COLO: Add 'x-colo-lost-heartbeat' command to trigger failover
[qemu/ar7.git] / hw / arm / virt.c
blob070bbf89d419860efd2e4802a8deb62d1fd160f4
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/compat.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/virt-acpi-build.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
62 /* Number of external interrupt lines to configure the GIC with */
63 #define NUM_IRQS 256
65 #define PLATFORM_BUS_NUM_IRQS 64
67 static ARMPlatformBusSystemParams platform_bus_params;
69 typedef struct VirtBoardInfo {
70 struct arm_boot_info bootinfo;
71 const char *cpu_model;
72 const MemMapEntry *memmap;
73 const int *irqmap;
74 int smp_cpus;
75 void *fdt;
76 int fdt_size;
77 uint32_t clock_phandle;
78 uint32_t gic_phandle;
79 uint32_t msi_phandle;
80 bool using_psci;
81 } VirtBoardInfo;
83 typedef struct {
84 MachineClass parent;
85 VirtBoardInfo *daughterboard;
86 bool disallow_affinity_adjustment;
87 bool no_its;
88 } VirtMachineClass;
90 typedef struct {
91 MachineState parent;
92 bool secure;
93 bool highmem;
94 int32_t gic_version;
95 } VirtMachineState;
97 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
98 #define VIRT_MACHINE(obj) \
99 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
100 #define VIRT_MACHINE_GET_CLASS(obj) \
101 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
102 #define VIRT_MACHINE_CLASS(klass) \
103 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
106 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
107 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
108 void *data) \
110 MachineClass *mc = MACHINE_CLASS(oc); \
111 virt_machine_##major##_##minor##_options(mc); \
112 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
113 if (latest) { \
114 mc->alias = "virt"; \
117 static const TypeInfo machvirt_##major##_##minor##_info = { \
118 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
119 .parent = TYPE_VIRT_MACHINE, \
120 .instance_init = virt_##major##_##minor##_instance_init, \
121 .class_init = virt_##major##_##minor##_class_init, \
122 }; \
123 static void machvirt_machine_##major##_##minor##_init(void) \
125 type_register_static(&machvirt_##major##_##minor##_info); \
127 type_init(machvirt_machine_##major##_##minor##_init);
129 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
130 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
131 #define DEFINE_VIRT_MACHINE(major, minor) \
132 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
135 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
136 * RAM can go up to the 256GB mark, leaving 256GB of the physical
137 * address space unallocated and free for future use between 256G and 512G.
138 * If we need to provide more RAM to VMs in the future then we need to:
139 * * allocate a second bank of RAM starting at 2TB and working up
140 * * fix the DT and ACPI table generation code in QEMU to correctly
141 * report two split lumps of RAM to the guest
142 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
143 * (We don't want to fill all the way up to 512GB with RAM because
144 * we might want it for non-RAM purposes later. Conversely it seems
145 * reasonable to assume that anybody configuring a VM with a quarter
146 * of a terabyte of RAM will be doing it on a host with more than a
147 * terabyte of physical address space.)
149 #define RAMLIMIT_GB 255
150 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
152 /* Addresses and sizes of our components.
153 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
154 * 128MB..256MB is used for miscellaneous device I/O.
155 * 256MB..1GB is reserved for possible future PCI support (ie where the
156 * PCI memory window will go if we add a PCI host controller).
157 * 1GB and up is RAM (which may happily spill over into the
158 * high memory region beyond 4GB).
159 * This represents a compromise between how much RAM can be given to
160 * a 32 bit VM and leaving space for expansion and in particular for PCI.
161 * Note that devices should generally be placed at multiples of 0x10000,
162 * to accommodate guests using 64K pages.
164 static const MemMapEntry a15memmap[] = {
165 /* Space up to 0x8000000 is reserved for a boot ROM */
166 [VIRT_FLASH] = { 0, 0x08000000 },
167 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
168 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
169 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
170 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
171 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
172 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
173 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
174 /* This redistributor space allows up to 2*64kB*123 CPUs */
175 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
176 [VIRT_UART] = { 0x09000000, 0x00001000 },
177 [VIRT_RTC] = { 0x09010000, 0x00001000 },
178 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
179 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
180 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
181 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
182 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
183 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
184 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
185 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
186 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
187 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
188 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
189 /* Second PCIe window, 512GB wide at the 512GB boundary */
190 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
193 static const int a15irqmap[] = {
194 [VIRT_UART] = 1,
195 [VIRT_RTC] = 2,
196 [VIRT_PCIE] = 3, /* ... to 6 */
197 [VIRT_GPIO] = 7,
198 [VIRT_SECURE_UART] = 8,
199 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
200 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
201 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
204 static VirtBoardInfo machines[] = {
206 .cpu_model = "cortex-a15",
207 .memmap = a15memmap,
208 .irqmap = a15irqmap,
211 .cpu_model = "cortex-a53",
212 .memmap = a15memmap,
213 .irqmap = a15irqmap,
216 .cpu_model = "cortex-a57",
217 .memmap = a15memmap,
218 .irqmap = a15irqmap,
221 .cpu_model = "host",
222 .memmap = a15memmap,
223 .irqmap = a15irqmap,
227 static VirtBoardInfo *find_machine_info(const char *cpu)
229 int i;
231 for (i = 0; i < ARRAY_SIZE(machines); i++) {
232 if (strcmp(cpu, machines[i].cpu_model) == 0) {
233 return &machines[i];
236 return NULL;
239 static void create_fdt(VirtBoardInfo *vbi)
241 void *fdt = create_device_tree(&vbi->fdt_size);
243 if (!fdt) {
244 error_report("create_device_tree() failed");
245 exit(1);
248 vbi->fdt = fdt;
250 /* Header */
251 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
252 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
253 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
256 * /chosen and /memory nodes must exist for load_dtb
257 * to fill in necessary properties later
259 qemu_fdt_add_subnode(fdt, "/chosen");
260 qemu_fdt_add_subnode(fdt, "/memory");
261 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
263 /* Clock node, for the benefit of the UART. The kernel device tree
264 * binding documentation claims the PL011 node clock properties are
265 * optional but in practice if you omit them the kernel refuses to
266 * probe for the device.
