hw/arm/virt: Enable dynamic generation of ACPI v5.1 tables
[qemu/ar7.git] / hw / arm / virt.c
blob05db8cb2f74a749c3184f5568e6bbd3d4f297519
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
36 #include "net/net.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
49 /* Number of external interrupt lines to configure the GIC with */
50 #define NUM_IRQS 128
52 #define GIC_FDT_IRQ_TYPE_SPI 0
53 #define GIC_FDT_IRQ_TYPE_PPI 1
55 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
56 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
57 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
58 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
60 #define GIC_FDT_IRQ_PPI_CPU_START 8
61 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
63 typedef struct VirtBoardInfo {
64 struct arm_boot_info bootinfo;
65 const char *cpu_model;
66 const MemMapEntry *memmap;
67 const int *irqmap;
68 int smp_cpus;
69 void *fdt;
70 int fdt_size;
71 uint32_t clock_phandle;
72 } VirtBoardInfo;
74 typedef struct {
75 MachineClass parent;
76 VirtBoardInfo *daughterboard;
77 } VirtMachineClass;
79 typedef struct {
80 MachineState parent;
81 bool secure;
82 } VirtMachineState;
84 #define TYPE_VIRT_MACHINE "virt"
85 #define VIRT_MACHINE(obj) \
86 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
87 #define VIRT_MACHINE_GET_CLASS(obj) \
88 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
89 #define VIRT_MACHINE_CLASS(klass) \
90 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
92 /* Addresses and sizes of our components.
93 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
94 * 128MB..256MB is used for miscellaneous device I/O.
95 * 256MB..1GB is reserved for possible future PCI support (ie where the
96 * PCI memory window will go if we add a PCI host controller).
97 * 1GB and up is RAM (which may happily spill over into the
98 * high memory region beyond 4GB).
99 * This represents a compromise between how much RAM can be given to
100 * a 32 bit VM and leaving space for expansion and in particular for PCI.
101 * Note that devices should generally be placed at multiples of 0x10000,
102 * to accommodate guests using 64K pages.
104 static const MemMapEntry a15memmap[] = {
105 /* Space up to 0x8000000 is reserved for a boot ROM */
106 [VIRT_FLASH] = { 0, 0x08000000 },
107 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
108 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
109 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
110 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
111 [VIRT_UART] = { 0x09000000, 0x00001000 },
112 [VIRT_RTC] = { 0x09010000, 0x00001000 },
113 [VIRT_FW_CFG] = { 0x09020000, 0x0000000a },
114 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
115 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
116 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
117 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
118 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
119 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
122 static const int a15irqmap[] = {
123 [VIRT_UART] = 1,
124 [VIRT_RTC] = 2,
125 [VIRT_PCIE] = 3, /* ... to 6 */
126 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
129 static VirtBoardInfo machines[] = {
131 .cpu_model = "cortex-a15",
132 .memmap = a15memmap,
133 .irqmap = a15irqmap,
136 .cpu_model = "cortex-a57",
137 .memmap = a15memmap,
138 .irqmap = a15irqmap,
141 .cpu_model = "host",
142 .memmap = a15memmap,
143 .irqmap = a15irqmap,
147 static VirtBoardInfo *find_machine_info(const char *cpu)
149 int i;
151 for (i = 0; i < ARRAY_SIZE(machines); i++) {
152 if (strcmp(cpu, machines[i].cpu_model) == 0) {
153 return &machines[i];
156 return NULL;
159 static void create_fdt(VirtBoardInfo *vbi)
161 void *fdt = create_device_tree(&vbi->fdt_size);
163 if (!fdt) {
164 error_report("create_device_tree() failed");
165 exit(1);
168 vbi->fdt = fdt;
170 /* Header */
171 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
172 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
173 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
176 * /chosen and /memory nodes must exist for load_dtb
177 * to fill in necessary properties later
179 qemu_fdt_add_subnode(fdt, "/chosen");
180 qemu_fdt_add_subnode(fdt, "/memory");
181 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
183 /* Clock node, for the benefit of the UART. The kernel device tree
184 * binding documentation claims the PL011 node clock properties are
185 * optional but in practice if you omit them the kernel refuses to
186 * probe for the device.
188 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
189 qemu_fdt_add_subnode(fdt, "/apb-pclk");
190 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
191 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
192 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
193 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
194 "clk24mhz");
195 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
199 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
201 uint32_t cpu_suspend_fn;
202 uint32_t cpu_off_fn;
203 uint32_t cpu_on_fn;
204 uint32_t migrate_fn;
205 void *fdt = vbi->fdt;
206 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
208 qemu_fdt_add_subnode(fdt, "/psci");
209 if (armcpu->psci_version == 2) {
210 const char comp[] = "arm,psci-0.2\0arm,psci";
211 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
213 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
214 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
215 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
216 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
217 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
218 } else {
219 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
220 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
221 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
223 } else {
224 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
226 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
227 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
228 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
229 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
232 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
233 * to the instruction that should be used to invoke PSCI functions.
