target/arm/translate-a64: Don't underdecode SIMD ld/st multiple
[qemu/ar7.git] / hw / intc / spapr_xive.c
blobd391177ab81f83df9d760bcd960caafd13b63f4a
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "qemu/error-report.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "monitor/monitor.h"
17 #include "hw/ppc/fdt.h"
18 #include "hw/ppc/spapr.h"
19 #include "hw/ppc/spapr_xive.h"
20 #include "hw/ppc/xive.h"
21 #include "hw/ppc/xive_regs.h"
24 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
25 * use for the ESB pages and the TIMA pages
27 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
28 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
31 * The allocation of VP blocks is a complex operation in OPAL and the
32 * VP identifiers have a relation with the number of HW chips, the
33 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
34 * controller model does not have the same constraints and can use a
35 * simple mapping scheme of the CPU vcpu_id
37 * These identifiers are never returned to the OS.
40 #define SPAPR_XIVE_NVT_BASE 0x400
43 * The sPAPR machine has a unique XIVE IC device. Assign a fixed value
44 * to the controller block id value. It can nevertheless be changed
45 * for testing purpose.
47 #define SPAPR_XIVE_BLOCK_ID 0x0
50 * sPAPR NVT and END indexing helpers
52 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
54 return nvt_idx - SPAPR_XIVE_NVT_BASE;
57 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
58 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
60 assert(cpu);
62 if (out_nvt_blk) {
63 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
66 if (out_nvt_blk) {
67 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
71 static int spapr_xive_target_to_nvt(uint32_t target,
72 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
74 PowerPCCPU *cpu = spapr_find_cpu(target);
76 if (!cpu) {
77 return -1;
80 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
81 return 0;
85 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
86 * priorities per CPU
88 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
89 uint8_t *out_end_blk, uint32_t *out_end_idx)
91 assert(cpu);
93 if (out_end_blk) {
94 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
97 if (out_end_idx) {
98 *out_end_idx = (cpu->vcpu_id << 3) + prio;
102 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
103 uint8_t *out_end_blk, uint32_t *out_end_idx)
105 PowerPCCPU *cpu = spapr_find_cpu(target);
107 if (!cpu) {
108 return -1;
111 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
112 return 0;
116 * On sPAPR machines, use a simplified output for the XIVE END
117 * structure dumping only the information related to the OS EQ.
119 static void spapr_xive_end_pic_print_info(sPAPRXive *xive, XiveEND *end,
120 Monitor *mon)
122 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
123 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
124 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
125 uint32_t qentries = 1 << (qsize + 10);
126 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
127 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
129 monitor_printf(mon, "%3d/%d % 6d/%5d ^%d",
130 spapr_xive_nvt_to_target(0, nvt),
131 priority, qindex, qentries, qgen);
133 xive_end_queue_pic_print_info(end, 6, mon);
134 monitor_printf(mon, "]");
137 void spapr_xive_pic_print_info(sPAPRXive *xive, Monitor *mon)
139 XiveSource *xsrc = &xive->source;
140 int i;
142 monitor_printf(mon, " LSIN PQ EISN CPU/PRIO EQ\n");
144 for (i = 0; i < xive->nr_irqs; i++) {
145 uint8_t pq = xive_source_esb_get(xsrc, i);
146 XiveEAS *eas = &xive->eat[i];
148 if (!xive_eas_is_valid(eas)) {
149 continue;
152 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
153 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
154 pq & XIVE_ESB_VAL_P ? 'P' : '-',
155 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
156 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
157 xive_eas_is_masked(eas) ? "M" : " ",
158 (int) xive_get_field64(EAS_END_DATA, eas->w));
160 if (!xive_eas_is_masked(eas)) {
161 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
162 XiveEND *end;
164 assert(end_idx < xive->nr_ends);
165 end = &xive->endt[end_idx];
167 if (xive_end_is_valid(end)) {
168 spapr_xive_end_pic_print_info(xive, end, mon);
171 monitor_printf(mon, "\n");
175 static void spapr_xive_map_mmio(sPAPRXive *xive)
177 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
178 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
179 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
182 void spapr_xive_mmio_set_enabled(sPAPRXive *xive, bool enable)
184 memory_region_set_enabled(&xive->source.esb_mmio, enable);
185 memory_region_set_enabled(&xive->tm_mmio, enable);
187 /* Disable the END ESBs until a guest OS makes use of them */
188 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
192 * When a Virtual Processor is scheduled to run on a HW thread, the
193 * hypervisor pushes its identifier in the OS CAM line. Emulate the
194 * same behavior under QEMU.
