2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/compat.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/virt-acpi-build.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
62 /* Number of external interrupt lines to configure the GIC with */
65 #define PLATFORM_BUS_NUM_IRQS 64
67 static ARMPlatformBusSystemParams platform_bus_params
;
69 typedef struct VirtBoardInfo
{
70 struct arm_boot_info bootinfo
;
71 const char *cpu_model
;
72 const MemMapEntry
*memmap
;
77 uint32_t clock_phandle
;
85 VirtBoardInfo
*daughterboard
;
86 bool disallow_affinity_adjustment
;
97 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
98 #define VIRT_MACHINE(obj) \
99 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
100 #define VIRT_MACHINE_GET_CLASS(obj) \
101 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
102 #define VIRT_MACHINE_CLASS(klass) \
103 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
106 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
107 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
110 MachineClass *mc = MACHINE_CLASS(oc); \
111 virt_machine_##major##_##minor##_options(mc); \
112 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
114 mc->alias = "virt"; \
117 static const TypeInfo machvirt_##major##_##minor##_info = { \
118 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
119 .parent = TYPE_VIRT_MACHINE, \
120 .instance_init = virt_##major##_##minor##_instance_init, \
121 .class_init = virt_##major##_##minor##_class_init, \
123 static void machvirt_machine_##major##_##minor##_init(void) \
125 type_register_static(&machvirt_##major##_##minor##_info); \
127 type_init(machvirt_machine_##major##_##minor##_init);
129 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
130 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
131 #define DEFINE_VIRT_MACHINE(major, minor) \
132 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
135 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
136 * RAM can go up to the 256GB mark, leaving 256GB of the physical
137 * address space unallocated and free for future use between 256G and 512G.
138 * If we need to provide more RAM to VMs in the future then we need to:
139 * * allocate a second bank of RAM starting at 2TB and working up
140 * * fix the DT and ACPI table generation code in QEMU to correctly
141 * report two split lumps of RAM to the guest
142 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
143 * (We don't want to fill all the way up to 512GB with RAM because
144 * we might want it for non-RAM purposes later. Conversely it seems
145 * reasonable to assume that anybody configuring a VM with a quarter
146 * of a terabyte of RAM will be doing it on a host with more than a
147 * terabyte of physical address space.)
149 #define RAMLIMIT_GB 255
150 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
152 /* Addresses and sizes of our components.
153 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
154 * 128MB..256MB is used for miscellaneous device I/O.
155 * 256MB..1GB is reserved for possible future PCI support (ie where the
156 * PCI memory window will go if we add a PCI host controller).
157 * 1GB and up is RAM (which may happily spill over into the
158 * high memory region beyond 4GB).
159 * This represents a compromise between how much RAM can be given to
160 * a 32 bit VM and leaving space for expansion and in particular for PCI.
161 * Note that devices should generally be placed at multiples of 0x10000,
162 * to accommodate guests using 64K pages.
164 static const MemMapEntry a15memmap
[] = {
165 /* Space up to 0x8000000 is reserved for a boot ROM */
166 [VIRT_FLASH
] = { 0, 0x08000000 },
167 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
168 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
169 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
170 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
171 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
172 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
173 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
174 /* This redistributor space allows up to 2*64kB*123 CPUs */
175 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
176 [VIRT_UART
] = { 0x09000000, 0x00001000 },
177 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
178 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
179 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
180 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
181 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
182 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
183 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
184 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
185 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
186 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
187 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
188 [VIRT_MEM
] = { 0x40000000, RAMLIMIT_BYTES
},
189 /* Second PCIe window, 512GB wide at the 512GB boundary */
190 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
193 static const int a15irqmap
[] = {
196 [VIRT_PCIE
] = 3, /* ... to 6 */
198 [VIRT_SECURE_UART
] = 8,
199 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
200 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
201 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
204 static VirtBoardInfo machines
[] = {
206 .cpu_model
= "cortex-a15",
211 .cpu_model
= "cortex-a53",
216 .cpu_model
= "cortex-a57",
227 static VirtBoardInfo
*find_machine_info(const char *cpu
)
231 for (i
= 0; i
< ARRAY_SIZE(machines
); i
++) {
232 if (strcmp(cpu
, machines
[i
].cpu_model
) == 0) {
239 static void create_fdt(VirtBoardInfo
*vbi
)
241 void *fdt
= create_device_tree(&vbi
->fdt_size
);
244 error_report("create_device_tree() failed");
251 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
252 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
253 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
256 * /chosen and /memory nodes must exist for load_dtb
257 * to fill in necessary properties later
259 qemu_fdt_add_subnode(fdt
, "/chosen");
260 qemu_fdt_add_subnode(fdt
, "/memory");
261 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
263 /* Clock node, for the benefit of the UART. The kernel device tree
264 * binding documentation claims the PL011 node clock properties are
265 * optional but in practice if you omit them the kernel refuses to
266 * probe for the device.
268 vbi
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
269 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
270 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
271 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
272 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
273 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
275 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vbi
->clock_phandle
);
279 static void fdt_add_psci_node(const VirtBoardInfo
*vbi
)
281 uint32_t cpu_suspend_fn
;
285 void *fdt
= vbi
->fdt
;
286 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
288 if (!vbi
->using_psci
) {
292 qemu_fdt_add_subnode(fdt
, "/psci");
293 if (armcpu
->psci_version
== 2) {
294 const char comp
[] = "arm,psci-0.2\0arm,psci";
295 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
297 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
298 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
299 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
300 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
301 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
303 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
304 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
305 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
308 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
310 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
311 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
312 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
313 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
316 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
317 * to the instruction that should be used to invoke PSCI functions.
