2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
30 #define DPRINTF(fmt, ...) \
31 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
33 #define DPRINTF(fmt, ...) do {} while(0)
36 static const uint8_t gic_id_11mpcore
[] = {
37 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
40 static const uint8_t gic_id_gicv1
[] = {
41 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
44 static const uint8_t gic_id_gicv2
[] = {
45 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
48 static inline int gic_get_current_cpu(GICState
*s
)
51 return current_cpu
->cpu_index
;
56 /* Return true if this GIC config has interrupt groups, which is
57 * true if we're a GICv2, or a GICv1 with the security extensions.
59 static inline bool gic_has_groups(GICState
*s
)
61 return s
->revision
== 2 || s
->security_extn
;
64 /* TODO: Many places that call this routine could be optimized. */
65 /* Update interrupt status after enabled or pending bits have been changed. */
66 void gic_update(GICState
*s
)
71 int irq_level
, fiq_level
;
75 for (cpu
= 0; cpu
< s
->num_cpu
; cpu
++) {
77 s
->current_pending
[cpu
] = 1023;
78 if (!(s
->ctlr
& (GICD_CTLR_EN_GRP0
| GICD_CTLR_EN_GRP1
))
79 || !(s
->cpu_ctlr
[cpu
] & (GICC_CTLR_EN_GRP0
| GICC_CTLR_EN_GRP1
))) {
80 qemu_irq_lower(s
->parent_irq
[cpu
]);
81 qemu_irq_lower(s
->parent_fiq
[cpu
]);
86 for (irq
= 0; irq
< s
->num_irq
; irq
++) {
87 if (GIC_TEST_ENABLED(irq
, cm
) && gic_test_pending(s
, irq
, cm
) &&
88 (irq
< GIC_INTERNAL
|| GIC_TARGET(irq
) & cm
)) {
89 if (GIC_GET_PRIORITY(irq
, cpu
) < best_prio
) {
90 best_prio
= GIC_GET_PRIORITY(irq
, cpu
);
96 irq_level
= fiq_level
= 0;
98 if (best_prio
< s
->priority_mask
[cpu
]) {
99 s
->current_pending
[cpu
] = best_irq
;
100 if (best_prio
< s
->running_priority
[cpu
]) {
101 int group
= GIC_TEST_GROUP(best_irq
, cm
);
103 if (extract32(s
->ctlr
, group
, 1) &&
104 extract32(s
->cpu_ctlr
[cpu
], group
, 1)) {
105 if (group
== 0 && s
->cpu_ctlr
[cpu
] & GICC_CTLR_FIQ_EN
) {
106 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
110 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
118 qemu_set_irq(s
->parent_irq
[cpu
], irq_level
);
119 qemu_set_irq(s
->parent_fiq
[cpu
], fiq_level
);
123 void gic_set_pending_private(GICState
*s
, int cpu
, int irq
)
127 if (gic_test_pending(s
, irq
, cm
)) {
131 DPRINTF("Set %d pending cpu %d\n", irq
, cpu
);
132 GIC_SET_PENDING(irq
, cm
);
136 static void gic_set_irq_11mpcore(GICState
*s
, int irq
, int level
,
140 GIC_SET_LEVEL(irq
, cm
);
141 if (GIC_TEST_EDGE_TRIGGER(irq
) || GIC_TEST_ENABLED(irq
, cm
)) {
142 DPRINTF("Set %d pending mask %x\n", irq
, target
);
143 GIC_SET_PENDING(irq
, target
);
146 GIC_CLEAR_LEVEL(irq
, cm
);
150 static void gic_set_irq_generic(GICState
*s
, int irq
, int level
,
154 GIC_SET_LEVEL(irq
, cm
);
155 DPRINTF("Set %d pending mask %x\n", irq
, target
);
156 if (GIC_TEST_EDGE_TRIGGER(irq
)) {
157 GIC_SET_PENDING(irq
, target
);
160 GIC_CLEAR_LEVEL(irq
, cm
);
164 /* Process a change in an external IRQ input. */
165 static void gic_set_irq(void *opaque
, int irq
, int level
)
167 /* Meaning of the 'irq' parameter:
168 * [0..N-1] : external interrupts
169 * [N..N+31] : PPI (internal) interrupts for CPU 0
170 * [N+32..N+63] : PPI (internal interrupts for CPU 1
173 GICState
*s
= (GICState
*)opaque
;
175 if (irq
< (s
->num_irq
- GIC_INTERNAL
)) {
176 /* The first external input line is internal interrupt 32. */
179 target
= GIC_TARGET(irq
);
182 irq
-= (s
->num_irq
- GIC_INTERNAL
);
183 cpu
= irq
/ GIC_INTERNAL
;
189 assert(irq
>= GIC_NR_SGIS
);
191 if (level
== GIC_TEST_LEVEL(irq
, cm
)) {
195 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
196 gic_set_irq_11mpcore(s
, irq
, level
, cm
, target
);
198 gic_set_irq_generic(s
, irq
, level
, cm
, target
);
204 static uint16_t gic_get_current_pending_irq(GICState
*s
, int cpu
,
207 uint16_t pending_irq
= s
->current_pending
[cpu
];
209 if (pending_irq
< GIC_MAXIRQ
&& gic_has_groups(s
)) {
210 int group
= GIC_TEST_GROUP(pending_irq
, (1 << cpu
));
211 /* On a GIC without the security extensions, reading this register
212 * behaves in the same way as a secure access to a GIC with them.