196 void spapr_xive_set_tctx_os_cam(XiveTCTX *tctx)
198 uint8_t nvt_blk;
199 uint32_t nvt_idx;
200 uint32_t nvt_cam;
202 spapr_xive_cpu_to_nvt(POWERPC_CPU(tctx->cs), &nvt_blk, &nvt_idx);
204 nvt_cam = cpu_to_be32(TM_QW1W2_VO | xive_nvt_cam_line(nvt_blk, nvt_idx));
205 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &nvt_cam, 4);
208 static void spapr_xive_end_reset(XiveEND *end)
210 memset(end, 0, sizeof(*end));
212 /* switch off the escalation and notification ESBs */
213 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
216 static void spapr_xive_reset(void *dev)
218 sPAPRXive *xive = SPAPR_XIVE(dev);
219 int i;
222 * The XiveSource has its own reset handler, which mask off all
223 * IRQs (!P|Q)
226 /* Mask all valid EASs in the IRQ number space. */
227 for (i = 0; i < xive->nr_irqs; i++) {
228 XiveEAS *eas = &xive->eat[i];
229 if (xive_eas_is_valid(eas)) {
230 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
231 } else {
232 eas->w = 0;
236 /* Clear all ENDs */
237 for (i = 0; i < xive->nr_ends; i++) {
238 spapr_xive_end_reset(&xive->endt[i]);
242 static void spapr_xive_instance_init(Object *obj)
244 sPAPRXive *xive = SPAPR_XIVE(obj);
246 object_initialize(&xive->source, sizeof(xive->source), TYPE_XIVE_SOURCE);
247 object_property_add_child(obj, "source", OBJECT(&xive->source), NULL);
249 object_initialize(&xive->end_source, sizeof(xive->end_source),
250 TYPE_XIVE_END_SOURCE);
251 object_property_add_child(obj, "end_source", OBJECT(&xive->end_source),
252 NULL);
255 static void spapr_xive_realize(DeviceState *dev, Error **errp)
257 sPAPRXive *xive = SPAPR_XIVE(dev);
258 XiveSource *xsrc = &xive->source;
259 XiveENDSource *end_xsrc = &xive->end_source;
260 Error *local_err = NULL;
262 if (!xive->nr_irqs) {
263 error_setg(errp, "Number of interrupt needs to be greater 0");
264 return;
267 if (!xive->nr_ends) {
268 error_setg(errp, "Number of interrupt needs to be greater 0");
269 return;
273 * Initialize the internal sources, for IPIs and virtual devices.
275 object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
276 &error_fatal);
277 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
278 &error_fatal);
279 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
280 if (local_err) {
281 error_propagate(errp, local_err);
282 return;
286 * Initialize the END ESB source
288 object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
289 &error_fatal);
290 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
291 &error_fatal);
292 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
293 if (local_err) {
294 error_propagate(errp, local_err);
295 return;
298 /* Set the mapping address of the END ESB pages after the source ESBs */
299 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
302 * Allocate the routing tables
304 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
305 xive->endt = g_new0(XiveEND, xive->nr_ends);
307 /* TIMA initialization */
308 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
309 "xive.tima", 4ull << TM_SHIFT);
311 /* Define all XIVE MMIO regions on SysBus */
312 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
313 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
314 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
316 /* Map all regions */
317 spapr_xive_map_mmio(xive);
319 qemu_register_reset(spapr_xive_reset, dev);
322 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
323 uint32_t eas_idx, XiveEAS *eas)
325 sPAPRXive *xive = SPAPR_XIVE(xrtr);
327 if (eas_idx >= xive->nr_irqs) {
328 return -1;
331 *eas = xive->eat[eas_idx];
332 return 0;
335 static int spapr_xive_get_end(XiveRouter *xrtr,
336 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
338 sPAPRXive *xive = SPAPR_XIVE(xrtr);
340 if (end_idx >= xive->nr_ends) {
341 return -1;
344 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
345 return 0;
348 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
349 uint32_t end_idx, XiveEND *end,
350 uint8_t word_number)
352 sPAPRXive *xive = SPAPR_XIVE(xrtr);
354 if (end_idx >= xive->nr_ends) {
355 return -1;
358 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
359 return 0;
362 static int spapr_xive_get_nvt(XiveRouter *xrtr,
363 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
365 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
366 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
368 if (!cpu) {
369 /* TODO: should we assert() if we can find a NVT ? */
370 return -1;
374 * sPAPR does not maintain a NVT table. Return that the NVT is
375 * valid if we have found a matching CPU
377 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
378 return 0;
381 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
382 uint32_t nvt_idx, XiveNVT *nvt,
383 uint8_t word_number)
386 * We don't need to write back to the NVTs because the sPAPR
387 * machine should never hit a non-scheduled NVT. It should never
388 * get called.