318 * However, the device tree binding uses 'method' instead, so that is
319 * what we should use here.
321 qemu_fdt_setprop_string(fdt
, "/psci", "method", "hvc");
323 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
324 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
325 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
326 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
329 static void fdt_add_timer_nodes(const VirtBoardInfo
*vbi
, int gictype
)
331 /* Note that on A15 h/w these interrupts are level-triggered,
332 * but for the GIC implementation provided by both QEMU and KVM
333 * they are edge-triggered.
336 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
339 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
340 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
341 (1 << vbi
->smp_cpus
) - 1);
344 qemu_fdt_add_subnode(vbi
->fdt
, "/timer");
346 armcpu
= ARM_CPU(qemu_get_cpu(0));
347 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
348 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
349 qemu_fdt_setprop(vbi
->fdt
, "/timer", "compatible",
350 compat
, sizeof(compat
));
352 qemu_fdt_setprop_string(vbi
->fdt
, "/timer", "compatible",
355 qemu_fdt_setprop(vbi
->fdt
, "/timer", "always-on", NULL
, 0);
356 qemu_fdt_setprop_cells(vbi
->fdt
, "/timer", "interrupts",
357 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
358 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
359 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
360 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
363 static void fdt_add_cpu_nodes(const VirtBoardInfo
*vbi
)
370 * From Documentation/devicetree/bindings/arm/cpus.txt
371 * On ARM v8 64-bit systems value should be set to 2,
372 * that corresponds to the MPIDR_EL1 register size.
373 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
374 * in the system, #address-cells can be set to 1, since
375 * MPIDR_EL1[63:32] bits are not used for CPUs
378 * Here we actually don't know whether our system is 32- or 64-bit one.
379 * The simplest way to go is to examine affinity IDs of all our CPUs. If
380 * at least one of them has Aff3 populated, we set #address-cells to 2.
382 for (cpu
= 0; cpu
< vbi
->smp_cpus
; cpu
++) {
383 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
385 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
391 qemu_fdt_add_subnode(vbi
->fdt
, "/cpus");
392 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#address-cells", addr_cells
);
393 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#size-cells", 0x0);
395 for (cpu
= vbi
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
396 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
397 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
399 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
400 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "cpu");
401 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible",
402 armcpu
->dtb_compatible
);
404 if (vbi
->using_psci
&& vbi
->smp_cpus
> 1) {
405 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
406 "enable-method", "psci");
409 if (addr_cells
== 2) {
410 qemu_fdt_setprop_u64(vbi
->fdt
, nodename
, "reg",
411 armcpu
->mp_affinity
);
413 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "reg",
414 armcpu
->mp_affinity
);
417 i
= numa_get_node_for_cpu(cpu
);
418 if (i
< nb_numa_nodes
) {
419 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "numa-node-id", i
);
426 static void fdt_add_its_gic_node(VirtBoardInfo
*vbi
)
428 vbi
->msi_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
429 qemu_fdt_add_subnode(vbi
->fdt
, "/intc/its");
430 qemu_fdt_setprop_string(vbi
->fdt
, "/intc/its", "compatible",
432 qemu_fdt_setprop(vbi
->fdt
, "/intc/its", "msi-controller", NULL
, 0);
433 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc/its", "reg",
434 2, vbi
->memmap
[VIRT_GIC_ITS
].base
,
435 2, vbi
->memmap
[VIRT_GIC_ITS
].size
);
436 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc/its", "phandle", vbi
->msi_phandle
);
439 static void fdt_add_v2m_gic_node(VirtBoardInfo
*vbi
)
441 vbi
->msi_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
442 qemu_fdt_add_subnode(vbi
->fdt
, "/intc/v2m");
443 qemu_fdt_setprop_string(vbi
->fdt
, "/intc/v2m", "compatible",
444 "arm,gic-v2m-frame");
445 qemu_fdt_setprop(vbi
->fdt
, "/intc/v2m", "msi-controller", NULL
, 0);
446 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc/v2m", "reg",
447 2, vbi
->memmap
[VIRT_GIC_V2M
].base
,
448 2, vbi
->memmap
[VIRT_GIC_V2M
].size
);
449 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc/v2m", "phandle", vbi
->msi_phandle
);
452 static void fdt_add_gic_node(VirtBoardInfo
*vbi
, int type
)
454 vbi
->gic_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
455 qemu_fdt_setprop_cell(vbi
->fdt
, "/", "interrupt-parent", vbi
->gic_phandle
);
457 qemu_fdt_add_subnode(vbi
->fdt
, "/intc");
458 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#interrupt-cells", 3);
459 qemu_fdt_setprop(vbi
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
460 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#address-cells", 0x2);
461 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#size-cells", 0x2);
462 qemu_fdt_setprop(vbi
->fdt
, "/intc", "ranges", NULL
, 0);
464 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
466 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
467 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
468 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
469 2, vbi
->memmap
[VIRT_GIC_REDIST
].base
,
470 2, vbi
->memmap
[VIRT_GIC_REDIST
].size
);
472 /* 'cortex-a15-gic' means 'GIC v2' */
473 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
474 "arm,cortex-a15-gic");
475 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
476 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
477 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
478 2, vbi
->memmap
[VIRT_GIC_CPU
].base
,
479 2, vbi
->memmap
