 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
171 static const char *valid_cpus
[] = {
172 ARM_CPU_TYPE_NAME("cortex-a15"),
173 ARM_CPU_TYPE_NAME("cortex-a53"),
174 ARM_CPU_TYPE_NAME("cortex-a57"),
175 ARM_CPU_TYPE_NAME("cortex-a72"),
176 ARM_CPU_TYPE_NAME("host"),
177 ARM_CPU_TYPE_NAME("max"),
180 static bool cpu_type_valid(const char *cpu
)
184 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
185 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
192 static void create_fdt(VirtMachineState
*vms
)
194 void *fdt
= create_device_tree(&vms
->fdt_size
);
197 error_report("create_device_tree() failed");
204 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
205 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
206 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
208 /* /chosen must exist for load_dtb to fill in necessary properties later */
209 qemu_fdt_add_subnode(fdt
, "/chosen");
211 /* Clock node, for the benefit of the UART. The kernel device tree
212 * binding documentation claims the PL011 node clock properties are
213 * optional but in practice if you omit them the kernel refuses to
214 * probe for the device.
216 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
217 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
218 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
219 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
220 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
221 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
223 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
225 if (have_numa_distance
) {
226 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
227 uint32_t *matrix
= g_malloc0(size
);
230 for (i
= 0; i
< nb_numa_nodes
; i
++) {
231 for (j
= 0; j
< nb_numa_nodes
; j
++) {
232 idx
= (i
* nb_numa_nodes
+ j
) * 3;
233 matrix
[idx
+ 0] = cpu_to_be32(i
);
234 matrix
[idx
+ 1] = cpu_to_be32(j
);
235 matrix
[idx
+ 2] = cpu_to_be32(numa_info
[i
].distance
[j
]);
239 qemu_fdt_add_subnode(fdt
, "/distance-map");
240 qemu_fdt_setprop_string(fdt
, "/distance-map", "compatible",
241 "numa-distance-map-v1");
242 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
248 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
250 /* On real hardware these interrupts are level-triggered.
251 * On KVM they were edge-triggered before host kernel version 4.4,
252 * and level-triggered afterwards.
253 * On emulated QEMU they are level-triggered.
255 * Getting the DTB info about them wrong is awkward for some
257 * pre-4.8 ignore the DT and leave the interrupt configured
258 * with whatever the GIC reset value (or the bootloader) left it at
259 * 4.8 before rc6 honour the incorrect data by programming it back
260 * into the GIC, causing problems
261 * 4.8rc6 and later ignore the DT and always write "level triggered"
264 * For backwards-compatibility, virt-2.8 and earlier will continue
265 * to say these are edge-triggered, but later machines will report
266 * the correct information.
269 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
270 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
272 if (vmc
->claim_edge_triggered_timers
) {
273 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
276 if (vms
->gic_version
== 2) {
277 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
278 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
279 (1 << vms
->smp_cpus
) - 1);
282 qemu_fdt_add_subnode(vms
->fdt
, "/timer");
284 armcpu
= ARM_CPU(qemu_get_cpu(0));
285 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
286 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
287 qemu_fdt_setprop(vms
->fdt
, "/timer", "compatible",
288 compat
, sizeof(compat
));
290 qemu_fdt_setprop_string(vms
->fdt
, "/timer", "compatible",
293 qemu_fdt_setprop(vms
->fdt
, "/timer", "always-on", NULL
, 0);
294 qemu_fdt_setprop_cells(vms
->fdt
, "/timer", "interrupts",
295 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
296 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
297 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
298 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
301 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
305 const MachineState
*ms
= MACHINE(vms
);
308 * From Documentation/devicetree/bindings/arm/cpus.txt
309 * On ARM v8 64-bit systems value should be set to 2,
310 * that corresponds to the MPIDR_EL1 register size.
311 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
312 * in the system, #address-cells can be set to 1, since
313 * MPIDR_EL1[63:32] bits are not used for CPUs
316 * Here we actually don't know whether our system is 32- or 64-bit one.
317 * The simplest way to go is to examine affinity IDs of all our CPUs. If
318 * at least one of them has Aff3 populated, we set #address-cells to 2.
320 for (cpu
= 0; cpu
< vms
->smp_cpus
; cpu
++) {
321 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
323 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
329 qemu_fdt_add_subnode(vms
->fdt
, "/cpus");
330 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#address-cells", addr_cells
);
331 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#size-cells", 0x0);
333 for (cpu
= vms
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
334 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
335 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
336 CPUState
*cs
= CPU(armcpu
);
338 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
339 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "cpu");
340 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
341 armcpu
->dtb_compatible
);
343 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
344 && vms
->smp_cpus
> 1) {
345 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
346 "enable-method", "psci");
349 if (addr_cells
== 2) {
350 qemu_fdt_setprop_u64(vms
->fdt
, nodename
, "reg",
351 armcpu
->mp_affinity
);
353 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "reg",
354 armcpu
->mp_affinity
);
357 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
358 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "numa-node-id",
359 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
366 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
370 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
371 nodename
= g_strdup_printf("/intc/its@%" PRIx64
,
372 vms
->memmap
[VIRT_GIC_ITS
].base
);
373 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
374 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
376 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
377 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
378 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
379 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
380 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
384 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
388 nodename
= g_strdup_printf("/intc/v2m@%" PRIx64
,
389 vms
->memmap
[VIRT_GIC_V2M
].base
);
390 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
391 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
392 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
393 "arm,gic-v2m-frame");
394 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
395 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
396 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