268 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
269 qemu_fdt_add_subnode(fdt, "/apb-pclk");
270 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
271 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
272 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
273 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
274 "clk24mhz");
275 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
279 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
281 uint32_t cpu_suspend_fn;
282 uint32_t cpu_off_fn;
283 uint32_t cpu_on_fn;
284 uint32_t migrate_fn;
285 void *fdt = vbi->fdt;
286 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
288 if (!vbi->using_psci) {
289 return;
292 qemu_fdt_add_subnode(fdt, "/psci");
293 if (armcpu->psci_version == 2) {
294 const char comp[] = "arm,psci-0.2\0arm,psci";
295 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
297 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
298 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
299 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
300 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
301 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
302 } else {
303 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
304 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
305 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
307 } else {
308 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
310 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
311 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
312 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
313 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
316 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
317 * to the instruction that should be used to invoke PSCI functions.
318 * However, the device tree binding uses 'method' instead, so that is
319 * what we should use here.
321 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
323 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
324 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
325 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
326 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
329 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
331 /* Note that on A15 h/w these interrupts are level-triggered,
332 * but for the GIC implementation provided by both QEMU and KVM
333 * they are edge-triggered.
335 ARMCPU *armcpu;
336 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
338 if (gictype == 2) {
339 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
340 GIC_FDT_IRQ_PPI_CPU_WIDTH,
341 (1 << vbi->smp_cpus) - 1);
344 qemu_fdt_add_subnode(vbi->fdt, "/timer");
346 armcpu = ARM_CPU(qemu_get_cpu(0));
347 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
348 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
349 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
350 compat, sizeof(compat));
351 } else {
352 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
353 "arm,armv7-timer");
355 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
356 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
357 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
358 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
359 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
360 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
363 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
365 int cpu;
366 int addr_cells = 1;
367 unsigned int i;
370 * From Documentation/devicetree/bindings/arm/cpus.txt
371 * On ARM v8 64-bit systems value should be set to 2,
372 * that corresponds to the MPIDR_EL1 register size.
373 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
374 * in the system, #address-cells can be set to 1, since
375 * MPIDR_EL1[63:32] bits are not used for CPUs
376 * identification.
378 * Here we actually don't know whether our system is 32- or 64-bit one.
379 * The simplest way to go is to examine affinity IDs of all our CPUs. If
380 * at least one of them has Aff3 populated, we set #address-cells to 2.
382 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
383 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
385 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
386 addr_cells = 2;
387 break;
391 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
392 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
393 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
395 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
396 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
397 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
399 qemu_fdt_add_subnode(vbi->fdt, nodename);
400 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
401 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
402 armcpu->dtb_compatible);
404 if (vbi->using_psci && vbi->smp_cpus > 1) {
405 qemu_fdt_setprop_string(vbi->fdt, nodename,
406 "enable-method", "psci");
409 if (addr_cells == 2) {
410 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
411 armcpu->mp_affinity);
412 } else {
413 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
414 armcpu->mp_affinity);
417 i = numa_get_node_for_cpu(cpu);
418 if (i < nb_numa_nodes) {
419 qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i);
422 g_free(nodename);
426 static void fdt_add_its_gic_node(VirtBoardInfo *vbi)
428 vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
429 qemu_fdt_add_subnode(vbi->fdt, "/intc/its");