214 bool secure
= !s
->security_extn
|| attrs
.secure
;
216 if (group
== 0 && !secure
) {
217 /* Group0 interrupts hidden from Non-secure access */
220 if (group
== 1 && secure
&& !(s
->cpu_ctlr
[cpu
] & GICC_CTLR_ACK_CTL
)) {
221 /* Group1 interrupts only seen by Secure access if
230 static int gic_get_group_priority(GICState
*s
, int cpu
, int irq
)
232 /* Return the group priority of the specified interrupt
233 * (which is the top bits of its priority, with the number
234 * of bits masked determined by the applicable binary point register).
239 if (gic_has_groups(s
) &&
240 !(s
->cpu_ctlr
[cpu
] & GICC_CTLR_CBPR
) &&
241 GIC_TEST_GROUP(irq
, (1 << cpu
))) {
247 /* a BPR of 0 means the group priority bits are [7:1];
248 * a BPR of 1 means they are [7:2], and so on down to
249 * a BPR of 7 meaning no group priority bits at all.
251 mask
= ~0U << ((bpr
& 7) + 1);
253 return GIC_GET_PRIORITY(irq
, cpu
) & mask
;
256 static void gic_activate_irq(GICState
*s
, int cpu
, int irq
)
258 /* Set the appropriate Active Priority Register bit for this IRQ,
259 * and update the running priority.
261 int prio
= gic_get_group_priority(s
, cpu
, irq
);
262 int preemption_level
= prio
>> (GIC_MIN_BPR
+ 1);
263 int regno
= preemption_level
/ 32;
264 int bitno
= preemption_level
% 32;
266 if (gic_has_groups(s
) && GIC_TEST_GROUP(irq
, (1 << cpu
))) {
267 s
->nsapr
[regno
][cpu
] |= (1 << bitno
);
269 s
->apr
[regno
][cpu
] |= (1 << bitno
);
272 s
->running_priority
[cpu
] = prio
;
273 GIC_SET_ACTIVE(irq
, 1 << cpu
);
276 static int gic_get_prio_from_apr_bits(GICState
*s
, int cpu
)
278 /* Recalculate the current running priority for this CPU based
279 * on the set bits in the Active Priority Registers.
282 for (i
= 0; i
< GIC_NR_APRS
; i
++) {
283 uint32_t apr
= s
->apr
[i
][cpu
] | s
->nsapr
[i
][cpu
];
287 return (i
* 32 + ctz32(apr
)) << (GIC_MIN_BPR
+ 1);
292 static void gic_drop_prio(GICState
*s
, int cpu
, int group
)
294 /* Drop the priority of the currently active interrupt in the
297 * Note that we can guarantee (because of the requirement to nest
298 * GICC_IAR reads [which activate an interrupt and raise priority]
299 * with GICC_EOIR writes [which drop the priority for the interrupt])
300 * that the interrupt we're being called for is the highest priority
301 * active interrupt, meaning that it has the lowest set bit in the
304 * If the guest does not honour the ordering constraints then the
305 * behaviour of the GIC is UNPREDICTABLE, which for us means that
306 * the values of the APR registers might become incorrect and the
307 * running priority will be wrong, so interrupts that should preempt
308 * might not do so, and interrupts that should not preempt might do so.
312 for (i
= 0; i
< GIC_NR_APRS
; i
++) {
313 uint32_t *papr
= group
? &s
->nsapr
[i
][cpu
] : &s
->apr
[i
][cpu
];
317 /* Clear lowest set bit */
322 s
->running_priority
[cpu
] = gic_get_prio_from_apr_bits(s
, cpu
);
325 uint32_t gic_acknowledge_irq(GICState
*s
, int cpu
, MemTxAttrs attrs
)
330 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
331 * for the case where this GIC supports grouping and the pending interrupt
332 * is in the wrong group.
334 irq
= gic_get_current_pending_irq(s
, cpu
, attrs
);
336 if (irq
>= GIC_MAXIRQ
) {
337 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq
);
341 if (GIC_GET_PRIORITY(irq
, cpu
) >= s
->running_priority
[cpu
]) {
342 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq
);
346 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
347 /* Clear pending flags for both level and edge triggered interrupts.
348 * Level triggered IRQs will be reasserted once they become inactive.
350 GIC_CLEAR_PENDING(irq
, GIC_TEST_MODEL(irq
) ? ALL_CPU_MASK
: cm
);
353 if (irq
< GIC_NR_SGIS
) {
354 /* Lookup the source CPU for the SGI and clear this in the
355 * sgi_pending map. Return the src and clear the overall pending
356 * state on this CPU if the SGI is not pending from any CPUs.