397 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
398 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
402 static void fdt_add_gic_node(VirtMachineState
*vms
)
406 vms
->gic_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
407 qemu_fdt_setprop_cell(vms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
409 nodename
= g_strdup_printf("/intc@%" PRIx64
,
410 vms
->memmap
[VIRT_GIC_DIST
].base
);
411 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
412 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 3);
413 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-controller", NULL
, 0);
414 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 0x2);
415 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 0x2);
416 qemu_fdt_setprop(vms
->fdt
, nodename
, "ranges", NULL
, 0);
417 if (vms
->gic_version
== 3) {
418 int nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
420 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
423 qemu_fdt_setprop_cell(vms
->fdt
, nodename
,
424 "#redistributor-regions", nb_redist_regions
);
426 if (nb_redist_regions
== 1) {
427 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
428 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
429 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
430 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
431 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
433 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
434 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
435 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
436 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
437 2, vms
->memmap
[VIRT_GIC_REDIST
].size
,
438 2, vms
->memmap
[VIRT_GIC_REDIST2
].base
,
439 2, vms
->memmap
[VIRT_GIC_REDIST2
].size
);
443 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
444 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
445 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
448 /* 'cortex-a15-gic' means 'GIC v2' */
449 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
450 "arm,cortex-a15-gic");
452 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
453 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
454 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
455 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
456 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
458 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
459 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
460 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
461 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
462 2, vms
->memmap
[VIRT_GIC_CPU
].size
,
463 2, vms
->memmap
[VIRT_GIC_HYP
].base
,
464 2, vms
->memmap
[VIRT_GIC_HYP
].size
,
465 2, vms
->memmap
[VIRT_GIC_VCPU
].base
,
466 2, vms
->memmap
[VIRT_GIC_VCPU
].size
);
467 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
468 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
469 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
473 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->gic_phandle
);
477 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
481 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
484 armcpu
= ARM_CPU(cpu
);
485 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
)) {
489 if (kvm_irqchip_in_kernel()) {
490 kvm_arm_pmu_set_irq(cpu
, PPI(VIRTUAL_PMU_IRQ
));
492 kvm_arm_pmu_init(cpu
);
496 if (vms
->gic_version
== 2) {
497 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
498 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
499 (1 << vms
->smp_cpus
) - 1);
502 armcpu
= ARM_CPU(qemu_get_cpu(0));
503 qemu_fdt_add_subnode(vms
->fdt
, "/pmu");
504 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
505 const char compat
[] = "arm,armv8-pmuv3";
506 qemu_fdt_setprop(vms
->fdt
, "/pmu", "compatible",
507 compat
, sizeof(compat
));
508 qemu_fdt_setprop_cells(vms
->fdt
, "/pmu", "interrupts",
509 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
513 static void create_its(VirtMachineState
*vms
, DeviceState
*gicdev
)
515 const char *itsclass
= its_class_name();
519 /* Do nothing if not supported */
523 dev
= qdev_create(NULL
, itsclass
);
525 object_property_set_link(OBJECT(dev
), OBJECT(gicdev
), "parent-gicv3",
527 qdev_init_nofail(dev
);
528 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
530 fdt_add_its_gic_node(vms
);
533 static void create_v2m(VirtMachineState
*vms
, qemu_irq
*pic
)
536 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
539 dev
= qdev_create(NULL
, "arm-gicv2m");
540 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
541 qdev_prop_set_uint32(dev
, "base-spi", irq
);
542 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
543 qdev_init_nofail(dev
);
545 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
546 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
549 fdt_add_v2m_gic_node(vms
);
552 static void create_gic(VirtMachineState
*vms
, qemu_irq
*pic
)
554 /* We create a standalone GIC */
556 SysBusDevice
*gicbusdev
;
558 int type
= vms
->gic_version
, i
;
559 uint32_t nb_redist_regions
= 0;
561 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
563 gicdev
= qdev_create(NULL
, gictype
);
564 qdev_prop_set_uint32(gicdev
, "revision", type
);
565 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
566 /* Note that the num-irq property counts both internal and external
567 * interrupts; there are always 32 of the former (mandated by GIC spec).
569 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
570 if (!kvm_irqchip_in_kernel()) {
571 qdev_prop_set_bit(gicdev
, "has-security-extensions", vms
->secure
);
575 uint32_t redist0_capacity
=
576 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
577 uint32_t redist0_count
= MIN(smp_cpus
, redist0_capacity
);
579 nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
581 qdev_prop_set_uint32(gicdev
, "len-redist-region-count",
583 qdev_prop_set_uint32(gicdev
, "redist-region-count[0]", redist0_count
);
585 if (nb_redist_regions
== 2) {
586 uint32_t redist1_capacity
=
587 vms
->memmap
[VIRT_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
589 qdev_prop_set_uint32(gicdev
, "redist-region-count[1]",
590 MIN(smp_cpus
- redist0_count
, redist1_capacity
));
593 if (!kvm_irqchip_in_kernel()) {
594 qdev_prop_set_bit(gicdev
, "has-virtualization-extensions",
598 qdev_init_nofail(gicdev
);
599 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
600 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
602 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
603 if (nb_redist_regions
== 2) {
604 sysbus_mmio_map(gicbusdev
, 2, vms
->memmap
[VIRT_GIC_REDIST2
].base
);
607 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
609 sysbus_mmio_map(gicbusdev
, 2, vms
->memmap
[VIRT_GIC_HYP
].base
);
610 sysbus_mmio_map(gicbusdev
, 3, vms
->memmap
[VIRT_GIC_VCPU
].base
);
614 /* Wire the outputs from each CPU's generic timer and the GICv3
615 * maintenance interrupt signal to the appropriate GIC PPI inputs,
616 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
618 for (i
= 0; i
< smp_cpus
; i
++) {
619 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
620 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
622 /* Mapping from the output timer irq lines from the CPU to the
623 * GIC PPI inputs we use for the virt board.