234 * However, the device tree binding uses 'method' instead, so that is
235 * what we should use here.
237 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
239 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
240 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
241 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
242 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
245 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
247 /* Note that on A15 h/w these interrupts are level-triggered,
248 * but for the GIC implementation provided by both QEMU and KVM
249 * they are edge-triggered.
251 ARMCPU *armcpu;
252 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
254 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
255 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
257 qemu_fdt_add_subnode(vbi->fdt, "/timer");
259 armcpu = ARM_CPU(qemu_get_cpu(0));
260 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
261 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
262 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
263 compat, sizeof(compat));
264 } else {
265 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
266 "arm,armv7-timer");
268 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
269 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
270 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
271 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
272 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
275 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
277 int cpu;
279 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
280 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
281 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
283 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
284 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
285 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
287 qemu_fdt_add_subnode(vbi->fdt, nodename);
288 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
289 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
290 armcpu->dtb_compatible);
292 if (vbi->smp_cpus > 1) {
293 qemu_fdt_setprop_string(vbi->fdt, nodename,
294 "enable-method", "psci");
297 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
298 g_free(nodename);
302 static uint32_t fdt_add_gic_node(const VirtBoardInfo *vbi)
304 uint32_t gic_phandle;
306 gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
307 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
309 qemu_fdt_add_subnode(vbi->fdt, "/intc");
310 /* 'cortex-a15-gic' means 'GIC v2' */
311 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
312 "arm,cortex-a15-gic");
313 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
314 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
315 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
316 2, vbi->memmap[VIRT_GIC_DIST].base,
317 2, vbi->memmap[VIRT_GIC_DIST].size,
318 2, vbi->memmap[VIRT_GIC_CPU].base,
319 2, vbi->memmap[VIRT_GIC_CPU].size);
320 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
322 return gic_phandle;
325 static uint32_t create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
327 /* We create a standalone GIC v2 */
328 DeviceState *gicdev;
329 SysBusDevice *gicbusdev;
330 const char *gictype = "arm_gic";
331 int i;
333 if (kvm_irqchip_in_kernel()) {
334 gictype = "kvm-arm-gic";
337 gicdev = qdev_create(NULL, gictype);
338 qdev_prop_set_uint32(gicdev, "revision", 2);
339 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
340 /* Note that the num-irq property counts both internal and external
341 * interrupts; there are always 32 of the former (mandated by GIC spec).
343 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
344 qdev_init_nofail(gicdev);
345 gicbusdev = SYS_BUS_DEVICE(gicdev);
346 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
347 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
349 /* Wire the outputs from each CPU's generic timer to the
350 * appropriate GIC PPI inputs, and the GIC's IRQ output to
351 * the CPU's IRQ input.
353 for (i = 0; i < smp_cpus; i++) {
354 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
355 int ppibase = NUM_IRQS + i * 32;
356 /* physical timer; we wire it up to the non-secure timer's ID,
357 * since a real A15 always has TrustZone but QEMU doesn't.
359 qdev_connect_gpio_out(cpudev, 0,
360 qdev_get_gpio_in(gicdev, ppibase + 30));
361 /* virtual timer */
362 qdev_connect_gpio_out(cpudev, 1,
363 qdev_get_gpio_in(gicdev, ppibase + 27));
365 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
366 sysbus_connect_irq(gicbusdev, i + smp_cpus,
367 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
370 for (i = 0; i < NUM_IRQS; i++) {
371 pic[i] = qdev_get_gpio_in(gicdev, i);
374 return fdt_add_gic_node(vbi);
377 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
379 char *nodename;
380 hwaddr base = vbi->memmap[VIRT_UART].base;
381 hwaddr size = vbi->memmap[VIRT_UART].size;
382 int irq = vbi->irqmap[VIRT_UART];
383 const char compat[] = "arm,pl011\0arm,primecell";
384 const char clocknames[] = "uartclk\0apb_pclk";
386 sysbus_create_simple("pl011", base, pic[irq]);
388 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
389 qemu_fdt_add_subnode(vbi->fdt, nodename);
390 /* Note that we can't use setprop_string because of the embedded NUL */
391 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
392 compat, sizeof(compat));
393 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
394 2, base, 2, size);
395 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
396 GIC_FDT_IRQ_TYPE_SPI, irq,
397 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
398 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
399 vbi->clock_phandle, vbi->clock_phandle);
400 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
401 clocknames, sizeof(clocknames));
403 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
404 g_free(nodename);
407 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
409 char *nodename;
410 hwaddr base = vbi->memmap[VIRT_RTC].base;
411 hwaddr size = vbi->memmap[VIRT_RTC].size;
412 int irq = vbi->irqmap[VIRT_RTC];
413 const char compat[] = "arm,pl031\0arm,primecell";
415 sysbus_create_simple("pl031", base, pic[irq]);
417 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
418 qemu_fdt_add_subnode(vbi->fdt, nodename);
419 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
420 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
421 2, base, 2, size);
422 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
423 GIC_FDT_IRQ_TYPE_SPI, irq,
424 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
425 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
426 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
427 g_free(nodename);
430 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
432 int i;
433 hwaddr size = vbi->memmap[VIRT_MMIO].size;
435 /* We create the transports in forwards order. Since qbus_realize()
436 * prepends (not appends) new child buses, the incrementing loop below will
437 * create a list of virtio-mmio buses with decreasing base addresses.