358 assert(s
->sgi_pending
[irq
][cpu
] != 0);
359 src
= ctz32(s
->sgi_pending
[irq
][cpu
]);
360 s
->sgi_pending
[irq
][cpu
] &= ~(1 << src
);
361 if (s
->sgi_pending
[irq
][cpu
] == 0) {
362 GIC_CLEAR_PENDING(irq
, GIC_TEST_MODEL(irq
) ? ALL_CPU_MASK
: cm
);
364 ret
= irq
| ((src
& 0x7) << 10);
366 /* Clear pending state for both level and edge triggered
367 * interrupts. (level triggered interrupts with an active line
368 * remain pending, see gic_test_pending)
370 GIC_CLEAR_PENDING(irq
, GIC_TEST_MODEL(irq
) ? ALL_CPU_MASK
: cm
);
375 gic_activate_irq(s
, cpu
, irq
);
377 DPRINTF("ACK %d\n", irq
);
381 void gic_set_priority(GICState
*s
, int cpu
, int irq
, uint8_t val
,
384 if (s
->security_extn
&& !attrs
.secure
) {
385 if (!GIC_TEST_GROUP(irq
, (1 << cpu
))) {
386 return; /* Ignore Non-secure access of Group0 IRQ */
388 val
= 0x80 | (val
>> 1); /* Non-secure view */
391 if (irq
< GIC_INTERNAL
) {
392 s
->priority1
[irq
][cpu
] = val
;
394 s
->priority2
[(irq
) - GIC_INTERNAL
] = val
;
398 static uint32_t gic_get_priority(GICState
*s
, int cpu
, int irq
,
401 uint32_t prio
= GIC_GET_PRIORITY(irq
, cpu
);
403 if (s
->security_extn
&& !attrs
.secure
) {
404 if (!GIC_TEST_GROUP(irq
, (1 << cpu
))) {
405 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
407 prio
= (prio
<< 1) & 0xff; /* Non-secure view */
412 static void gic_set_priority_mask(GICState
*s
, int cpu
, uint8_t pmask
,
415 if (s
->security_extn
&& !attrs
.secure
) {
416 if (s
->priority_mask
[cpu
] & 0x80) {
417 /* Priority Mask in upper half */
418 pmask
= 0x80 | (pmask
>> 1);
420 /* Non-secure write ignored if priority mask is in lower half */
424 s
->priority_mask
[cpu
] = pmask
;
427 static uint32_t gic_get_priority_mask(GICState
*s
, int cpu
, MemTxAttrs attrs
)
429 uint32_t pmask
= s
->priority_mask
[cpu
];
431 if (s
->security_extn
&& !attrs
.secure
) {
433 /* Priority Mask in upper half, return Non-secure view */
434 pmask
= (pmask
<< 1) & 0xff;
436 /* Priority Mask in lower half, RAZ */
443 static uint32_t gic_get_cpu_control(GICState
*s
, int cpu
, MemTxAttrs attrs
)
445 uint32_t ret
= s
->cpu_ctlr
[cpu
];
447 if (s
->security_extn
&& !attrs
.secure
) {
448 /* Construct the NS banked view of GICC_CTLR from the correct
449 * bits of the S banked view. We don't need to move the bypass
450 * control bits because we don't implement that (IMPDEF) part
451 * of the GIC architecture.
453 ret
= (ret
& (GICC_CTLR_EN_GRP1
| GICC_CTLR_EOIMODE_NS
)) >> 1;
458 static void gic_set_cpu_control(GICState
*s
, int cpu
, uint32_t value
,
463 if (s
->security_extn
&& !attrs
.secure
) {
464 /* The NS view can only write certain bits in the register;
465 * the rest are unchanged
467 mask
= GICC_CTLR_EN_GRP1
;
468 if (s
->revision
== 2) {
469 mask
|= GICC_CTLR_EOIMODE_NS
;
471 s
->cpu_ctlr
[cpu
] &= ~mask
;
472 s
->cpu_ctlr
[cpu
] |= (value
<< 1) & mask
;
474 if (s
->revision
== 2) {
475 mask
= s
->security_extn
? GICC_CTLR_V2_S_MASK
: GICC_CTLR_V2_MASK
;
477 mask
= s
->security_extn
? GICC_CTLR_V1_S_MASK
: GICC_CTLR_V1_MASK
;
479 s
->cpu_ctlr
[cpu
] = value
& mask
;
481 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
482 "Group1 Interrupts %sabled\n", cpu
,
483 (s
->cpu_ctlr
[cpu
] & GICC_CTLR_EN_GRP0
) ? "En" : "Dis",
484 (s
->cpu_ctlr
[cpu
] & GICC_CTLR_EN_GRP1
) ? "En" : "Dis");
487 static uint8_t gic_get_running_priority(GICState
*s
, int cpu
, MemTxAttrs attrs
)
489 if (s
->security_extn
&& !attrs
.secure
) {
490 if (s
->running_priority
[cpu
] & 0x80) {
491 /* Running priority in upper half of range: return the Non-secure
492 * view of the priority.
494 return s
->running_priority
[cpu
] << 1;
496 /* Running priority in lower half of range: RAZ */
500 return s
->running_priority
[cpu
];
504 /* Return true if we should split priority drop and interrupt deactivation,
505 * ie whether the relevant EOIMode bit is set.
507 static bool gic_eoi_split(GICState
*s
, int cpu
, MemTxAttrs attrs
)
509 if (s
->revision
!= 2) {
510 /* Before GICv2 prio-drop and deactivate are not separable */
513 if (s
->security_extn
&& !attrs
.secure
) {
514 return s
->cpu_ctlr
[cpu
] & GICC_CTLR_EOIMODE_NS
;
516 return s
->cpu_ctlr
[cpu
] & GICC_CTLR_EOIMODE
;
519 static void gic_deactivate_irq(GICState
*s
, int cpu
, int irq
, MemTxAttrs attrs
)
522 int group
= gic_has_groups(s
) && GIC_TEST_GROUP(irq
, cm
);
524 if (!gic_eoi_split(s
, cpu
, attrs
)) {
525 /* This is UNPREDICTABLE; we choose to ignore it */
526 qemu_log_mask(LOG_GUEST_ERROR
,
527 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
531 if (s
->security_extn
&& !attrs
.secure
&& !group
) {
532 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq
);
536 GIC_CLEAR_ACTIVE(irq
, cm
);
539 void gic_complete_irq(GICState
*s
, int cpu
, int irq
, MemTxAttrs attrs
)
544 DPRINTF("EOI %d\n", irq
);
545 if (irq
>= s
->num_irq
) {
546 /* This handles two cases:
547 * 1. If software writes the ID of a spurious interrupt [ie 1023]
548 * to the GICC_EOIR, the GIC ignores that write.