[VIRT_GIC_CPU
].size
);
482 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "phandle", vbi
->gic_phandle
);
485 static void fdt_add_pmu_nodes(const VirtBoardInfo
*vbi
, int gictype
)
489 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
492 armcpu
= ARM_CPU(cpu
);
493 if (!armcpu
->has_pmu
||
494 !kvm_arm_pmu_create(cpu
, PPI(VIRTUAL_PMU_IRQ
))) {
500 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
501 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
502 (1 << vbi
->smp_cpus
) - 1);
505 armcpu
= ARM_CPU(qemu_get_cpu(0));
506 qemu_fdt_add_subnode(vbi
->fdt
, "/pmu");
507 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
508 const char compat
[] = "arm,armv8-pmuv3";
509 qemu_fdt_setprop(vbi
->fdt
, "/pmu", "compatible",
510 compat
, sizeof(compat
));
511 qemu_fdt_setprop_cells(vbi
->fdt
, "/pmu", "interrupts",
512 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
516 static void create_its(VirtBoardInfo
*vbi
, DeviceState
*gicdev
)
518 const char *itsclass
= its_class_name();
522 /* Do nothing if not supported */
526 dev
= qdev_create(NULL
, itsclass
);
528 object_property_set_link(OBJECT(dev
), OBJECT(gicdev
), "parent-gicv3",
530 qdev_init_nofail(dev
);
531 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vbi
->memmap
[VIRT_GIC_ITS
].base
);
533 fdt_add_its_gic_node(vbi
);
536 static void create_v2m(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
539 int irq
= vbi
->irqmap
[VIRT_GIC_V2M
];
542 dev
= qdev_create(NULL
, "arm-gicv2m");
543 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vbi
->memmap
[VIRT_GIC_V2M
].base
);
544 qdev_prop_set_uint32(dev
, "base-spi", irq
);
545 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
546 qdev_init_nofail(dev
);
548 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
549 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
552 fdt_add_v2m_gic_node(vbi
);
555 static void create_gic(VirtBoardInfo
*vbi
, qemu_irq
*pic
, int type
,
556 bool secure
, bool no_its
)
558 /* We create a standalone GIC */
560 SysBusDevice
*gicbusdev
;
564 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
566 gicdev
= qdev_create(NULL
, gictype
);
567 qdev_prop_set_uint32(gicdev
, "revision", type
);
568 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
569 /* Note that the num-irq property counts both internal and external
570 * interrupts; there are always 32 of the former (mandated by GIC spec).
572 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
573 if (!kvm_irqchip_in_kernel()) {
574 qdev_prop_set_bit(gicdev
, "has-security-extensions", secure
);
576 qdev_init_nofail(gicdev
);
577 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
578 sysbus_mmio_map(gicbusdev
, 0, vbi
->memmap
[VIRT_GIC_DIST
].base
);
580 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_REDIST
].base
);
582 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_CPU
].base
);
585 /* Wire the outputs from each CPU's generic timer to the
586 * appropriate GIC PPI inputs, and the GIC's IRQ output to
587 * the CPU's IRQ input.
589 for (i
= 0; i
< smp_cpus
; i
++) {
590 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
591 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
593 /* Mapping from the output timer irq lines from the CPU to the
594 * GIC PPI inputs we use for the virt board.
596 const int timer_irq
[] = {
597 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
598 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
599 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
600 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
603 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
604 qdev_connect_gpio_out(cpudev
, irq
,
605 qdev_get_gpio_in(gicdev
,
606 ppibase
+ timer_irq
[irq
]));
609 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
610 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
611 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
614 for (i
= 0; i
< NUM_IRQS
; i
++) {
615 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
618 fdt_add_gic_node(vbi
, type
);
620 if (type
== 3 && !no_its
) {
621 create_its(vbi
, gicdev
);
622 } else if (type
== 2) {
623 create_v2m(vbi
, pic
);
627 static void create_uart(const VirtBoardInfo
*vbi
, qemu_irq
*pic
, int uart
,
628 MemoryRegion
*mem
, CharDriverState
*chr
)
631 hwaddr base
= vbi
->memmap
[uart
].base
;
632 hwaddr size
= vbi
->memmap
[uart
].size
;
633 int irq
= vbi
->irqmap
[uart
];
634 const char compat
[] = "arm,pl011\0arm,primecell";
635 const char clocknames
[] = "uartclk\0apb_pclk";
636 DeviceState
*dev
= qdev_create(NULL
, "pl011");
637 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
639 qdev_prop_set_chr(dev
, "chardev", chr
);
640 qdev_init_nofail(dev
);
641 memory_region_add_subregion(mem
, base
,
642 sysbus_mmio_get_region(s
, 0));
643 sysbus_connect_irq(s
, 0, pic
[irq
]);
645 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
646 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
647 /* Note that we can't use setprop_string because of the embedded NUL */
648 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible",
649 compat
, sizeof(compat
));
650 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
652 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
653 GIC_FDT_IRQ_TYPE_SPI
, irq
,
654 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
655 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "clocks",
656 vbi
->clock_phandle
, vbi
->clock_phandle
);
657 qemu_fdt_setprop(vbi
->fdt
, nodename
, "clock-names",
658 clocknames
, sizeof(clocknames
));
660 if (uart
== VIRT_UART
) {
661 qemu_fdt_setprop_string(vbi
->fdt
, "/chosen", "stdout-path", nodename
);
663 /* Mark as not usable by the normal world */
664 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
665 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
671 static void create_rtc(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
674 hwaddr base
= vbi
->memmap
[VIRT_RTC
].base
;
675 hwaddr size
= vbi