430 qemu_fdt_setprop_string(vbi->fdt, "/intc/its", "compatible",
431 "arm,gic-v3-its");
432 qemu_fdt_setprop(vbi->fdt, "/intc/its", "msi-controller", NULL, 0);
433 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/its", "reg",
434 2, vbi->memmap[VIRT_GIC_ITS].base,
435 2, vbi->memmap[VIRT_GIC_ITS].size);
436 qemu_fdt_setprop_cell(vbi->fdt, "/intc/its", "phandle", vbi->msi_phandle);
439 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
441 vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
442 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
443 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
444 "arm,gic-v2m-frame");
445 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
446 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
447 2, vbi->memmap[VIRT_GIC_V2M].base,
448 2, vbi->memmap[VIRT_GIC_V2M].size);
449 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->msi_phandle);
452 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
454 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
455 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
457 qemu_fdt_add_subnode(vbi->fdt, "/intc");
458 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
459 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
460 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
461 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
462 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
463 if (type == 3) {
464 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
465 "arm,gic-v3");
466 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
467 2, vbi->memmap[VIRT_GIC_DIST].base,
468 2, vbi->memmap[VIRT_GIC_DIST].size,
469 2, vbi->memmap[VIRT_GIC_REDIST].base,
470 2, vbi->memmap[VIRT_GIC_REDIST].size);
471 } else {
472 /* 'cortex-a15-gic' means 'GIC v2' */
473 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
474 "arm,cortex-a15-gic");
475 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
476 2, vbi->memmap[VIRT_GIC_DIST].base,
477 2, vbi->memmap[VIRT_GIC_DIST].size,
478 2, vbi->memmap[VIRT_GIC_CPU].base,
479 2, vbi->memmap[VIRT_GIC_CPU].size);
482 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
485 static void fdt_add_pmu_nodes(const VirtBoardInfo *vbi, int gictype)
487 CPUState *cpu;
488 ARMCPU *armcpu;
489 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
491 CPU_FOREACH(cpu) {
492 armcpu = ARM_CPU(cpu);
493 if (!armcpu->has_pmu ||
494 !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
495 return;
499 if (gictype == 2) {
500 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
501 GIC_FDT_IRQ_PPI_CPU_WIDTH,
502 (1 << vbi->smp_cpus) - 1);
505 armcpu = ARM_CPU(qemu_get_cpu(0));
506 qemu_fdt_add_subnode(vbi->fdt, "/pmu");
507 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
508 const char compat[] = "arm,armv8-pmuv3";
509 qemu_fdt_setprop(vbi->fdt, "/pmu", "compatible",
510 compat, sizeof(compat));
511 qemu_fdt_setprop_cells(vbi->fdt, "/pmu", "interrupts",
512 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
516 static void create_its(VirtBoardInfo *vbi, DeviceState *gicdev)
518 const char *itsclass = its_class_name();
519 DeviceState *dev;
521 if (!itsclass) {
522 /* Do nothing if not supported */
523 return;
526 dev = qdev_create(NULL, itsclass);
528 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
529 &error_abort);
530 qdev_init_nofail(dev);
531 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_ITS].base);
533 fdt_add_its_gic_node(vbi);
536 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
538 int i;
539 int irq = vbi->irqmap[VIRT_GIC_V2M];
540 DeviceState *dev;
542 dev = qdev_create(NULL, "arm-gicv2m");
543 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
544 qdev_prop_set_uint32(dev, "base-spi", irq);
545 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
546 qdev_init_nofail(dev);
548 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
549 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
552 fdt_add_v2m_gic_node(vbi);
555 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type,
556 bool secure, bool no_its)
558 /* We create a standalone GIC */
559 DeviceState *gicdev;
560 SysBusDevice *gicbusdev;
561 const char *gictype;
562 int i;
564 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
566 gicdev = qdev_create(NULL, gictype);
567 qdev_prop_set_uint32(gicdev, "revision", type);
568 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
569 /* Note that the num-irq property counts both internal and external
570 * interrupts; there are always 32 of the former (mandated by GIC spec).
572 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
573 if (!kvm_irqchip_in_kernel()) {
574 qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
576 qdev_init_nofail(gicdev);
577 gicbusdev = SYS_BUS_DEVICE(gicdev);
578 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
579 if (type == 3) {
580 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
581 } else {
582 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
585 /* Wire the outputs from each CPU's generic timer to the
586 * appropriate GIC PPI inputs, and the GIC's IRQ output to
587 * the CPU's IRQ input.
589 for (i = 0; i < smp_cpus; i++) {
590 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
591 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
592 int irq;
593 /* Mapping from the output timer irq lines from the CPU to the
594 * GIC PPI inputs we use for the virt board.