625 const int timer_irq
[] = {
626 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
627 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
628 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
629 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
632 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
633 qdev_connect_gpio_out(cpudev
, irq
,
634 qdev_get_gpio_in(gicdev
,
635 ppibase
+ timer_irq
[irq
]));
639 qemu_irq irq
= qdev_get_gpio_in(gicdev
,
640 ppibase
+ ARCH_GIC_MAINT_IRQ
);
641 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt",
643 } else if (vms
->virt
) {
644 qemu_irq irq
= qdev_get_gpio_in(gicdev
,
645 ppibase
+ ARCH_GIC_MAINT_IRQ
);
646 sysbus_connect_irq(gicbusdev
, i
+ 4 * smp_cpus
, irq
);
649 qdev_connect_gpio_out_named(cpudev
, "pmu-interrupt", 0,
650 qdev_get_gpio_in(gicdev
, ppibase
653 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
654 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
655 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
656 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
657 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
658 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
659 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
662 for (i
= 0; i
< NUM_IRQS
; i
++) {
663 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
666 fdt_add_gic_node(vms
);
668 if (type
== 3 && vms
->its
) {
669 create_its(vms
, gicdev
);
670 } else if (type
== 2) {
671 create_v2m(vms
, pic
);
675 static void create_uart(const VirtMachineState
*vms
, qemu_irq
*pic
, int uart
,
676 MemoryRegion
*mem
, Chardev
*chr
)
679 hwaddr base
= vms
->memmap
[uart
].base
;
680 hwaddr size
= vms
->memmap
[uart
].size
;
681 int irq
= vms
->irqmap
[uart
];
682 const char compat
[] = "arm,pl011\0arm,primecell";
683 const char clocknames
[] = "uartclk\0apb_pclk";
684 DeviceState
*dev
= qdev_create(NULL
, "pl011");
685 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
687 qdev_prop_set_chr(dev
, "chardev", chr
);
688 qdev_init_nofail(dev
);
689 memory_region_add_subregion(mem
, base
,
690 sysbus_mmio_get_region(s
, 0));
691 sysbus_connect_irq(s
, 0, pic
[irq
]);
693 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
694 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
695 /* Note that we can't use setprop_string because of the embedded NUL */
696 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible",
697 compat
, sizeof(compat
));
698 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
700 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
701 GIC_FDT_IRQ_TYPE_SPI
, irq
,
702 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
703 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "clocks",
704 vms
->clock_phandle
, vms
->clock_phandle
);
705 qemu_fdt_setprop(vms
->fdt
, nodename
, "clock-names",
706 clocknames
, sizeof(clocknames
));
708 if (uart
== VIRT_UART
) {
709 qemu_fdt_setprop_string(vms
->fdt
, "/chosen", "stdout-path", nodename
);
711 /* Mark as not usable by the normal world */
712 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
713 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
715 qemu_fdt_add_subnode(vms
->fdt
, "/secure-chosen");
716 qemu_fdt_setprop_string(vms
->fdt
, "/secure-chosen", "stdout-path",
723 static void create_rtc(const VirtMachineState
*vms
, qemu_irq
*pic
)
726 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
727 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
728 int irq
= vms
->irqmap
[VIRT_RTC
];
729 const char compat
[] = "arm,pl031\0arm,primecell";
731 sysbus_create_simple("pl031", base
, pic
[irq
]);
733 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
734 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
735 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
736 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
738 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
739 GIC_FDT_IRQ_TYPE_SPI
, irq
,
740 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
741 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
742 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
746 static DeviceState
*gpio_key_dev
;
747 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
749 /* use gpio Pin 3 for power button event */
750 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
753 static Notifier virt_system_powerdown_notifier
= {
754 .notify
= virt_powerdown_req
757 static void create_gpio(const VirtMachineState
*vms
, qemu_irq
*pic
)
760 DeviceState
*pl061_dev
;
761 hwaddr base
= vms
->memmap
[VIRT_GPIO
].base
;
762 hwaddr size
= vms
->memmap
[VIRT_GPIO
].size
;
763 int irq
= vms
->irqmap
[VIRT_GPIO
];
764 const char compat
[] = "arm,pl061\0arm,primecell";
766 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
768 uint32_t phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
769 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
770 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
771 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
773 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
774 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#gpio-cells", 2);
775 qemu_fdt_setprop(vms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
776 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
777 GIC_FDT_IRQ_TYPE_SPI
, irq
,
778 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
779 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
780 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
781 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", phandle
);
783 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
784 qdev_get_gpio_in(pl061_dev
, 3));
785 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys");
786 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
787 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#size-cells", 0);
788 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#address-cells", 1);
790 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys/poweroff");
791 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys/poweroff",
792 "label", "GPIO Key Poweroff");
793 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys/poweroff", "linux,code",
795 qemu_fdt_setprop_cells(vms
->fdt
, "/gpio-keys/poweroff",
796 "gpios", phandle
, 3, 0);
798 /* connect powerdown request */
799 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
804 static void create_virtio_devices(const VirtMachineState
*vms
, qemu_irq
*pic
)
807 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
809 /* We create the transports in forwards order. Since qbus_realize()
810 * prepends (not appends) new child buses, the incrementing loop below will
811 * create a list of virtio-mmio buses with decreasing base addresses.
813 * When a -device option is processed from the command line,
814 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
815 * order. The upshot is that -device options in increasing command line
816 * order are mapped to virtio-mmio buses with decreasing base addresses.
818 * When this code was originally written, that arrangement ensured that the
819 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
820 * the first -device on the command line. (The end-to-end order is a
821 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
822 * guest kernel's name-to-address assignment strategy.)
824 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
825 * the message, if not necessarily the code, of commit 70161ff336.
826 * Therefore the loop now establishes the inverse of the original intent.
828 * Unfortunately, we can't counteract the kernel change by reversing the
829 * loop; it would break existing command lines.
831 * In any case, the kernel makes no guarantee about the stability of
832 * enumeration order of virtio devices (as demonstrated by it changing
833 * between kernel versions). For reliable and stable identification
834 * of disks users must use UUIDs or similar mechanisms.
836 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
837 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
838 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
840 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
843 /* We add dtb nodes in reverse order so that they appear in the finished
844 * device tree lowest address first.