->memmap
[VIRT_RTC
].size
;
676 int irq
= vbi
->irqmap
[VIRT_RTC
];
677 const char compat
[] = "arm,pl031\0arm,primecell";
679 sysbus_create_simple("pl031", base
, pic
[irq
]);
681 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
682 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
683 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
684 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
686 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
687 GIC_FDT_IRQ_TYPE_SPI
, irq
,
688 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
689 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
690 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
694 static DeviceState
*gpio_key_dev
;
695 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
697 /* use gpio Pin 3 for power button event */
698 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
701 static Notifier virt_system_powerdown_notifier
= {
702 .notify
= virt_powerdown_req
705 static void create_gpio(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
708 DeviceState
*pl061_dev
;
709 hwaddr base
= vbi
->memmap
[VIRT_GPIO
].base
;
710 hwaddr size
= vbi
->memmap
[VIRT_GPIO
].size
;
711 int irq
= vbi
->irqmap
[VIRT_GPIO
];
712 const char compat
[] = "arm,pl061\0arm,primecell";
714 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
716 uint32_t phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
717 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
718 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
719 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
721 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
722 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#gpio-cells", 2);
723 qemu_fdt_setprop(vbi
->fdt
, nodename
, "gpio-controller", NULL
, 0);
724 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
725 GIC_FDT_IRQ_TYPE_SPI
, irq
,
726 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
727 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
728 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
729 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "phandle", phandle
);
731 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
732 qdev_get_gpio_in(pl061_dev
, 3));
733 qemu_fdt_add_subnode(vbi
->fdt
, "/gpio-keys");
734 qemu_fdt_setprop_string(vbi
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
735 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys", "#size-cells", 0);
736 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys", "#address-cells", 1);
738 qemu_fdt_add_subnode(vbi
->fdt
, "/gpio-keys/poweroff");
739 qemu_fdt_setprop_string(vbi
->fdt
, "/gpio-keys/poweroff",
740 "label", "GPIO Key Poweroff");
741 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys/poweroff", "linux,code",
743 qemu_fdt_setprop_cells(vbi
->fdt
, "/gpio-keys/poweroff",
744 "gpios", phandle
, 3, 0);
746 /* connect powerdown request */
747 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
752 static void create_virtio_devices(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
755 hwaddr size
= vbi
->memmap
[VIRT_MMIO
].size
;
757 /* We create the transports in forwards order. Since qbus_realize()
758 * prepends (not appends) new child buses, the incrementing loop below will
759 * create a list of virtio-mmio buses with decreasing base addresses.
761 * When a -device option is processed from the command line,
762 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
763 * order. The upshot is that -device options in increasing command line
764 * order are mapped to virtio-mmio buses with decreasing base addresses.
766 * When this code was originally written, that arrangement ensured that the
767 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
768 * the first -device on the command line. (The end-to-end order is a
769 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
770 * guest kernel's name-to-address assignment strategy.)
772 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
773 * the message, if not necessarily the code, of commit 70161ff336.
774 * Therefore the loop now establishes the inverse of the original intent.
776 * Unfortunately, we can't counteract the kernel change by reversing the
777 * loop; it would break existing command lines.
779 * In any case, the kernel makes no guarantee about the stability of
780 * enumeration order of virtio devices (as demonstrated by it changing
781 * between kernel versions). For reliable and stable identification
782 * of disks users must use UUIDs or similar mechanisms.
784 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
785 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
786 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
788 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
791 /* We add dtb nodes in reverse order so that they appear in the finished
792 * device tree lowest address first.
794 * Note that this mapping is independent of the loop above. The previous
795 * loop influences virtio device to virtio transport assignment, whereas
796 * this loop controls how virtio transports are laid out in the dtb.
798 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
800 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
801 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
803 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
804 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
805 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
806 "compatible", "virtio,mmio");
807 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
809 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
810 GIC_FDT_IRQ_TYPE_SPI
, irq
,
811 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
816 static void create_one_flash(const char *name
, hwaddr flashbase
,
817 hwaddr flashsize
, const char *file
,
818 MemoryRegion
*sysmem
)
820 /* Create and map a single flash device. We use the same
821 * parameters as the flash devices on the Versatile Express board.