549 * 2. If software writes the number of a non-existent interrupt
550 * this must be a subcase of "value written does not match the last
551 * valid interrupt value read from the Interrupt Acknowledge
552 * register" and so this is UNPREDICTABLE. We choose to ignore it.
556 if (s
->running_priority
[cpu
] == 0x100) {
557 return; /* No active IRQ. */
560 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
561 /* Mark level triggered interrupts as pending if they are still
563 if (!GIC_TEST_EDGE_TRIGGER(irq
) && GIC_TEST_ENABLED(irq
, cm
)
564 && GIC_TEST_LEVEL(irq
, cm
) && (GIC_TARGET(irq
) & cm
) != 0) {
565 DPRINTF("Set %d pending mask %x\n", irq
, cm
);
566 GIC_SET_PENDING(irq
, cm
);
570 group
= gic_has_groups(s
) && GIC_TEST_GROUP(irq
, cm
);
572 if (s
->security_extn
&& !attrs
.secure
&& !group
) {
573 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq
);
577 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
578 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
579 * i.e. go ahead and complete the irq anyway.
582 gic_drop_prio(s
, cpu
, group
);
584 /* In GICv2 the guest can choose to split priority-drop and deactivate */
585 if (!gic_eoi_split(s
, cpu
, attrs
)) {
586 GIC_CLEAR_ACTIVE(irq
, cm
);
591 static uint32_t gic_dist_readb(void *opaque
, hwaddr offset
, MemTxAttrs attrs
)
593 GICState
*s
= (GICState
*)opaque
;
601 cpu
= gic_get_current_cpu(s
);
603 if (offset
< 0x100) {
604 if (offset
== 0) { /* GICD_CTLR */
605 if (s
->security_extn
&& !attrs
.secure
) {
606 /* The NS bank of this register is just an alias of the
607 * EnableGrp1 bit in the S bank version.
609 return extract32(s
->ctlr
, 1, 1);
615 /* Interrupt Controller Type Register */
616 return ((s
->num_irq
/ 32) - 1)
617 | ((s
->num_cpu
- 1) << 5)
618 | (s
->security_extn
<< 10);
621 if (offset
>= 0x80) {
622 /* Interrupt Group Registers: these RAZ/WI if this is an NS
623 * access to a GIC with the security extensions, or if the GIC
624 * doesn't have groups at all.
627 if (!(s
->security_extn
&& !attrs
.secure
) && gic_has_groups(s
)) {
628 /* Every byte offset holds 8 group status bits */
629 irq
= (offset
- 0x080) * 8 + GIC_BASE_IRQ
;
630 if (irq
>= s
->num_irq
) {
633 for (i
= 0; i
< 8; i
++) {
634 if (GIC_TEST_GROUP(irq
+ i
, cm
)) {
642 } else if (offset
< 0x200) {
643 /* Interrupt Set/Clear Enable. */
645 irq
= (offset
- 0x100) * 8;
647 irq
= (offset
- 0x180) * 8;
649 if (irq
>= s
->num_irq
)
652 for (i
= 0; i
< 8; i
++) {
653 if (GIC_TEST_ENABLED(irq
+ i
, cm
)) {
657 } else if (offset
< 0x300) {
658 /* Interrupt Set/Clear Pending. */
660 irq
= (offset
- 0x200) * 8;
662 irq
= (offset
- 0x280) * 8;
664 if (irq
>= s
->num_irq
)
667 mask
= (irq
< GIC_INTERNAL
) ? cm
: ALL_CPU_MASK
;
668 for (i
= 0; i
< 8; i
++) {
669 if (gic_test_pending(s
, irq
+ i
, mask
)) {
673 } else if (offset
< 0x400) {
674 /* Interrupt Active. */
675 irq
= (offset
- 0x300) * 8 + GIC_BASE_IRQ
;
676 if (irq
>= s
->num_irq
)
679 mask
= (irq
< GIC_INTERNAL
) ? cm
: ALL_CPU_MASK
;
680 for (i
= 0; i
< 8; i
++) {
681 if (GIC_TEST_ACTIVE(irq
+ i
, mask
)) {
685 } else if (offset
< 0x800) {
686 /* Interrupt Priority. */
687 irq
= (offset
- 0x400) + GIC_BASE_IRQ
;
688 if (irq
>= s
->num_irq
)
690 res
= gic_get_priority(s
, cpu
, irq
, attrs
);
691 } else if (offset
< 0xc00) {
692 /* Interrupt CPU Target. */
693 if (s
->num_cpu
== 1 && s
->revision
!= REV_11MPCORE
) {
694 /* For uniprocessor GICs these RAZ/WI */
697 irq
= (offset
- 0x800) + GIC_BASE_IRQ
;
698 if (irq
>= s
->num_irq
) {
701 if (irq
>= 29 && irq
<= 31) {
704 res
= GIC_TARGET(irq
);
707 } else if (offset
< 0xf00) {
708 /* Interrupt Configuration. */
709 irq
= (offset
- 0xc00) * 4 + GIC_BASE_IRQ
;
710 if (irq
>= s
->num_irq
)
713 for (i
= 0; i
< 4; i
++) {
714 if (GIC_TEST_MODEL(irq
+ i
))
715 res
|= (1 << (i
* 2));
716 if (GIC_TEST_EDGE_TRIGGER(irq
+ i
))
717 res