390 g_assert_not_reached();
393 static const VMStateDescription vmstate_spapr_xive_end = {
394 .name = TYPE_SPAPR_XIVE "/end",
395 .version_id = 1,
396 .minimum_version_id = 1,
397 .fields = (VMStateField []) {
398 VMSTATE_UINT32(w0, XiveEND),
399 VMSTATE_UINT32(w1, XiveEND),
400 VMSTATE_UINT32(w2, XiveEND),
401 VMSTATE_UINT32(w3, XiveEND),
402 VMSTATE_UINT32(w4, XiveEND),
403 VMSTATE_UINT32(w5, XiveEND),
404 VMSTATE_UINT32(w6, XiveEND),
405 VMSTATE_UINT32(w7, XiveEND),
406 VMSTATE_END_OF_LIST()
410 static const VMStateDescription vmstate_spapr_xive_eas = {
411 .name = TYPE_SPAPR_XIVE "/eas",
412 .version_id = 1,
413 .minimum_version_id = 1,
414 .fields = (VMStateField []) {
415 VMSTATE_UINT64(w, XiveEAS),
416 VMSTATE_END_OF_LIST()
420 static const VMStateDescription vmstate_spapr_xive = {
421 .name = TYPE_SPAPR_XIVE,
422 .version_id = 1,
423 .minimum_version_id = 1,
424 .fields = (VMStateField[]) {
425 VMSTATE_UINT32_EQUAL(nr_irqs, sPAPRXive, NULL),
426 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, sPAPRXive, nr_irqs,
427 vmstate_spapr_xive_eas, XiveEAS),
428 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, sPAPRXive, nr_ends,
429 vmstate_spapr_xive_end, XiveEND),
430 VMSTATE_END_OF_LIST()
434 static Property spapr_xive_properties[] = {
435 DEFINE_PROP_UINT32("nr-irqs", sPAPRXive, nr_irqs, 0),
436 DEFINE_PROP_UINT32("nr-ends", sPAPRXive, nr_ends, 0),
437 DEFINE_PROP_UINT64("vc-base", sPAPRXive, vc_base, SPAPR_XIVE_VC_BASE),
438 DEFINE_PROP_UINT64("tm-base", sPAPRXive, tm_base, SPAPR_XIVE_TM_BASE),
439 DEFINE_PROP_END_OF_LIST(),
442 static void spapr_xive_class_init(ObjectClass *klass, void *data)
444 DeviceClass *dc = DEVICE_CLASS(klass);
445 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
447 dc->desc = "sPAPR XIVE Interrupt Controller";
448 dc->props = spapr_xive_properties;
449 dc->realize = spapr_xive_realize;
450 dc->vmsd = &vmstate_spapr_xive;
452 xrc->get_eas = spapr_xive_get_eas;
453 xrc->get_end = spapr_xive_get_end;
454 xrc->write_end = spapr_xive_write_end;
455 xrc->get_nvt = spapr_xive_get_nvt;
456 xrc->write_nvt = spapr_xive_write_nvt;
459 static const TypeInfo spapr_xive_info = {
460 .name = TYPE_SPAPR_XIVE,
461 .parent = TYPE_XIVE_ROUTER,
462 .instance_init = spapr_xive_instance_init,
463 .instance_size = sizeof(sPAPRXive),
464 .class_init = spapr_xive_class_init,
467 static void spapr_xive_register_types(void)
469 type_register_static(&spapr_xive_info);
472 type_init(spapr_xive_register_types)
474 bool spapr_xive_irq_claim(sPAPRXive *xive, uint32_t lisn, bool lsi)
476 XiveSource *xsrc = &xive->source;
478 if (lisn >= xive->nr_irqs) {
479 return false;
482 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID);
483 xive_source_irq_set(xsrc, lisn, lsi);
484 return true;
487 bool spapr_xive_irq_free(sPAPRXive *xive, uint32_t lisn)
489 XiveSource *xsrc = &xive->source;
491 if (lisn >= xive->nr_irqs) {
492 return false;
495 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
496 xive_source_irq_set(xsrc, lisn, false);
497 return true;
501 * XIVE hcalls
503 * The terminology used by the XIVE hcalls is the following :
505 * TARGET vCPU number
506 * EQ Event Queue assigned by OS to receive event data
507 * ESB page for source interrupt management
508 * LISN Logical Interrupt Source Number identifying a source in the
509 * machine
510 * EISN Effective Interrupt Source Number used by guest OS to
511 * identify source in the guest
513 * The EAS, END, NVT structures are not exposed.
517 * Linux hosts under OPAL reserve priority 7 for their own escalation
518 * interrupts (DD2.X POWER9). So we only allow the guest to use
519 * priorities [0..6].