846 * Note that this mapping is independent of the loop above. The previous
847 * loop influences virtio device to virtio transport assignment, whereas
848 * this loop controls how virtio transports are laid out in the dtb.
850 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
852 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
853 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
855 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
856 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
857 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
858 "compatible", "virtio,mmio");
859 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
861 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
862 GIC_FDT_IRQ_TYPE_SPI
, irq
,
863 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
864 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
869 static void create_one_flash(const char *name
, hwaddr flashbase
,
870 hwaddr flashsize
, const char *file
,
871 MemoryRegion
*sysmem
)
873 /* Create and map a single flash device. We use the same
874 * parameters as the flash devices on the Versatile Express board.
876 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
877 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
878 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
879 const uint64_t sectorlength
= 256 * 1024;
882 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
886 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
887 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
888 qdev_prop_set_uint8(dev
, "width", 4);
889 qdev_prop_set_uint8(dev
, "device-width", 2);
890 qdev_prop_set_bit(dev
, "big-endian", false);
891 qdev_prop_set_uint16(dev
, "id0", 0x89);
892 qdev_prop_set_uint16(dev
, "id1", 0x18);
893 qdev_prop_set_uint16(dev
, "id2", 0x00);
894 qdev_prop_set_uint16(dev
, "id3", 0x00);
895 qdev_prop_set_string(dev
, "name", name
);
896 qdev_init_nofail(dev
);
898 memory_region_add_subregion(sysmem
, flashbase
,
899 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0));
905 if (drive_get(IF_PFLASH
, 0, 0)) {
906 error_report("The contents of the first flash device may be "
907 "specified with -bios or with -drive if=pflash... "
908 "but you cannot use both options at once");
911 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, file
);
913 error_report("Could not find ROM image '%s'", file
);
916 image_size
= load_image_mr(fn
, sysbus_mmio_get_region(sbd
, 0));
918 if (image_size
< 0) {
919 error_report("Could not load ROM image '%s'", file
);
925 static void create_flash(const VirtMachineState
*vms
,
926 MemoryRegion
*sysmem
,
927 MemoryRegion
*secure_sysmem
)
929 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
930 * Any file passed via -bios goes in the first of these.
931 * sysmem is the system memory space. secure_sysmem is the secure view
932 * of the system, and the first flash device should be made visible only
933 * there. The second flash device is visible to both secure and nonsecure.
934 * If sysmem == secure_sysmem this means there is no separate Secure
935 * address space and both flash devices are generally visible.
937 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
938 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
941 create_one_flash("virt.flash0", flashbase
, flashsize
,
942 bios_name
, secure_sysmem
);
943 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
,
946 if (sysmem
== secure_sysmem
) {
947 /* Report both flash devices as a single node in the DT */
948 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
949 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
950 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
951 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
952 2, flashbase
, 2, flashsize
,
953 2, flashbase
+ flashsize
, 2, flashsize
);
954 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
957 /* Report the devices as separate nodes so we can mark one as
958 * only visible to the secure world.
960 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
961 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
962 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
963 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
964 2, flashbase
, 2, flashsize
);
965 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
966 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
967 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
970 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
971 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
972 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
973 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
974 2, flashbase
+ flashsize
, 2, flashsize
);
975 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
980 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
982 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
983 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
987 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
988 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)smp_cpus
);
990 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
991 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
992 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
993 "compatible", "qemu,fw-cfg-mmio");
994 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
996 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1001 static void create_pcie_irq_map(const VirtMachineState
*vms
,
1002 uint32_t gic_phandle
,
1003 int first_irq
, const char *nodename
)
1006 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
1007 uint32_t *irq_map
= full_irq_map
;
1009 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
1010 for (pin
= 0; pin
< 4; pin
++) {
1011 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
1012 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
1013 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
1017 devfn
<< 8, 0, 0, /* devfn */
1018 pin
+ 1, /* PCI pin */
1019 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
1021 /* Convert map to big endian */
1022 for (i
= 0; i
< 10; i
++) {
1023 irq_map
[i
] = cpu_to_be32(map
[i
]);
1029 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-map",
1030 full_irq_map
, sizeof(full_irq_map
));
1032 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupt-map-mask",
1033 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1037 static void create_smmu(const VirtMachineState
*vms
, qemu_irq
*pic
,
1041 const char compat
[] = "arm,smmu-v3";
1042 int irq
= vms
->irqmap
[VIRT_SMMU
];
1044 hwaddr base
= vms
->memmap
[VIRT_SMMU
].base
;
1045 hwaddr size
= vms
->memmap
[VIRT_SMMU
].size
;
1046 const char irq_names
[] = "eventq\0priq\0cmdq-sync\0gerror";
1049 if (vms
->iommu
!= VIRT_IOMMU_SMMUV3
|| !vms
->iommu_phandle
) {
1053 dev
= qdev_create(NULL
, "arm-smmuv3");
1055 object_property_set_link(OBJECT(dev
), OBJECT(bus
), "primary-bus",
1057 qdev_init_nofail(dev
);
1058 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, base
);
1059 for (i
= 0; i
< NUM_SMMU_IRQS
; i
++) {
1060 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1063 node
= g_strdup_printf("/smmuv3@%" PRIx64
, base
);
1064 qemu_fdt_add_subnode(vms
->fdt
, node
);
1065 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1066 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg", 2, base
, 2, size
);
1068 qemu_fdt_setprop_cells(vms
->fdt
, node
, "interrupts",
1069 GIC_FDT_IRQ_TYPE_SPI
, irq
, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1070 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1071 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1072 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
1074 qemu_fdt_setprop(vms
->fdt
, node
, "interrupt-names", irq_names