823 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
824 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
825 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
826 const uint64_t sectorlength
= 256 * 1024;
829 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
833 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
834 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
835 qdev_prop_set_uint8(dev
, "width", 4);
836 qdev_prop_set_uint8(dev
, "device-width", 2);
837 qdev_prop_set_bit(dev
, "big-endian", false);
838 qdev_prop_set_uint16(dev
, "id0", 0x89);
839 qdev_prop_set_uint16(dev
, "id1", 0x18);
840 qdev_prop_set_uint16(dev
, "id2", 0x00);
841 qdev_prop_set_uint16(dev
, "id3", 0x00);
842 qdev_prop_set_string(dev
, "name", name
);
843 qdev_init_nofail(dev
);
845 memory_region_add_subregion(sysmem
, flashbase
,
846 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0));
852 if (drive_get(IF_PFLASH
, 0, 0)) {
853 error_report("The contents of the first flash device may be "
854 "specified with -bios or with -drive if=pflash... "
855 "but you cannot use both options at once");
858 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, file
);
860 error_report("Could not find ROM image '%s'", file
);
863 image_size
= load_image_mr(fn
, sysbus_mmio_get_region(sbd
, 0));
865 if (image_size
< 0) {
866 error_report("Could not load ROM image '%s'", file
);
872 static void create_flash(const VirtBoardInfo
*vbi
,
873 MemoryRegion
*sysmem
,
874 MemoryRegion
*secure_sysmem
)
876 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
877 * Any file passed via -bios goes in the first of these.
878 * sysmem is the system memory space. secure_sysmem is the secure view
879 * of the system, and the first flash device should be made visible only
880 * there. The second flash device is visible to both secure and nonsecure.
881 * If sysmem == secure_sysmem this means there is no separate Secure
882 * address space and both flash devices are generally visible.
884 hwaddr flashsize
= vbi
->memmap
[VIRT_FLASH
].size
/ 2;
885 hwaddr flashbase
= vbi
->memmap
[VIRT_FLASH
].base
;
888 create_one_flash("virt.flash0", flashbase
, flashsize
,
889 bios_name
, secure_sysmem
);
890 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
,
893 if (sysmem
== secure_sysmem
) {
894 /* Report both flash devices as a single node in the DT */
895 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
896 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
897 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
898 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
899 2, flashbase
, 2, flashsize
,
900 2, flashbase
+ flashsize
, 2, flashsize
);
901 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
904 /* Report the devices as separate nodes so we can mark one as
905 * only visible to the secure world.
907 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
908 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
909 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
910 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
911 2, flashbase
, 2, flashsize
);
912 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
913 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
914 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
917 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
918 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
919 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
920 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
921 2, flashbase
+ flashsize
, 2, flashsize
);
922 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
927 static void create_fw_cfg(const VirtBoardInfo
*vbi
, AddressSpace
*as
)
929 hwaddr base
= vbi
->memmap
[VIRT_FW_CFG
].base
;
930 hwaddr size
= vbi
->memmap
[VIRT_FW_CFG
].size
;
933 fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
935 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
936 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
937 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
938 "compatible", "qemu,fw-cfg-mmio");
939 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
944 static void create_pcie_irq_map(const VirtBoardInfo
*vbi
, uint32_t gic_phandle
,
945 int first_irq
, const char *nodename
)
948 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
949 uint32_t *irq_map
= full_irq_map
;
951 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
952 for (pin
= 0; pin
< 4; pin
++) {
953 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
954 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
955 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
959 devfn
<< 8, 0, 0, /* devfn */
960 pin
+ 1, /* PCI pin */
961 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
963 /* Convert map to big endian */
964 for (i
= 0; i
< 10; i
++) {
965 irq_map
[i
] = cpu_to_be32(map
[i
]);
971 qemu_fdt_setprop(vbi
->fdt
, nodename
, "interrupt-map",
972 full_irq_map
, sizeof(full_irq_map
));
974 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupt-map-mask",
975 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
979 static void create_pcie(const VirtBoardInfo
*vbi
, qemu_irq
*pic
,
982 hwaddr base_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].base
;
983 hwaddr size_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].size
;
984 hwaddr base_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
985 hwaddr size_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
986 hwaddr base_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].base
;
987 hwaddr size_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].size
;
988 hwaddr base_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].base
;
989 hwaddr size_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].size
;
990 hwaddr base
= base_mmio
;
991 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
992 int irq
= vbi
->irqmap
[VIRT_PCIE
];
993 MemoryRegion
*mmio_alias
;
994 MemoryRegion
*mmio_reg
;
995 MemoryRegion
*ecam_alias
;
996 MemoryRegion
*ecam_reg
;
1002 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
1003 qdev_init_nofail(dev
);
1005 /* Map only the first size_ecam bytes of ECAM space */
1006 ecam_alias
= g_new0(MemoryRegion
, 1);
1007 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1008 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1009 ecam_reg
, 0, size_ecam
);
1010 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1012 /* Map the MMIO window into system address space so as to expose
1013 * the section of PCI MMIO space which starts at the same base address
1014 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1017 mmio_alias
= g_new0(MemoryRegion
, 1);
1018 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1019 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1020 mmio_reg
, base_mmio
, size_mmio
);
1021 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1024 /* Map high MMIO space */
1025 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1027 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1028 mmio_reg
, base_mmio_high
, size_mmio_high
);