596 const int timer_irq[] = {
597 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
598 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
599 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
600 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
603 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
604 qdev_connect_gpio_out(cpudev, irq,
605 qdev_get_gpio_in(gicdev,
606 ppibase + timer_irq[irq]));
609 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
610 sysbus_connect_irq(gicbusdev, i + smp_cpus,
611 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
614 for (i = 0; i < NUM_IRQS; i++) {
615 pic[i] = qdev_get_gpio_in(gicdev, i);
618 fdt_add_gic_node(vbi, type);
620 if (type == 3 && !no_its) {
621 create_its(vbi, gicdev);
622 } else if (type == 2) {
623 create_v2m(vbi, pic);
627 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
628 MemoryRegion *mem, CharDriverState *chr)
630 char *nodename;
631 hwaddr base = vbi->memmap[uart].base;
632 hwaddr size = vbi->memmap[uart].size;
633 int irq = vbi->irqmap[uart];
634 const char compat[] = "arm,pl011\0arm,primecell";
635 const char clocknames[] = "uartclk\0apb_pclk";
636 DeviceState *dev = qdev_create(NULL, "pl011");
637 SysBusDevice *s = SYS_BUS_DEVICE(dev);
639 qdev_prop_set_chr(dev, "chardev", chr);
640 qdev_init_nofail(dev);
641 memory_region_add_subregion(mem, base,
642 sysbus_mmio_get_region(s, 0));
643 sysbus_connect_irq(s, 0, pic[irq]);
645 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
646 qemu_fdt_add_subnode(vbi->fdt, nodename);
647 /* Note that we can't use setprop_string because of the embedded NUL */
648 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
649 compat, sizeof(compat));
650 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
651 2, base, 2, size);
652 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
653 GIC_FDT_IRQ_TYPE_SPI, irq,
654 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
655 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
656 vbi->clock_phandle, vbi->clock_phandle);
657 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
658 clocknames, sizeof(clocknames));
660 if (uart == VIRT_UART) {
661 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
662 } else {
663 /* Mark as not usable by the normal world */
664 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
665 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
668 g_free(nodename);
671 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
673 char *nodename;
674 hwaddr base = vbi->memmap[VIRT_RTC].base;
675 hwaddr size = vbi->memmap[VIRT_RTC].size;
676 int irq = vbi->irqmap[VIRT_RTC];
677 const char compat[] = "arm,pl031\0arm,primecell";
679 sysbus_create_simple("pl031", base, pic[irq]);
681 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
682 qemu_fdt_add_subnode(vbi->fdt, nodename);
683 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
684 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
685 2, base, 2, size);
686 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
687 GIC_FDT_IRQ_TYPE_SPI, irq,
688 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
689 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
690 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
691 g_free(nodename);
694 static DeviceState *gpio_key_dev;
695 static void virt_powerdown_req(Notifier *n, void *opaque)
697 /* use gpio Pin 3 for power button event */
698 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
701 static Notifier virt_system_powerdown_notifier = {
702 .notify = virt_powerdown_req
705 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
707 char *nodename;
708 DeviceState *pl061_dev;
709 hwaddr base = vbi->memmap[VIRT_GPIO].base;
710 hwaddr size = vbi->memmap[VIRT_GPIO].size;
711 int irq = vbi->irqmap[VIRT_GPIO];
712 const char compat[] = "arm,pl061\0arm,primecell";
714 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
716 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
717 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
718 qemu_fdt_add_subnode(vbi->fdt, nodename);
719 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
720 2, base, 2, size);
721 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
722 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
723 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
724 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
725 GIC_FDT_IRQ_TYPE_SPI, irq,
726 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
727 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
728 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
729 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
731 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
732 qdev_get_gpio_in(pl061_dev, 3));
733 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
734 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
735 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
736 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
738 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
739 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
740 "label", "GPIO Key Poweroff");
741 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
742 KEY_POWER);
743 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
744 "gpios", phandle, 3, 0);
746 /* connect powerdown request */
747 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
749 g_free(nodename);
752 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
754 int i;
755 hwaddr size = vbi->memmap[VIRT_MMIO].size;
757 /* We create the transports in forwards order. Since qbus_realize()
758 * prepends (not appends) new child buses, the incrementing loop below will
759 * create a list of virtio-mmio buses with decreasing base addresses.
761 * When a -device option is processed from the command line,
762 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
763 * order. The upshot is that -device options in increasing command line
764 * order are mapped to virtio-mmio buses with decreasing base addresses.
766 * When this code was originally written, that arrangement ensured that the
767 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
768 * the first -device on the command line. (The end-to-end order is a
769 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
770 * guest kernel's name-to-address assignment strategy.)
772 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
773 * the message, if not necessarily the code, of commit 70161ff336.
774 * Therefore the loop now establishes the inverse of the original intent.
776 * Unfortunately, we can't counteract the kernel change by reversing the
777 * loop; it would break existing command lines.
779 * In any case, the kernel makes no guarantee about the stability of
780 * enumeration order of virtio devices (as demonstrated by it changing
781 * between kernel versions). For reliable and stable identification
782 * of disks users must use UUIDs or similar mechanisms.
784 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
785 int irq = vbi->irqmap[VIRT_MMIO] + i;
786 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
788 sysbus_create_simple("virtio-mmio", base, pic[irq]);
791 /* We add dtb nodes in reverse order so that they appear in the finished
792 * device tree lowest address first.
794 * Note that this mapping is independent of the loop above. The previous
795 * loop influences virtio device to virtio transport assignment, whereas
796 * this loop controls how virtio transports are laid out in the dtb.
798 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
799 char *nodename;
800 int irq = vbi->irqmap[VIRT_MMIO] + i;
801 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
803 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
804 qemu_fdt_add_subnode(vbi->fdt, nodename);
805 qemu_fdt_setprop_string(vbi->fdt, nodename,
806 "compatible", "virtio,mmio");
807 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
808 2, base, 2, size);
809 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
810 GIC_FDT_IRQ_TYPE_SPI, irq,
811 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
812 g_free(nodename);
816 static void create_one_flash(const char *name, hwaddr flashbase,
817 hwaddr flashsize, const char *file,
818 MemoryRegion *sysmem)
820 /* Create and map a single flash device. We use the same
821 * parameters as the flash devices on the Versatile Express board.