439 * When a -device option is processed from the command line,
440 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
441 * order. The upshot is that -device options in increasing command line
442 * order are mapped to virtio-mmio buses with decreasing base addresses.
444 * When this code was originally written, that arrangement ensured that the
445 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
446 * the first -device on the command line. (The end-to-end order is a
447 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
448 * guest kernel's name-to-address assignment strategy.)
450 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
451 * the message, if not necessarily the code, of commit 70161ff336.
452 * Therefore the loop now establishes the inverse of the original intent.
454 * Unfortunately, we can't counteract the kernel change by reversing the
455 * loop; it would break existing command lines.
457 * In any case, the kernel makes no guarantee about the stability of
458 * enumeration order of virtio devices (as demonstrated by it changing
459 * between kernel versions). For reliable and stable identification
460 * of disks users must use UUIDs or similar mechanisms.
462 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
463 int irq = vbi->irqmap[VIRT_MMIO] + i;
464 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
466 sysbus_create_simple("virtio-mmio", base, pic[irq]);
469 /* We add dtb nodes in reverse order so that they appear in the finished
470 * device tree lowest address first.
472 * Note that this mapping is independent of the loop above. The previous
473 * loop influences virtio device to virtio transport assignment, whereas
474 * this loop controls how virtio transports are laid out in the dtb.
476 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
477 char *nodename;
478 int irq = vbi->irqmap[VIRT_MMIO] + i;
479 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
481 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
482 qemu_fdt_add_subnode(vbi->fdt, nodename);
483 qemu_fdt_setprop_string(vbi->fdt, nodename,
484 "compatible", "virtio,mmio");
485 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
486 2, base, 2, size);
487 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
488 GIC_FDT_IRQ_TYPE_SPI, irq,
489 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
490 g_free(nodename);
494 static void create_one_flash(const char *name, hwaddr flashbase,
495 hwaddr flashsize)
497 /* Create and map a single flash device. We use the same
498 * parameters as the flash devices on the Versatile Express board.
500 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
501 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
502 const uint64_t sectorlength = 256 * 1024;
504 if (dinfo) {
505 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
506 &error_abort);
509 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
510 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
511 qdev_prop_set_uint8(dev, "width", 4);
512 qdev_prop_set_uint8(dev, "device-width", 2);
513 qdev_prop_set_uint8(dev, "big-endian", 0);
514 qdev_prop_set_uint16(dev, "id0", 0x89);
515 qdev_prop_set_uint16(dev, "id1", 0x18);
516 qdev_prop_set_uint16(dev, "id2", 0x00);
517 qdev_prop_set_uint16(dev, "id3", 0x00);
518 qdev_prop_set_string(dev, "name", name);
519 qdev_init_nofail(dev);
521 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
524 static void create_flash(const VirtBoardInfo *vbi)
526 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
527 * Any file passed via -bios goes in the first of these.