521 static bool spapr_xive_priority_is_reserved(uint8_t priority)
523 switch (priority) {
524 case 0 ... 6:
525 return false;
526 case 7: /* OPAL escalation queue */
527 default:
528 return true;
533 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
534 * real address of the MMIO page through which the Event State Buffer
535 * entry associated with the value of the "lisn" parameter is managed.
537 * Parameters:
538 * Input
539 * - R4: "flags"
540 * Bits 0-63 reserved
541 * - R5: "lisn" is per "interrupts", "interrupt-map", or
542 * "ibm,xive-lisn-ranges" properties, or as returned by the
543 * ibm,query-interrupt-source-number RTAS call, or as returned
544 * by the H_ALLOCATE_VAS_WINDOW hcall
546 * Output
547 * - R4: "flags"
548 * Bits 0-59: Reserved
549 * Bit 60: H_INT_ESB must be used for Event State Buffer
550 * management
551 * Bit 61: 1 == LSI 0 == MSI
552 * Bit 62: the full function page supports trigger
553 * Bit 63: Store EOI Supported
554 * - R5: Logical Real address of full function Event State Buffer
555 * management page, -1 if H_INT_ESB hcall flag is set to 1.
556 * - R6: Logical Real Address of trigger only Event State Buffer
557 * management page or -1.
558 * - R7: Power of 2 page size for the ESB management pages returned in
559 * R5 and R6.
562 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
563 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
564 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
565 on same page */
566 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
568 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
569 sPAPRMachineState *spapr,
570 target_ulong opcode,
571 target_ulong *args)
573 sPAPRXive *xive = spapr->xive;
574 XiveSource *xsrc = &xive->source;
575 target_ulong flags = args[0];
576 target_ulong lisn = args[1];
578 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
579 return H_FUNCTION;
582 if (flags) {
583 return H_PARAMETER;
586 if (lisn >= xive->nr_irqs) {
587 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
588 lisn);
589 return H_P2;
592 if (!xive_eas_is_valid(&xive->eat[lisn])) {
593 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
594 lisn);
595 return H_P2;
599 * All sources are emulated under the main XIVE object and share
600 * the same characteristics.
602 args[0] = 0;
603 if (!xive_source_esb_has_2page(xsrc)) {
604 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
606 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
607 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
611 * Force the use of the H_INT_ESB hcall in case of an LSI
612 * interrupt. This is necessary under KVM to re-trigger the
613 * interrupt if the level is still asserted
615 if (xive_source_irq_is_lsi(xsrc, lisn)) {
616 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
619 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
620 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
621 } else {
622 args[1] = -1;
625 if (xive_source_esb_has_2page(xsrc) &&
626 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
627 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
628 } else {
629 args[2] = -1;
632 if (xive_source_esb_has_2page(xsrc)) {
633 args[3] = xsrc->esb_shift - 1;
634 } else {
635 args[3] = xsrc->esb_shift;
638 return H_SUCCESS;
642 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
643 * Interrupt Source to a target. The Logical Interrupt Source is
644 * designated with the "lisn" parameter and the target is designated
645 * with the "target" and "priority" parameters. Upon return from the
646 * hcall(), no additional interrupts will be directed to the old EQ.
648 * Parameters:
649 * Input:
650 * - R4: "flags"
651 * Bits 0-61: Reserved
652 * Bit 62: set the "eisn" in the EAS
653 * Bit 63: masks the interrupt source in the hardware interrupt
654 * control structure. An interrupt masked by this mechanism will
655 * be dropped, but it's source state bits will still be
656 * set. There is no race-free way of unmasking and restoring the
657 * source. Thus this should only be used in interrupts that are
658 * also masked at the source, and only in cases where the
659 * interrupt is not meant to be used for a large amount of time
660 * because no valid target exists for it for example
661 * - R5: "lisn" is per "interrupts", "interrupt-map", or
662 * "ibm,xive-lisn-ranges" properties, or as returned by the
663 * ibm,query-interrupt-source-number RTAS call, or as returned by
664 * the H_ALLOCATE_VAS_WINDOW hcall
665 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
666 * "ibm,ppc-interrupt-gserver#s"
667 * - R7: "priority" is a valid priority not in
668 * "ibm,plat-res-int-priorities"
669 * - R8: "eisn" is the guest EISN associated with the "lisn"
671 * Output:
672 * - None
675 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
676 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
678 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
679 sPAPRMachineState *spapr,
680 target_ulong opcode,
681 target_ulong *args)
683 sPAPRXive *xive = spapr->xive;
684 XiveEAS eas, new_eas;
685 target_ulong flags = args[0];
686 target_ulong lisn = args[1];
687 target_ulong target = args[2];
688 target_ulong priority = args[3];
689 target_ulong eisn = args[4];
690 uint8_t end_blk;
691 uint32_t end_idx;
693 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
694 return H_FUNCTION;
697 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
698 return H_PARAMETER;
701 if (lisn >= xive->nr_irqs) {
702 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
703 lisn);
704 return H_P2;
707 eas = xive->eat[lisn];
708 if (!xive_eas_is_valid(&eas)) {
709 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
710 lisn);
711 return H_P2;
714 /* priority 0xff is used to reset the EAS */
715 if (priority == 0xff) {
716 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
717 goto out;
720 if (flags & SPAPR_XIVE_SRC_MASK) {
721 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
722 } else {
723 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
726 if (spapr_xive_priority_is_reserved(priority)) {
727 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
728 " is reserved\n", priority);
729 return H_P4;
733 * Validate that "target" is part of the list of threads allocated
734 * to the partition. For that, find the END corresponding to the
735 * target.