823 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
824 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
825 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
826 const uint64_t sectorlength = 256 * 1024;
828 if (dinfo) {
829 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
830 &error_abort);
833 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
834 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
835 qdev_prop_set_uint8(dev, "width", 4);
836 qdev_prop_set_uint8(dev, "device-width", 2);
837 qdev_prop_set_bit(dev, "big-endian", false);
838 qdev_prop_set_uint16(dev, "id0", 0x89);
839 qdev_prop_set_uint16(dev, "id1", 0x18);
840 qdev_prop_set_uint16(dev, "id2", 0x00);
841 qdev_prop_set_uint16(dev, "id3", 0x00);
842 qdev_prop_set_string(dev, "name", name);
843 qdev_init_nofail(dev);
845 memory_region_add_subregion(sysmem, flashbase,
846 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
848 if (file) {
849 char *fn;
850 int image_size;
852 if (drive_get(IF_PFLASH, 0, 0)) {
853 error_report("The contents of the first flash device may be "
854 "specified with -bios or with -drive if=pflash... "
855 "but you cannot use both options at once");
856 exit(1);
858 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
859 if (!fn) {
860 error_report("Could not find ROM image '%s'", file);
861 exit(1);
863 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
864 g_free(fn);
865 if (image_size < 0) {
866 error_report("Could not load ROM image '%s'", file);
867 exit(1);
872 static void create_flash(const VirtBoardInfo *vbi,
873 MemoryRegion *sysmem,
874 MemoryRegion *secure_sysmem)
876 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
877 * Any file passed via -bios goes in the first of these.
878 * sysmem is the system memory space. secure_sysmem is the secure view
879 * of the system, and the first flash device should be made visible only
880 * there. The second flash device is visible to both secure and nonsecure.
881 * If sysmem == secure_sysmem this means there is no separate Secure
882 * address space and both flash devices are generally visible.
884 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
885 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
886 char *nodename;
888 create_one_flash("virt.flash0", flashbase, flashsize,
889 bios_name, secure_sysmem);
890 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
891 NULL, sysmem);
893 if (sysmem == secure_sysmem) {
894 /* Report both flash devices as a single node in the DT */
895 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
896 qemu_fdt_add_subnode(vbi->fdt, nodename);
897 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
898 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
899 2, flashbase, 2, flashsize,
900 2, flashbase + flashsize, 2, flashsize);
901 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
902 g_free(nodename);
903 } else {
904 /* Report the devices as separate nodes so we can mark one as
905 * only visible to the secure world.
907 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
908 qemu_fdt_add_subnode(vbi->fdt, nodename);
909 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
910 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
911 2, flashbase, 2, flashsize);
912 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
913 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
914 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
915 g_free(nodename);
917 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
918 qemu_fdt_add_subnode(vbi->fdt, nodename);
919 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
920 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
921 2, flashbase + flashsize, 2, flashsize);
922 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
923 g_free(nodename);
927 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
929 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
930 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
931 char *nodename;
933 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
935 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
936 qemu_fdt_add_subnode(vbi->fdt, nodename);
937 qemu_fdt_setprop_string(vbi->fdt, nodename,
938 "compatible", "qemu,fw-cfg-mmio");
939 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
940 2, base, 2, size);
941 g_free(nodename);
944 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
945 int first_irq, const char *nodename)
947 int devfn, pin;
948 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
949 uint32_t *irq_map = full_irq_map;
951 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
952 for (pin = 0; pin < 4; pin++) {
953 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
954 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
955 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
956 int i;
958 uint32_t map[] = {
959 devfn << 8, 0, 0, /* devfn */
960 pin + 1, /* PCI pin */
961 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
963 /* Convert map to big endian */
964 for (i = 0; i < 10; i++) {
965 irq_map[i] = cpu_to_be32(map[i]);
967 irq_map += 10;
971 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
972 full_irq_map, sizeof(full_irq_map));
974 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
975 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
976 0x7 /* PCI irq */);
979 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
980 bool use_highmem)
982 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
983 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
984 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
985 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
986 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
987 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
988 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
989 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
990 hwaddr base = base_mmio;
991 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
992 int irq = vbi->irqmap[VIRT_PCIE];
993 MemoryRegion *mmio_alias;
994 MemoryRegion *mmio_reg;
995 MemoryRegion *ecam_alias;
996 MemoryRegion *ecam_reg;
997 DeviceState *dev;
998 char *nodename;
999 int i;
1000 PCIHostState *pci;
1002 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1003 qdev_init_nofail(dev);
1005 /* Map only the first size_ecam bytes of ECAM space */
1006 ecam_alias = g_new0(MemoryRegion, 1);
1007 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1008 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1009 ecam_reg, 0, size_ecam);
1010 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1012 /* Map the MMIO window into system address space so as to expose
1013 * the section of PCI MMIO space which starts at the same base address
1014 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1015 * the window).