,
1077 qemu_fdt_setprop_cell(vms
->fdt
, node
, "clocks", vms
->clock_phandle
);
1078 qemu_fdt_setprop_string(vms
->fdt
, node
, "clock-names", "apb_pclk");
1079 qemu_fdt_setprop(vms
->fdt
, node
, "dma-coherent", NULL
, 0);
1081 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1083 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1087 static void create_pcie(VirtMachineState
*vms
, qemu_irq
*pic
)
1089 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
1090 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
1091 hwaddr base_mmio_high
= vms
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
1092 hwaddr size_mmio_high
= vms
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
1093 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
1094 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
1095 hwaddr base_ecam
, size_ecam
;
1096 hwaddr base
= base_mmio
;
1098 int irq
= vms
->irqmap
[VIRT_PCIE
];
1099 MemoryRegion
*mmio_alias
;
1100 MemoryRegion
*mmio_reg
;
1101 MemoryRegion
*ecam_alias
;
1102 MemoryRegion
*ecam_reg
;
1108 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
1109 qdev_init_nofail(dev
);
1111 ecam_id
= VIRT_ECAM_ID(vms
->highmem_ecam
);
1112 base_ecam
= vms
->memmap
[ecam_id
].base
;
1113 size_ecam
= vms
->memmap
[ecam_id
].size
;
1114 nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
1115 /* Map only the first size_ecam bytes of ECAM space */
1116 ecam_alias
= g_new0(MemoryRegion
, 1);
1117 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1118 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1119 ecam_reg
, 0, size_ecam
);
1120 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1122 /* Map the MMIO window into system address space so as to expose
1123 * the section of PCI MMIO space which starts at the same base address
1124 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1127 mmio_alias
= g_new0(MemoryRegion
, 1);
1128 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1129 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1130 mmio_reg
, base_mmio
, size_mmio
);
1131 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1134 /* Map high MMIO space */
1135 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1137 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1138 mmio_reg
, base_mmio_high
, size_mmio_high
);
1139 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1143 /* Map IO port space */
1144 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1146 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1147 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1148 gpex_set_irq_num(GPEX_HOST(dev
), i
, irq
+ i
);
1151 pci
= PCI_HOST_BRIDGE(dev
);
1153 for (i
= 0; i
< nb_nics
; i
++) {
1154 NICInfo
*nd
= &nd_table
[i
];
1157 nd
->model
= g_strdup("virtio");
1160 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1164 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1165 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1166 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1167 "compatible", "pci-host-ecam-generic");
1168 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "pci");
1169 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 3);
1170 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 2);
1171 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "linux,pci-domain", 0);
1172 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "bus-range", 0,
1174 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1176 if (vms
->msi_phandle
) {
1177 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "msi-parent",
1181 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1182 2, base_ecam
, 2, size_ecam
);
1185 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1186 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1187 2, base_pio
, 2, size_pio
,
1188 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1189 2, base_mmio
, 2, size_mmio
,
1190 1, FDT_PCI_RANGE_MMIO_64BIT
,
1192 2, base_mmio_high
, 2, size_mmio_high
);
1194 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1195 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1196 2, base_pio
, 2, size_pio
,
1197 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1198 2, base_mmio
, 2, size_mmio
);
1201 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 1);
1202 create_pcie_irq_map(vms
, vms
->gic_phandle
, irq
, nodename
);
1205 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1207 create_smmu(vms
, pic
, pci
->bus
);
1209 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "iommu-map",
1210 0x0, vms
->iommu_phandle
, 0x0, 0x10000);
1216 static void create_platform_bus(VirtMachineState
*vms
, qemu_irq
*pic
)
1221 MemoryRegion
*sysmem
= get_system_memory();
1223 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1224 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1225 qdev_prop_set_uint32(dev
, "num_irqs", PLATFORM_BUS_NUM_IRQS
);
1226 qdev_prop_set_uint32(dev
, "mmio_size", vms
->memmap
[VIRT_PLATFORM_BUS
].size
);
1227 qdev_init_nofail(dev
);
1228 vms
->platform_bus_dev
= dev
;
1230 s
= SYS_BUS_DEVICE(dev
);
1231 for (i
= 0; i
< PLATFORM_BUS_NUM_IRQS
; i
++) {
1232 int irqn
= vms
->irqmap
[VIRT_PLATFORM_BUS
] + i
;
1233 sysbus_connect_irq(s
, i
, pic
[irqn
]);
1236 memory_region_add_subregion(sysmem
,
1237 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1238 sysbus_mmio_get_region(s
, 0));
1241 static void create_secure_ram(VirtMachineState
*vms
,
1242 MemoryRegion
*secure_sysmem
)
1244 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1246 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1247 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1249 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
,
1251 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1253 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1254 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1255 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "memory");
1256 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1257 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1258 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1263 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1265 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1268 *fdt_size
= board
->fdt_size
;
1272 static void virt_build_smbios(VirtMachineState
*vms
)
1274 MachineClass
*mc
= MACHINE_GET_CLASS(vms
);
1275 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1276 uint8_t *smbios_tables
, *smbios_anchor
;
1277 size_t smbios_tables_len
, smbios_anchor_len
;
1278 const char *product
= "QEMU Virtual Machine";
1284 if (kvm_enabled()) {
1285 product
= "KVM Virtual Machine";
1288 smbios_set_defaults("QEMU", product
,
1289 vmc
->smbios_old_sys_ver
? "1.0" : mc
->name
, false,
1290 true, SMBIOS_ENTRY_POINT_30
);
1292 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1293 &smbios_anchor
, &smbios_anchor_len
);
1295 if (smbios_anchor
) {
1296 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1297 smbios_tables
, smbios_tables_len
);
1298 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1299 smbios_anchor
, smbios_anchor_len
);
1304 void virt_machine_done(Notifier
*notifier
, void *data
)
1306 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1308 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1309 struct arm_boot_info
*info
= &vms
->bootinfo
;
1310 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1313 * If the user provided a dtb, we assume the dynamic sysbus nodes
1314 * already are integrated there. This corresponds to a use case where
1315 * the dynamic sysbus nodes are complex and their generation is not yet
1316 * supported. In that case the user can take charge of the guest dt
1317 * while qemu takes charge of the qom stuff.