|= (2 << (i
* 2));
719 } else if (offset
< 0xf10) {
721 } else if (offset
< 0xf30) {
722 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
726 if (offset
< 0xf20) {
727 /* GICD_CPENDSGIRn */
728 irq
= (offset
- 0xf10);
730 irq
= (offset
- 0xf20);
731 /* GICD_SPENDSGIRn */
734 res
= s
->sgi_pending
[irq
][cpu
];
735 } else if (offset
< 0xfd0) {
737 } else if (offset
< 0x1000) {
741 switch (s
->revision
) {
743 res
= gic_id_11mpcore
[(offset
- 0xfd0) >> 2];
746 res
= gic_id_gicv1
[(offset
- 0xfd0) >> 2];
749 res
= gic_id_gicv2
[(offset
- 0xfd0) >> 2];
752 /* Shouldn't be able to get here */
759 g_assert_not_reached();
763 qemu_log_mask(LOG_GUEST_ERROR
,
764 "gic_dist_readb: Bad offset %x\n", (int)offset
);
768 static MemTxResult
gic_dist_read(void *opaque
, hwaddr offset
, uint64_t *data
,
769 unsigned size
, MemTxAttrs attrs
)
773 *data
= gic_dist_readb(opaque
, offset
, attrs
);
776 *data
= gic_dist_readb(opaque
, offset
, attrs
);
777 *data
|= gic_dist_readb(opaque
, offset
+ 1, attrs
) << 8;
780 *data
= gic_dist_readb(opaque
, offset
, attrs
);
781 *data
|= gic_dist_readb(opaque
, offset
+ 1, attrs
) << 8;
782 *data
|= gic_dist_readb(opaque
, offset
+ 2, attrs
) << 16;
783 *data
|= gic_dist_readb(opaque
, offset
+ 3, attrs
) << 24;
790 static void gic_dist_writeb(void *opaque
, hwaddr offset
,
791 uint32_t value
, MemTxAttrs attrs
)
793 GICState
*s
= (GICState
*)opaque
;
798 cpu
= gic_get_current_cpu(s
);
799 if (offset
< 0x100) {
801 if (s
->security_extn
&& !attrs
.secure
) {
802 /* NS version is just an alias of the S version's bit 1 */
803 s
->ctlr
= deposit32(s
->ctlr
, 1, 1, value
);
804 } else if (gic_has_groups(s
)) {
805 s
->ctlr
= value
& (GICD_CTLR_EN_GRP0
| GICD_CTLR_EN_GRP1
);
807 s
->ctlr
= value
& GICD_CTLR_EN_GRP0
;
809 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
810 s
->ctlr
& GICD_CTLR_EN_GRP0
? "En" : "Dis",
811 s
->ctlr
& GICD_CTLR_EN_GRP1
? "En" : "Dis");
812 } else if (offset
< 4) {
814 } else if (offset
>= 0x80) {
815 /* Interrupt Group Registers: RAZ/WI for NS access to secure
816 * GIC, or for GICs without groups.
818 if (!(s
->security_extn
&& !attrs
.secure
) && gic_has_groups(s
)) {
819 /* Every byte offset holds 8 group status bits */
820 irq
= (offset
- 0x80) * 8 + GIC_BASE_IRQ
;
821 if (irq
>= s
->num_irq
) {
824 for (i
= 0; i
< 8; i
++) {
825 /* Group bits are banked for private interrupts */
826 int cm
= (irq
< GIC_INTERNAL
) ? (1 << cpu
) : ALL_CPU_MASK
;
827 if (value
& (1 << i
)) {
828 /* Group1 (Non-secure) */
829 GIC_SET_GROUP(irq
+ i
, cm
);
831 /* Group0 (Secure) */
832 GIC_CLEAR_GROUP(irq
+ i
, cm
);
839 } else if (offset
< 0x180) {
840 /* Interrupt Set Enable. */
841 irq
= (offset
- 0x100) * 8 + GIC_BASE_IRQ
;
842 if (irq
>= s
->num_irq
)
844 if (irq
< GIC_NR_SGIS
) {
848 for (i
= 0; i
< 8; i
++) {
849 if (value
& (1 << i
)) {
851 (irq
< GIC_INTERNAL
) ? (1 << cpu
) : GIC_TARGET(irq
+ i
);
852 int cm
= (irq
< GIC_INTERNAL
) ? (1 << cpu
) : ALL_CPU_MASK
;
854 if (!GIC_TEST_ENABLED(irq
+ i
, cm
)) {
855 DPRINTF("Enabled IRQ %d\n", irq
+ i
);
857 GIC_SET_ENABLED(irq
+ i
, cm
);
858 /* If a raised level triggered IRQ enabled then mark
860 if (GIC_TEST_LEVEL(irq
+ i
, mask
)
861 && !GIC_TEST_EDGE_TRIGGER(irq
+ i
)) {
862 DPRINTF("Set %d pending mask %x\n", irq
+ i
, mask
);
863 GIC_SET_PENDING(irq
+ i
, mask
);
867 } else if (offset
< 0x200) {
868 /* Interrupt Clear Enable. */
869 irq
= (offset
- 0x180) * 8 + GIC_BASE_IRQ
;
870 if (irq
>= s
->num_irq
)
872 if (irq
< GIC_NR_SGIS
) {
876 for (i
= 0; i
< 8; i
++) {
877 if (value
& (1 << i
)) {
878 int cm
= (irq
< GIC_INTERNAL
) ? (1 << cpu
) : ALL_CPU_MASK
;
880 if (GIC_TEST_ENABLED(irq
+ i
, cm
)) {
881 DPRINTF("Disabled IRQ %d\n", irq
+ i
);
883 GIC_CLEAR_ENABLED(irq
+ i
, cm
);
886 } else if (offset
< 0x280) {
887 /* Interrupt Set Pending. */
888 irq
= (offset
- 0x200) * 8 + GIC_BASE_IRQ