1017 mmio_alias = g_new0(MemoryRegion, 1);
1018 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1019 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1020 mmio_reg, base_mmio, size_mmio);
1021 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1023 if (use_highmem) {
1024 /* Map high MMIO space */
1025 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1027 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1028 mmio_reg, base_mmio_high, size_mmio_high);
1029 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1030 high_mmio_alias);
1033 /* Map IO port space */
1034 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1036 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1037 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1040 pci = PCI_HOST_BRIDGE(dev);
1041 if (pci->bus) {
1042 for (i = 0; i < nb_nics; i++) {
1043 NICInfo *nd = &nd_table[i];
1045 if (!nd->model) {
1046 nd->model = g_strdup("virtio");
1049 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1053 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1054 qemu_fdt_add_subnode(vbi->fdt, nodename);
1055 qemu_fdt_setprop_string(vbi->fdt, nodename,
1056 "compatible", "pci-host-ecam-generic");
1057 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
1058 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
1059 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
1060 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
1061 nr_pcie_buses - 1);
1062 qemu_fdt_setprop(vbi->fdt, nodename, "dma-coherent", NULL, 0);
1064 if (vbi->msi_phandle) {
1065 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
1066 vbi->msi_phandle);
1069 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
1070 2, base_ecam, 2, size_ecam);
1072 if (use_highmem) {
1073 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1074 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1075 2, base_pio, 2, size_pio,
1076 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1077 2, base_mmio, 2, size_mmio,
1078 1, FDT_PCI_RANGE_MMIO_64BIT,
1079 2, base_mmio_high,
1080 2, base_mmio_high, 2, size_mmio_high);
1081 } else {
1082 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1083 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1084 2, base_pio, 2, size_pio,
1085 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1086 2, base_mmio, 2, size_mmio);
1089 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
1090 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
1092 g_free(nodename);
1095 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
1097 DeviceState *dev;
1098 SysBusDevice *s;
1099 int i;
1100 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1101 MemoryRegion *sysmem = get_system_memory();
1103 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
1104 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
1105 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
1106 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1108 fdt_params->system_params = &platform_bus_params;
1109 fdt_params->binfo = &vbi->bootinfo;
1110 fdt_params->intc = "/intc";
1112 * register a machine init done notifier that creates the device tree
1113 * nodes of the platform bus and its children dynamic sysbus devices
1115 arm_register_platform_bus_fdt_creator(fdt_params);
1117 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1118 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1119 qdev_prop_set_uint32(dev, "num_irqs",
1120 platform_bus_params.platform_bus_num_irqs);
1121 qdev_prop_set_uint32(dev, "mmio_size",
1122 platform_bus_params.platform_bus_size);
1123 qdev_init_nofail(dev);
1124 s = SYS_BUS_DEVICE(dev);
1126 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1127 int irqn = platform_bus_params.platform_bus_first_irq + i;
1128 sysbus_connect_irq(s, i, pic[irqn]);
1131 memory_region_add_subregion(sysmem,
1132 platform_bus_params.platform_bus_base,
1133 sysbus_mmio_get_region(s, 0));
1136 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1138 MemoryRegion *secram = g_new(MemoryRegion, 1);
1139 char *nodename;
1140 hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1141 hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1143 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1144 vmstate_register_ram_global(secram);
1145 memory_region_add_subregion(secure_sysmem, base, secram);
1147 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1148 qemu_fdt_add_subnode(vbi->fdt, nodename);
1149 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1150 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1151 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1152 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1154 g_free(nodename);
1157 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1159 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1161 *fdt_size = board->fdt_size;
1162 return board->fdt;
1165 static void virt_build_smbios(VirtGuestInfo *guest_info)
1167 FWCfgState *fw_cfg = guest_info->fw_cfg;
1168 uint8_t *smbios_tables, *smbios_anchor;
1169 size_t smbios_tables_len, smbios_anchor_len;
1170 const char *product = "QEMU Virtual Machine";
1172 if (!fw_cfg) {
1173 return;
1176 if (kvm_enabled()) {
1177 product = "KVM Virtual Machine";
1180 smbios_set_defaults("QEMU", product,
1181 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1183 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1184 &smbios_anchor, &smbios_anchor_len);
1186 if (smbios_anchor) {
1187 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1188 smbios_tables, smbios_tables_len);
1189 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1190 smbios_anchor, smbios_anchor_len);
1194 static
1195 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1197 VirtGuestInfoState *guest_info_state = container_of(notifier,
1198 VirtGuestInfoState, machine_done);
1199 virt_acpi_setup(&guest_info_state->info);
1200 virt_build_smbios(&guest_info_state->info);
1203 static void machvirt_init(MachineState *machine)
1205 VirtMachineState *vms = VIRT_MACHINE(machine);
1206 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1207 qemu_irq pic[NUM_IRQS];
1208 MemoryRegion *sysmem = get_system_memory();
1209 MemoryRegion *secure_sysmem = NULL;
1210 int gic_version = vms->gic_version;
1211 int n, virt_max_cpus;
1212 MemoryRegion *ram = g_new(MemoryRegion, 1);
1213 const char *cpu_model = machine->cpu_model;
1214 VirtBoardInfo *vbi;
1215 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1216 VirtGuestInfo *guest_info = &guest_info_state->info;
1217 char **cpustr;
1218 ObjectClass *oc;
1219 const char *typename;
1220 CPUClass *cc;
1221 Error *err = NULL;
1222 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1223 uint8_t clustersz;
1225 if (!cpu_model) {
1226 cpu_model = "cortex-a15";
1229 /* We can probe only here because during property set
1230 * KVM is not available yet
1232 if (!gic_version) {
1233 if (!kvm_enabled()) {
1234 error_report("gic-version=host requires KVM");
1235 exit(1);
1238 gic_version = kvm_arm_vgic_probe();
1239 if (!gic_version) {
1240 error_report("Unable to determine GIC version supported by host");
1241 exit(1);
1245 /* Separate the actual CPU model name from any appended features */
1246 cpustr = g_strsplit(cpu_model, ",", 2);
1248 vbi = find_machine_info(cpustr[0]);
1250 if (!vbi) {
1251 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1252 exit(1);
1255 /* If we have an EL3 boot ROM then the assumption is that it will
1256 * implement PSCI itself, so disable QEMU's internal implementation
1257 * so it doesn't get in the way. Instead of starting secondary
1258 * CPUs in PSCI powerdown state we will start them all running and
1259 * let the boot ROM sort them out.