1319 if (info
->dtb_filename
== NULL
) {
1320 platform_bus_add_all_fdt_nodes(vms
->fdt
, "/intc",
1321 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1322 vms
->memmap
[VIRT_PLATFORM_BUS
].size
,
1323 vms
->irqmap
[VIRT_PLATFORM_BUS
]);
1325 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
) < 0) {
1329 virt_acpi_setup(vms
);
1330 virt_build_smbios(vms
);
1333 static uint64_t virt_cpu_mp_affinity(VirtMachineState
*vms
, int idx
)
1335 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
1336 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1338 if (!vmc
->disallow_affinity_adjustment
) {
1339 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1340 * GIC's target-list limitations. 32-bit KVM hosts currently
1341 * always create clusters of 4 CPUs, but that is expected to
1342 * change when they gain support for gicv3. When KVM is enabled
1343 * it will override the changes we make here, therefore our
1344 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1345 * and to improve SGI efficiency.
1347 if (vms
->gic_version
== 3) {
1348 clustersz
= GICV3_TARGETLIST_BITS
;
1350 clustersz
= GIC_TARGETLIST_BITS
;
1353 return arm_cpu_mp_affinity(idx
, clustersz
);
1356 static void machvirt_init(MachineState
*machine
)
1358 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1359 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1360 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1361 const CPUArchIdList
*possible_cpus
;
1362 qemu_irq pic
[NUM_IRQS
];
1363 MemoryRegion
*sysmem
= get_system_memory();
1364 MemoryRegion
*secure_sysmem
= NULL
;
1365 int n
, virt_max_cpus
;
1366 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1367 bool firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1368 bool aarch64
= true;
1370 /* We can probe only here because during property set
1371 * KVM is not available yet
1373 if (vms
->gic_version
<= 0) {
1374 /* "host" or "max" */
1375 if (!kvm_enabled()) {
1376 if (vms
->gic_version
== 0) {
1377 error_report("gic-version=host requires KVM");
1380 /* "max": currently means 3 for TCG */
1381 vms
->gic_version
= 3;
1384 vms
->gic_version
= kvm_arm_vgic_probe();
1385 if (!vms
->gic_version
) {
1387 "Unable to determine GIC version supported by host");
1393 if (!cpu_type_valid(machine
->cpu_type
)) {
1394 error_report("mach-virt: CPU type %s not supported", machine
->cpu_type
);
1398 /* If we have an EL3 boot ROM then the assumption is that it will
1399 * implement PSCI itself, so disable QEMU's internal implementation
1400 * so it doesn't get in the way. Instead of starting secondary
1401 * CPUs in PSCI powerdown state we will start them all running and
1402 * let the boot ROM sort them out.
1403 * The usual case is that we do use QEMU's PSCI implementation;
1404 * if the guest has EL2 then we will use SMC as the conduit,
1405 * and otherwise we will use HVC (for backwards compatibility and
1406 * because if we're using KVM then we must use HVC).
1408 if (vms
->secure
&& firmware_loaded
) {
1409 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1410 } else if (vms
->virt
) {
1411 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1413 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1416 /* The maximum number of CPUs depends on the GIC version, or on how
1417 * many redistributors we can fit into the memory map.
1419 if (vms
->gic_version
== 3) {
1420 virt_max_cpus
= vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
1421 virt_max_cpus
+= vms
->memmap
[VIRT_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
1423 virt_max_cpus
= GIC_NCPU
;
1426 if (max_cpus
> virt_max_cpus
) {
1427 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1428 "supported by machine 'mach-virt' (%d)",
1429 max_cpus
, virt_max_cpus
);
1433 vms
->smp_cpus
= smp_cpus
;
1435 if (machine
->ram_size
> vms
->memmap
[VIRT_MEM
].size
) {
1436 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB
);
1440 if (vms
->virt
&& kvm_enabled()) {
1441 error_report("mach-virt: KVM does not support providing "
1442 "Virtualization extensions to the guest CPU");
1447 if (kvm_enabled()) {
1448 error_report("mach-virt: KVM does not support Security extensions");
1452 /* The Secure view of the world is the same as the NonSecure,
1453 * but with a few extra devices. Create it as a container region
1454 * containing the system memory at low priority; any secure-only
1455 * devices go in at higher priority and take precedence.
1457 secure_sysmem
= g_new(MemoryRegion
, 1);
1458 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1460 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1465 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1466 for (n
= 0; n
< possible_cpus
->len
; n
++) {
1470 if (n
>= smp_cpus
) {
1474 cpuobj
= object_new(possible_cpus
->cpus
[n
].type
);
1475 object_property_set_int(cpuobj
, possible_cpus
->cpus
[n
].arch_id
,
1476 "mp-affinity", NULL
);
1481 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
1484 aarch64
&= object_property_get_bool(cpuobj
, "aarch64", NULL
);
1487 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1490 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2", NULL
)) {
1491 object_property_set_bool(cpuobj
, false, "has_el2", NULL
);
1494 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1495 object_property_set_int(cpuobj
, vms
->psci_conduit
,
1496 "psci-conduit", NULL
);
1498 /* Secondary CPUs start in PSCI powered-down state */
1500 object_property_set_bool(cpuobj
, true,
1501 "start-powered-off", NULL
);
1505 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu", NULL
)) {
1506 object_property_set_bool(cpuobj
, false, "pmu", NULL
);
1509 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1510 object_property_set_int(cpuobj
, vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1511 "reset-cbar", &error_abort
);
1514 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1517 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1518 "secure-memory", &error_abort
);
1521 object_property_set_bool(cpuobj
, true, "realized", &error_fatal
);
1522 object_unref(cpuobj
);
1524 fdt_add_timer_nodes(vms
);
1525 fdt_add_cpu_nodes(vms
);
1527 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1529 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
, ram
);
1531 create_flash(vms
, sysmem
, secure_sysmem
? secure_sysmem
: sysmem
);
1533 create_gic(vms
, pic
);
1535 fdt_add_pmu_nodes(vms
);
1537 create_uart(vms
, pic
, VIRT_UART
, sysmem
, serial_hd(0));
1540 create_secure_ram(vms
, secure_sysmem
);
1541 create_uart(vms
, pic
, VIRT_SECURE_UART
, secure_sysmem
, serial_hd(1));
1544 vms
->highmem_ecam
&= vms
->highmem
&& (!firmware_loaded
|| aarch64
);
1546 create_rtc(vms
, pic
);
1548 create_pcie(vms
, pic
);
1550 create_gpio(vms
, pic
);
1552 /* Create mmio transports, so the user can create virtio backends
1553 * (which will be automatically plugged in to the transports). If
1554 * no backend is created the transport will just sit harmlessly idle.