;
889 if (irq
>= s
->num_irq
)
891 if (irq
< GIC_NR_SGIS
) {
895 for (i
= 0; i
< 8; i
++) {
896 if (value
& (1 << i
)) {
897 GIC_SET_PENDING(irq
+ i
, GIC_TARGET(irq
+ i
));
900 } else if (offset
< 0x300) {
901 /* Interrupt Clear Pending. */
902 irq
= (offset
- 0x280) * 8 + GIC_BASE_IRQ
;
903 if (irq
>= s
->num_irq
)
905 if (irq
< GIC_NR_SGIS
) {
909 for (i
= 0; i
< 8; i
++) {
910 /* ??? This currently clears the pending bit for all CPUs, even
911 for per-CPU interrupts. It's unclear whether this is the
913 if (value
& (1 << i
)) {
914 GIC_CLEAR_PENDING(irq
+ i
, ALL_CPU_MASK
);
917 } else if (offset
< 0x400) {
918 /* Interrupt Active. */
920 } else if (offset
< 0x800) {
921 /* Interrupt Priority. */
922 irq
= (offset
- 0x400) + GIC_BASE_IRQ
;
923 if (irq
>= s
->num_irq
)
925 gic_set_priority(s
, cpu
, irq
, value
, attrs
);
926 } else if (offset
< 0xc00) {
927 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
928 * annoying exception of the 11MPCore's GIC.
930 if (s
->num_cpu
!= 1 || s
->revision
== REV_11MPCORE
) {
931 irq
= (offset
- 0x800) + GIC_BASE_IRQ
;
932 if (irq
>= s
->num_irq
) {
937 } else if (irq
< GIC_INTERNAL
) {
938 value
= ALL_CPU_MASK
;
940 s
->irq_target
[irq
] = value
& ALL_CPU_MASK
;
942 } else if (offset
< 0xf00) {
943 /* Interrupt Configuration. */
944 irq
= (offset
- 0xc00) * 4 + GIC_BASE_IRQ
;
945 if (irq
>= s
->num_irq
)
947 if (irq
< GIC_NR_SGIS
)
949 for (i
= 0; i
< 4; i
++) {
950 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
951 if (value
& (1 << (i
* 2))) {
952 GIC_SET_MODEL(irq
+ i
);
954 GIC_CLEAR_MODEL(irq
+ i
);
957 if (value
& (2 << (i
* 2))) {
958 GIC_SET_EDGE_TRIGGER(irq
+ i
);
960 GIC_CLEAR_EDGE_TRIGGER(irq
+ i
);
963 } else if (offset
< 0xf10) {
964 /* 0xf00 is only handled for 32-bit writes. */
966 } else if (offset
< 0xf20) {
967 /* GICD_CPENDSGIRn */
968 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
971 irq
= (offset
- 0xf10);
973 s
->sgi_pending
[irq
][cpu
] &= ~value
;
974 if (s
->sgi_pending
[irq
][cpu
] == 0) {
975 GIC_CLEAR_PENDING(irq
, 1 << cpu
);
977 } else if (offset
< 0xf30) {
978 /* GICD_SPENDSGIRn */
979 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
982 irq
= (offset
- 0xf20);
984 GIC_SET_PENDING(irq
, 1 << cpu
);
985 s
->sgi_pending
[irq
][cpu
] |= value
;
992 qemu_log_mask(LOG_GUEST_ERROR
,
993 "gic_dist_writeb: Bad offset %x\n", (int)offset
);
996 static void gic_dist_writew(void *opaque
, hwaddr offset
,
997 uint32_t value
, MemTxAttrs attrs
)
999 gic_dist_writeb(opaque
, offset
, value
& 0xff, attrs
);
1000 gic_dist_writeb(opaque
, offset
+ 1, value
>> 8, attrs
);
1003 static void gic_dist_writel(void *opaque
, hwaddr offset
,
1004 uint32_t value
, MemTxAttrs attrs
)
1006 GICState
*s
= (GICState
*)opaque
;
1007 if (offset
== 0xf00) {
1013 cpu
= gic_get_current_cpu(s
);
1014 irq
= value
& 0x3ff;
1015 switch ((value
>> 24) & 3) {
1017 mask
= (value
>> 16) & ALL_CPU_MASK
;
1020 mask
= ALL_CPU_MASK
^ (1 << cpu
);
1026 DPRINTF("Bad Soft Int target filter\n");
1027 mask
= ALL_CPU_MASK
;
1030 GIC_SET_PENDING(irq
, mask
);
1031 target_cpu
= ctz32(mask
);
1032 while (target_cpu
< GIC_NCPU
) {
1033 s
->sgi_pending
[irq
][target_cpu
] |= (1 << cpu
);
1034 mask
&= ~(1 << target_cpu
);
1035 target_cpu
= ctz32(mask
);
1040 gic_dist_writew(opaque
, offset
, value
& 0xffff, attrs
);
1041 gic_dist_writew(opaque
, offset
+ 2, value
>> 16, attrs
);
1044 static MemTxResult
gic_dist_write(void *opaque
, hwaddr offset
, uint64_t data
,
1045 unsigned size
, MemTxAttrs attrs
)
1049 gic_dist_writeb(opaque
, offset
, data
, attrs
);
1052 gic_dist_writew(opaque
, offset
, data
, attrs
);
1055 gic_dist_writel(opaque
, offset
, data
, attrs
);
1062 static inline uint32_t gic_apr_ns_view(GICState
*s
, int cpu
, int regno
)
1064 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1065 * second half of GICC_NSAPR.