737 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
738 return H_P3;
741 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
742 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
744 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
745 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
748 out:
749 xive->eat[lisn] = new_eas;
750 return H_SUCCESS;
754 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
755 * target/priority pair is assigned to the specified Logical Interrupt
756 * Source.
758 * Parameters:
759 * Input:
760 * - R4: "flags"
761 * Bits 0-63 Reserved
762 * - R5: "lisn" is per "interrupts", "interrupt-map", or
763 * "ibm,xive-lisn-ranges" properties, or as returned by the
764 * ibm,query-interrupt-source-number RTAS call, or as
765 * returned by the H_ALLOCATE_VAS_WINDOW hcall
767 * Output:
768 * - R4: Target to which the specified Logical Interrupt Source is
769 * assigned
770 * - R5: Priority to which the specified Logical Interrupt Source is
771 * assigned
772 * - R6: EISN for the specified Logical Interrupt Source (this will be
773 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
775 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
776 sPAPRMachineState *spapr,
777 target_ulong opcode,
778 target_ulong *args)
780 sPAPRXive *xive = spapr->xive;
781 target_ulong flags = args[0];
782 target_ulong lisn = args[1];
783 XiveEAS eas;
784 XiveEND *end;
785 uint8_t nvt_blk;
786 uint32_t end_idx, nvt_idx;
788 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
789 return H_FUNCTION;
792 if (flags) {
793 return H_PARAMETER;
796 if (lisn >= xive->nr_irqs) {
797 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
798 lisn);
799 return H_P2;
802 eas = xive->eat[lisn];
803 if (!xive_eas_is_valid(&eas)) {
804 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
805 lisn);
806 return H_P2;
809 /* EAS_END_BLOCK is unused on sPAPR */
810 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
812 assert(end_idx < xive->nr_ends);
813 end = &xive->endt[end_idx];
815 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
816 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
817 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
819 if (xive_eas_is_masked(&eas)) {
820 args[1] = 0xff;
821 } else {
822 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
825 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
827 return H_SUCCESS;
831 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
832 * address of the notification management page associated with the
833 * specified target and priority.
835 * Parameters:
836 * Input:
837 * - R4: "flags"
838 * Bits 0-63 Reserved
839 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
840 * "ibm,ppc-interrupt-gserver#s"
841 * - R6: "priority" is a valid priority not in
842 * "ibm,plat-res-int-priorities"
844 * Output:
845 * - R4: Logical real address of notification page
846 * - R5: Power of 2 page size of the notification page
848 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
849 sPAPRMachineState *spapr,
850 target_ulong opcode,
851 target_ulong *args)
853 sPAPRXive *xive = spapr->xive;
854 XiveENDSource *end_xsrc = &xive->end_source;
855 target_ulong flags = args[0];
856 target_ulong target = args[1];
857 target_ulong priority = args[2];
858 XiveEND *end;
859 uint8_t end_blk;
860 uint32_t end_idx;
862 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
863 return H_FUNCTION;
866 if (flags) {
867 return H_PARAMETER;
871 * H_STATE should be returned if a H_INT_RESET is in progress.
872 * This is not needed when running the emulation under QEMU
875 if (spapr_xive_priority_is_reserved(priority)) {
876 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
877 " is reserved\n", priority);
878 return H_P3;
882 * Validate that "target" is part of the list of threads allocated
883 * to the partition. For that, find the END corresponding to the
884 * target.
886 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
887 return H_P2;
890 assert(end_idx < xive->nr_ends);
891 end = &xive->endt[end_idx];
893 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
894 if (xive_end_is_enqueue(end)) {
895 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
896 } else {
897 args[1] = 0;
900 return H_SUCCESS;
904 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
905 * a given "target" and "priority". It is also used to set the
906 * notification config associated with the EQ. An EQ size of 0 is
907 * used to reset the EQ config for a given target and priority. If
908 * resetting the EQ config, the END associated with the given "target"
909 * and "priority" will be changed to disable queueing.