1029 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1033 /* Map IO port space */
1034 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1036 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1037 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1040 pci
= PCI_HOST_BRIDGE(dev
);
1042 for (i
= 0; i
< nb_nics
; i
++) {
1043 NICInfo
*nd
= &nd_table
[i
];
1046 nd
->model
= g_strdup("virtio");
1049 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1053 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1054 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
1055 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
1056 "compatible", "pci-host-ecam-generic");
1057 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "pci");
1058 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#address-cells", 3);
1059 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#size-cells", 2);
1060 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "bus-range", 0,
1062 qemu_fdt_setprop(vbi
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1064 if (vbi
->msi_phandle
) {
1065 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "msi-parent",
1069 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
1070 2, base_ecam
, 2, size_ecam
);
1073 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
1074 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1075 2, base_pio
, 2, size_pio
,
1076 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1077 2, base_mmio
, 2, size_mmio
,
1078 1, FDT_PCI_RANGE_MMIO_64BIT
,
1080 2, base_mmio_high
, 2, size_mmio_high
);
1082 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
1083 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1084 2, base_pio
, 2, size_pio
,
1085 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1086 2, base_mmio
, 2, size_mmio
);
1089 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#interrupt-cells", 1);
1090 create_pcie_irq_map(vbi
, vbi
->gic_phandle
, irq
, nodename
);
1095 static void create_platform_bus(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
1100 ARMPlatformBusFDTParams
*fdt_params
= g_new(ARMPlatformBusFDTParams
, 1);
1101 MemoryRegion
*sysmem
= get_system_memory();
1103 platform_bus_params
.platform_bus_base
= vbi
->memmap
[VIRT_PLATFORM_BUS
].base
;
1104 platform_bus_params
.platform_bus_size
= vbi
->memmap
[VIRT_PLATFORM_BUS
].size
;
1105 platform_bus_params
.platform_bus_first_irq
= vbi
->irqmap
[VIRT_PLATFORM_BUS
];
1106 platform_bus_params
.platform_bus_num_irqs
= PLATFORM_BUS_NUM_IRQS
;
1108 fdt_params
->system_params
= &platform_bus_params
;
1109 fdt_params
->binfo
= &vbi
->bootinfo
;
1110 fdt_params
->intc
= "/intc";
1112 * register a machine init done notifier that creates the device tree
1113 * nodes of the platform bus and its children dynamic sysbus devices
1115 arm_register_platform_bus_fdt_creator(fdt_params
);
1117 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1118 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1119 qdev_prop_set_uint32(dev
, "num_irqs",
1120 platform_bus_params
.platform_bus_num_irqs
);
1121 qdev_prop_set_uint32(dev
, "mmio_size",
1122 platform_bus_params
.platform_bus_size
);
1123 qdev_init_nofail(dev
);
1124 s
= SYS_BUS_DEVICE(dev
);
1126 for (i
= 0; i
< platform_bus_params
.platform_bus_num_irqs
; i
++) {
1127 int irqn
= platform_bus_params
.platform_bus_first_irq
+ i
;
1128 sysbus_connect_irq(s
, i
, pic
[irqn
]);
1131 memory_region_add_subregion(sysmem
,
1132 platform_bus_params
.platform_bus_base
,
1133 sysbus_mmio_get_region(s
, 0));
1136 static void create_secure_ram(VirtBoardInfo
*vbi
, MemoryRegion
*secure_sysmem
)
1138 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1140 hwaddr base
= vbi
->memmap
[VIRT_SECURE_MEM
].base
;
1141 hwaddr size
= vbi
->memmap
[VIRT_SECURE_MEM
].size
;
1143 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
, &error_fatal
);
1144 vmstate_register_ram_global(secram
);
1145 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1147 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1148 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
1149 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "memory");
1150 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1151 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
1152 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
1157 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1159 const VirtBoardInfo
*board
= (const VirtBoardInfo
*)binfo
;
1161 *fdt_size
= board
->fdt_size
;
1165 static void virt_build_smbios(VirtGuestInfo
*guest_info
)
1167 FWCfgState
*fw_cfg
= guest_info
->fw_cfg
;
1168 uint8_t *smbios_tables
, *smbios_anchor
;
1169 size_t smbios_tables_len
, smbios_anchor_len
;
1170 const char *product
= "QEMU Virtual Machine";
1176 if (kvm_enabled()) {
1177 product
= "KVM Virtual Machine";
1180 smbios_set_defaults("QEMU", product
,
1181 "1.0", false, true, SMBIOS_ENTRY_POINT_30
);
1183 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1184 &smbios_anchor
, &smbios_anchor_len
);
1186 if (smbios_anchor
) {
1187 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-tables",
1188 smbios_tables
, smbios_tables_len
);
1189 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-anchor",
1190 smbios_anchor
, smbios_anchor_len
);
1195 void virt_guest_info_machine_done(Notifier
*notifier
, void *data
)
1197 VirtGuestInfoState
*guest_info_state
= container_of(notifier
,
1198 VirtGuestInfoState
, machine_done
);
1199 virt_acpi_setup(&guest_info_state
->info
);
1200 virt_build_smbios(&guest_info_state
->info
);
1203 static void machvirt_init(MachineState
*machine
)
1205 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1206 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1207 qemu_irq pic
[NUM_IRQS
];
1208 MemoryRegion
*sysmem
= get_system_memory();
1209 MemoryRegion
*secure_sysmem
= NULL
;
1210 int gic_version
= vms
->gic_version
;
1211 int n
, virt_max_cpus
;
1212 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1213 const char *cpu_model
= machine
->cpu_model
;
1215 VirtGuestInfoState
*guest_info_state
= g_malloc0(sizeof *guest_info_state
);
1216 VirtGuestInfo
*guest_info
= &guest_info_state
->info
;
1219 const char *typename
;
1222 bool firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1226 cpu_model
= "cortex-a15";
1229 /* We can probe only here because during property set
1230 * KVM is not available yet
1233 if (!kvm_enabled()) {
1234 error_report("gic-version=host requires KVM");
1238 gic_version
= kvm_arm_vgic_probe();
1240 error_report("Unable to determine GIC version supported by host");
1245 /* Separate the actual CPU model name from any appended features */
1246 cpustr
= g_strsplit(cpu_model
, ",", 2);
1248 vbi
= find_machine_info(cpustr
[0]);
1251 error_report("mach-virt: CPU %s not supported", cpustr
[0]);
1255 /* If we have an EL3 boot ROM then the assumption is that it will
1256 * implement PSCI itself, so disable QEMU's internal implementation
1257 * so it doesn't get in the way. Instead of starting secondary
1258 * CPUs in PSCI powerdown state we will start them all running and
1259 * let the boot ROM sort them out.