1067 switch (GIC_MIN_BPR
) {
1070 return s
->nsapr
[regno
+ 2][cpu
];
1075 return s
->nsapr
[regno
+ 1][cpu
];
1080 return extract32(s
->nsapr
[0][cpu
], 16, 16);
1085 return extract32(s
->nsapr
[0][cpu
], 8, 8);
1089 g_assert_not_reached();
1094 static inline void gic_apr_write_ns_view(GICState
*s
, int cpu
, int regno
,
1097 /* Write the Nonsecure view of GICC_APR<regno>. */
1098 switch (GIC_MIN_BPR
) {
1101 s
->nsapr
[regno
+ 2][cpu
] = value
;
1106 s
->nsapr
[regno
+ 1][cpu
] = value
;
1111 s
->nsapr
[0][cpu
] = deposit32(s
->nsapr
[0][cpu
], 16, 16, value
);
1116 s
->nsapr
[0][cpu
] = deposit32(s
->nsapr
[0][cpu
], 8, 8, value
);
1120 g_assert_not_reached();
1124 static MemTxResult
gic_cpu_read(GICState
*s
, int cpu
, int offset
,
1125 uint64_t *data
, MemTxAttrs attrs
)
1128 case 0x00: /* Control */
1129 *data
= gic_get_cpu_control(s
, cpu
, attrs
);
1131 case 0x04: /* Priority mask */
1132 *data
= gic_get_priority_mask(s
, cpu
, attrs
);
1134 case 0x08: /* Binary Point */
1135 if (s
->security_extn
&& !attrs
.secure
) {
1136 /* BPR is banked. Non-secure copy stored in ABPR. */
1137 *data
= s
->abpr
[cpu
];
1139 *data
= s
->bpr
[cpu
];
1142 case 0x0c: /* Acknowledge */
1143 *data
= gic_acknowledge_irq(s
, cpu
, attrs
);
1145 case 0x14: /* Running Priority */
1146 *data
= gic_get_running_priority(s
, cpu
, attrs
);
1148 case 0x18: /* Highest Pending Interrupt */
1149 *data
= gic_get_current_pending_irq(s
, cpu
, attrs
);
1151 case 0x1c: /* Aliased Binary Point */
1152 /* GIC v2, no security: ABPR
1153 * GIC v1, no security: not implemented (RAZ/WI)
1154 * With security extensions, secure access: ABPR (alias of NS BPR)
1155 * With security extensions, nonsecure access: RAZ/WI
1157 if (!gic_has_groups(s
) || (s
->security_extn
&& !attrs
.secure
)) {
1160 *data
= s
->abpr
[cpu
];
1163 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1165 int regno
= (offset
- 0xd0) / 4;
1167 if (regno
>= GIC_NR_APRS
|| s
->revision
!= 2) {
1169 } else if (s
->security_extn
&& !attrs
.secure
) {
1170 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1171 *data
= gic_apr_ns_view(s
, regno
, cpu
);
1173 *data
= s
->apr
[regno
][cpu
];
1177 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1179 int regno
= (offset
- 0xe0) / 4;
1181 if (regno
>= GIC_NR_APRS
|| s
->revision
!= 2 || !gic_has_groups(s
) ||
1182 (s
->security_extn
&& !attrs
.secure
)) {
1185 *data
= s
->nsapr
[regno
][cpu
];
1190 qemu_log_mask(LOG_GUEST_ERROR
,
1191 "gic_cpu_read: Bad offset %x\n", (int)offset
);
1197 static MemTxResult
gic_cpu_write(GICState
*s
, int cpu
, int offset
,
1198 uint32_t value
, MemTxAttrs attrs
)
1201 case 0x00: /* Control */
1202 gic_set_cpu_control(s
, cpu
, value
, attrs
);
1204 case 0x04: /* Priority mask */
1205 gic_set_priority_mask(s
, cpu
, value
, attrs
);
1207 case 0x08: /* Binary Point */
1208 if (s
->security_extn
&& !attrs
.secure
) {
1209 s
->abpr
[cpu
] = MAX(value
& 0x7, GIC_MIN_ABPR
);
1211 s
->bpr
[cpu
] = MAX(value
& 0x7, GIC_MIN_BPR
);
1214 case 0x10: /* End Of Interrupt */
1215 gic_complete_irq(s
, cpu
, value
& 0x3ff, attrs
);
1217 case 0x1c: /* Aliased Binary Point */
1218 if (!gic_has_groups(s
) || (s
->security_extn
&& !attrs
.secure
)) {
1219 /* unimplemented, or NS access: RAZ/WI */
1222 s
->abpr
[cpu
] = MAX(value
& 0x7, GIC_MIN_ABPR
);
1225 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1227 int regno
= (offset
- 0xd0) / 4;
1229 if (regno
>= GIC_NR_APRS
|| s
->revision
!= 2) {
1232 if (s
->security_extn
&& !attrs
.secure
) {
1233 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1234 gic_apr_write_ns_view(s
, regno
, cpu
, value
);
1236 s
->apr
[regno
][cpu
] = value
;
1240 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1242 int regno
= (offset
- 0xe0) / 4;
1244 if (regno
>= GIC_NR_APRS
|| s
->revision
!= 2) {
1247 if (!gic_has_groups(s