1260 * The usual case is that we do use QEMU's PSCI implementation.
1262 vbi->using_psci = !(vms->secure && firmware_loaded);
1264 /* The maximum number of CPUs depends on the GIC version, or on how
1265 * many redistributors we can fit into the memory map.
1267 if (gic_version == 3) {
1268 virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1269 clustersz = GICV3_TARGETLIST_BITS;
1270 } else {
1271 virt_max_cpus = GIC_NCPU;
1272 clustersz = GIC_TARGETLIST_BITS;
1275 if (max_cpus > virt_max_cpus) {
1276 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1277 "supported by machine 'mach-virt' (%d)",
1278 max_cpus, virt_max_cpus);
1279 exit(1);
1282 vbi->smp_cpus = smp_cpus;
1284 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1285 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1286 exit(1);
1289 if (vms->secure) {
1290 if (kvm_enabled()) {
1291 error_report("mach-virt: KVM does not support Security extensions");
1292 exit(1);
1295 /* The Secure view of the world is the same as the NonSecure,
1296 * but with a few extra devices. Create it as a container region
1297 * containing the system memory at low priority; any secure-only
1298 * devices go in at higher priority and take precedence.
1300 secure_sysmem = g_new(MemoryRegion, 1);
1301 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1302 UINT64_MAX);
1303 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1306 create_fdt(vbi);
1308 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1309 if (!oc) {
1310 error_report("Unable to find CPU definition");
1311 exit(1);
1313 typename = object_class_get_name(oc);
1315 /* convert -smp CPU options specified by the user into global props */
1316 cc = CPU_CLASS(oc);
1317 cc->parse_features(typename, cpustr[1], &err);
1318 g_strfreev(cpustr);
1319 if (err) {
1320 error_report_err(err);
1321 exit(1);
1324 for (n = 0; n < smp_cpus; n++) {
1325 Object *cpuobj = object_new(typename);
1326 if (!vmc->disallow_affinity_adjustment) {
1327 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1328 * GIC's target-list limitations. 32-bit KVM hosts currently
1329 * always create clusters of 4 CPUs, but that is expected to
1330 * change when they gain support for gicv3. When KVM is enabled
1331 * it will override the changes we make here, therefore our
1332 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1333 * and to improve SGI efficiency.
1335 uint8_t aff1 = n / clustersz;
1336 uint8_t aff0 = n % clustersz;
1337 object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1338 "mp-affinity", NULL);
1341 if (!vms->secure) {
1342 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1345 if (vbi->using_psci) {
1346 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1347 "psci-conduit", NULL);
1349 /* Secondary CPUs start in PSCI powered-down state */
1350 if (n > 0) {
1351 object_property_set_bool(cpuobj, true,
1352 "start-powered-off", NULL);
1356 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1357 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1358 "reset-cbar", &error_abort);
1361 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1362 &error_abort);
1363 if (vms->secure) {
1364 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1365 "secure-memory", &error_abort);
1368 object_property_set_bool(cpuobj, true, "realized", NULL);
1370 fdt_add_timer_nodes(vbi, gic_version);
1371 fdt_add_cpu_nodes(vbi);
1372 fdt_add_psci_node(vbi);
1374 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1375 machine->ram_size);
1376 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1378 create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1380 create_gic(vbi, pic, gic_version, vms->secure, vmc->no_its);
1382 fdt_add_pmu_nodes(vbi, gic_version);
1384 create_uart(vbi, pic, VIRT_UART, sysmem, serial_hds[0]);
1386 if (vms->secure) {
1387 create_secure_ram(vbi, secure_sysmem);
1388 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1391 create_rtc(vbi, pic);
1393 create_pcie(vbi, pic, vms->highmem);
1395 create_gpio(vbi, pic);
1397 /* Create mmio transports, so the user can create virtio backends
1398 * (which will be automatically plugged in to the transports). If
1399 * no backend is created the transport will just sit harmlessly idle.
1401 create_virtio_devices(vbi, pic);
1403 create_fw_cfg(vbi, &address_space_memory);
1404 rom_set_fw(fw_cfg_find());
1406 guest_info->smp_cpus = smp_cpus;
1407 guest_info->fw_cfg = fw_cfg_find();
1408 guest_info->memmap = vbi->memmap;
1409 guest_info->irqmap = vbi->irqmap;
1410 guest_info->use_highmem = vms->highmem;
1411 guest_info->gic_version = gic_version;
1412 guest_info->no_its = vmc->no_its;
1413 guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1414 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1416 vbi->bootinfo.ram_size = machine->ram_size;
1417 vbi->bootinfo.kernel_filename = machine->kernel_filename;
1418 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1419 vbi->bootinfo.initrd_filename = machine->initrd_filename;
1420 vbi->bootinfo.nb_cpus = smp_cpus;
1421 vbi->bootinfo.board_id = -1;
1422 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1423 vbi->bootinfo.get_dtb = machvirt_dtb;
1424 vbi->bootinfo.firmware_loaded = firmware_loaded;
1425 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1428 * arm_load_kernel machine init done notifier registration must
1429 * happen before the platform_bus_create call. In this latter,
1430 * another notifier is registered which adds platform bus nodes.