1260 * The usual case is that we do use QEMU's PSCI implementation.
1262 vbi
->using_psci
= !(vms
->secure
&& firmware_loaded
);
1264 /* The maximum number of CPUs depends on the GIC version, or on how
1265 * many redistributors we can fit into the memory map.
1267 if (gic_version
== 3) {
1268 virt_max_cpus
= vbi
->memmap
[VIRT_GIC_REDIST
].size
/ 0x20000;
1269 clustersz
= GICV3_TARGETLIST_BITS
;
1271 virt_max_cpus
= GIC_NCPU
;
1272 clustersz
= GIC_TARGETLIST_BITS
;
1275 if (max_cpus
> virt_max_cpus
) {
1276 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1277 "supported by machine 'mach-virt' (%d)",
1278 max_cpus
, virt_max_cpus
);
1282 vbi
->smp_cpus
= smp_cpus
;
1284 if (machine
->ram_size
> vbi
->memmap
[VIRT_MEM
].size
) {
1285 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB
);
1290 if (kvm_enabled()) {
1291 error_report("mach-virt: KVM does not support Security extensions");
1295 /* The Secure view of the world is the same as the NonSecure,
1296 * but with a few extra devices. Create it as a container region
1297 * containing the system memory at low priority; any secure-only
1298 * devices go in at higher priority and take precedence.
1300 secure_sysmem
= g_new(MemoryRegion
, 1);
1301 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1303 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1308 oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpustr
[0]);
1310 error_report("Unable to find CPU definition");
1313 typename
= object_class_get_name(oc
);
1315 /* convert -smp CPU options specified by the user into global props */
1317 cc
->parse_features(typename
, cpustr
[1], &err
);
1320 error_report_err(err
);
1324 for (n
= 0; n
< smp_cpus
; n
++) {
1325 Object
*cpuobj
= object_new(typename
);
1326 if (!vmc
->disallow_affinity_adjustment
) {
1327 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1328 * GIC's target-list limitations. 32-bit KVM hosts currently
1329 * always create clusters of 4 CPUs, but that is expected to
1330 * change when they gain support for gicv3. When KVM is enabled
1331 * it will override the changes we make here, therefore our
1332 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1333 * and to improve SGI efficiency.
1335 uint8_t aff1
= n
/ clustersz
;
1336 uint8_t aff0
= n
% clustersz
;
1337 object_property_set_int(cpuobj
, (aff1
<< ARM_AFF1_SHIFT
) | aff0
,
1338 "mp-affinity", NULL
);
1342 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1345 if (vbi
->using_psci
) {
1346 object_property_set_int(cpuobj
, QEMU_PSCI_CONDUIT_HVC
,
1347 "psci-conduit", NULL
);
1349 /* Secondary CPUs start in PSCI powered-down state */
1351 object_property_set_bool(cpuobj
, true,
1352 "start-powered-off", NULL
);
1356 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1357 object_property_set_int(cpuobj
, vbi
->memmap
[VIRT_CPUPERIPHS
].base
,
1358 "reset-cbar", &error_abort
);
1361 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1364 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1365 "secure-memory", &error_abort
);
1368 object_property_set_bool(cpuobj
, true, "realized", NULL
);
1370 fdt_add_timer_nodes(vbi
, gic_version
);
1371 fdt_add_cpu_nodes(vbi
);
1372 fdt_add_psci_node(vbi
);
1374 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1376 memory_region_add_subregion(sysmem
, vbi
->memmap
[VIRT_MEM
].base
, ram
);
1378 create_flash(vbi
, sysmem
, secure_sysmem
? secure_sysmem
: sysmem
);
1380 create_gic(vbi
, pic
, gic_version
, vms
->secure
, vmc
->no_its
);
1382 fdt_add_pmu_nodes(vbi
, gic_version
);
1384 create_uart(vbi
, pic
, VIRT_UART
, sysmem
, serial_hds
[0]);
1387 create_secure_ram(vbi
, secure_sysmem
);
1388 create_uart(vbi
, pic
, VIRT_SECURE_UART
, secure_sysmem
, serial_hds
[1]);
1391 create_rtc(vbi
, pic
);
1393 create_pcie(vbi
, pic
, vms
->highmem
);
1395 create_gpio(vbi
, pic
);
1397 /* Create mmio transports, so the user can create virtio backends
1398 * (which will be automatically plugged in to the transports). If
1399 * no backend is created the transport will just sit harmlessly idle.