911 * Upon return from the hcall(), no additional interrupts will be
912 * directed to the old EQ (if one was set). The old EQ (if one was
913 * set) should be investigated for interrupts that occurred prior to
914 * or during the hcall().
916 * Parameters:
917 * Input:
918 * - R4: "flags"
919 * Bits 0-62: Reserved
920 * Bit 63: Unconditional Notify (n) per the XIVE spec
921 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
922 * "ibm,ppc-interrupt-gserver#s"
923 * - R6: "priority" is a valid priority not in
924 * "ibm,plat-res-int-priorities"
925 * - R7: "eventQueue": The logical real address of the start of the EQ
926 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
928 * Output:
929 * - None
932 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
934 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
935 sPAPRMachineState *spapr,
936 target_ulong opcode,
937 target_ulong *args)
939 sPAPRXive *xive = spapr->xive;
940 target_ulong flags = args[0];
941 target_ulong target = args[1];
942 target_ulong priority = args[2];
943 target_ulong qpage = args[3];
944 target_ulong qsize = args[4];
945 XiveEND end;
946 uint8_t end_blk, nvt_blk;
947 uint32_t end_idx, nvt_idx;
949 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
950 return H_FUNCTION;
953 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
954 return H_PARAMETER;
958 * H_STATE should be returned if a H_INT_RESET is in progress.
959 * This is not needed when running the emulation under QEMU
962 if (spapr_xive_priority_is_reserved(priority)) {
963 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
964 " is reserved\n", priority);
965 return H_P3;
969 * Validate that "target" is part of the list of threads allocated
970 * to the partition. For that, find the END corresponding to the
971 * target.
974 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
975 return H_P2;
978 assert(end_idx < xive->nr_ends);
979 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
981 switch (qsize) {
982 case 12:
983 case 16:
984 case 21:
985 case 24:
986 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
987 end.w3 = cpu_to_be32(qpage & 0xffffffff);
988 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
989 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
990 break;
991 case 0:
992 /* reset queue and disable queueing */
993 spapr_xive_end_reset(&end);
994 goto out;
996 default:
997 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
998 qsize);
999 return H_P5;
1002 if (qsize) {
1003 hwaddr plen = 1 << qsize;
1004 void *eq;
1007 * Validate the guest EQ. We should also check that the queue
1008 * has been zeroed by the OS.
1010 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1011 MEMTXATTRS_UNSPECIFIED);
1012 if (plen != 1 << qsize) {
1013 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1014 HWADDR_PRIx "\n", qpage);
1015 return H_P4;
1017 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1020 /* "target" should have been validated above */
1021 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1022 g_assert_not_reached();
1026 * Ensure the priority and target are correctly set (they will not
1027 * be right after allocation)
1029 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1030 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1031 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1033 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1034 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1035 } else {
1036 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1040 * The generation bit for the END starts at 1 and The END page
1041 * offset counter starts at 0.
1043 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1044 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1045 end.w0 |= cpu_to_be32(END_W0_VALID);
1048 * TODO: issue syncs required to ensure all in-flight interrupts
1049 * are complete on the old END
1052 out:
1053 /* Update END */
1054 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1055 return H_SUCCESS;
1059 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1060 * target and priority.
1062 * Parameters:
1063 * Input:
1064 * - R4: "flags"
1065 * Bits 0-62: Reserved
1066 * Bit 63: Debug: Return debug data
1067 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1068 * "ibm,ppc-interrupt-gserver#s"
1069 * - R6: "priority" is a valid priority not in
1070 * "ibm,plat-res-int-priorities"
1072 * Output:
1073 * - R4: "flags":
1074 * Bits 0-61: Reserved
1075 * Bit 62: The value of Event Queue Generation Number (g) per
1076 * the XIVE spec if "Debug" = 1
1077 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1078 * - R5: The logical real address of the start of the EQ
1079 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1080 * - R7: The value of Event Queue Offset Counter per XIVE spec
1081 * if "Debug" = 1, else 0
1085 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1087 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1088 sPAPRMachineState *spapr,
1089 target_ulong opcode,
1090 target_ulong *args)
1092 sPAPRXive *xive = spapr->xive;
1093 target_ulong flags = args[0];
1094 target_ulong target = args[1];
1095 target_ulong priority = args[2];
1096 XiveEND *end;
1097 uint8_t end_blk;
1098 uint32_t end_idx;
1100 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1101 return H_FUNCTION;
1104 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1105 return H_PARAMETER;
1109 * H_STATE should be returned if a H_INT_RESET is in progress.