1431 * Notifiers are executed in registration reverse order.
1433 create_platform_bus(vbi, pic);
1436 static bool virt_get_secure(Object *obj, Error **errp)
1438 VirtMachineState *vms = VIRT_MACHINE(obj);
1440 return vms->secure;
1443 static void virt_set_secure(Object *obj, bool value, Error **errp)
1445 VirtMachineState *vms = VIRT_MACHINE(obj);
1447 vms->secure = value;
1450 static bool virt_get_highmem(Object *obj, Error **errp)
1452 VirtMachineState *vms = VIRT_MACHINE(obj);
1454 return vms->highmem;
1457 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1459 VirtMachineState *vms = VIRT_MACHINE(obj);
1461 vms->highmem = value;
1464 static char *virt_get_gic_version(Object *obj, Error **errp)
1466 VirtMachineState *vms = VIRT_MACHINE(obj);
1467 const char *val = vms->gic_version == 3 ? "3" : "2";
1469 return g_strdup(val);
1472 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1474 VirtMachineState *vms = VIRT_MACHINE(obj);
1476 if (!strcmp(value, "3")) {
1477 vms->gic_version = 3;
1478 } else if (!strcmp(value, "2")) {
1479 vms->gic_version = 2;
1480 } else if (!strcmp(value, "host")) {
1481 vms->gic_version = 0; /* Will probe later */
1482 } else {
1483 error_setg(errp, "Invalid gic-version value");
1484 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1488 static void virt_machine_class_init(ObjectClass *oc, void *data)
1490 MachineClass *mc = MACHINE_CLASS(oc);
1492 mc->init = machvirt_init;
1493 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1494 * it later in machvirt_init, where we have more information about the
1495 * configuration of the particular instance.
1497 mc->max_cpus = 255;
1498 mc->has_dynamic_sysbus = true;
1499 mc->block_default_type = IF_VIRTIO;
1500 mc->no_cdrom = 1;
1501 mc->pci_allow_0_address = true;
1502 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1503 mc->minimum_page_bits = 12;
1506 static const TypeInfo virt_machine_info = {
1507 .name = TYPE_VIRT_MACHINE,
1508 .parent = TYPE_MACHINE,
1509 .abstract = true,
1510 .instance_size = sizeof(VirtMachineState),
1511 .class_size = sizeof(VirtMachineClass),
1512 .class_init = virt_machine_class_init,
1515 static void machvirt_machine_init(void)
1517 type_register_static(&virt_machine_info);
1519 type_init(machvirt_machine_init);
1521 static void virt_2_8_instance_init(Object *obj)
1523 VirtMachineState *vms = VIRT_MACHINE(obj);
1525 /* EL3 is disabled by default on virt: this makes us consistent
1526 * between KVM and TCG for this board, and it also allows us to
1527 * boot UEFI blobs which assume no TrustZone support.
1529 vms->secure = false;
1530 object_property_add_bool(obj, "secure", virt_get_secure,
1531 virt_set_secure, NULL);
1532 object_property_set_description(obj, "secure",
1533 "Set on/off to enable/disable the ARM "
1534 "Security Extensions (TrustZone)",
1535 NULL);
1537 /* High memory is enabled by default */
1538 vms->highmem = true;
1539 object_property_add_bool(obj, "highmem", virt_get_highmem,
1540 virt_set_highmem, NULL);
1541 object_property_set_description(obj, "highmem",
1542 "Set on/off to enable/disable using "
1543 "physical address space above 32 bits",
1544 NULL);
1545 /* Default GIC type is v2 */
1546 vms->gic_version = 2;
1547 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1548 virt_set_gic_version, NULL);
1549 object_property_set_description(obj, "gic-version",
1550 "Set GIC version. "
1551 "Valid values are 2, 3 and host", NULL);
1554 static void virt_machine_2_8_options(MachineClass *mc)
1557 DEFINE_VIRT_MACHINE_AS_LATEST(2, 8)
1559 #define VIRT_COMPAT_2_7 \
1560 HW_COMPAT_2_7
1562 static void virt_2_7_instance_init(Object *obj)
1564 virt_2_8_instance_init(obj);
1567 static void virt_machine_2_7_options(MachineClass *mc)
1569 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1571 virt_machine_2_8_options(mc);
1572 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1573 /* ITS was introduced with 2.8 */
1574 vmc->no_its = true;
1575 /* Stick with 1K pages for migration compatibility */
1576 mc->minimum_page_bits = 0;
1578 DEFINE_VIRT_MACHINE(2, 7)
1580 #define VIRT_COMPAT_2_6 \
1581 HW_COMPAT_2_6
1583 static void virt_2_6_instance_init(Object *obj)
1585 virt_2_7_instance_init(obj);
1588 static void virt_machine_2_6_options(MachineClass *mc)
1590 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1592 virt_machine_2_7_options(mc);
1593 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1594 vmc->disallow_affinity_adjustment = true;
1596 DEFINE_VIRT_MACHINE(2, 6)