1401 create_virtio_devices(vbi
, pic
);
1403 create_fw_cfg(vbi
, &address_space_memory
);
1404 rom_set_fw(fw_cfg_find());
1406 guest_info
->smp_cpus
= smp_cpus
;
1407 guest_info
->fw_cfg
= fw_cfg_find();
1408 guest_info
->memmap
= vbi
->memmap
;
1409 guest_info
->irqmap
= vbi
->irqmap
;
1410 guest_info
->use_highmem
= vms
->highmem
;
1411 guest_info
->gic_version
= gic_version
;
1412 guest_info
->no_its
= vmc
->no_its
;
1413 guest_info_state
->machine_done
.notify
= virt_guest_info_machine_done
;
1414 qemu_add_machine_init_done_notifier(&guest_info_state
->machine_done
);
1416 vbi
->bootinfo
.ram_size
= machine
->ram_size
;
1417 vbi
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1418 vbi
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1419 vbi
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1420 vbi
->bootinfo
.nb_cpus
= smp_cpus
;
1421 vbi
->bootinfo
.board_id
= -1;
1422 vbi
->bootinfo
.loader_start
= vbi
->memmap
[VIRT_MEM
].base
;
1423 vbi
->bootinfo
.get_dtb
= machvirt_dtb
;
1424 vbi
->bootinfo
.firmware_loaded
= firmware_loaded
;
1425 arm_load_kernel(ARM_CPU(first_cpu
), &vbi
->bootinfo
);
1428 * arm_load_kernel machine init done notifier registration must
1429 * happen before the platform_bus_create call. In this latter,
1430 * another notifier is registered which adds platform bus nodes.
1431 * Notifiers are executed in registration reverse order.
1433 create_platform_bus(vbi
, pic
);
1436 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1438 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1443 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1445 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1447 vms
->secure
= value
;
1450 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1452 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1454 return vms
->highmem
;
1457 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1459 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1461 vms
->highmem
= value
;
1464 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1466 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1467 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1469 return g_strdup(val
);
1472 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1474 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1476 if (!strcmp(value
, "3")) {
1477 vms
->gic_version
= 3;
1478 } else if (!strcmp(value
, "2")) {
1479 vms
->gic_version
= 2;
1480 } else if (!strcmp(value
, "host")) {
1481 vms
->gic_version
= 0; /* Will probe later */
1483 error_setg(errp
, "Invalid gic-version value");
1484 error_append_hint(errp
, "Valid values are 3, 2, host.\n");
1488 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
1490 MachineClass
*mc
= MACHINE_CLASS(oc
);
1492 mc
->init
= machvirt_init
;
1493 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1494 * it later in machvirt_init, where we have more information about the
1495 * configuration of the particular instance.
1498 mc
->has_dynamic_sysbus
= true;
1499 mc
->block_default_type
= IF_VIRTIO
;
1501 mc
->pci_allow_0_address
= true;
1502 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1503 mc
->minimum_page_bits
= 12;
1506 static const TypeInfo virt_machine_info
= {
1507 .name
= TYPE_VIRT_MACHINE
,
1508 .parent
= TYPE_MACHINE
,
1510 .instance_size
= sizeof(VirtMachineState
),
1511 .class_size
= sizeof(VirtMachineClass
),
1512 .class_init
= virt_machine_class_init
,
1515 static void machvirt_machine_init(void)
1517 type_register_static(&virt_machine_info
);
1519 type_init(machvirt_machine_init
);
1521 static void virt_2_8_instance_init(Object
*obj
)
1523 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1525 /* EL3 is disabled by default on virt: this makes us consistent
1526 * between KVM and TCG for this board, and it also allows us to
1527 * boot UEFI blobs which assume no TrustZone support.
1529 vms
->secure
= false;
1530 object_property_add_bool(obj
, "secure", virt_get_secure
,
1531 virt_set_secure
, NULL
);
1532 object_property_set_description(obj
, "secure",
1533 "Set on/off to enable/disable the ARM "
1534 "Security Extensions (TrustZone)",
1537 /* High memory is enabled by default */
1538 vms
->highmem
= true;
1539 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1540 virt_set_highmem
, NULL
);
1541 object_property_set_description(obj
, "highmem",
1542 "Set on/off to enable/disable using "
1543 "physical address space above 32 bits",
1545 /* Default GIC type is v2 */
1546 vms
->gic_version
= 2;
1547 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1548 virt_set_gic_version
, NULL
);
1549 object_property_set_description(obj
, "gic-version",
1551 "Valid values are 2, 3 and host", NULL
);
1554 static void virt_machine_2_8_options(MachineClass
*mc
)
1557 DEFINE_VIRT_MACHINE_AS_LATEST(2, 8)
1559 #define VIRT_COMPAT_2_7 \
1562 static void virt_2_7_instance_init(Object
*obj
)
1564 virt_2_8_instance_init(obj
);
1567 static void virt_machine_2_7_options(MachineClass
*mc
)
1569 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1571 virt_machine_2_8_options(mc
);
1572 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_7
);
1573 /* ITS was introduced with 2.8 */
1575 /* Stick with 1K pages for migration compatibility */
1576 mc
->minimum_page_bits
= 0;
1578 DEFINE_VIRT_MACHINE(2, 7)
1580 #define VIRT_COMPAT_2_6 \
1583 static void virt_2_6_instance_init(Object
*obj
)
1585 virt_2_7_instance_init(obj
);
1588 static void virt_machine_2_6_options(MachineClass
*mc
)
1590 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1592 virt_machine_2_7_options(mc
);
1593 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_6
);
1594 vmc
->disallow_affinity_adjustment
= true;
1596 DEFINE_VIRT_MACHINE(2, 6)