1556 create_virtio_devices(vms
, pic
);
1558 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
1559 rom_set_fw(vms
->fw_cfg
);
1561 create_platform_bus(vms
, pic
);
1563 vms
->bootinfo
.ram_size
= machine
->ram_size
;
1564 vms
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1565 vms
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1566 vms
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1567 vms
->bootinfo
.nb_cpus
= smp_cpus
;
1568 vms
->bootinfo
.board_id
= -1;
1569 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
1570 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
1571 vms
->bootinfo
.skip_dtb_autoload
= true;
1572 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
1573 arm_load_kernel(ARM_CPU(first_cpu
), &vms
->bootinfo
);
1575 vms
->machine_done
.notify
= virt_machine_done
;
1576 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
1579 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1581 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1586 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1588 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1590 vms
->secure
= value
;
1593 static bool virt_get_virt(Object
*obj
, Error
**errp
)
1595 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1600 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
1602 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1607 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1609 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1611 return vms
->highmem
;
1614 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1616 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1618 vms
->highmem
= value
;
1621 static bool virt_get_its(Object
*obj
, Error
**errp
)
1623 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1628 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
1630 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1635 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1637 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1638 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1640 return g_strdup(val
);
1643 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1645 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1647 if (!strcmp(value
, "3")) {
1648 vms
->gic_version
= 3;
1649 } else if (!strcmp(value
, "2")) {
1650 vms
->gic_version
= 2;
1651 } else if (!strcmp(value
, "host")) {
1652 vms
->gic_version
= 0; /* Will probe later */
1653 } else if (!strcmp(value
, "max")) {
1654 vms
->gic_version
= -1; /* Will probe later */
1656 error_setg(errp
, "Invalid gic-version value");
1657 error_append_hint(errp
, "Valid values are 3, 2, host, max.\n");
1661 static char *virt_get_iommu(Object
*obj
, Error
**errp
)
1663 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1665 switch (vms
->iommu
) {
1666 case VIRT_IOMMU_NONE
:
1667 return g_strdup("none");
1668 case VIRT_IOMMU_SMMUV3
:
1669 return g_strdup("smmuv3");
1671 g_assert_not_reached();
1675 static void virt_set_iommu(Object
*obj
, const char *value
, Error
**errp
)
1677 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1679 if (!strcmp(value
, "smmuv3")) {
1680 vms
->iommu
= VIRT_IOMMU_SMMUV3
;
1681 } else if (!strcmp(value
, "none")) {
1682 vms
->iommu
= VIRT_IOMMU_NONE
;
1684 error_setg(errp
, "Invalid iommu value");
1685 error_append_hint(errp
, "Valid values are none, smmuv3.\n");
1689 static CpuInstanceProperties
1690 virt_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
1692 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1693 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
1695 assert(cpu_index
< possible_cpus
->len
);
1696 return possible_cpus
->cpus
[cpu_index
].props
;
1699 static int64_t virt_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
1701 return idx
% nb_numa_nodes
;
1704 static const CPUArchIdList
*virt_possible_cpu_arch_ids(MachineState
*ms
)
1707 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
1709 if (ms
->possible_cpus
) {
1710 assert(ms
->possible_cpus
->len
== max_cpus
);
1711 return ms
->possible_cpus
;
1714 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
1715 sizeof(CPUArchId
) * max_cpus
);
1716 ms
->possible_cpus
->len
= max_cpus
;
1717 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
1718 ms
->possible_cpus
->cpus
[n
].type
= ms
->cpu_type
;
1719 ms
->possible_cpus
->cpus
[n
].arch_id
=
1720 virt_cpu_mp_affinity(vms
, n
);
1721 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
1722 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
1724 return ms
->possible_cpus
;
1727 static void virt_machine_device_plug_cb(HotplugHandler
*hotplug_dev
,
1728 DeviceState
*dev
, Error
**errp
)
1730 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
1732 if (vms
->platform_bus_dev
) {
1733 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
1734 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms
->platform_bus_dev
),
1735 SYS_BUS_DEVICE(dev
));
1740 static HotplugHandler
*virt_machine_get_hotplug_handler(MachineState
*machine
,
1743 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
1744 return HOTPLUG_HANDLER(machine
);
1750 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
1752 MachineClass
*mc
= MACHINE_CLASS(oc
);
1753 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
1755 mc
->init
= machvirt_init
;
1756 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1757 * The value may be reduced later when we have more information about the
1758 * configuration of the particular instance.
1761 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_CALXEDA_XGMAC
);
1762 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_AMD_XGBE
);
1763 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_RAMFB_DEVICE
);
1764 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_PLATFORM
);
1765 mc
->block_default_type
= IF_VIRTIO
;
1767 mc
->pci_allow_0_address
= true;
1768 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1769 mc
->minimum_page_bits
= 12;
1770 mc
->possible_cpu_arch_ids
= virt_possible_cpu_arch_ids
;
1771 mc
->cpu_index_to_instance_props
= virt_cpu_index_to_props
;
1772 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-a15");
1773 mc
->get_default_cpu_node_id
= virt_get_default_cpu_node_id
;
1774 assert(!mc
->get_hotplug_handler
);
1775 mc
->get_hotplug_handler
= virt_machine_get_hotplug_handler
;
1776 hc
->plug
= virt_machine_device_plug_cb
;
1779 static void virt_instance_init(Object
*obj
)
1781 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1782 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1784 /* EL3 is disabled by default on virt: this makes us consistent
1785 * between KVM and TCG for this board, and it also allows us to
1786 * boot UEFI blobs which assume no TrustZone support.