) || (s
->security_extn
&& !attrs
.secure
)) {
1250 s
->nsapr
[regno
][cpu
] = value
;
1255 gic_deactivate_irq(s
, cpu
, value
& 0x3ff, attrs
);
1258 qemu_log_mask(LOG_GUEST_ERROR
,
1259 "gic_cpu_write: Bad offset %x\n", (int)offset
);
1266 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1267 static MemTxResult
gic_thiscpu_read(void *opaque
, hwaddr addr
, uint64_t *data
,
1268 unsigned size
, MemTxAttrs attrs
)
1270 GICState
*s
= (GICState
*)opaque
;
1271 return gic_cpu_read(s
, gic_get_current_cpu(s
), addr
, data
, attrs
);
1274 static MemTxResult
gic_thiscpu_write(void *opaque
, hwaddr addr
,
1275 uint64_t value
, unsigned size
,
1278 GICState
*s
= (GICState
*)opaque
;
1279 return gic_cpu_write(s
, gic_get_current_cpu(s
), addr
, value
, attrs
);
1282 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1283 * These just decode the opaque pointer into GICState* + cpu id.
1285 static MemTxResult
gic_do_cpu_read(void *opaque
, hwaddr addr
, uint64_t *data
,
1286 unsigned size
, MemTxAttrs attrs
)
1288 GICState
**backref
= (GICState
**)opaque
;
1289 GICState
*s
= *backref
;
1290 int id
= (backref
- s
->backref
);
1291 return gic_cpu_read(s
, id
, addr
, data
, attrs
);
1294 static MemTxResult
gic_do_cpu_write(void *opaque
, hwaddr addr
,
1295 uint64_t value
, unsigned size
,
1298 GICState
**backref
= (GICState
**)opaque
;
1299 GICState
*s
= *backref
;
1300 int id
= (backref
- s
->backref
);
1301 return gic_cpu_write(s
, id
, addr
, value
, attrs
);
1304 static const MemoryRegionOps gic_ops
[2] = {
1306 .read_with_attrs
= gic_dist_read
,
1307 .write_with_attrs
= gic_dist_write
,
1308 .endianness
= DEVICE_NATIVE_ENDIAN
,
1311 .read_with_attrs
= gic_thiscpu_read
,
1312 .write_with_attrs
= gic_thiscpu_write
,
1313 .endianness
= DEVICE_NATIVE_ENDIAN
,
1317 static const MemoryRegionOps gic_cpu_ops
= {
1318 .read_with_attrs
= gic_do_cpu_read
,
1319 .write_with_attrs
= gic_do_cpu_write
,
1320 .endianness
= DEVICE_NATIVE_ENDIAN
,
1323 /* This function is used by nvic model */
1324 void gic_init_irqs_and_distributor(GICState
*s
)
1326 gic_init_irqs_and_mmio(s
, gic_set_irq
, gic_ops
);
1329 static void arm_gic_realize(DeviceState
*dev
, Error
**errp
)
1331 /* Device instance realize function for the GIC sysbus device */
1333 GICState
*s
= ARM_GIC(dev
);
1334 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
1335 ARMGICClass
*agc
= ARM_GIC_GET_CLASS(s
);
1336 Error
*local_err
= NULL
;
1338 agc
->parent_realize(dev
, &local_err
);
1340 error_propagate(errp
, local_err
);
1344 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1345 gic_init_irqs_and_mmio(s
, gic_set_irq
, gic_ops
);
1347 /* Extra core-specific regions for the CPU interfaces. This is
1348 * necessary for "franken-GIC" implementations, for example on
1350 * NB that the memory region size of 0x100 applies for the 11MPCore
1351 * and also cores following the GIC v1 spec (ie A9).
1352 * GIC v2 defines a larger memory region (0x1000) so this will need
1353 * to be extended when we implement A15.
1355 for (i
= 0; i
< s
->num_cpu
; i
++) {
1357 memory_region_init_io(&s
->cpuiomem
[i
+1], OBJECT(s
), &gic_cpu_ops
,
1358 &s
->backref
[i
], "gic_cpu", 0x100);
1359 sysbus_init_mmio(sbd
, &s
->cpuiomem
[i
+1]);
1363 static void arm_gic_class_init(ObjectClass
*klass
, void *data
)
1365 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1366 ARMGICClass
*agc
= ARM_GIC_CLASS(klass
);
1368 agc
->parent_realize
= dc
->realize
;
1369 dc
->realize
= arm_gic_realize
;
1372 static const TypeInfo arm_gic_info
= {
1373 .name
= TYPE_ARM_GIC
,
1374 .parent
= TYPE_ARM_GIC_COMMON
,
1375 .instance_size
= sizeof(GICState
),
1376 .class_init
= arm_gic_class_init
,
1377 .class_size
= sizeof(ARMGICClass
),
1380 static void arm_gic_register_types(void)
1382 type_register_static(&arm_gic_info
);
1385 type_init(arm_gic_register_types
)