1110 * This is not needed when running the emulation under QEMU
1113 if (spapr_xive_priority_is_reserved(priority)) {
1114 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1115 " is reserved\n", priority);
1116 return H_P3;
1120 * Validate that "target" is part of the list of threads allocated
1121 * to the partition. For that, find the END corresponding to the
1122 * target.
1124 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1125 return H_P2;
1128 assert(end_idx < xive->nr_ends);
1129 end = &xive->endt[end_idx];
1131 args[0] = 0;
1132 if (xive_end_is_notify(end)) {
1133 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1136 if (xive_end_is_enqueue(end)) {
1137 args[1] = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1138 | be32_to_cpu(end->w3);
1139 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1140 } else {
1141 args[1] = 0;
1142 args[2] = 0;
1145 /* TODO: do we need any locking on the END ? */
1146 if (flags & SPAPR_XIVE_END_DEBUG) {
1147 /* Load the event queue generation number into the return flags */
1148 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1150 /* Load R7 with the event queue offset counter */
1151 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1152 } else {
1153 args[3] = 0;
1156 return H_SUCCESS;
1160 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1161 * reporting cache line pair for the calling thread. The reporting
1162 * cache lines will contain the OS interrupt context when the OS
1163 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1164 * interrupt. The reporting cache lines can be reset by inputting -1
1165 * in "reportingLine". Issuing the CI store byte without reporting
1166 * cache lines registered will result in the data not being accessible
1167 * to the OS.
1169 * Parameters:
1170 * Input:
1171 * - R4: "flags"
1172 * Bits 0-63: Reserved
1173 * - R5: "reportingLine": The logical real address of the reporting cache
1174 * line pair
1176 * Output:
1177 * - None
1179 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1180 sPAPRMachineState *spapr,
1181 target_ulong opcode,
1182 target_ulong *args)
1184 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1185 return H_FUNCTION;
1189 * H_STATE should be returned if a H_INT_RESET is in progress.
1190 * This is not needed when running the emulation under QEMU
1193 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1194 return H_FUNCTION;
1198 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1199 * real address of the reporting cache line pair set for the input
1200 * "target". If no reporting cache line pair has been set, -1 is
1201 * returned.
1203 * Parameters:
1204 * Input:
1205 * - R4: "flags"
1206 * Bits 0-63: Reserved
1207 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1208 * "ibm,ppc-interrupt-gserver#s"
1209 * - R6: "reportingLine": The logical real address of the reporting
1210 * cache line pair
1212 * Output:
1213 * - R4: The logical real address of the reporting line if set, else -1
1215 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1216 sPAPRMachineState *spapr,
1217 target_ulong opcode,
1218 target_ulong *args)
1220 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1221 return H_FUNCTION;
1225 * H_STATE should be returned if a H_INT_RESET is in progress.
1226 * This is not needed when running the emulation under QEMU
1229 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1230 return H_FUNCTION;
1234 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1235 * page for the input "lisn". This hcall is only supported for LISNs
1236 * that have the ESB hcall flag set to 1 when returned from hcall()
1237 * H_INT_GET_SOURCE_INFO.
1239 * Parameters:
1240 * Input:
1241 * - R4: "flags"
1242 * Bits 0-62: Reserved
1243 * bit 63: Store: Store=1, store operation, else load operation
1244 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1245 * "ibm,xive-lisn-ranges" properties, or as returned by the
1246 * ibm,query-interrupt-source-number RTAS call, or as
1247 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1248 * - R6: "esbOffset" is the offset into the ESB page for the load or
1249 * store operation
1250 * - R7: "storeData" is the data to write for a store operation
1252 * Output:
1253 * - R4: The value of the load if load operation, else -1
1256 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1258 static target_ulong h_int_esb(PowerPCCPU *cpu,
1259 sPAPRMachineState *spapr,
1260 target_ulong opcode,
1261 target_ulong *args)
1263 sPAPRXive *xive = spapr->xive;
1264 XiveEAS eas;
1265 target_ulong flags = args[0];
1266 target_ulong lisn = args[1];
1267 target_ulong offset = args[2];
1268 target_ulong data = args[3];
1269 hwaddr mmio_addr;
1270 XiveSource *xsrc = &xive->source;
1272 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1273 return H_FUNCTION;
1276 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1277 return H_PARAMETER;
1280 if (lisn >= xive->nr_irqs) {
1281 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1282 lisn);
1283 return H_P2;
1286 eas = xive->eat[lisn];
1287 if (!xive_eas_is_valid(&eas)) {
1288 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1289 lisn);
1290 return H_P2;
1293 if (offset > (1ull << xsrc->esb_shift)) {
1294 return H_P3;
1297 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1299 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1300 (flags & SPAPR_XIVE_ESB_STORE))) {
1301 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1302 HWADDR_PRIx "\n", mmio_addr);
1303 return H_HARDWARE;
1305 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1306 return H_SUCCESS;
1310 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1311 * ensure any in flight events for the input lisn are in the event
1312 * queue.