1788 vms
->secure
= false;
1789 object_property_add_bool(obj
, "secure", virt_get_secure
,
1790 virt_set_secure
, NULL
);
1791 object_property_set_description(obj
, "secure",
1792 "Set on/off to enable/disable the ARM "
1793 "Security Extensions (TrustZone)",
1796 /* EL2 is also disabled by default, for similar reasons */
1798 object_property_add_bool(obj
, "virtualization", virt_get_virt
,
1799 virt_set_virt
, NULL
);
1800 object_property_set_description(obj
, "virtualization",
1801 "Set on/off to enable/disable emulating a "
1802 "guest CPU which implements the ARM "
1803 "Virtualization Extensions",
1806 /* High memory is enabled by default */
1807 vms
->highmem
= true;
1808 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1809 virt_set_highmem
, NULL
);
1810 object_property_set_description(obj
, "highmem",
1811 "Set on/off to enable/disable using "
1812 "physical address space above 32 bits",
1814 /* Default GIC type is v2 */
1815 vms
->gic_version
= 2;
1816 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1817 virt_set_gic_version
, NULL
);
1818 object_property_set_description(obj
, "gic-version",
1820 "Valid values are 2, 3 and host", NULL
);
1822 vms
->highmem_ecam
= !vmc
->no_highmem_ecam
;
1827 /* Default allows ITS instantiation */
1829 object_property_add_bool(obj
, "its", virt_get_its
,
1830 virt_set_its
, NULL
);
1831 object_property_set_description(obj
, "its",
1832 "Set on/off to enable/disable "
1833 "ITS instantiation",
1837 /* Default disallows iommu instantiation */
1838 vms
->iommu
= VIRT_IOMMU_NONE
;
1839 object_property_add_str(obj
, "iommu", virt_get_iommu
, virt_set_iommu
, NULL
);
1840 object_property_set_description(obj
, "iommu",
1841 "Set the IOMMU type. "
1842 "Valid values are none and smmuv3",
1845 vms
->memmap
= a15memmap
;
1846 vms
->irqmap
= a15irqmap
;
1849 static const TypeInfo virt_machine_info
= {
1850 .name
= TYPE_VIRT_MACHINE
,
1851 .parent
= TYPE_MACHINE
,
1853 .instance_size
= sizeof(VirtMachineState
),
1854 .class_size
= sizeof(VirtMachineClass
),
1855 .class_init
= virt_machine_class_init
,
1856 .instance_init
= virt_instance_init
,
1857 .interfaces
= (InterfaceInfo
[]) {
1858 { TYPE_HOTPLUG_HANDLER
},
1863 static void machvirt_machine_init(void)
1865 type_register_static(&virt_machine_info
);
1867 type_init(machvirt_machine_init
);
1869 static void virt_machine_4_0_options(MachineClass
*mc
)
1872 DEFINE_VIRT_MACHINE_AS_LATEST(4, 0)
1874 static void virt_machine_3_1_options(MachineClass
*mc
)
1876 virt_machine_4_0_options(mc
);
1877 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
1879 DEFINE_VIRT_MACHINE(3, 1)
1881 static void virt_machine_3_0_options(MachineClass
*mc
)
1883 virt_machine_3_1_options(mc
);
1884 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
1886 DEFINE_VIRT_MACHINE(3, 0)
1888 static void virt_machine_2_12_options(MachineClass
*mc
)
1890 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1892 virt_machine_3_0_options(mc
);
1893 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
1894 vmc
->no_highmem_ecam
= true;
1897 DEFINE_VIRT_MACHINE(2, 12)
1899 static void virt_machine_2_11_options(MachineClass
*mc
)
1901 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1903 virt_machine_2_12_options(mc
);
1904 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
1905 vmc
->smbios_old_sys_ver
= true;
1907 DEFINE_VIRT_MACHINE(2, 11)
1909 static void virt_machine_2_10_options(MachineClass
*mc
)
1911 virt_machine_2_11_options(mc
);
1912 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
1913 /* before 2.11 we never faulted accesses to bad addresses */
1914 mc
->ignore_memory_transaction_failures
= true;
1916 DEFINE_VIRT_MACHINE(2, 10)
1918 static void virt_machine_2_9_options(MachineClass
*mc
)
1920 virt_machine_2_10_options(mc
);
1921 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
1923 DEFINE_VIRT_MACHINE(2, 9)
1925 static void virt_machine_2_8_options(MachineClass
*mc
)
1927 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1929 virt_machine_2_9_options(mc
);
1930 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
1931 /* For 2.8 and earlier we falsely claimed in the DT that
1932 * our timers were edge-triggered, not level-triggered.
1934 vmc
->claim_edge_triggered_timers
= true;
1936 DEFINE_VIRT_MACHINE(2, 8)
1938 static void virt_machine_2_7_options(MachineClass
*mc
)
1940 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1942 virt_machine_2_8_options(mc
);
1943 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
1944 /* ITS was introduced with 2.8 */
1946 /* Stick with 1K pages for migration compatibility */
1947 mc
->minimum_page_bits
= 0;
1949 DEFINE_VIRT_MACHINE(2, 7)
1951 static void virt_machine_2_6_options(MachineClass
*mc
)
1953 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1955 virt_machine_2_7_options(mc
);
1956 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
1957 vmc
->disallow_affinity_adjustment
= true;
1958 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1961 DEFINE_VIRT_MACHINE(2, 6)