529 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
530 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
531 char *nodename;
533 if (bios_name) {
534 char *fn;
535 int image_size;
537 if (drive_get(IF_PFLASH, 0, 0)) {
538 error_report("The contents of the first flash device may be "
539 "specified with -bios or with -drive if=pflash... "
540 "but you cannot use both options at once");
541 exit(1);
543 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
544 if (!fn) {
545 error_report("Could not find ROM image '%s'", bios_name);
546 exit(1);
548 image_size = load_image_targphys(fn, flashbase, flashsize);
549 g_free(fn);
550 if (image_size < 0) {
551 error_report("Could not load ROM image '%s'", bios_name);
552 exit(1);
556 create_one_flash("virt.flash0", flashbase, flashsize);
557 create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
559 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
560 qemu_fdt_add_subnode(vbi->fdt, nodename);
561 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
562 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
563 2, flashbase, 2, flashsize,
564 2, flashbase + flashsize, 2, flashsize);
565 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
566 g_free(nodename);
569 static void create_fw_cfg(const VirtBoardInfo *vbi)
571 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
572 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
573 char *nodename;
575 fw_cfg_init_mem_wide(base + 8, base, 8);
577 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
578 qemu_fdt_add_subnode(vbi->fdt, nodename);
579 qemu_fdt_setprop_string(vbi->fdt, nodename,
580 "compatible", "qemu,fw-cfg-mmio");
581 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
582 2, base, 2, size);
583 g_free(nodename);
586 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
587 int first_irq, const char *nodename)
589 int devfn, pin;
590 uint32_t full_irq_map[4 * 4 * 8] = { 0 };
591 uint32_t *irq_map = full_irq_map;
593 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
594 for (pin = 0; pin < 4; pin++) {
595 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
596 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
597 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
598 int i;
600 uint32_t map[] = {
601 devfn << 8, 0, 0, /* devfn */
602 pin + 1, /* PCI pin */
603 gic_phandle, irq_type, irq_nr, irq_level }; /* GIC irq */
605 /* Convert map to big endian */
606 for (i = 0; i < 8; i++) {
607 irq_map[i] = cpu_to_be32(map[i]);
609 irq_map += 8;
613 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
614 full_irq_map, sizeof(full_irq_map));
616 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
617 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
618 0x7 /* PCI irq */);
621 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
622 uint32_t gic_phandle)
624 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
625 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
626 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
627 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
628 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
629 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
630 hwaddr base = base_mmio;
631 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
632 int irq = vbi->irqmap[VIRT_PCIE];
633 MemoryRegion *mmio_alias;
634 MemoryRegion *mmio_reg;
635 MemoryRegion *ecam_alias;
636 MemoryRegion *ecam_reg;
637 DeviceState *dev;
638 char *nodename;
639 int i;
641 dev = qdev_create(NULL, TYPE_GPEX_HOST);
642 qdev_init_nofail(dev);
644 /* Map only the first size_ecam bytes of ECAM space */
645 ecam_alias = g_new0(MemoryRegion, 1);
646 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
647 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
648 ecam_reg, 0, size_ecam);
649 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
651 /* Map the MMIO window into system address space so as to expose
652 * the section of PCI MMIO space which starts at the same base address
653 * (ie 1:1 mapping for that part of PCI MMIO space visible through
654 * the window).
656 mmio_alias = g_new0(MemoryRegion, 1);
657 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
658 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
659 mmio_reg, base_mmio, size_mmio);
660 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
662 /* Map IO port space */
663 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
665 for (i = 0; i < GPEX_NUM_IRQS; i++) {
666 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
669 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
670 qemu_fdt_add_subnode(vbi->fdt, nodename);
671 qemu_fdt_setprop_string(vbi->fdt, nodename,
672 "compatible", "pci-host-ecam-generic");
673 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
674 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
675 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
676 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
677 nr_pcie_buses - 1);
679 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
680 2, base_ecam, 2, size_ecam);
681 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
682 1, FDT_PCI_RANGE_IOPORT, 2, 0,
683 2, base_pio, 2, size_pio,
684 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
685 2, base_mmio, 2, size_mmio);