1314 * Parameters:
1315 * Input:
1316 * - R4: "flags"
1317 * Bits 0-63: Reserved
1318 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1319 * "ibm,xive-lisn-ranges" properties, or as returned by the
1320 * ibm,query-interrupt-source-number RTAS call, or as
1321 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1323 * Output:
1324 * - None
1326 static target_ulong h_int_sync(PowerPCCPU *cpu,
1327 sPAPRMachineState *spapr,
1328 target_ulong opcode,
1329 target_ulong *args)
1331 sPAPRXive *xive = spapr->xive;
1332 XiveEAS eas;
1333 target_ulong flags = args[0];
1334 target_ulong lisn = args[1];
1336 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1337 return H_FUNCTION;
1340 if (flags) {
1341 return H_PARAMETER;
1344 if (lisn >= xive->nr_irqs) {
1345 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1346 lisn);
1347 return H_P2;
1350 eas = xive->eat[lisn];
1351 if (!xive_eas_is_valid(&eas)) {
1352 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1353 lisn);
1354 return H_P2;
1358 * H_STATE should be returned if a H_INT_RESET is in progress.
1359 * This is not needed when running the emulation under QEMU
1362 /* This is not real hardware. Nothing to be done */
1363 return H_SUCCESS;
1367 * The H_INT_RESET hcall() is used to reset all of the partition's
1368 * interrupt exploitation structures to their initial state. This
1369 * means losing all previously set interrupt state set via
1370 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1372 * Parameters:
1373 * Input:
1374 * - R4: "flags"
1375 * Bits 0-63: Reserved
1377 * Output:
1378 * - None
1380 static target_ulong h_int_reset(PowerPCCPU *cpu,
1381 sPAPRMachineState *spapr,
1382 target_ulong opcode,
1383 target_ulong *args)
1385 sPAPRXive *xive = spapr->xive;
1386 target_ulong flags = args[0];
1388 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1389 return H_FUNCTION;
1392 if (flags) {
1393 return H_PARAMETER;
1396 device_reset(DEVICE(xive));
1397 return H_SUCCESS;
1400 void spapr_xive_hcall_init(sPAPRMachineState *spapr)
1402 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1403 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1404 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1405 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1406 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1407 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1408 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1409 h_int_set_os_reporting_line);
1410 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1411 h_int_get_os_reporting_line);
1412 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1413 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1414 spapr_register_hypercall(H_INT_RESET, h_int_reset);
1417 void spapr_dt_xive(sPAPRMachineState *spapr, uint32_t nr_servers, void *fdt,
1418 uint32_t phandle)
1420 sPAPRXive *xive = spapr->xive;
1421 int node;
1422 uint64_t timas[2 * 2];
1423 /* Interrupt number ranges for the IPIs */
1424 uint32_t lisn_ranges[] = {
1425 cpu_to_be32(0),
1426 cpu_to_be32(nr_servers),
1429 * EQ size - the sizes of pages supported by the system 4K, 64K,
1430 * 2M, 16M. We only advertise 64K for the moment.
1432 uint32_t eq_sizes[] = {
1433 cpu_to_be32(16), /* 64K */
1436 * The following array is in sync with the reserved priorities
1437 * defined by the 'spapr_xive_priority_is_reserved' routine.
1439 uint32_t plat_res_int_priorities[] = {
1440 cpu_to_be32(7), /* start */
1441 cpu_to_be32(0xf8), /* count */
1443 gchar *nodename;
1445 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
1446 timas[0] = cpu_to_be64(xive->tm_base +
1447 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
1448 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
1449 timas[2] = cpu_to_be64(xive->tm_base +
1450 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
1451 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
1453 nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
1454 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
1455 _FDT(node = fdt_add_subnode(fdt, 0, nodename));
1456 g_free(nodename);
1458 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
1459 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
1461 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
1462 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
1463 sizeof(eq_sizes)));
1464 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
1465 sizeof(lisn_ranges)));
1467 /* For Linux to link the LSIs to the interrupt controller. */
1468 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
1469 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
1471 /* For SLOF */
1472 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
1473 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
1476 * The "ibm,plat-res-int-priorities" property defines the priority
1477 * ranges reserved by the hypervisor
1479 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
1480 plat_res_int_priorities, sizeof(plat_res_int_priorities)));