687 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
688 create_pcie_irq_map(vbi, gic_phandle, irq, nodename);
690 g_free(nodename);
693 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
695 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
697 *fdt_size = board->fdt_size;
698 return board->fdt;
701 static
702 void virt_guest_info_machine_done(Notifier *notifier, void *data)
704 VirtGuestInfoState *guest_info_state = container_of(notifier,
705 VirtGuestInfoState, machine_done);
706 virt_acpi_setup(&guest_info_state->info);
709 static void machvirt_init(MachineState *machine)
711 VirtMachineState *vms = VIRT_MACHINE(machine);
712 qemu_irq pic[NUM_IRQS];
713 MemoryRegion *sysmem = get_system_memory();
714 int n;
715 MemoryRegion *ram = g_new(MemoryRegion, 1);
716 const char *cpu_model = machine->cpu_model;
717 VirtBoardInfo *vbi;
718 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
719 VirtGuestInfo *guest_info = &guest_info_state->info;
720 uint32_t gic_phandle;
721 char **cpustr;
723 if (!cpu_model) {
724 cpu_model = "cortex-a15";
727 /* Separate the actual CPU model name from any appended features */
728 cpustr = g_strsplit(cpu_model, ",", 2);
730 vbi = find_machine_info(cpustr[0]);
732 if (!vbi) {
733 error_report("mach-virt: CPU %s not supported", cpustr[0]);
734 exit(1);
737 vbi->smp_cpus = smp_cpus;
739 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
740 error_report("mach-virt: cannot model more than 30GB RAM");
741 exit(1);
744 create_fdt(vbi);
746 for (n = 0; n < smp_cpus; n++) {
747 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
748 CPUClass *cc = CPU_CLASS(oc);
749 Object *cpuobj;
750 Error *err = NULL;
751 char *cpuopts = g_strdup(cpustr[1]);
753 if (!oc) {
754 fprintf(stderr, "Unable to find CPU definition\n");
755 exit(1);
757 cpuobj = object_new(object_class_get_name(oc));
759 /* Handle any CPU options specified by the user */
760 cc->parse_features(CPU(cpuobj), cpuopts, &err);
761 g_free(cpuopts);
762 if (err) {
763 error_report_err(err);
764 exit(1);
767 if (!vms->secure) {
768 object_property_set_bool(cpuobj, false, "has_el3", NULL);
771 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
772 NULL);
774 /* Secondary CPUs start in PSCI powered-down state */
775 if (n > 0) {
776 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
779 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
780 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
781 "reset-cbar", &error_abort);
784 object_property_set_bool(cpuobj, true, "realized", NULL);
786 g_strfreev(cpustr);
787 fdt_add_timer_nodes(vbi);
788 fdt_add_cpu_nodes(vbi);
789 fdt_add_psci_node(vbi);
791 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
792 machine->ram_size);
793 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
795 create_flash(vbi);
797 gic_phandle = create_gic(vbi, pic);
799 create_uart(vbi, pic);
801 create_rtc(vbi, pic);
803 create_pcie(vbi, pic, gic_phandle);
805 /* Create mmio transports, so the user can create virtio backends
806 * (which will be automatically plugged in to the transports). If
807 * no backend is created the transport will just sit harmlessly idle.
809 create_virtio_devices(vbi, pic);
811 create_fw_cfg(vbi);
812 rom_set_fw(fw_cfg_find());
814 guest_info->smp_cpus = smp_cpus;
815 guest_info->fw_cfg = fw_cfg_find();
816 guest_info->memmap = vbi->memmap;
817 guest_info->irqmap = vbi->irqmap;
818 guest_info_state->machine_done.notify = virt_guest_info_machine_done;
819 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
821 vbi->bootinfo.ram_size = machine->ram_size;
822 vbi->bootinfo.kernel_filename = machine->kernel_filename;
823 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
824 vbi->bootinfo.initrd_filename = machine->initrd_filename;
825 vbi->bootinfo.nb_cpus = smp_cpus;
826 vbi->bootinfo.board_id = -1;
827 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
828 vbi->bootinfo.get_dtb = machvirt_dtb;
829 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
830 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
833 static bool virt_get_secure(Object *obj, Error **errp)
835 VirtMachineState *vms = VIRT_MACHINE(obj);
837 return vms->secure;
840 static void virt_set_secure(Object *obj, bool value, Error **errp)
842 VirtMachineState *vms = VIRT_MACHINE(obj);
844 vms->secure = value;
847 static void virt_instance_init(Object *obj)
849 VirtMachineState *vms = VIRT_MACHINE(obj);
851 /* EL3 is enabled by default on virt */
852 vms->secure = true;
853 object_property_add_bool(obj, "secure", virt_get_secure,
854 virt_set_secure, NULL);
855 object_property_set_description(obj, "secure",
856 "Set on/off to enable/disable the ARM "
857 "Security Extensions (TrustZone)",
858 NULL);
861 static void virt_class_init(ObjectClass *oc, void *data)
863 MachineClass *mc = MACHINE_CLASS(oc);
865 mc->name = TYPE_VIRT_MACHINE;
866 mc->desc = "ARM Virtual Machine",
867 mc->init = machvirt_init;
868 mc->max_cpus = 8;
871 static const TypeInfo machvirt_info = {
872 .name = TYPE_VIRT_MACHINE,
873 .parent = TYPE_MACHINE,
874 .instance_size = sizeof(VirtMachineState),
875 .instance_init = virt_instance_init,
876 .class_size = sizeof(VirtMachineClass),
877 .class_init = virt_class_init,
880 static void machvirt_machine_init(void)
882 type_register_static(&machvirt_info);
885 machine_init(machvirt_machine_init);